Properties

Label 832.4.a.bf.1.1
Level $832$
Weight $4$
Character 832.1
Self dual yes
Analytic conductor $49.090$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-11,0,5,0,21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 66x^{3} - 139x^{2} + 283x + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.30745\) of defining polynomial
Character \(\chi\) \(=\) 832.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.48781 q^{3} +10.6440 q^{5} -7.29306 q^{7} +63.0185 q^{9} -39.6958 q^{11} -13.0000 q^{13} -100.988 q^{15} +111.834 q^{17} +70.5902 q^{19} +69.1951 q^{21} +3.12876 q^{23} -11.7058 q^{25} -341.736 q^{27} -262.801 q^{29} +86.5729 q^{31} +376.626 q^{33} -77.6272 q^{35} -61.7501 q^{37} +123.341 q^{39} -198.635 q^{41} -393.717 q^{43} +670.767 q^{45} +422.349 q^{47} -289.811 q^{49} -1061.06 q^{51} -193.654 q^{53} -422.521 q^{55} -669.746 q^{57} +512.261 q^{59} +714.769 q^{61} -459.597 q^{63} -138.372 q^{65} -498.678 q^{67} -29.6850 q^{69} -852.467 q^{71} +28.6535 q^{73} +111.062 q^{75} +289.504 q^{77} +747.882 q^{79} +1540.83 q^{81} +1047.78 q^{83} +1190.36 q^{85} +2493.40 q^{87} +278.121 q^{89} +94.8098 q^{91} -821.387 q^{93} +751.360 q^{95} +1607.75 q^{97} -2501.57 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 11 q^{3} + 5 q^{5} + 21 q^{7} + 44 q^{9} + 18 q^{11} - 65 q^{13} + 39 q^{15} + 123 q^{17} - 142 q^{19} + 27 q^{21} + 92 q^{23} + 194 q^{25} - 449 q^{27} + 206 q^{29} + 436 q^{31} + 302 q^{33} - 817 q^{35}+ \cdots - 1404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.48781 −1.82593 −0.912965 0.408039i \(-0.866213\pi\)
−0.912965 + 0.408039i \(0.866213\pi\)
\(4\) 0 0
\(5\) 10.6440 0.952026 0.476013 0.879438i \(-0.342081\pi\)
0.476013 + 0.879438i \(0.342081\pi\)
\(6\) 0 0
\(7\) −7.29306 −0.393788 −0.196894 0.980425i \(-0.563086\pi\)
−0.196894 + 0.980425i \(0.563086\pi\)
\(8\) 0 0
\(9\) 63.0185 2.33402
\(10\) 0 0
\(11\) −39.6958 −1.08807 −0.544033 0.839064i \(-0.683103\pi\)
−0.544033 + 0.839064i \(0.683103\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) −100.988 −1.73833
\(16\) 0 0
\(17\) 111.834 1.59552 0.797759 0.602976i \(-0.206018\pi\)
0.797759 + 0.602976i \(0.206018\pi\)
\(18\) 0 0
\(19\) 70.5902 0.852342 0.426171 0.904643i \(-0.359862\pi\)
0.426171 + 0.904643i \(0.359862\pi\)
\(20\) 0 0
\(21\) 69.1951 0.719030
\(22\) 0 0
\(23\) 3.12876 0.0283648 0.0141824 0.999899i \(-0.495485\pi\)
0.0141824 + 0.999899i \(0.495485\pi\)
\(24\) 0 0
\(25\) −11.7058 −0.0936462
\(26\) 0 0
\(27\) −341.736 −2.43582
\(28\) 0 0
\(29\) −262.801 −1.68279 −0.841395 0.540421i \(-0.818265\pi\)
−0.841395 + 0.540421i \(0.818265\pi\)
\(30\) 0 0
\(31\) 86.5729 0.501579 0.250789 0.968042i \(-0.419310\pi\)
0.250789 + 0.968042i \(0.419310\pi\)
\(32\) 0 0
\(33\) 376.626 1.98673
\(34\) 0 0
\(35\) −77.6272 −0.374897
\(36\) 0 0
\(37\) −61.7501 −0.274369 −0.137184 0.990546i \(-0.543805\pi\)
−0.137184 + 0.990546i \(0.543805\pi\)
\(38\) 0 0
\(39\) 123.341 0.506422
\(40\) 0 0
\(41\) −198.635 −0.756622 −0.378311 0.925678i \(-0.623495\pi\)
−0.378311 + 0.925678i \(0.623495\pi\)
\(42\) 0 0
\(43\) −393.717 −1.39631 −0.698155 0.715947i \(-0.745995\pi\)
−0.698155 + 0.715947i \(0.745995\pi\)
\(44\) 0 0
\(45\) 670.767 2.22205
\(46\) 0 0
\(47\) 422.349 1.31076 0.655382 0.755298i \(-0.272508\pi\)
0.655382 + 0.755298i \(0.272508\pi\)
\(48\) 0 0
\(49\) −289.811 −0.844931
\(50\) 0 0
\(51\) −1061.06 −2.91330
\(52\) 0 0
\(53\) −193.654 −0.501895 −0.250947 0.968001i \(-0.580742\pi\)
−0.250947 + 0.968001i \(0.580742\pi\)
\(54\) 0 0
\(55\) −422.521 −1.03587
\(56\) 0 0
\(57\) −669.746 −1.55632
\(58\) 0 0
\(59\) 512.261 1.13035 0.565176 0.824970i \(-0.308808\pi\)
0.565176 + 0.824970i \(0.308808\pi\)
\(60\) 0 0
\(61\) 714.769 1.50028 0.750138 0.661281i \(-0.229987\pi\)
0.750138 + 0.661281i \(0.229987\pi\)
\(62\) 0 0
\(63\) −459.597 −0.919109
\(64\) 0 0
\(65\) −138.372 −0.264045
\(66\) 0 0
\(67\) −498.678 −0.909303 −0.454651 0.890670i \(-0.650236\pi\)
−0.454651 + 0.890670i \(0.650236\pi\)
\(68\) 0 0
\(69\) −29.6850 −0.0517921
\(70\) 0 0
\(71\) −852.467 −1.42492 −0.712460 0.701713i \(-0.752419\pi\)
−0.712460 + 0.701713i \(0.752419\pi\)
\(72\) 0 0
\(73\) 28.6535 0.0459403 0.0229702 0.999736i \(-0.492688\pi\)
0.0229702 + 0.999736i \(0.492688\pi\)
\(74\) 0 0
\(75\) 111.062 0.170991
\(76\) 0 0
\(77\) 289.504 0.428467
\(78\) 0 0
\(79\) 747.882 1.06510 0.532552 0.846397i \(-0.321233\pi\)
0.532552 + 0.846397i \(0.321233\pi\)
\(80\) 0 0
\(81\) 1540.83 2.11362
\(82\) 0 0
\(83\) 1047.78 1.38565 0.692823 0.721108i \(-0.256367\pi\)
0.692823 + 0.721108i \(0.256367\pi\)
\(84\) 0 0
\(85\) 1190.36 1.51898
\(86\) 0 0
\(87\) 2493.40 3.07266
\(88\) 0 0
\(89\) 278.121 0.331245 0.165622 0.986189i \(-0.447037\pi\)
0.165622 + 0.986189i \(0.447037\pi\)
\(90\) 0 0
\(91\) 94.8098 0.109217
\(92\) 0 0
\(93\) −821.387 −0.915847
\(94\) 0 0
\(95\) 751.360 0.811452
\(96\) 0 0
\(97\) 1607.75 1.68291 0.841455 0.540326i \(-0.181699\pi\)
0.841455 + 0.540326i \(0.181699\pi\)
\(98\) 0 0
\(99\) −2501.57 −2.53956
\(100\) 0 0
\(101\) 1266.29 1.24753 0.623763 0.781613i \(-0.285603\pi\)
0.623763 + 0.781613i \(0.285603\pi\)
\(102\) 0 0
\(103\) 117.218 0.112135 0.0560673 0.998427i \(-0.482144\pi\)
0.0560673 + 0.998427i \(0.482144\pi\)
\(104\) 0 0
\(105\) 736.512 0.684535
\(106\) 0 0
\(107\) 1543.43 1.39447 0.697237 0.716840i \(-0.254412\pi\)
0.697237 + 0.716840i \(0.254412\pi\)
\(108\) 0 0
\(109\) 612.637 0.538349 0.269174 0.963091i \(-0.413249\pi\)
0.269174 + 0.963091i \(0.413249\pi\)
\(110\) 0 0
\(111\) 585.873 0.500978
\(112\) 0 0
\(113\) −1545.43 −1.28657 −0.643284 0.765627i \(-0.722429\pi\)
−0.643284 + 0.765627i \(0.722429\pi\)
\(114\) 0 0
\(115\) 33.3024 0.0270040
\(116\) 0 0
\(117\) −819.240 −0.647340
\(118\) 0 0
\(119\) −815.615 −0.628297
\(120\) 0 0
\(121\) 244.753 0.183886
\(122\) 0 0
\(123\) 1884.61 1.38154
\(124\) 0 0
\(125\) −1455.09 −1.04118
\(126\) 0 0
\(127\) 1358.05 0.948879 0.474440 0.880288i \(-0.342651\pi\)
0.474440 + 0.880288i \(0.342651\pi\)
\(128\) 0 0
\(129\) 3735.51 2.54956
\(130\) 0 0
\(131\) −1301.51 −0.868039 −0.434020 0.900903i \(-0.642905\pi\)
−0.434020 + 0.900903i \(0.642905\pi\)
\(132\) 0 0
\(133\) −514.819 −0.335642
\(134\) 0 0
\(135\) −3637.43 −2.31896
\(136\) 0 0
\(137\) −670.632 −0.418219 −0.209109 0.977892i \(-0.567056\pi\)
−0.209109 + 0.977892i \(0.567056\pi\)
\(138\) 0 0
\(139\) 2142.07 1.30711 0.653553 0.756881i \(-0.273278\pi\)
0.653553 + 0.756881i \(0.273278\pi\)
\(140\) 0 0
\(141\) −4007.16 −2.39336
\(142\) 0 0
\(143\) 516.045 0.301775
\(144\) 0 0
\(145\) −2797.25 −1.60206
\(146\) 0 0
\(147\) 2749.67 1.54278
\(148\) 0 0
\(149\) 3065.68 1.68557 0.842786 0.538248i \(-0.180914\pi\)
0.842786 + 0.538248i \(0.180914\pi\)
\(150\) 0 0
\(151\) 2589.07 1.39534 0.697668 0.716422i \(-0.254221\pi\)
0.697668 + 0.716422i \(0.254221\pi\)
\(152\) 0 0
\(153\) 7047.63 3.72397
\(154\) 0 0
\(155\) 921.480 0.477516
\(156\) 0 0
\(157\) 3712.44 1.88716 0.943582 0.331140i \(-0.107433\pi\)
0.943582 + 0.331140i \(0.107433\pi\)
\(158\) 0 0
\(159\) 1837.35 0.916425
\(160\) 0 0
\(161\) −22.8182 −0.0111697
\(162\) 0 0
\(163\) 729.775 0.350677 0.175339 0.984508i \(-0.443898\pi\)
0.175339 + 0.984508i \(0.443898\pi\)
\(164\) 0 0
\(165\) 4008.79 1.89142
\(166\) 0 0
\(167\) −1609.67 −0.745870 −0.372935 0.927858i \(-0.621649\pi\)
−0.372935 + 0.927858i \(0.621649\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 4448.49 1.98938
\(172\) 0 0
\(173\) −398.815 −0.175268 −0.0876340 0.996153i \(-0.527931\pi\)
−0.0876340 + 0.996153i \(0.527931\pi\)
\(174\) 0 0
\(175\) 85.3709 0.0368768
\(176\) 0 0
\(177\) −4860.24 −2.06394
\(178\) 0 0
\(179\) −1632.70 −0.681751 −0.340876 0.940108i \(-0.610724\pi\)
−0.340876 + 0.940108i \(0.610724\pi\)
\(180\) 0 0
\(181\) −192.549 −0.0790722 −0.0395361 0.999218i \(-0.512588\pi\)
−0.0395361 + 0.999218i \(0.512588\pi\)
\(182\) 0 0
\(183\) −6781.59 −2.73940
\(184\) 0 0
\(185\) −657.266 −0.261206
\(186\) 0 0
\(187\) −4439.35 −1.73603
\(188\) 0 0
\(189\) 2492.30 0.959197
\(190\) 0 0
\(191\) 1170.90 0.443577 0.221789 0.975095i \(-0.428811\pi\)
0.221789 + 0.975095i \(0.428811\pi\)
\(192\) 0 0
\(193\) 1029.07 0.383805 0.191902 0.981414i \(-0.438534\pi\)
0.191902 + 0.981414i \(0.438534\pi\)
\(194\) 0 0
\(195\) 1312.84 0.482127
\(196\) 0 0
\(197\) 4507.31 1.63011 0.815056 0.579382i \(-0.196706\pi\)
0.815056 + 0.579382i \(0.196706\pi\)
\(198\) 0 0
\(199\) −3526.54 −1.25623 −0.628116 0.778120i \(-0.716174\pi\)
−0.628116 + 0.778120i \(0.716174\pi\)
\(200\) 0 0
\(201\) 4731.36 1.66032
\(202\) 0 0
\(203\) 1916.62 0.662663
\(204\) 0 0
\(205\) −2114.26 −0.720324
\(206\) 0 0
\(207\) 197.169 0.0662040
\(208\) 0 0
\(209\) −2802.13 −0.927404
\(210\) 0 0
\(211\) −3918.76 −1.27857 −0.639285 0.768970i \(-0.720770\pi\)
−0.639285 + 0.768970i \(0.720770\pi\)
\(212\) 0 0
\(213\) 8088.04 2.60180
\(214\) 0 0
\(215\) −4190.72 −1.32932
\(216\) 0 0
\(217\) −631.381 −0.197516
\(218\) 0 0
\(219\) −271.859 −0.0838838
\(220\) 0 0
\(221\) −1453.85 −0.442517
\(222\) 0 0
\(223\) 856.191 0.257107 0.128553 0.991703i \(-0.458967\pi\)
0.128553 + 0.991703i \(0.458967\pi\)
\(224\) 0 0
\(225\) −737.680 −0.218572
\(226\) 0 0
\(227\) 4305.21 1.25880 0.629399 0.777083i \(-0.283301\pi\)
0.629399 + 0.777083i \(0.283301\pi\)
\(228\) 0 0
\(229\) −1850.42 −0.533970 −0.266985 0.963701i \(-0.586027\pi\)
−0.266985 + 0.963701i \(0.586027\pi\)
\(230\) 0 0
\(231\) −2746.75 −0.782351
\(232\) 0 0
\(233\) 2840.65 0.798699 0.399350 0.916799i \(-0.369236\pi\)
0.399350 + 0.916799i \(0.369236\pi\)
\(234\) 0 0
\(235\) 4495.47 1.24788
\(236\) 0 0
\(237\) −7095.76 −1.94481
\(238\) 0 0
\(239\) −36.8268 −0.00996706 −0.00498353 0.999988i \(-0.501586\pi\)
−0.00498353 + 0.999988i \(0.501586\pi\)
\(240\) 0 0
\(241\) −5864.68 −1.56754 −0.783771 0.621051i \(-0.786706\pi\)
−0.783771 + 0.621051i \(0.786706\pi\)
\(242\) 0 0
\(243\) −5392.20 −1.42350
\(244\) 0 0
\(245\) −3084.74 −0.804396
\(246\) 0 0
\(247\) −917.673 −0.236397
\(248\) 0 0
\(249\) −9941.12 −2.53009
\(250\) 0 0
\(251\) −7472.76 −1.87919 −0.939594 0.342291i \(-0.888797\pi\)
−0.939594 + 0.342291i \(0.888797\pi\)
\(252\) 0 0
\(253\) −124.198 −0.0308628
\(254\) 0 0
\(255\) −11293.9 −2.77354
\(256\) 0 0
\(257\) 1445.76 0.350910 0.175455 0.984487i \(-0.443860\pi\)
0.175455 + 0.984487i \(0.443860\pi\)
\(258\) 0 0
\(259\) 450.347 0.108043
\(260\) 0 0
\(261\) −16561.3 −3.92766
\(262\) 0 0
\(263\) 5572.95 1.30663 0.653314 0.757087i \(-0.273378\pi\)
0.653314 + 0.757087i \(0.273378\pi\)
\(264\) 0 0
\(265\) −2061.25 −0.477817
\(266\) 0 0
\(267\) −2638.76 −0.604829
\(268\) 0 0
\(269\) 8181.17 1.85433 0.927164 0.374655i \(-0.122239\pi\)
0.927164 + 0.374655i \(0.122239\pi\)
\(270\) 0 0
\(271\) 5195.73 1.16464 0.582321 0.812959i \(-0.302145\pi\)
0.582321 + 0.812959i \(0.302145\pi\)
\(272\) 0 0
\(273\) −899.537 −0.199423
\(274\) 0 0
\(275\) 464.669 0.101893
\(276\) 0 0
\(277\) 206.429 0.0447766 0.0223883 0.999749i \(-0.492873\pi\)
0.0223883 + 0.999749i \(0.492873\pi\)
\(278\) 0 0
\(279\) 5455.69 1.17069
\(280\) 0 0
\(281\) −3588.58 −0.761839 −0.380919 0.924608i \(-0.624392\pi\)
−0.380919 + 0.924608i \(0.624392\pi\)
\(282\) 0 0
\(283\) 235.366 0.0494383 0.0247192 0.999694i \(-0.492131\pi\)
0.0247192 + 0.999694i \(0.492131\pi\)
\(284\) 0 0
\(285\) −7128.76 −1.48165
\(286\) 0 0
\(287\) 1448.65 0.297949
\(288\) 0 0
\(289\) 7593.93 1.54568
\(290\) 0 0
\(291\) −15254.0 −3.07288
\(292\) 0 0
\(293\) −7136.82 −1.42299 −0.711497 0.702689i \(-0.751983\pi\)
−0.711497 + 0.702689i \(0.751983\pi\)
\(294\) 0 0
\(295\) 5452.50 1.07612
\(296\) 0 0
\(297\) 13565.5 2.65033
\(298\) 0 0
\(299\) −40.6738 −0.00786698
\(300\) 0 0
\(301\) 2871.40 0.549851
\(302\) 0 0
\(303\) −12014.3 −2.27789
\(304\) 0 0
\(305\) 7607.99 1.42830
\(306\) 0 0
\(307\) 5070.49 0.942633 0.471317 0.881964i \(-0.343779\pi\)
0.471317 + 0.881964i \(0.343779\pi\)
\(308\) 0 0
\(309\) −1112.14 −0.204750
\(310\) 0 0
\(311\) −4474.80 −0.815893 −0.407946 0.913006i \(-0.633755\pi\)
−0.407946 + 0.913006i \(0.633755\pi\)
\(312\) 0 0
\(313\) 2308.38 0.416860 0.208430 0.978037i \(-0.433165\pi\)
0.208430 + 0.978037i \(0.433165\pi\)
\(314\) 0 0
\(315\) −4891.94 −0.875015
\(316\) 0 0
\(317\) 1698.40 0.300920 0.150460 0.988616i \(-0.451925\pi\)
0.150460 + 0.988616i \(0.451925\pi\)
\(318\) 0 0
\(319\) 10432.1 1.83099
\(320\) 0 0
\(321\) −14643.7 −2.54621
\(322\) 0 0
\(323\) 7894.41 1.35993
\(324\) 0 0
\(325\) 152.175 0.0259728
\(326\) 0 0
\(327\) −5812.58 −0.982986
\(328\) 0 0
\(329\) −3080.21 −0.516163
\(330\) 0 0
\(331\) 1404.53 0.233233 0.116617 0.993177i \(-0.462795\pi\)
0.116617 + 0.993177i \(0.462795\pi\)
\(332\) 0 0
\(333\) −3891.39 −0.640382
\(334\) 0 0
\(335\) −5307.92 −0.865680
\(336\) 0 0
\(337\) 4425.16 0.715293 0.357646 0.933857i \(-0.383579\pi\)
0.357646 + 0.933857i \(0.383579\pi\)
\(338\) 0 0
\(339\) 14662.8 2.34918
\(340\) 0 0
\(341\) −3436.58 −0.545751
\(342\) 0 0
\(343\) 4615.13 0.726512
\(344\) 0 0
\(345\) −315.967 −0.0493075
\(346\) 0 0
\(347\) 2853.98 0.441527 0.220763 0.975327i \(-0.429145\pi\)
0.220763 + 0.975327i \(0.429145\pi\)
\(348\) 0 0
\(349\) 9100.76 1.39585 0.697926 0.716170i \(-0.254106\pi\)
0.697926 + 0.716170i \(0.254106\pi\)
\(350\) 0 0
\(351\) 4442.57 0.675575
\(352\) 0 0
\(353\) −3778.54 −0.569720 −0.284860 0.958569i \(-0.591947\pi\)
−0.284860 + 0.958569i \(0.591947\pi\)
\(354\) 0 0
\(355\) −9073.64 −1.35656
\(356\) 0 0
\(357\) 7738.40 1.14723
\(358\) 0 0
\(359\) 8836.36 1.29907 0.649534 0.760333i \(-0.274964\pi\)
0.649534 + 0.760333i \(0.274964\pi\)
\(360\) 0 0
\(361\) −1876.02 −0.273513
\(362\) 0 0
\(363\) −2322.17 −0.335764
\(364\) 0 0
\(365\) 304.988 0.0437364
\(366\) 0 0
\(367\) 3430.71 0.487961 0.243981 0.969780i \(-0.421547\pi\)
0.243981 + 0.969780i \(0.421547\pi\)
\(368\) 0 0
\(369\) −12517.6 −1.76597
\(370\) 0 0
\(371\) 1412.33 0.197640
\(372\) 0 0
\(373\) 3465.99 0.481132 0.240566 0.970633i \(-0.422667\pi\)
0.240566 + 0.970633i \(0.422667\pi\)
\(374\) 0 0
\(375\) 13805.6 1.90112
\(376\) 0 0
\(377\) 3416.41 0.466722
\(378\) 0 0
\(379\) 4792.08 0.649479 0.324740 0.945803i \(-0.394723\pi\)
0.324740 + 0.945803i \(0.394723\pi\)
\(380\) 0 0
\(381\) −12884.9 −1.73259
\(382\) 0 0
\(383\) 11095.4 1.48029 0.740144 0.672448i \(-0.234757\pi\)
0.740144 + 0.672448i \(0.234757\pi\)
\(384\) 0 0
\(385\) 3081.47 0.407912
\(386\) 0 0
\(387\) −24811.5 −3.25901
\(388\) 0 0
\(389\) 6852.37 0.893134 0.446567 0.894750i \(-0.352646\pi\)
0.446567 + 0.894750i \(0.352646\pi\)
\(390\) 0 0
\(391\) 349.902 0.0452566
\(392\) 0 0
\(393\) 12348.4 1.58498
\(394\) 0 0
\(395\) 7960.44 1.01401
\(396\) 0 0
\(397\) −686.266 −0.0867575 −0.0433787 0.999059i \(-0.513812\pi\)
−0.0433787 + 0.999059i \(0.513812\pi\)
\(398\) 0 0
\(399\) 4884.50 0.612859
\(400\) 0 0
\(401\) −7624.65 −0.949518 −0.474759 0.880116i \(-0.657465\pi\)
−0.474759 + 0.880116i \(0.657465\pi\)
\(402\) 0 0
\(403\) −1125.45 −0.139113
\(404\) 0 0
\(405\) 16400.5 2.01222
\(406\) 0 0
\(407\) 2451.22 0.298531
\(408\) 0 0
\(409\) −14874.4 −1.79827 −0.899137 0.437668i \(-0.855804\pi\)
−0.899137 + 0.437668i \(0.855804\pi\)
\(410\) 0 0
\(411\) 6362.83 0.763638
\(412\) 0 0
\(413\) −3735.95 −0.445119
\(414\) 0 0
\(415\) 11152.5 1.31917
\(416\) 0 0
\(417\) −20323.5 −2.38668
\(418\) 0 0
\(419\) 1690.42 0.197094 0.0985471 0.995132i \(-0.468580\pi\)
0.0985471 + 0.995132i \(0.468580\pi\)
\(420\) 0 0
\(421\) −3389.19 −0.392350 −0.196175 0.980569i \(-0.562852\pi\)
−0.196175 + 0.980569i \(0.562852\pi\)
\(422\) 0 0
\(423\) 26615.8 3.05934
\(424\) 0 0
\(425\) −1309.11 −0.149414
\(426\) 0 0
\(427\) −5212.86 −0.590791
\(428\) 0 0
\(429\) −4896.13 −0.551020
\(430\) 0 0
\(431\) 6202.53 0.693191 0.346596 0.938015i \(-0.387338\pi\)
0.346596 + 0.938015i \(0.387338\pi\)
\(432\) 0 0
\(433\) −6347.41 −0.704474 −0.352237 0.935911i \(-0.614579\pi\)
−0.352237 + 0.935911i \(0.614579\pi\)
\(434\) 0 0
\(435\) 26539.7 2.92525
\(436\) 0 0
\(437\) 220.860 0.0241765
\(438\) 0 0
\(439\) 2751.71 0.299161 0.149581 0.988750i \(-0.452208\pi\)
0.149581 + 0.988750i \(0.452208\pi\)
\(440\) 0 0
\(441\) −18263.5 −1.97208
\(442\) 0 0
\(443\) −8029.18 −0.861123 −0.430562 0.902561i \(-0.641685\pi\)
−0.430562 + 0.902561i \(0.641685\pi\)
\(444\) 0 0
\(445\) 2960.31 0.315353
\(446\) 0 0
\(447\) −29086.6 −3.07774
\(448\) 0 0
\(449\) 1173.84 0.123379 0.0616893 0.998095i \(-0.480351\pi\)
0.0616893 + 0.998095i \(0.480351\pi\)
\(450\) 0 0
\(451\) 7884.95 0.823255
\(452\) 0 0
\(453\) −24564.6 −2.54778
\(454\) 0 0
\(455\) 1009.15 0.103978
\(456\) 0 0
\(457\) 12798.4 1.31003 0.655014 0.755616i \(-0.272663\pi\)
0.655014 + 0.755616i \(0.272663\pi\)
\(458\) 0 0
\(459\) −38217.8 −3.88640
\(460\) 0 0
\(461\) −17150.9 −1.73275 −0.866374 0.499396i \(-0.833555\pi\)
−0.866374 + 0.499396i \(0.833555\pi\)
\(462\) 0 0
\(463\) −801.962 −0.0804974 −0.0402487 0.999190i \(-0.512815\pi\)
−0.0402487 + 0.999190i \(0.512815\pi\)
\(464\) 0 0
\(465\) −8742.82 −0.871911
\(466\) 0 0
\(467\) 17094.0 1.69382 0.846912 0.531733i \(-0.178459\pi\)
0.846912 + 0.531733i \(0.178459\pi\)
\(468\) 0 0
\(469\) 3636.89 0.358073
\(470\) 0 0
\(471\) −35222.9 −3.44583
\(472\) 0 0
\(473\) 15628.9 1.51928
\(474\) 0 0
\(475\) −826.313 −0.0798186
\(476\) 0 0
\(477\) −12203.8 −1.17143
\(478\) 0 0
\(479\) −11493.8 −1.09638 −0.548189 0.836355i \(-0.684683\pi\)
−0.548189 + 0.836355i \(0.684683\pi\)
\(480\) 0 0
\(481\) 802.751 0.0760962
\(482\) 0 0
\(483\) 216.495 0.0203951
\(484\) 0 0
\(485\) 17112.9 1.60218
\(486\) 0 0
\(487\) −9687.92 −0.901441 −0.450721 0.892665i \(-0.648833\pi\)
−0.450721 + 0.892665i \(0.648833\pi\)
\(488\) 0 0
\(489\) −6923.97 −0.640312
\(490\) 0 0
\(491\) −3137.29 −0.288358 −0.144179 0.989552i \(-0.546054\pi\)
−0.144179 + 0.989552i \(0.546054\pi\)
\(492\) 0 0
\(493\) −29390.2 −2.68492
\(494\) 0 0
\(495\) −26626.6 −2.41773
\(496\) 0 0
\(497\) 6217.10 0.561116
\(498\) 0 0
\(499\) −5204.78 −0.466930 −0.233465 0.972365i \(-0.575006\pi\)
−0.233465 + 0.972365i \(0.575006\pi\)
\(500\) 0 0
\(501\) 15272.3 1.36191
\(502\) 0 0
\(503\) 15769.6 1.39787 0.698936 0.715184i \(-0.253657\pi\)
0.698936 + 0.715184i \(0.253657\pi\)
\(504\) 0 0
\(505\) 13478.3 1.18768
\(506\) 0 0
\(507\) −1603.44 −0.140456
\(508\) 0 0
\(509\) 636.740 0.0554480 0.0277240 0.999616i \(-0.491174\pi\)
0.0277240 + 0.999616i \(0.491174\pi\)
\(510\) 0 0
\(511\) −208.972 −0.0180908
\(512\) 0 0
\(513\) −24123.2 −2.07615
\(514\) 0 0
\(515\) 1247.67 0.106755
\(516\) 0 0
\(517\) −16765.4 −1.42620
\(518\) 0 0
\(519\) 3783.88 0.320027
\(520\) 0 0
\(521\) 14422.6 1.21279 0.606395 0.795163i \(-0.292615\pi\)
0.606395 + 0.795163i \(0.292615\pi\)
\(522\) 0 0
\(523\) 6737.99 0.563349 0.281675 0.959510i \(-0.409110\pi\)
0.281675 + 0.959510i \(0.409110\pi\)
\(524\) 0 0
\(525\) −809.983 −0.0673344
\(526\) 0 0
\(527\) 9681.82 0.800279
\(528\) 0 0
\(529\) −12157.2 −0.999195
\(530\) 0 0
\(531\) 32281.9 2.63826
\(532\) 0 0
\(533\) 2582.25 0.209849
\(534\) 0 0
\(535\) 16428.2 1.32758
\(536\) 0 0
\(537\) 15490.7 1.24483
\(538\) 0 0
\(539\) 11504.3 0.919340
\(540\) 0 0
\(541\) −13997.2 −1.11236 −0.556181 0.831061i \(-0.687734\pi\)
−0.556181 + 0.831061i \(0.687734\pi\)
\(542\) 0 0
\(543\) 1826.87 0.144380
\(544\) 0 0
\(545\) 6520.89 0.512522
\(546\) 0 0
\(547\) −18288.6 −1.42955 −0.714773 0.699356i \(-0.753470\pi\)
−0.714773 + 0.699356i \(0.753470\pi\)
\(548\) 0 0
\(549\) 45043.7 3.50167
\(550\) 0 0
\(551\) −18551.2 −1.43431
\(552\) 0 0
\(553\) −5454.35 −0.419426
\(554\) 0 0
\(555\) 6236.01 0.476944
\(556\) 0 0
\(557\) 11342.2 0.862809 0.431405 0.902159i \(-0.358018\pi\)
0.431405 + 0.902159i \(0.358018\pi\)
\(558\) 0 0
\(559\) 5118.33 0.387267
\(560\) 0 0
\(561\) 42119.7 3.16987
\(562\) 0 0
\(563\) −4057.73 −0.303753 −0.151877 0.988399i \(-0.548532\pi\)
−0.151877 + 0.988399i \(0.548532\pi\)
\(564\) 0 0
\(565\) −16449.6 −1.22485
\(566\) 0 0
\(567\) −11237.3 −0.832318
\(568\) 0 0
\(569\) −4996.10 −0.368097 −0.184049 0.982917i \(-0.558920\pi\)
−0.184049 + 0.982917i \(0.558920\pi\)
\(570\) 0 0
\(571\) −12178.1 −0.892533 −0.446266 0.894900i \(-0.647247\pi\)
−0.446266 + 0.894900i \(0.647247\pi\)
\(572\) 0 0
\(573\) −11109.3 −0.809940
\(574\) 0 0
\(575\) −36.6245 −0.00265626
\(576\) 0 0
\(577\) 7682.73 0.554309 0.277154 0.960825i \(-0.410609\pi\)
0.277154 + 0.960825i \(0.410609\pi\)
\(578\) 0 0
\(579\) −9763.65 −0.700801
\(580\) 0 0
\(581\) −7641.51 −0.545651
\(582\) 0 0
\(583\) 7687.24 0.546095
\(584\) 0 0
\(585\) −8719.97 −0.616284
\(586\) 0 0
\(587\) 27945.2 1.96494 0.982472 0.186411i \(-0.0596857\pi\)
0.982472 + 0.186411i \(0.0596857\pi\)
\(588\) 0 0
\(589\) 6111.20 0.427517
\(590\) 0 0
\(591\) −42764.4 −2.97647
\(592\) 0 0
\(593\) 19707.1 1.36471 0.682355 0.731021i \(-0.260956\pi\)
0.682355 + 0.731021i \(0.260956\pi\)
\(594\) 0 0
\(595\) −8681.39 −0.598155
\(596\) 0 0
\(597\) 33459.2 2.29379
\(598\) 0 0
\(599\) −25278.2 −1.72428 −0.862138 0.506674i \(-0.830875\pi\)
−0.862138 + 0.506674i \(0.830875\pi\)
\(600\) 0 0
\(601\) 20128.1 1.36613 0.683065 0.730358i \(-0.260647\pi\)
0.683065 + 0.730358i \(0.260647\pi\)
\(602\) 0 0
\(603\) −31425.9 −2.12233
\(604\) 0 0
\(605\) 2605.14 0.175065
\(606\) 0 0
\(607\) 22806.4 1.52501 0.762507 0.646980i \(-0.223968\pi\)
0.762507 + 0.646980i \(0.223968\pi\)
\(608\) 0 0
\(609\) −18184.6 −1.20998
\(610\) 0 0
\(611\) −5490.53 −0.363540
\(612\) 0 0
\(613\) −3949.78 −0.260245 −0.130122 0.991498i \(-0.541537\pi\)
−0.130122 + 0.991498i \(0.541537\pi\)
\(614\) 0 0
\(615\) 20059.7 1.31526
\(616\) 0 0
\(617\) 13587.0 0.886536 0.443268 0.896389i \(-0.353819\pi\)
0.443268 + 0.896389i \(0.353819\pi\)
\(618\) 0 0
\(619\) −22277.0 −1.44651 −0.723254 0.690583i \(-0.757354\pi\)
−0.723254 + 0.690583i \(0.757354\pi\)
\(620\) 0 0
\(621\) −1069.21 −0.0690916
\(622\) 0 0
\(623\) −2028.35 −0.130440
\(624\) 0 0
\(625\) −14024.8 −0.897584
\(626\) 0 0
\(627\) 26586.1 1.69337
\(628\) 0 0
\(629\) −6905.78 −0.437761
\(630\) 0 0
\(631\) 7148.74 0.451009 0.225505 0.974242i \(-0.427597\pi\)
0.225505 + 0.974242i \(0.427597\pi\)
\(632\) 0 0
\(633\) 37180.4 2.33458
\(634\) 0 0
\(635\) 14455.1 0.903358
\(636\) 0 0
\(637\) 3767.55 0.234342
\(638\) 0 0
\(639\) −53721.2 −3.32579
\(640\) 0 0
\(641\) 7861.34 0.484406 0.242203 0.970226i \(-0.422130\pi\)
0.242203 + 0.970226i \(0.422130\pi\)
\(642\) 0 0
\(643\) −469.877 −0.0288183 −0.0144091 0.999896i \(-0.504587\pi\)
−0.0144091 + 0.999896i \(0.504587\pi\)
\(644\) 0 0
\(645\) 39760.7 2.42725
\(646\) 0 0
\(647\) −27438.5 −1.66726 −0.833630 0.552323i \(-0.813742\pi\)
−0.833630 + 0.552323i \(0.813742\pi\)
\(648\) 0 0
\(649\) −20334.6 −1.22990
\(650\) 0 0
\(651\) 5990.42 0.360650
\(652\) 0 0
\(653\) 16891.2 1.01225 0.506127 0.862459i \(-0.331077\pi\)
0.506127 + 0.862459i \(0.331077\pi\)
\(654\) 0 0
\(655\) −13853.2 −0.826396
\(656\) 0 0
\(657\) 1805.70 0.107225
\(658\) 0 0
\(659\) 12065.5 0.713211 0.356605 0.934255i \(-0.383934\pi\)
0.356605 + 0.934255i \(0.383934\pi\)
\(660\) 0 0
\(661\) 22835.9 1.34374 0.671870 0.740669i \(-0.265491\pi\)
0.671870 + 0.740669i \(0.265491\pi\)
\(662\) 0 0
\(663\) 13793.8 0.808005
\(664\) 0 0
\(665\) −5479.72 −0.319540
\(666\) 0 0
\(667\) −822.240 −0.0477320
\(668\) 0 0
\(669\) −8123.38 −0.469459
\(670\) 0 0
\(671\) −28373.3 −1.63240
\(672\) 0 0
\(673\) −28793.4 −1.64919 −0.824593 0.565726i \(-0.808596\pi\)
−0.824593 + 0.565726i \(0.808596\pi\)
\(674\) 0 0
\(675\) 4000.28 0.228105
\(676\) 0 0
\(677\) 1852.46 0.105163 0.0525817 0.998617i \(-0.483255\pi\)
0.0525817 + 0.998617i \(0.483255\pi\)
\(678\) 0 0
\(679\) −11725.4 −0.662711
\(680\) 0 0
\(681\) −40847.0 −2.29847
\(682\) 0 0
\(683\) 8830.51 0.494715 0.247357 0.968924i \(-0.420438\pi\)
0.247357 + 0.968924i \(0.420438\pi\)
\(684\) 0 0
\(685\) −7138.19 −0.398155
\(686\) 0 0
\(687\) 17556.4 0.974992
\(688\) 0 0
\(689\) 2517.50 0.139201
\(690\) 0 0
\(691\) −14371.7 −0.791209 −0.395605 0.918421i \(-0.629465\pi\)
−0.395605 + 0.918421i \(0.629465\pi\)
\(692\) 0 0
\(693\) 18244.1 1.00005
\(694\) 0 0
\(695\) 22800.1 1.24440
\(696\) 0 0
\(697\) −22214.2 −1.20721
\(698\) 0 0
\(699\) −26951.5 −1.45837
\(700\) 0 0
\(701\) 18349.7 0.988670 0.494335 0.869272i \(-0.335412\pi\)
0.494335 + 0.869272i \(0.335412\pi\)
\(702\) 0 0
\(703\) −4358.95 −0.233856
\(704\) 0 0
\(705\) −42652.1 −2.27854
\(706\) 0 0
\(707\) −9235.10 −0.491261
\(708\) 0 0
\(709\) −29030.6 −1.53775 −0.768877 0.639396i \(-0.779184\pi\)
−0.768877 + 0.639396i \(0.779184\pi\)
\(710\) 0 0
\(711\) 47130.4 2.48597
\(712\) 0 0
\(713\) 270.865 0.0142272
\(714\) 0 0
\(715\) 5492.77 0.287298
\(716\) 0 0
\(717\) 349.405 0.0181991
\(718\) 0 0
\(719\) −9586.00 −0.497215 −0.248607 0.968604i \(-0.579973\pi\)
−0.248607 + 0.968604i \(0.579973\pi\)
\(720\) 0 0
\(721\) −854.881 −0.0441573
\(722\) 0 0
\(723\) 55643.0 2.86222
\(724\) 0 0
\(725\) 3076.29 0.157587
\(726\) 0 0
\(727\) 2317.04 0.118204 0.0591019 0.998252i \(-0.481176\pi\)
0.0591019 + 0.998252i \(0.481176\pi\)
\(728\) 0 0
\(729\) 9557.77 0.485585
\(730\) 0 0
\(731\) −44031.1 −2.22784
\(732\) 0 0
\(733\) −31945.3 −1.60972 −0.804861 0.593463i \(-0.797760\pi\)
−0.804861 + 0.593463i \(0.797760\pi\)
\(734\) 0 0
\(735\) 29267.5 1.46877
\(736\) 0 0
\(737\) 19795.4 0.989381
\(738\) 0 0
\(739\) −34494.8 −1.71707 −0.858533 0.512759i \(-0.828623\pi\)
−0.858533 + 0.512759i \(0.828623\pi\)
\(740\) 0 0
\(741\) 8706.70 0.431645
\(742\) 0 0
\(743\) −12841.5 −0.634063 −0.317032 0.948415i \(-0.602686\pi\)
−0.317032 + 0.948415i \(0.602686\pi\)
\(744\) 0 0
\(745\) 32631.0 1.60471
\(746\) 0 0
\(747\) 66029.4 3.23412
\(748\) 0 0
\(749\) −11256.3 −0.549128
\(750\) 0 0
\(751\) 7226.58 0.351134 0.175567 0.984467i \(-0.443824\pi\)
0.175567 + 0.984467i \(0.443824\pi\)
\(752\) 0 0
\(753\) 70900.1 3.43126
\(754\) 0 0
\(755\) 27558.0 1.32840
\(756\) 0 0
\(757\) −8855.54 −0.425178 −0.212589 0.977142i \(-0.568190\pi\)
−0.212589 + 0.977142i \(0.568190\pi\)
\(758\) 0 0
\(759\) 1178.37 0.0563532
\(760\) 0 0
\(761\) 29732.4 1.41629 0.708147 0.706065i \(-0.249531\pi\)
0.708147 + 0.706065i \(0.249531\pi\)
\(762\) 0 0
\(763\) −4468.00 −0.211995
\(764\) 0 0
\(765\) 75014.8 3.54531
\(766\) 0 0
\(767\) −6659.40 −0.313503
\(768\) 0 0
\(769\) 6712.10 0.314752 0.157376 0.987539i \(-0.449697\pi\)
0.157376 + 0.987539i \(0.449697\pi\)
\(770\) 0 0
\(771\) −13717.1 −0.640737
\(772\) 0 0
\(773\) 35131.6 1.63466 0.817332 0.576167i \(-0.195452\pi\)
0.817332 + 0.576167i \(0.195452\pi\)
\(774\) 0 0
\(775\) −1013.40 −0.0469709
\(776\) 0 0
\(777\) −4272.81 −0.197279
\(778\) 0 0
\(779\) −14021.7 −0.644901
\(780\) 0 0
\(781\) 33839.3 1.55041
\(782\) 0 0
\(783\) 89808.6 4.09897
\(784\) 0 0
\(785\) 39515.1 1.79663
\(786\) 0 0
\(787\) 14152.2 0.641007 0.320504 0.947247i \(-0.396148\pi\)
0.320504 + 0.947247i \(0.396148\pi\)
\(788\) 0 0
\(789\) −52875.1 −2.38581
\(790\) 0 0
\(791\) 11270.9 0.506636
\(792\) 0 0
\(793\) −9292.00 −0.416102
\(794\) 0 0
\(795\) 19556.7 0.872460
\(796\) 0 0
\(797\) 3018.60 0.134158 0.0670792 0.997748i \(-0.478632\pi\)
0.0670792 + 0.997748i \(0.478632\pi\)
\(798\) 0 0
\(799\) 47233.1 2.09135
\(800\) 0 0
\(801\) 17526.8 0.773130
\(802\) 0 0
\(803\) −1137.42 −0.0499861
\(804\) 0 0
\(805\) −242.877 −0.0106339
\(806\) 0 0
\(807\) −77621.3 −3.38587
\(808\) 0 0
\(809\) −3800.90 −0.165182 −0.0825912 0.996584i \(-0.526320\pi\)
−0.0825912 + 0.996584i \(0.526320\pi\)
\(810\) 0 0
\(811\) 3140.54 0.135979 0.0679896 0.997686i \(-0.478342\pi\)
0.0679896 + 0.997686i \(0.478342\pi\)
\(812\) 0 0
\(813\) −49296.1 −2.12655
\(814\) 0 0
\(815\) 7767.71 0.333854
\(816\) 0 0
\(817\) −27792.6 −1.19013
\(818\) 0 0
\(819\) 5974.77 0.254915
\(820\) 0 0
\(821\) 9299.69 0.395325 0.197662 0.980270i \(-0.436665\pi\)
0.197662 + 0.980270i \(0.436665\pi\)
\(822\) 0 0
\(823\) −23549.7 −0.997438 −0.498719 0.866764i \(-0.666196\pi\)
−0.498719 + 0.866764i \(0.666196\pi\)
\(824\) 0 0
\(825\) −4408.69 −0.186050
\(826\) 0 0
\(827\) 10237.6 0.430468 0.215234 0.976563i \(-0.430949\pi\)
0.215234 + 0.976563i \(0.430949\pi\)
\(828\) 0 0
\(829\) 25983.8 1.08861 0.544304 0.838888i \(-0.316794\pi\)
0.544304 + 0.838888i \(0.316794\pi\)
\(830\) 0 0
\(831\) −1958.56 −0.0817589
\(832\) 0 0
\(833\) −32410.9 −1.34810
\(834\) 0 0
\(835\) −17133.3 −0.710088
\(836\) 0 0
\(837\) −29585.1 −1.22176
\(838\) 0 0
\(839\) 25109.7 1.03323 0.516616 0.856217i \(-0.327191\pi\)
0.516616 + 0.856217i \(0.327191\pi\)
\(840\) 0 0
\(841\) 44675.3 1.83178
\(842\) 0 0
\(843\) 34047.7 1.39106
\(844\) 0 0
\(845\) 1798.83 0.0732328
\(846\) 0 0
\(847\) −1785.00 −0.0724123
\(848\) 0 0
\(849\) −2233.10 −0.0902708
\(850\) 0 0
\(851\) −193.201 −0.00778242
\(852\) 0 0
\(853\) 5855.00 0.235019 0.117510 0.993072i \(-0.462509\pi\)
0.117510 + 0.993072i \(0.462509\pi\)
\(854\) 0 0
\(855\) 47349.6 1.89394
\(856\) 0 0
\(857\) −24632.4 −0.981827 −0.490913 0.871208i \(-0.663337\pi\)
−0.490913 + 0.871208i \(0.663337\pi\)
\(858\) 0 0
\(859\) 43384.2 1.72323 0.861613 0.507566i \(-0.169455\pi\)
0.861613 + 0.507566i \(0.169455\pi\)
\(860\) 0 0
\(861\) −13744.6 −0.544034
\(862\) 0 0
\(863\) 37140.7 1.46499 0.732494 0.680774i \(-0.238356\pi\)
0.732494 + 0.680774i \(0.238356\pi\)
\(864\) 0 0
\(865\) −4244.98 −0.166860
\(866\) 0 0
\(867\) −72049.7 −2.82230
\(868\) 0 0
\(869\) −29687.7 −1.15890
\(870\) 0 0
\(871\) 6482.82 0.252195
\(872\) 0 0
\(873\) 101318. 3.92794
\(874\) 0 0
\(875\) 10612.1 0.410004
\(876\) 0 0
\(877\) −29986.8 −1.15460 −0.577298 0.816533i \(-0.695893\pi\)
−0.577298 + 0.816533i \(0.695893\pi\)
\(878\) 0 0
\(879\) 67712.7 2.59829
\(880\) 0 0
\(881\) 3632.08 0.138897 0.0694483 0.997586i \(-0.477876\pi\)
0.0694483 + 0.997586i \(0.477876\pi\)
\(882\) 0 0
\(883\) −7147.35 −0.272398 −0.136199 0.990681i \(-0.543489\pi\)
−0.136199 + 0.990681i \(0.543489\pi\)
\(884\) 0 0
\(885\) −51732.2 −1.96493
\(886\) 0 0
\(887\) 1703.10 0.0644696 0.0322348 0.999480i \(-0.489738\pi\)
0.0322348 + 0.999480i \(0.489738\pi\)
\(888\) 0 0
\(889\) −9904.36 −0.373658
\(890\) 0 0
\(891\) −61164.3 −2.29975
\(892\) 0 0
\(893\) 29813.7 1.11722
\(894\) 0 0
\(895\) −17378.4 −0.649045
\(896\) 0 0
\(897\) 385.905 0.0143646
\(898\) 0 0
\(899\) −22751.4 −0.844052
\(900\) 0 0
\(901\) −21657.2 −0.800783
\(902\) 0 0
\(903\) −27243.3 −1.00399
\(904\) 0 0
\(905\) −2049.49 −0.0752788
\(906\) 0 0
\(907\) −20054.7 −0.734185 −0.367093 0.930184i \(-0.619647\pi\)
−0.367093 + 0.930184i \(0.619647\pi\)
\(908\) 0 0
\(909\) 79799.4 2.91175
\(910\) 0 0
\(911\) 13635.0 0.495883 0.247941 0.968775i \(-0.420246\pi\)
0.247941 + 0.968775i \(0.420246\pi\)
\(912\) 0 0
\(913\) −41592.4 −1.50767
\(914\) 0 0
\(915\) −72183.1 −2.60798
\(916\) 0 0
\(917\) 9491.97 0.341824
\(918\) 0 0
\(919\) 3829.52 0.137458 0.0687292 0.997635i \(-0.478106\pi\)
0.0687292 + 0.997635i \(0.478106\pi\)
\(920\) 0 0
\(921\) −48107.9 −1.72118
\(922\) 0 0
\(923\) 11082.1 0.395201
\(924\) 0 0
\(925\) 722.832 0.0256936
\(926\) 0 0
\(927\) 7386.92 0.261724
\(928\) 0 0
\(929\) 23603.4 0.833587 0.416793 0.909001i \(-0.363154\pi\)
0.416793 + 0.909001i \(0.363154\pi\)
\(930\) 0 0
\(931\) −20457.8 −0.720170
\(932\) 0 0
\(933\) 42456.0 1.48976
\(934\) 0 0
\(935\) −47252.3 −1.65274
\(936\) 0 0
\(937\) 13355.3 0.465632 0.232816 0.972521i \(-0.425206\pi\)
0.232816 + 0.972521i \(0.425206\pi\)
\(938\) 0 0
\(939\) −21901.5 −0.761158
\(940\) 0 0
\(941\) −25394.2 −0.879731 −0.439866 0.898064i \(-0.644974\pi\)
−0.439866 + 0.898064i \(0.644974\pi\)
\(942\) 0 0
\(943\) −621.479 −0.0214615
\(944\) 0 0
\(945\) 26528.0 0.913181
\(946\) 0 0
\(947\) −14704.3 −0.504569 −0.252284 0.967653i \(-0.581182\pi\)
−0.252284 + 0.967653i \(0.581182\pi\)
\(948\) 0 0
\(949\) −372.496 −0.0127416
\(950\) 0 0
\(951\) −16114.1 −0.549458
\(952\) 0 0
\(953\) −21157.8 −0.719171 −0.359585 0.933112i \(-0.617082\pi\)
−0.359585 + 0.933112i \(0.617082\pi\)
\(954\) 0 0
\(955\) 12463.0 0.422297
\(956\) 0 0
\(957\) −98977.6 −3.34325
\(958\) 0 0
\(959\) 4890.96 0.164690
\(960\) 0 0
\(961\) −22296.1 −0.748419
\(962\) 0 0
\(963\) 97264.4 3.25473
\(964\) 0 0
\(965\) 10953.4 0.365392
\(966\) 0 0
\(967\) 14786.2 0.491718 0.245859 0.969306i \(-0.420930\pi\)
0.245859 + 0.969306i \(0.420930\pi\)
\(968\) 0 0
\(969\) −74900.6 −2.48313
\(970\) 0 0
\(971\) −1424.45 −0.0470780 −0.0235390 0.999723i \(-0.507493\pi\)
−0.0235390 + 0.999723i \(0.507493\pi\)
\(972\) 0 0
\(973\) −15622.2 −0.514723
\(974\) 0 0
\(975\) −1443.81 −0.0474244
\(976\) 0 0
\(977\) 11574.6 0.379021 0.189510 0.981879i \(-0.439310\pi\)
0.189510 + 0.981879i \(0.439310\pi\)
\(978\) 0 0
\(979\) −11040.2 −0.360416
\(980\) 0 0
\(981\) 38607.4 1.25651
\(982\) 0 0
\(983\) −35095.4 −1.13873 −0.569364 0.822086i \(-0.692810\pi\)
−0.569364 + 0.822086i \(0.692810\pi\)
\(984\) 0 0
\(985\) 47975.6 1.55191
\(986\) 0 0
\(987\) 29224.5 0.942478
\(988\) 0 0
\(989\) −1231.85 −0.0396061
\(990\) 0 0
\(991\) −12213.6 −0.391501 −0.195751 0.980654i \(-0.562714\pi\)
−0.195751 + 0.980654i \(0.562714\pi\)
\(992\) 0 0
\(993\) −13325.9 −0.425867
\(994\) 0 0
\(995\) −37536.5 −1.19597
\(996\) 0 0
\(997\) 27951.6 0.887898 0.443949 0.896052i \(-0.353577\pi\)
0.443949 + 0.896052i \(0.353577\pi\)
\(998\) 0 0
\(999\) 21102.2 0.668313
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.a.bf.1.1 5
4.3 odd 2 832.4.a.bg.1.5 5
8.3 odd 2 416.4.a.h.1.1 5
8.5 even 2 416.4.a.i.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.a.h.1.1 5 8.3 odd 2
416.4.a.i.1.5 yes 5 8.5 even 2
832.4.a.bf.1.1 5 1.1 even 1 trivial
832.4.a.bg.1.5 5 4.3 odd 2