Properties

Label 832.4.a.be.1.2
Level $832$
Weight $4$
Character 832.1
Self dual yes
Analytic conductor $49.090$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,14,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1847677.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 18x^{2} + 19x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.91115\) of defining polynomial
Character \(\chi\) \(=\) 832.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83719 q^{3} -6.20824 q^{5} -19.4818 q^{7} -23.6247 q^{9} -45.5850 q^{11} +13.0000 q^{13} +11.4057 q^{15} -47.0412 q^{17} -10.2958 q^{19} +35.7918 q^{21} -155.854 q^{23} -86.4577 q^{25} +93.0073 q^{27} +69.1670 q^{29} +5.16685 q^{31} +83.7484 q^{33} +120.948 q^{35} +71.2928 q^{37} -23.8835 q^{39} -77.5835 q^{41} -296.629 q^{43} +146.668 q^{45} +296.666 q^{47} +36.5401 q^{49} +86.4237 q^{51} +601.913 q^{53} +283.003 q^{55} +18.9154 q^{57} +272.093 q^{59} +641.080 q^{61} +460.252 q^{63} -80.7072 q^{65} -1021.97 q^{67} +286.334 q^{69} -981.934 q^{71} -875.657 q^{73} +158.839 q^{75} +888.078 q^{77} -649.979 q^{79} +466.996 q^{81} +812.303 q^{83} +292.043 q^{85} -127.073 q^{87} +97.1670 q^{89} -253.263 q^{91} -9.49249 q^{93} +63.9191 q^{95} +1193.65 q^{97} +1076.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{5} + 22 q^{9} + 52 q^{13} + 6 q^{17} + 182 q^{21} - 74 q^{25} + 432 q^{29} - 364 q^{33} + 790 q^{37} - 388 q^{41} + 1208 q^{45} - 514 q^{49} + 932 q^{53} - 468 q^{57} + 1244 q^{61} + 182 q^{65}+ \cdots - 1128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.83719 −0.353567 −0.176784 0.984250i \(-0.556569\pi\)
−0.176784 + 0.984250i \(0.556569\pi\)
\(4\) 0 0
\(5\) −6.20824 −0.555282 −0.277641 0.960685i \(-0.589553\pi\)
−0.277641 + 0.960685i \(0.589553\pi\)
\(6\) 0 0
\(7\) −19.4818 −1.05192 −0.525959 0.850510i \(-0.676293\pi\)
−0.525959 + 0.850510i \(0.676293\pi\)
\(8\) 0 0
\(9\) −23.6247 −0.874990
\(10\) 0 0
\(11\) −45.5850 −1.24949 −0.624746 0.780828i \(-0.714797\pi\)
−0.624746 + 0.780828i \(0.714797\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 11.4057 0.196330
\(16\) 0 0
\(17\) −47.0412 −0.671128 −0.335564 0.942017i \(-0.608927\pi\)
−0.335564 + 0.942017i \(0.608927\pi\)
\(18\) 0 0
\(19\) −10.2958 −0.124317 −0.0621586 0.998066i \(-0.519798\pi\)
−0.0621586 + 0.998066i \(0.519798\pi\)
\(20\) 0 0
\(21\) 35.7918 0.371924
\(22\) 0 0
\(23\) −155.854 −1.41295 −0.706475 0.707738i \(-0.749716\pi\)
−0.706475 + 0.707738i \(0.749716\pi\)
\(24\) 0 0
\(25\) −86.4577 −0.691662
\(26\) 0 0
\(27\) 93.0073 0.662935
\(28\) 0 0
\(29\) 69.1670 0.442896 0.221448 0.975172i \(-0.428922\pi\)
0.221448 + 0.975172i \(0.428922\pi\)
\(30\) 0 0
\(31\) 5.16685 0.0299353 0.0149676 0.999888i \(-0.495235\pi\)
0.0149676 + 0.999888i \(0.495235\pi\)
\(32\) 0 0
\(33\) 83.7484 0.441780
\(34\) 0 0
\(35\) 120.948 0.584111
\(36\) 0 0
\(37\) 71.2928 0.316769 0.158385 0.987377i \(-0.449371\pi\)
0.158385 + 0.987377i \(0.449371\pi\)
\(38\) 0 0
\(39\) −23.8835 −0.0980620
\(40\) 0 0
\(41\) −77.5835 −0.295525 −0.147762 0.989023i \(-0.547207\pi\)
−0.147762 + 0.989023i \(0.547207\pi\)
\(42\) 0 0
\(43\) −296.629 −1.05199 −0.525993 0.850489i \(-0.676306\pi\)
−0.525993 + 0.850489i \(0.676306\pi\)
\(44\) 0 0
\(45\) 146.668 0.485866
\(46\) 0 0
\(47\) 296.666 0.920707 0.460354 0.887736i \(-0.347723\pi\)
0.460354 + 0.887736i \(0.347723\pi\)
\(48\) 0 0
\(49\) 36.5401 0.106531
\(50\) 0 0
\(51\) 86.4237 0.237289
\(52\) 0 0
\(53\) 601.913 1.55998 0.779992 0.625790i \(-0.215223\pi\)
0.779992 + 0.625790i \(0.215223\pi\)
\(54\) 0 0
\(55\) 283.003 0.693820
\(56\) 0 0
\(57\) 18.9154 0.0439545
\(58\) 0 0
\(59\) 272.093 0.600399 0.300200 0.953876i \(-0.402947\pi\)
0.300200 + 0.953876i \(0.402947\pi\)
\(60\) 0 0
\(61\) 641.080 1.34561 0.672803 0.739822i \(-0.265090\pi\)
0.672803 + 0.739822i \(0.265090\pi\)
\(62\) 0 0
\(63\) 460.252 0.920418
\(64\) 0 0
\(65\) −80.7072 −0.154008
\(66\) 0 0
\(67\) −1021.97 −1.86349 −0.931743 0.363119i \(-0.881712\pi\)
−0.931743 + 0.363119i \(0.881712\pi\)
\(68\) 0 0
\(69\) 286.334 0.499573
\(70\) 0 0
\(71\) −981.934 −1.64133 −0.820663 0.571412i \(-0.806396\pi\)
−0.820663 + 0.571412i \(0.806396\pi\)
\(72\) 0 0
\(73\) −875.657 −1.40394 −0.701972 0.712204i \(-0.747697\pi\)
−0.701972 + 0.712204i \(0.747697\pi\)
\(74\) 0 0
\(75\) 158.839 0.244549
\(76\) 0 0
\(77\) 888.078 1.31436
\(78\) 0 0
\(79\) −649.979 −0.925675 −0.462838 0.886443i \(-0.653169\pi\)
−0.462838 + 0.886443i \(0.653169\pi\)
\(80\) 0 0
\(81\) 466.996 0.640598
\(82\) 0 0
\(83\) 812.303 1.07424 0.537120 0.843506i \(-0.319512\pi\)
0.537120 + 0.843506i \(0.319512\pi\)
\(84\) 0 0
\(85\) 292.043 0.372665
\(86\) 0 0
\(87\) −127.073 −0.156594
\(88\) 0 0
\(89\) 97.1670 0.115727 0.0578634 0.998325i \(-0.481571\pi\)
0.0578634 + 0.998325i \(0.481571\pi\)
\(90\) 0 0
\(91\) −253.263 −0.291750
\(92\) 0 0
\(93\) −9.49249 −0.0105841
\(94\) 0 0
\(95\) 63.9191 0.0690311
\(96\) 0 0
\(97\) 1193.65 1.24945 0.624727 0.780843i \(-0.285210\pi\)
0.624727 + 0.780843i \(0.285210\pi\)
\(98\) 0 0
\(99\) 1076.93 1.09329
\(100\) 0 0
\(101\) 596.412 0.587577 0.293788 0.955871i \(-0.405084\pi\)
0.293788 + 0.955871i \(0.405084\pi\)
\(102\) 0 0
\(103\) 1193.86 1.14209 0.571043 0.820920i \(-0.306539\pi\)
0.571043 + 0.820920i \(0.306539\pi\)
\(104\) 0 0
\(105\) −222.204 −0.206523
\(106\) 0 0
\(107\) −1787.96 −1.61541 −0.807704 0.589588i \(-0.799290\pi\)
−0.807704 + 0.589588i \(0.799290\pi\)
\(108\) 0 0
\(109\) −3.03264 −0.00266490 −0.00133245 0.999999i \(-0.500424\pi\)
−0.00133245 + 0.999999i \(0.500424\pi\)
\(110\) 0 0
\(111\) −130.978 −0.111999
\(112\) 0 0
\(113\) 513.505 0.427491 0.213746 0.976889i \(-0.431434\pi\)
0.213746 + 0.976889i \(0.431434\pi\)
\(114\) 0 0
\(115\) 967.582 0.784587
\(116\) 0 0
\(117\) −307.122 −0.242679
\(118\) 0 0
\(119\) 916.447 0.705971
\(120\) 0 0
\(121\) 746.996 0.561229
\(122\) 0 0
\(123\) 142.536 0.104488
\(124\) 0 0
\(125\) 1312.78 0.939350
\(126\) 0 0
\(127\) −207.447 −0.144945 −0.0724723 0.997370i \(-0.523089\pi\)
−0.0724723 + 0.997370i \(0.523089\pi\)
\(128\) 0 0
\(129\) 544.963 0.371948
\(130\) 0 0
\(131\) −82.2113 −0.0548308 −0.0274154 0.999624i \(-0.508728\pi\)
−0.0274154 + 0.999624i \(0.508728\pi\)
\(132\) 0 0
\(133\) 200.581 0.130772
\(134\) 0 0
\(135\) −577.412 −0.368116
\(136\) 0 0
\(137\) 2096.91 1.30767 0.653835 0.756637i \(-0.273159\pi\)
0.653835 + 0.756637i \(0.273159\pi\)
\(138\) 0 0
\(139\) −67.3623 −0.0411050 −0.0205525 0.999789i \(-0.506543\pi\)
−0.0205525 + 0.999789i \(0.506543\pi\)
\(140\) 0 0
\(141\) −545.033 −0.325532
\(142\) 0 0
\(143\) −592.605 −0.346547
\(144\) 0 0
\(145\) −429.406 −0.245932
\(146\) 0 0
\(147\) −67.1312 −0.0376659
\(148\) 0 0
\(149\) 1041.49 0.572631 0.286316 0.958135i \(-0.407569\pi\)
0.286316 + 0.958135i \(0.407569\pi\)
\(150\) 0 0
\(151\) −696.787 −0.375522 −0.187761 0.982215i \(-0.560123\pi\)
−0.187761 + 0.982215i \(0.560123\pi\)
\(152\) 0 0
\(153\) 1111.34 0.587230
\(154\) 0 0
\(155\) −32.0771 −0.0166225
\(156\) 0 0
\(157\) 269.011 0.136748 0.0683739 0.997660i \(-0.478219\pi\)
0.0683739 + 0.997660i \(0.478219\pi\)
\(158\) 0 0
\(159\) −1105.83 −0.551560
\(160\) 0 0
\(161\) 3036.32 1.48631
\(162\) 0 0
\(163\) 2031.20 0.976047 0.488023 0.872831i \(-0.337718\pi\)
0.488023 + 0.872831i \(0.337718\pi\)
\(164\) 0 0
\(165\) −519.930 −0.245312
\(166\) 0 0
\(167\) 2210.33 1.02419 0.512096 0.858928i \(-0.328869\pi\)
0.512096 + 0.858928i \(0.328869\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 243.236 0.108776
\(172\) 0 0
\(173\) −1677.24 −0.737098 −0.368549 0.929608i \(-0.620145\pi\)
−0.368549 + 0.929608i \(0.620145\pi\)
\(174\) 0 0
\(175\) 1684.35 0.727571
\(176\) 0 0
\(177\) −499.888 −0.212282
\(178\) 0 0
\(179\) −2444.60 −1.02077 −0.510386 0.859945i \(-0.670497\pi\)
−0.510386 + 0.859945i \(0.670497\pi\)
\(180\) 0 0
\(181\) −843.249 −0.346289 −0.173144 0.984896i \(-0.555393\pi\)
−0.173144 + 0.984896i \(0.555393\pi\)
\(182\) 0 0
\(183\) −1177.79 −0.475762
\(184\) 0 0
\(185\) −442.603 −0.175896
\(186\) 0 0
\(187\) 2144.38 0.838568
\(188\) 0 0
\(189\) −1811.95 −0.697354
\(190\) 0 0
\(191\) −2742.53 −1.03897 −0.519484 0.854480i \(-0.673876\pi\)
−0.519484 + 0.854480i \(0.673876\pi\)
\(192\) 0 0
\(193\) 801.584 0.298960 0.149480 0.988765i \(-0.452240\pi\)
0.149480 + 0.988765i \(0.452240\pi\)
\(194\) 0 0
\(195\) 148.274 0.0544521
\(196\) 0 0
\(197\) −2867.94 −1.03722 −0.518609 0.855012i \(-0.673550\pi\)
−0.518609 + 0.855012i \(0.673550\pi\)
\(198\) 0 0
\(199\) 4101.21 1.46094 0.730469 0.682945i \(-0.239301\pi\)
0.730469 + 0.682945i \(0.239301\pi\)
\(200\) 0 0
\(201\) 1877.55 0.658868
\(202\) 0 0
\(203\) −1347.50 −0.465891
\(204\) 0 0
\(205\) 481.657 0.164100
\(206\) 0 0
\(207\) 3682.02 1.23632
\(208\) 0 0
\(209\) 469.336 0.155333
\(210\) 0 0
\(211\) 186.162 0.0607390 0.0303695 0.999539i \(-0.490332\pi\)
0.0303695 + 0.999539i \(0.490332\pi\)
\(212\) 0 0
\(213\) 1804.00 0.580320
\(214\) 0 0
\(215\) 1841.54 0.584150
\(216\) 0 0
\(217\) −100.660 −0.0314895
\(218\) 0 0
\(219\) 1608.75 0.496389
\(220\) 0 0
\(221\) −611.536 −0.186137
\(222\) 0 0
\(223\) −6463.02 −1.94079 −0.970394 0.241527i \(-0.922352\pi\)
−0.970394 + 0.241527i \(0.922352\pi\)
\(224\) 0 0
\(225\) 2042.54 0.605197
\(226\) 0 0
\(227\) −4199.99 −1.22803 −0.614016 0.789294i \(-0.710447\pi\)
−0.614016 + 0.789294i \(0.710447\pi\)
\(228\) 0 0
\(229\) −2068.59 −0.596928 −0.298464 0.954421i \(-0.596474\pi\)
−0.298464 + 0.954421i \(0.596474\pi\)
\(230\) 0 0
\(231\) −1631.57 −0.464716
\(232\) 0 0
\(233\) 1584.10 0.445398 0.222699 0.974887i \(-0.428513\pi\)
0.222699 + 0.974887i \(0.428513\pi\)
\(234\) 0 0
\(235\) −1841.78 −0.511252
\(236\) 0 0
\(237\) 1194.13 0.327289
\(238\) 0 0
\(239\) 305.470 0.0826745 0.0413372 0.999145i \(-0.486838\pi\)
0.0413372 + 0.999145i \(0.486838\pi\)
\(240\) 0 0
\(241\) 1503.33 0.401817 0.200908 0.979610i \(-0.435611\pi\)
0.200908 + 0.979610i \(0.435611\pi\)
\(242\) 0 0
\(243\) −3369.16 −0.889430
\(244\) 0 0
\(245\) −226.850 −0.0591548
\(246\) 0 0
\(247\) −133.846 −0.0344794
\(248\) 0 0
\(249\) −1492.36 −0.379816
\(250\) 0 0
\(251\) 5154.98 1.29633 0.648166 0.761499i \(-0.275536\pi\)
0.648166 + 0.761499i \(0.275536\pi\)
\(252\) 0 0
\(253\) 7104.63 1.76547
\(254\) 0 0
\(255\) −536.539 −0.131762
\(256\) 0 0
\(257\) 6005.25 1.45758 0.728789 0.684739i \(-0.240084\pi\)
0.728789 + 0.684739i \(0.240084\pi\)
\(258\) 0 0
\(259\) −1388.91 −0.333215
\(260\) 0 0
\(261\) −1634.05 −0.387530
\(262\) 0 0
\(263\) −3760.32 −0.881640 −0.440820 0.897595i \(-0.645312\pi\)
−0.440820 + 0.897595i \(0.645312\pi\)
\(264\) 0 0
\(265\) −3736.82 −0.866231
\(266\) 0 0
\(267\) −178.514 −0.0409172
\(268\) 0 0
\(269\) −1359.08 −0.308048 −0.154024 0.988067i \(-0.549223\pi\)
−0.154024 + 0.988067i \(0.549223\pi\)
\(270\) 0 0
\(271\) 1790.90 0.401438 0.200719 0.979649i \(-0.435672\pi\)
0.200719 + 0.979649i \(0.435672\pi\)
\(272\) 0 0
\(273\) 465.293 0.103153
\(274\) 0 0
\(275\) 3941.18 0.864225
\(276\) 0 0
\(277\) −6981.03 −1.51426 −0.757129 0.653266i \(-0.773399\pi\)
−0.757129 + 0.653266i \(0.773399\pi\)
\(278\) 0 0
\(279\) −122.065 −0.0261931
\(280\) 0 0
\(281\) −1082.51 −0.229812 −0.114906 0.993376i \(-0.536657\pi\)
−0.114906 + 0.993376i \(0.536657\pi\)
\(282\) 0 0
\(283\) −4439.85 −0.932585 −0.466292 0.884631i \(-0.654411\pi\)
−0.466292 + 0.884631i \(0.654411\pi\)
\(284\) 0 0
\(285\) −117.432 −0.0244072
\(286\) 0 0
\(287\) 1511.47 0.310868
\(288\) 0 0
\(289\) −2700.12 −0.549588
\(290\) 0 0
\(291\) −2192.97 −0.441767
\(292\) 0 0
\(293\) −3570.20 −0.711854 −0.355927 0.934514i \(-0.615835\pi\)
−0.355927 + 0.934514i \(0.615835\pi\)
\(294\) 0 0
\(295\) −1689.22 −0.333391
\(296\) 0 0
\(297\) −4239.74 −0.828332
\(298\) 0 0
\(299\) −2026.11 −0.391882
\(300\) 0 0
\(301\) 5778.85 1.10660
\(302\) 0 0
\(303\) −1095.72 −0.207748
\(304\) 0 0
\(305\) −3979.98 −0.747191
\(306\) 0 0
\(307\) 5636.05 1.04777 0.523887 0.851788i \(-0.324481\pi\)
0.523887 + 0.851788i \(0.324481\pi\)
\(308\) 0 0
\(309\) −2193.35 −0.403804
\(310\) 0 0
\(311\) −9042.60 −1.64874 −0.824371 0.566049i \(-0.808471\pi\)
−0.824371 + 0.566049i \(0.808471\pi\)
\(312\) 0 0
\(313\) −10852.3 −1.95976 −0.979882 0.199577i \(-0.936043\pi\)
−0.979882 + 0.199577i \(0.936043\pi\)
\(314\) 0 0
\(315\) −2857.36 −0.511092
\(316\) 0 0
\(317\) 3736.13 0.661963 0.330981 0.943637i \(-0.392620\pi\)
0.330981 + 0.943637i \(0.392620\pi\)
\(318\) 0 0
\(319\) −3152.98 −0.553395
\(320\) 0 0
\(321\) 3284.82 0.571156
\(322\) 0 0
\(323\) 484.329 0.0834327
\(324\) 0 0
\(325\) −1123.95 −0.191832
\(326\) 0 0
\(327\) 5.57153 0.000942221 0
\(328\) 0 0
\(329\) −5779.59 −0.968508
\(330\) 0 0
\(331\) 6755.12 1.12174 0.560868 0.827905i \(-0.310467\pi\)
0.560868 + 0.827905i \(0.310467\pi\)
\(332\) 0 0
\(333\) −1684.27 −0.277170
\(334\) 0 0
\(335\) 6344.64 1.03476
\(336\) 0 0
\(337\) −10073.2 −1.62826 −0.814130 0.580682i \(-0.802786\pi\)
−0.814130 + 0.580682i \(0.802786\pi\)
\(338\) 0 0
\(339\) −943.407 −0.151147
\(340\) 0 0
\(341\) −235.531 −0.0374039
\(342\) 0 0
\(343\) 5970.39 0.939856
\(344\) 0 0
\(345\) −1777.63 −0.277404
\(346\) 0 0
\(347\) 7102.09 1.09873 0.549366 0.835582i \(-0.314869\pi\)
0.549366 + 0.835582i \(0.314869\pi\)
\(348\) 0 0
\(349\) 5599.78 0.858880 0.429440 0.903095i \(-0.358711\pi\)
0.429440 + 0.903095i \(0.358711\pi\)
\(350\) 0 0
\(351\) 1209.09 0.183865
\(352\) 0 0
\(353\) −7062.56 −1.06488 −0.532439 0.846468i \(-0.678724\pi\)
−0.532439 + 0.846468i \(0.678724\pi\)
\(354\) 0 0
\(355\) 6096.09 0.911399
\(356\) 0 0
\(357\) −1683.69 −0.249608
\(358\) 0 0
\(359\) 10391.4 1.52769 0.763844 0.645401i \(-0.223310\pi\)
0.763844 + 0.645401i \(0.223310\pi\)
\(360\) 0 0
\(361\) −6753.00 −0.984545
\(362\) 0 0
\(363\) −1372.37 −0.198432
\(364\) 0 0
\(365\) 5436.29 0.779585
\(366\) 0 0
\(367\) 9368.95 1.33258 0.666288 0.745695i \(-0.267882\pi\)
0.666288 + 0.745695i \(0.267882\pi\)
\(368\) 0 0
\(369\) 1832.89 0.258581
\(370\) 0 0
\(371\) −11726.3 −1.64097
\(372\) 0 0
\(373\) −6303.38 −0.875004 −0.437502 0.899217i \(-0.644137\pi\)
−0.437502 + 0.899217i \(0.644137\pi\)
\(374\) 0 0
\(375\) −2411.83 −0.332123
\(376\) 0 0
\(377\) 899.171 0.122837
\(378\) 0 0
\(379\) −3980.44 −0.539476 −0.269738 0.962934i \(-0.586937\pi\)
−0.269738 + 0.962934i \(0.586937\pi\)
\(380\) 0 0
\(381\) 381.120 0.0512477
\(382\) 0 0
\(383\) 2315.19 0.308879 0.154439 0.988002i \(-0.450643\pi\)
0.154439 + 0.988002i \(0.450643\pi\)
\(384\) 0 0
\(385\) −5513.41 −0.729842
\(386\) 0 0
\(387\) 7007.77 0.920478
\(388\) 0 0
\(389\) −10739.7 −1.39981 −0.699905 0.714236i \(-0.746774\pi\)
−0.699905 + 0.714236i \(0.746774\pi\)
\(390\) 0 0
\(391\) 7331.58 0.948271
\(392\) 0 0
\(393\) 151.038 0.0193864
\(394\) 0 0
\(395\) 4035.23 0.514011
\(396\) 0 0
\(397\) 610.651 0.0771982 0.0385991 0.999255i \(-0.487710\pi\)
0.0385991 + 0.999255i \(0.487710\pi\)
\(398\) 0 0
\(399\) −368.506 −0.0462365
\(400\) 0 0
\(401\) 5952.35 0.741263 0.370631 0.928780i \(-0.379141\pi\)
0.370631 + 0.928780i \(0.379141\pi\)
\(402\) 0 0
\(403\) 67.1691 0.00830255
\(404\) 0 0
\(405\) −2899.22 −0.355712
\(406\) 0 0
\(407\) −3249.89 −0.395801
\(408\) 0 0
\(409\) −15612.1 −1.88745 −0.943725 0.330730i \(-0.892705\pi\)
−0.943725 + 0.330730i \(0.892705\pi\)
\(410\) 0 0
\(411\) −3852.42 −0.462350
\(412\) 0 0
\(413\) −5300.87 −0.631571
\(414\) 0 0
\(415\) −5042.98 −0.596506
\(416\) 0 0
\(417\) 123.757 0.0145334
\(418\) 0 0
\(419\) 4971.26 0.579623 0.289811 0.957084i \(-0.406407\pi\)
0.289811 + 0.957084i \(0.406407\pi\)
\(420\) 0 0
\(421\) 1307.30 0.151340 0.0756698 0.997133i \(-0.475891\pi\)
0.0756698 + 0.997133i \(0.475891\pi\)
\(422\) 0 0
\(423\) −7008.66 −0.805610
\(424\) 0 0
\(425\) 4067.08 0.464193
\(426\) 0 0
\(427\) −12489.4 −1.41547
\(428\) 0 0
\(429\) 1088.73 0.122528
\(430\) 0 0
\(431\) −9146.52 −1.02221 −0.511105 0.859518i \(-0.670764\pi\)
−0.511105 + 0.859518i \(0.670764\pi\)
\(432\) 0 0
\(433\) −3246.44 −0.360310 −0.180155 0.983638i \(-0.557660\pi\)
−0.180155 + 0.983638i \(0.557660\pi\)
\(434\) 0 0
\(435\) 788.900 0.0869537
\(436\) 0 0
\(437\) 1604.65 0.175654
\(438\) 0 0
\(439\) −7918.55 −0.860892 −0.430446 0.902616i \(-0.641644\pi\)
−0.430446 + 0.902616i \(0.641644\pi\)
\(440\) 0 0
\(441\) −863.251 −0.0932136
\(442\) 0 0
\(443\) −5069.07 −0.543654 −0.271827 0.962346i \(-0.587628\pi\)
−0.271827 + 0.962346i \(0.587628\pi\)
\(444\) 0 0
\(445\) −603.237 −0.0642610
\(446\) 0 0
\(447\) −1913.41 −0.202464
\(448\) 0 0
\(449\) 8055.03 0.846638 0.423319 0.905981i \(-0.360865\pi\)
0.423319 + 0.905981i \(0.360865\pi\)
\(450\) 0 0
\(451\) 3536.65 0.369255
\(452\) 0 0
\(453\) 1280.13 0.132772
\(454\) 0 0
\(455\) 1572.32 0.162003
\(456\) 0 0
\(457\) −16991.3 −1.73921 −0.869607 0.493745i \(-0.835627\pi\)
−0.869607 + 0.493745i \(0.835627\pi\)
\(458\) 0 0
\(459\) −4375.18 −0.444914
\(460\) 0 0
\(461\) 12875.9 1.30085 0.650424 0.759571i \(-0.274591\pi\)
0.650424 + 0.759571i \(0.274591\pi\)
\(462\) 0 0
\(463\) −135.611 −0.0136121 −0.00680604 0.999977i \(-0.502166\pi\)
−0.00680604 + 0.999977i \(0.502166\pi\)
\(464\) 0 0
\(465\) 58.9317 0.00587719
\(466\) 0 0
\(467\) 9132.78 0.904957 0.452478 0.891775i \(-0.350540\pi\)
0.452478 + 0.891775i \(0.350540\pi\)
\(468\) 0 0
\(469\) 19909.8 1.96023
\(470\) 0 0
\(471\) −494.224 −0.0483495
\(472\) 0 0
\(473\) 13521.8 1.31445
\(474\) 0 0
\(475\) 890.155 0.0859855
\(476\) 0 0
\(477\) −14220.0 −1.36497
\(478\) 0 0
\(479\) 2785.43 0.265698 0.132849 0.991136i \(-0.457587\pi\)
0.132849 + 0.991136i \(0.457587\pi\)
\(480\) 0 0
\(481\) 926.807 0.0878560
\(482\) 0 0
\(483\) −5578.30 −0.525510
\(484\) 0 0
\(485\) −7410.49 −0.693800
\(486\) 0 0
\(487\) −10570.6 −0.983570 −0.491785 0.870717i \(-0.663655\pi\)
−0.491785 + 0.870717i \(0.663655\pi\)
\(488\) 0 0
\(489\) −3731.70 −0.345098
\(490\) 0 0
\(491\) 10962.1 1.00756 0.503781 0.863832i \(-0.331942\pi\)
0.503781 + 0.863832i \(0.331942\pi\)
\(492\) 0 0
\(493\) −3253.70 −0.297240
\(494\) 0 0
\(495\) −6685.87 −0.607086
\(496\) 0 0
\(497\) 19129.8 1.72654
\(498\) 0 0
\(499\) −10631.0 −0.953730 −0.476865 0.878977i \(-0.658227\pi\)
−0.476865 + 0.878977i \(0.658227\pi\)
\(500\) 0 0
\(501\) −4060.79 −0.362121
\(502\) 0 0
\(503\) 8406.08 0.745146 0.372573 0.928003i \(-0.378476\pi\)
0.372573 + 0.928003i \(0.378476\pi\)
\(504\) 0 0
\(505\) −3702.67 −0.326271
\(506\) 0 0
\(507\) −310.485 −0.0271975
\(508\) 0 0
\(509\) 7896.27 0.687615 0.343808 0.939040i \(-0.388283\pi\)
0.343808 + 0.939040i \(0.388283\pi\)
\(510\) 0 0
\(511\) 17059.4 1.47683
\(512\) 0 0
\(513\) −957.588 −0.0824143
\(514\) 0 0
\(515\) −7411.79 −0.634180
\(516\) 0 0
\(517\) −13523.5 −1.15042
\(518\) 0 0
\(519\) 3081.40 0.260614
\(520\) 0 0
\(521\) −18913.1 −1.59040 −0.795200 0.606347i \(-0.792634\pi\)
−0.795200 + 0.606347i \(0.792634\pi\)
\(522\) 0 0
\(523\) 2606.45 0.217920 0.108960 0.994046i \(-0.465248\pi\)
0.108960 + 0.994046i \(0.465248\pi\)
\(524\) 0 0
\(525\) −3094.47 −0.257245
\(526\) 0 0
\(527\) −243.055 −0.0200904
\(528\) 0 0
\(529\) 12123.6 0.996430
\(530\) 0 0
\(531\) −6428.14 −0.525343
\(532\) 0 0
\(533\) −1008.59 −0.0819638
\(534\) 0 0
\(535\) 11100.1 0.897008
\(536\) 0 0
\(537\) 4491.20 0.360912
\(538\) 0 0
\(539\) −1665.68 −0.133110
\(540\) 0 0
\(541\) 15288.3 1.21497 0.607483 0.794333i \(-0.292179\pi\)
0.607483 + 0.794333i \(0.292179\pi\)
\(542\) 0 0
\(543\) 1549.21 0.122436
\(544\) 0 0
\(545\) 18.8273 0.00147977
\(546\) 0 0
\(547\) 18025.8 1.40901 0.704506 0.709698i \(-0.251169\pi\)
0.704506 + 0.709698i \(0.251169\pi\)
\(548\) 0 0
\(549\) −15145.3 −1.17739
\(550\) 0 0
\(551\) −712.133 −0.0550596
\(552\) 0 0
\(553\) 12662.8 0.973734
\(554\) 0 0
\(555\) 813.146 0.0621913
\(556\) 0 0
\(557\) −11863.5 −0.902463 −0.451231 0.892407i \(-0.649015\pi\)
−0.451231 + 0.892407i \(0.649015\pi\)
\(558\) 0 0
\(559\) −3856.17 −0.291769
\(560\) 0 0
\(561\) −3939.63 −0.296490
\(562\) 0 0
\(563\) 5548.38 0.415340 0.207670 0.978199i \(-0.433412\pi\)
0.207670 + 0.978199i \(0.433412\pi\)
\(564\) 0 0
\(565\) −3187.97 −0.237378
\(566\) 0 0
\(567\) −9097.91 −0.673856
\(568\) 0 0
\(569\) 10337.3 0.761618 0.380809 0.924654i \(-0.375646\pi\)
0.380809 + 0.924654i \(0.375646\pi\)
\(570\) 0 0
\(571\) −17630.0 −1.29210 −0.646052 0.763294i \(-0.723581\pi\)
−0.646052 + 0.763294i \(0.723581\pi\)
\(572\) 0 0
\(573\) 5038.56 0.367345
\(574\) 0 0
\(575\) 13474.8 0.977284
\(576\) 0 0
\(577\) 7765.21 0.560260 0.280130 0.959962i \(-0.409622\pi\)
0.280130 + 0.959962i \(0.409622\pi\)
\(578\) 0 0
\(579\) −1472.66 −0.105702
\(580\) 0 0
\(581\) −15825.1 −1.13001
\(582\) 0 0
\(583\) −27438.2 −1.94919
\(584\) 0 0
\(585\) 1906.69 0.134755
\(586\) 0 0
\(587\) 20090.6 1.41265 0.706327 0.707886i \(-0.250351\pi\)
0.706327 + 0.707886i \(0.250351\pi\)
\(588\) 0 0
\(589\) −53.1971 −0.00372147
\(590\) 0 0
\(591\) 5268.94 0.366726
\(592\) 0 0
\(593\) 18437.8 1.27681 0.638405 0.769701i \(-0.279595\pi\)
0.638405 + 0.769701i \(0.279595\pi\)
\(594\) 0 0
\(595\) −5689.53 −0.392013
\(596\) 0 0
\(597\) −7534.70 −0.516540
\(598\) 0 0
\(599\) 1743.10 0.118900 0.0594501 0.998231i \(-0.481065\pi\)
0.0594501 + 0.998231i \(0.481065\pi\)
\(600\) 0 0
\(601\) 10234.2 0.694609 0.347304 0.937752i \(-0.387097\pi\)
0.347304 + 0.937752i \(0.387097\pi\)
\(602\) 0 0
\(603\) 24143.8 1.63053
\(604\) 0 0
\(605\) −4637.53 −0.311640
\(606\) 0 0
\(607\) −15838.6 −1.05909 −0.529546 0.848281i \(-0.677638\pi\)
−0.529546 + 0.848281i \(0.677638\pi\)
\(608\) 0 0
\(609\) 2475.61 0.164724
\(610\) 0 0
\(611\) 3856.66 0.255358
\(612\) 0 0
\(613\) 10048.6 0.662087 0.331043 0.943616i \(-0.392599\pi\)
0.331043 + 0.943616i \(0.392599\pi\)
\(614\) 0 0
\(615\) −884.896 −0.0580203
\(616\) 0 0
\(617\) −8515.00 −0.555593 −0.277797 0.960640i \(-0.589604\pi\)
−0.277797 + 0.960640i \(0.589604\pi\)
\(618\) 0 0
\(619\) 4715.30 0.306177 0.153089 0.988212i \(-0.451078\pi\)
0.153089 + 0.988212i \(0.451078\pi\)
\(620\) 0 0
\(621\) −14495.6 −0.936695
\(622\) 0 0
\(623\) −1892.99 −0.121735
\(624\) 0 0
\(625\) 2657.15 0.170058
\(626\) 0 0
\(627\) −862.260 −0.0549208
\(628\) 0 0
\(629\) −3353.70 −0.212593
\(630\) 0 0
\(631\) 1150.78 0.0726020 0.0363010 0.999341i \(-0.488442\pi\)
0.0363010 + 0.999341i \(0.488442\pi\)
\(632\) 0 0
\(633\) −342.015 −0.0214753
\(634\) 0 0
\(635\) 1287.88 0.0804851
\(636\) 0 0
\(637\) 475.022 0.0295464
\(638\) 0 0
\(639\) 23197.9 1.43614
\(640\) 0 0
\(641\) 14095.0 0.868518 0.434259 0.900788i \(-0.357010\pi\)
0.434259 + 0.900788i \(0.357010\pi\)
\(642\) 0 0
\(643\) −8245.60 −0.505715 −0.252858 0.967504i \(-0.581370\pi\)
−0.252858 + 0.967504i \(0.581370\pi\)
\(644\) 0 0
\(645\) −3383.26 −0.206536
\(646\) 0 0
\(647\) 25082.1 1.52408 0.762040 0.647530i \(-0.224198\pi\)
0.762040 + 0.647530i \(0.224198\pi\)
\(648\) 0 0
\(649\) −12403.4 −0.750194
\(650\) 0 0
\(651\) 184.931 0.0111336
\(652\) 0 0
\(653\) 14425.3 0.864479 0.432240 0.901759i \(-0.357723\pi\)
0.432240 + 0.901759i \(0.357723\pi\)
\(654\) 0 0
\(655\) 510.388 0.0304466
\(656\) 0 0
\(657\) 20687.2 1.22844
\(658\) 0 0
\(659\) −32874.8 −1.94328 −0.971639 0.236469i \(-0.924010\pi\)
−0.971639 + 0.236469i \(0.924010\pi\)
\(660\) 0 0
\(661\) 16168.3 0.951400 0.475700 0.879607i \(-0.342195\pi\)
0.475700 + 0.879607i \(0.342195\pi\)
\(662\) 0 0
\(663\) 1123.51 0.0658121
\(664\) 0 0
\(665\) −1245.26 −0.0726151
\(666\) 0 0
\(667\) −10780.0 −0.625791
\(668\) 0 0
\(669\) 11873.8 0.686199
\(670\) 0 0
\(671\) −29223.7 −1.68132
\(672\) 0 0
\(673\) 16782.5 0.961247 0.480623 0.876927i \(-0.340410\pi\)
0.480623 + 0.876927i \(0.340410\pi\)
\(674\) 0 0
\(675\) −8041.20 −0.458527
\(676\) 0 0
\(677\) 34811.9 1.97626 0.988131 0.153612i \(-0.0490905\pi\)
0.988131 + 0.153612i \(0.0490905\pi\)
\(678\) 0 0
\(679\) −23254.5 −1.31432
\(680\) 0 0
\(681\) 7716.18 0.434192
\(682\) 0 0
\(683\) 5547.22 0.310774 0.155387 0.987854i \(-0.450338\pi\)
0.155387 + 0.987854i \(0.450338\pi\)
\(684\) 0 0
\(685\) −13018.1 −0.726126
\(686\) 0 0
\(687\) 3800.40 0.211054
\(688\) 0 0
\(689\) 7824.87 0.432662
\(690\) 0 0
\(691\) −20003.7 −1.10127 −0.550636 0.834746i \(-0.685615\pi\)
−0.550636 + 0.834746i \(0.685615\pi\)
\(692\) 0 0
\(693\) −20980.6 −1.15005
\(694\) 0 0
\(695\) 418.202 0.0228249
\(696\) 0 0
\(697\) 3649.62 0.198335
\(698\) 0 0
\(699\) −2910.29 −0.157478
\(700\) 0 0
\(701\) 3289.73 0.177249 0.0886244 0.996065i \(-0.471753\pi\)
0.0886244 + 0.996065i \(0.471753\pi\)
\(702\) 0 0
\(703\) −734.019 −0.0393799
\(704\) 0 0
\(705\) 3383.70 0.180762
\(706\) 0 0
\(707\) −11619.2 −0.618082
\(708\) 0 0
\(709\) −5892.45 −0.312123 −0.156062 0.987747i \(-0.549880\pi\)
−0.156062 + 0.987747i \(0.549880\pi\)
\(710\) 0 0
\(711\) 15355.6 0.809957
\(712\) 0 0
\(713\) −805.276 −0.0422971
\(714\) 0 0
\(715\) 3679.04 0.192431
\(716\) 0 0
\(717\) −561.206 −0.0292310
\(718\) 0 0
\(719\) −28981.2 −1.50322 −0.751612 0.659606i \(-0.770723\pi\)
−0.751612 + 0.659606i \(0.770723\pi\)
\(720\) 0 0
\(721\) −23258.6 −1.20138
\(722\) 0 0
\(723\) −2761.90 −0.142069
\(724\) 0 0
\(725\) −5980.02 −0.306334
\(726\) 0 0
\(727\) 26044.2 1.32865 0.664323 0.747446i \(-0.268720\pi\)
0.664323 + 0.747446i \(0.268720\pi\)
\(728\) 0 0
\(729\) −6419.10 −0.326124
\(730\) 0 0
\(731\) 13953.8 0.706017
\(732\) 0 0
\(733\) 34919.4 1.75959 0.879793 0.475357i \(-0.157681\pi\)
0.879793 + 0.475357i \(0.157681\pi\)
\(734\) 0 0
\(735\) 416.767 0.0209152
\(736\) 0 0
\(737\) 46586.5 2.32841
\(738\) 0 0
\(739\) 18907.6 0.941171 0.470586 0.882354i \(-0.344043\pi\)
0.470586 + 0.882354i \(0.344043\pi\)
\(740\) 0 0
\(741\) 245.900 0.0121908
\(742\) 0 0
\(743\) 13621.5 0.672579 0.336289 0.941759i \(-0.390828\pi\)
0.336289 + 0.941759i \(0.390828\pi\)
\(744\) 0 0
\(745\) −6465.81 −0.317972
\(746\) 0 0
\(747\) −19190.4 −0.939949
\(748\) 0 0
\(749\) 34832.7 1.69928
\(750\) 0 0
\(751\) 7690.73 0.373687 0.186843 0.982390i \(-0.440174\pi\)
0.186843 + 0.982390i \(0.440174\pi\)
\(752\) 0 0
\(753\) −9470.68 −0.458341
\(754\) 0 0
\(755\) 4325.83 0.208520
\(756\) 0 0
\(757\) −11273.7 −0.541279 −0.270640 0.962681i \(-0.587235\pi\)
−0.270640 + 0.962681i \(0.587235\pi\)
\(758\) 0 0
\(759\) −13052.5 −0.624213
\(760\) 0 0
\(761\) 39972.3 1.90406 0.952032 0.305998i \(-0.0989899\pi\)
0.952032 + 0.305998i \(0.0989899\pi\)
\(762\) 0 0
\(763\) 59.0812 0.00280325
\(764\) 0 0
\(765\) −6899.45 −0.326078
\(766\) 0 0
\(767\) 3537.22 0.166521
\(768\) 0 0
\(769\) −33967.8 −1.59286 −0.796429 0.604731i \(-0.793280\pi\)
−0.796429 + 0.604731i \(0.793280\pi\)
\(770\) 0 0
\(771\) −11032.8 −0.515352
\(772\) 0 0
\(773\) 29974.6 1.39471 0.697356 0.716725i \(-0.254360\pi\)
0.697356 + 0.716725i \(0.254360\pi\)
\(774\) 0 0
\(775\) −446.714 −0.0207051
\(776\) 0 0
\(777\) 2551.70 0.117814
\(778\) 0 0
\(779\) 798.787 0.0367388
\(780\) 0 0
\(781\) 44761.5 2.05082
\(782\) 0 0
\(783\) 6433.04 0.293612
\(784\) 0 0
\(785\) −1670.08 −0.0759336
\(786\) 0 0
\(787\) 36015.1 1.63126 0.815628 0.578577i \(-0.196392\pi\)
0.815628 + 0.578577i \(0.196392\pi\)
\(788\) 0 0
\(789\) 6908.43 0.311719
\(790\) 0 0
\(791\) −10004.0 −0.449686
\(792\) 0 0
\(793\) 8334.04 0.373204
\(794\) 0 0
\(795\) 6865.26 0.306271
\(796\) 0 0
\(797\) −13889.5 −0.617302 −0.308651 0.951175i \(-0.599878\pi\)
−0.308651 + 0.951175i \(0.599878\pi\)
\(798\) 0 0
\(799\) −13955.5 −0.617912
\(800\) 0 0
\(801\) −2295.54 −0.101260
\(802\) 0 0
\(803\) 39916.9 1.75422
\(804\) 0 0
\(805\) −18850.2 −0.825321
\(806\) 0 0
\(807\) 2496.90 0.108916
\(808\) 0 0
\(809\) −45197.9 −1.96424 −0.982122 0.188247i \(-0.939719\pi\)
−0.982122 + 0.188247i \(0.939719\pi\)
\(810\) 0 0
\(811\) 15933.4 0.689884 0.344942 0.938624i \(-0.387899\pi\)
0.344942 + 0.938624i \(0.387899\pi\)
\(812\) 0 0
\(813\) −3290.23 −0.141935
\(814\) 0 0
\(815\) −12610.2 −0.541982
\(816\) 0 0
\(817\) 3054.04 0.130780
\(818\) 0 0
\(819\) 5983.28 0.255278
\(820\) 0 0
\(821\) −1301.72 −0.0553355 −0.0276678 0.999617i \(-0.508808\pi\)
−0.0276678 + 0.999617i \(0.508808\pi\)
\(822\) 0 0
\(823\) 21002.5 0.889553 0.444776 0.895642i \(-0.353283\pi\)
0.444776 + 0.895642i \(0.353283\pi\)
\(824\) 0 0
\(825\) −7240.69 −0.305562
\(826\) 0 0
\(827\) −4721.35 −0.198522 −0.0992608 0.995061i \(-0.531648\pi\)
−0.0992608 + 0.995061i \(0.531648\pi\)
\(828\) 0 0
\(829\) 19341.0 0.810300 0.405150 0.914250i \(-0.367219\pi\)
0.405150 + 0.914250i \(0.367219\pi\)
\(830\) 0 0
\(831\) 12825.5 0.535392
\(832\) 0 0
\(833\) −1718.89 −0.0714959
\(834\) 0 0
\(835\) −13722.2 −0.568716
\(836\) 0 0
\(837\) 480.555 0.0198452
\(838\) 0 0
\(839\) 13489.1 0.555059 0.277530 0.960717i \(-0.410484\pi\)
0.277530 + 0.960717i \(0.410484\pi\)
\(840\) 0 0
\(841\) −19604.9 −0.803843
\(842\) 0 0
\(843\) 1988.78 0.0812541
\(844\) 0 0
\(845\) −1049.19 −0.0427140
\(846\) 0 0
\(847\) −14552.8 −0.590367
\(848\) 0 0
\(849\) 8156.85 0.329732
\(850\) 0 0
\(851\) −11111.3 −0.447580
\(852\) 0 0
\(853\) 25868.7 1.03837 0.519184 0.854663i \(-0.326236\pi\)
0.519184 + 0.854663i \(0.326236\pi\)
\(854\) 0 0
\(855\) −1510.07 −0.0604016
\(856\) 0 0
\(857\) 18974.3 0.756301 0.378150 0.925744i \(-0.376560\pi\)
0.378150 + 0.925744i \(0.376560\pi\)
\(858\) 0 0
\(859\) 1053.08 0.0418286 0.0209143 0.999781i \(-0.493342\pi\)
0.0209143 + 0.999781i \(0.493342\pi\)
\(860\) 0 0
\(861\) −2776.85 −0.109913
\(862\) 0 0
\(863\) 35966.7 1.41868 0.709340 0.704867i \(-0.248993\pi\)
0.709340 + 0.704867i \(0.248993\pi\)
\(864\) 0 0
\(865\) 10412.7 0.409297
\(866\) 0 0
\(867\) 4960.64 0.194316
\(868\) 0 0
\(869\) 29629.3 1.15662
\(870\) 0 0
\(871\) −13285.6 −0.516838
\(872\) 0 0
\(873\) −28199.7 −1.09326
\(874\) 0 0
\(875\) −25575.3 −0.988119
\(876\) 0 0
\(877\) 42712.4 1.64458 0.822289 0.569070i \(-0.192697\pi\)
0.822289 + 0.569070i \(0.192697\pi\)
\(878\) 0 0
\(879\) 6559.14 0.251688
\(880\) 0 0
\(881\) 29849.6 1.14150 0.570748 0.821125i \(-0.306653\pi\)
0.570748 + 0.821125i \(0.306653\pi\)
\(882\) 0 0
\(883\) 51744.8 1.97208 0.986042 0.166495i \(-0.0532451\pi\)
0.986042 + 0.166495i \(0.0532451\pi\)
\(884\) 0 0
\(885\) 3103.42 0.117876
\(886\) 0 0
\(887\) −30718.2 −1.16282 −0.581408 0.813612i \(-0.697498\pi\)
−0.581408 + 0.813612i \(0.697498\pi\)
\(888\) 0 0
\(889\) 4041.44 0.152470
\(890\) 0 0
\(891\) −21288.0 −0.800421
\(892\) 0 0
\(893\) −3054.43 −0.114460
\(894\) 0 0
\(895\) 15176.7 0.566817
\(896\) 0 0
\(897\) 3722.34 0.138557
\(898\) 0 0
\(899\) 357.376 0.0132582
\(900\) 0 0
\(901\) −28314.7 −1.04695
\(902\) 0 0
\(903\) −10616.9 −0.391259
\(904\) 0 0
\(905\) 5235.10 0.192288
\(906\) 0 0
\(907\) −34123.7 −1.24924 −0.624620 0.780929i \(-0.714746\pi\)
−0.624620 + 0.780929i \(0.714746\pi\)
\(908\) 0 0
\(909\) −14090.1 −0.514124
\(910\) 0 0
\(911\) 4694.50 0.170731 0.0853654 0.996350i \(-0.472794\pi\)
0.0853654 + 0.996350i \(0.472794\pi\)
\(912\) 0 0
\(913\) −37028.9 −1.34225
\(914\) 0 0
\(915\) 7311.99 0.264182
\(916\) 0 0
\(917\) 1601.62 0.0576775
\(918\) 0 0
\(919\) 12086.3 0.433831 0.216915 0.976190i \(-0.430400\pi\)
0.216915 + 0.976190i \(0.430400\pi\)
\(920\) 0 0
\(921\) −10354.5 −0.370459
\(922\) 0 0
\(923\) −12765.1 −0.455222
\(924\) 0 0
\(925\) −6163.81 −0.219097
\(926\) 0 0
\(927\) −28204.7 −0.999313
\(928\) 0 0
\(929\) −16524.3 −0.583579 −0.291790 0.956483i \(-0.594251\pi\)
−0.291790 + 0.956483i \(0.594251\pi\)
\(930\) 0 0
\(931\) −376.211 −0.0132436
\(932\) 0 0
\(933\) 16613.0 0.582942
\(934\) 0 0
\(935\) −13312.8 −0.465642
\(936\) 0 0
\(937\) 8736.94 0.304614 0.152307 0.988333i \(-0.451330\pi\)
0.152307 + 0.988333i \(0.451330\pi\)
\(938\) 0 0
\(939\) 19937.7 0.692909
\(940\) 0 0
\(941\) 8823.88 0.305686 0.152843 0.988251i \(-0.451157\pi\)
0.152843 + 0.988251i \(0.451157\pi\)
\(942\) 0 0
\(943\) 12091.7 0.417562
\(944\) 0 0
\(945\) 11249.0 0.387228
\(946\) 0 0
\(947\) −46241.6 −1.58675 −0.793373 0.608736i \(-0.791677\pi\)
−0.793373 + 0.608736i \(0.791677\pi\)
\(948\) 0 0
\(949\) −11383.5 −0.389384
\(950\) 0 0
\(951\) −6863.99 −0.234049
\(952\) 0 0
\(953\) 14160.2 0.481314 0.240657 0.970610i \(-0.422637\pi\)
0.240657 + 0.970610i \(0.422637\pi\)
\(954\) 0 0
\(955\) 17026.3 0.576920
\(956\) 0 0
\(957\) 5792.63 0.195663
\(958\) 0 0
\(959\) −40851.5 −1.37556
\(960\) 0 0
\(961\) −29764.3 −0.999104
\(962\) 0 0
\(963\) 42240.1 1.41347
\(964\) 0 0
\(965\) −4976.43 −0.166007
\(966\) 0 0
\(967\) 20496.1 0.681604 0.340802 0.940135i \(-0.389301\pi\)
0.340802 + 0.940135i \(0.389301\pi\)
\(968\) 0 0
\(969\) −889.804 −0.0294991
\(970\) 0 0
\(971\) −16603.1 −0.548732 −0.274366 0.961625i \(-0.588468\pi\)
−0.274366 + 0.961625i \(0.588468\pi\)
\(972\) 0 0
\(973\) 1312.34 0.0432391
\(974\) 0 0
\(975\) 2064.91 0.0678257
\(976\) 0 0
\(977\) −41331.9 −1.35345 −0.676727 0.736234i \(-0.736602\pi\)
−0.676727 + 0.736234i \(0.736602\pi\)
\(978\) 0 0
\(979\) −4429.36 −0.144600
\(980\) 0 0
\(981\) 71.6452 0.00233176
\(982\) 0 0
\(983\) 39233.1 1.27298 0.636492 0.771283i \(-0.280385\pi\)
0.636492 + 0.771283i \(0.280385\pi\)
\(984\) 0 0
\(985\) 17804.8 0.575949
\(986\) 0 0
\(987\) 10618.2 0.342433
\(988\) 0 0
\(989\) 46230.8 1.48641
\(990\) 0 0
\(991\) 45762.9 1.46691 0.733454 0.679739i \(-0.237907\pi\)
0.733454 + 0.679739i \(0.237907\pi\)
\(992\) 0 0
\(993\) −12410.4 −0.396609
\(994\) 0 0
\(995\) −25461.3 −0.811233
\(996\) 0 0
\(997\) −20826.9 −0.661579 −0.330790 0.943705i \(-0.607315\pi\)
−0.330790 + 0.943705i \(0.607315\pi\)
\(998\) 0 0
\(999\) 6630.75 0.209998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.4.a.be.1.2 4
4.3 odd 2 inner 832.4.a.be.1.3 4
8.3 odd 2 416.4.a.g.1.2 4
8.5 even 2 416.4.a.g.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.a.g.1.2 4 8.3 odd 2
416.4.a.g.1.3 yes 4 8.5 even 2
832.4.a.be.1.2 4 1.1 even 1 trivial
832.4.a.be.1.3 4 4.3 odd 2 inner