Properties

Label 832.2.i.g.705.1
Level $832$
Weight $2$
Character 832.705
Analytic conductor $6.644$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,2,Mod(321,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,-4,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 705.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 832.705
Dual form 832.2.i.g.321.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} -2.00000 q^{5} +(0.500000 - 0.866025i) q^{7} +(1.00000 - 1.73205i) q^{9} +(0.500000 + 0.866025i) q^{11} +(1.00000 - 3.46410i) q^{13} +(-1.00000 - 1.73205i) q^{15} +(-1.50000 + 2.59808i) q^{17} +(3.50000 - 6.06218i) q^{19} +1.00000 q^{21} +(-0.500000 - 0.866025i) q^{23} -1.00000 q^{25} +5.00000 q^{27} +(1.50000 + 2.59808i) q^{29} +8.00000 q^{31} +(-0.500000 + 0.866025i) q^{33} +(-1.00000 + 1.73205i) q^{35} +(-0.500000 - 0.866025i) q^{37} +(3.50000 - 0.866025i) q^{39} +(-5.50000 - 9.52628i) q^{41} +(5.50000 - 9.52628i) q^{43} +(-2.00000 + 3.46410i) q^{45} +12.0000 q^{47} +(3.00000 + 5.19615i) q^{49} -3.00000 q^{51} +6.00000 q^{53} +(-1.00000 - 1.73205i) q^{55} +7.00000 q^{57} +(-4.50000 + 7.79423i) q^{59} +(-4.50000 + 7.79423i) q^{61} +(-1.00000 - 1.73205i) q^{63} +(-2.00000 + 6.92820i) q^{65} +(-1.50000 - 2.59808i) q^{67} +(0.500000 - 0.866025i) q^{69} +(2.50000 - 4.33013i) q^{71} -2.00000 q^{73} +(-0.500000 - 0.866025i) q^{75} +1.00000 q^{77} -12.0000 q^{79} +(-0.500000 - 0.866025i) q^{81} +4.00000 q^{83} +(3.00000 - 5.19615i) q^{85} +(-1.50000 + 2.59808i) q^{87} +(0.500000 + 0.866025i) q^{89} +(-2.50000 - 2.59808i) q^{91} +(4.00000 + 6.92820i) q^{93} +(-7.00000 + 12.1244i) q^{95} +(0.500000 - 0.866025i) q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 4 q^{5} + q^{7} + 2 q^{9} + q^{11} + 2 q^{13} - 2 q^{15} - 3 q^{17} + 7 q^{19} + 2 q^{21} - q^{23} - 2 q^{25} + 10 q^{27} + 3 q^{29} + 16 q^{31} - q^{33} - 2 q^{35} - q^{37} + 7 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i 0.973494 0.228714i \(-0.0734519\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) 0 0
\(15\) −1.00000 1.73205i −0.258199 0.447214i
\(16\) 0 0
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) −0.500000 + 0.866025i −0.0870388 + 0.150756i
\(34\) 0 0
\(35\) −1.00000 + 1.73205i −0.169031 + 0.292770i
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) 3.50000 0.866025i 0.560449 0.138675i
\(40\) 0 0
\(41\) −5.50000 9.52628i −0.858956 1.48775i −0.872926 0.487852i \(-0.837780\pi\)
0.0139704 0.999902i \(-0.495553\pi\)
\(42\) 0 0
\(43\) 5.50000 9.52628i 0.838742 1.45274i −0.0522047 0.998636i \(-0.516625\pi\)
0.890947 0.454108i \(-0.150042\pi\)
\(44\) 0 0
\(45\) −2.00000 + 3.46410i −0.298142 + 0.516398i
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −1.00000 1.73205i −0.134840 0.233550i
\(56\) 0 0
\(57\) 7.00000 0.927173
\(58\) 0 0
\(59\) −4.50000 + 7.79423i −0.585850 + 1.01472i 0.408919 + 0.912571i \(0.365906\pi\)
−0.994769 + 0.102151i \(0.967427\pi\)
\(60\) 0 0
\(61\) −4.50000 + 7.79423i −0.576166 + 0.997949i 0.419748 + 0.907641i \(0.362118\pi\)
−0.995914 + 0.0903080i \(0.971215\pi\)
\(62\) 0 0
\(63\) −1.00000 1.73205i −0.125988 0.218218i
\(64\) 0 0
\(65\) −2.00000 + 6.92820i −0.248069 + 0.859338i
\(66\) 0 0
\(67\) −1.50000 2.59808i −0.183254 0.317406i 0.759733 0.650236i \(-0.225330\pi\)
−0.942987 + 0.332830i \(0.891996\pi\)
\(68\) 0 0
\(69\) 0.500000 0.866025i 0.0601929 0.104257i
\(70\) 0 0
\(71\) 2.50000 4.33013i 0.296695 0.513892i −0.678682 0.734432i \(-0.737449\pi\)
0.975378 + 0.220540i \(0.0707821\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 0 0
\(87\) −1.50000 + 2.59808i −0.160817 + 0.278543i
\(88\) 0 0
\(89\) 0.500000 + 0.866025i 0.0529999 + 0.0917985i 0.891308 0.453398i \(-0.149788\pi\)
−0.838308 + 0.545197i \(0.816455\pi\)
\(90\) 0 0
\(91\) −2.50000 2.59808i −0.262071 0.272352i
\(92\) 0 0
\(93\) 4.00000 + 6.92820i 0.414781 + 0.718421i
\(94\) 0 0
\(95\) −7.00000 + 12.1244i −0.718185 + 1.24393i
\(96\) 0 0
\(97\) 0.500000 0.866025i 0.0507673 0.0879316i −0.839525 0.543321i \(-0.817167\pi\)
0.890292 + 0.455389i \(0.150500\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −8.50000 14.7224i −0.845782 1.46494i −0.884941 0.465704i \(-0.845801\pi\)
0.0391591 0.999233i \(-0.487532\pi\)
\(102\) 0 0
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) 8.50000 + 14.7224i 0.821726 + 1.42327i 0.904396 + 0.426694i \(0.140322\pi\)
−0.0826699 + 0.996577i \(0.526345\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0.500000 0.866025i 0.0474579 0.0821995i
\(112\) 0 0
\(113\) −5.50000 + 9.52628i −0.517396 + 0.896157i 0.482399 + 0.875951i \(0.339765\pi\)
−0.999796 + 0.0202056i \(0.993568\pi\)
\(114\) 0 0
\(115\) 1.00000 + 1.73205i 0.0932505 + 0.161515i
\(116\) 0 0
\(117\) −5.00000 5.19615i −0.462250 0.480384i
\(118\) 0 0
\(119\) 1.50000 + 2.59808i 0.137505 + 0.238165i
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 0 0
\(123\) 5.50000 9.52628i 0.495918 0.858956i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −6.50000 11.2583i −0.576782 0.999015i −0.995846 0.0910585i \(-0.970975\pi\)
0.419064 0.907957i \(-0.362358\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −3.50000 6.06218i −0.303488 0.525657i
\(134\) 0 0
\(135\) −10.0000 −0.860663
\(136\) 0 0
\(137\) 4.50000 7.79423i 0.384461 0.665906i −0.607233 0.794524i \(-0.707721\pi\)
0.991694 + 0.128618i \(0.0410540\pi\)
\(138\) 0 0
\(139\) −4.50000 + 7.79423i −0.381685 + 0.661098i −0.991303 0.131597i \(-0.957989\pi\)
0.609618 + 0.792695i \(0.291323\pi\)
\(140\) 0 0
\(141\) 6.00000 + 10.3923i 0.505291 + 0.875190i
\(142\) 0 0
\(143\) 3.50000 0.866025i 0.292685 0.0724207i
\(144\) 0 0
\(145\) −3.00000 5.19615i −0.249136 0.431517i
\(146\) 0 0
\(147\) −3.00000 + 5.19615i −0.247436 + 0.428571i
\(148\) 0 0
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 3.00000 + 5.19615i 0.242536 + 0.420084i
\(154\) 0 0
\(155\) −16.0000 −1.28515
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) 3.00000 + 5.19615i 0.237915 + 0.412082i
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) −2.50000 + 4.33013i −0.195815 + 0.339162i −0.947167 0.320740i \(-0.896069\pi\)
0.751352 + 0.659901i \(0.229402\pi\)
\(164\) 0 0
\(165\) 1.00000 1.73205i 0.0778499 0.134840i
\(166\) 0 0
\(167\) 3.50000 + 6.06218i 0.270838 + 0.469105i 0.969077 0.246760i \(-0.0793659\pi\)
−0.698239 + 0.715865i \(0.746033\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 0 0
\(171\) −7.00000 12.1244i −0.535303 0.927173i
\(172\) 0 0
\(173\) −4.50000 + 7.79423i −0.342129 + 0.592584i −0.984828 0.173534i \(-0.944481\pi\)
0.642699 + 0.766119i \(0.277815\pi\)
\(174\) 0 0
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) 4.50000 + 7.79423i 0.336346 + 0.582568i 0.983742 0.179585i \(-0.0574756\pi\)
−0.647397 + 0.762153i \(0.724142\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) −9.00000 −0.665299
\(184\) 0 0
\(185\) 1.00000 + 1.73205i 0.0735215 + 0.127343i
\(186\) 0 0
\(187\) −3.00000 −0.219382
\(188\) 0 0
\(189\) 2.50000 4.33013i 0.181848 0.314970i
\(190\) 0 0
\(191\) −3.50000 + 6.06218i −0.253251 + 0.438644i −0.964419 0.264378i \(-0.914833\pi\)
0.711168 + 0.703022i \(0.248167\pi\)
\(192\) 0 0
\(193\) 2.50000 + 4.33013i 0.179954 + 0.311689i 0.941865 0.335993i \(-0.109072\pi\)
−0.761911 + 0.647682i \(0.775738\pi\)
\(194\) 0 0
\(195\) −7.00000 + 1.73205i −0.501280 + 0.124035i
\(196\) 0 0
\(197\) −6.50000 11.2583i −0.463106 0.802123i 0.536008 0.844213i \(-0.319932\pi\)
−0.999114 + 0.0420901i \(0.986598\pi\)
\(198\) 0 0
\(199\) −1.50000 + 2.59808i −0.106332 + 0.184173i −0.914282 0.405079i \(-0.867244\pi\)
0.807950 + 0.589252i \(0.200577\pi\)
\(200\) 0 0
\(201\) 1.50000 2.59808i 0.105802 0.183254i
\(202\) 0 0
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 11.0000 + 19.0526i 0.768273 + 1.33069i
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) 0.500000 + 0.866025i 0.0344214 + 0.0596196i 0.882723 0.469894i \(-0.155708\pi\)
−0.848301 + 0.529514i \(0.822374\pi\)
\(212\) 0 0
\(213\) 5.00000 0.342594
\(214\) 0 0
\(215\) −11.0000 + 19.0526i −0.750194 + 1.29937i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) −1.00000 1.73205i −0.0675737 0.117041i
\(220\) 0 0
\(221\) 7.50000 + 7.79423i 0.504505 + 0.524297i
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.0334825 0.0579934i 0.848799 0.528716i \(-0.177326\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) 0 0
\(225\) −1.00000 + 1.73205i −0.0666667 + 0.115470i
\(226\) 0 0
\(227\) −0.500000 + 0.866025i −0.0331862 + 0.0574801i −0.882141 0.470985i \(-0.843899\pi\)
0.848955 + 0.528465i \(0.177232\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0.500000 + 0.866025i 0.0328976 + 0.0569803i
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −24.0000 −1.56559
\(236\) 0 0
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −5.50000 + 9.52628i −0.354286 + 0.613642i −0.986996 0.160748i \(-0.948609\pi\)
0.632709 + 0.774389i \(0.281943\pi\)
\(242\) 0 0
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 0 0
\(245\) −6.00000 10.3923i −0.383326 0.663940i
\(246\) 0 0
\(247\) −17.5000 18.1865i −1.11350 1.15718i
\(248\) 0 0
\(249\) 2.00000 + 3.46410i 0.126745 + 0.219529i
\(250\) 0 0
\(251\) −6.50000 + 11.2583i −0.410276 + 0.710620i −0.994920 0.100671i \(-0.967901\pi\)
0.584643 + 0.811290i \(0.301234\pi\)
\(252\) 0 0
\(253\) 0.500000 0.866025i 0.0314347 0.0544466i
\(254\) 0 0
\(255\) 6.00000 0.375735
\(256\) 0 0
\(257\) 6.50000 + 11.2583i 0.405459 + 0.702275i 0.994375 0.105919i \(-0.0337784\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(258\) 0 0
\(259\) −1.00000 −0.0621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 15.5000 + 26.8468i 0.955771 + 1.65544i 0.732594 + 0.680666i \(0.238309\pi\)
0.223177 + 0.974778i \(0.428357\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) −0.500000 + 0.866025i −0.0305995 + 0.0529999i
\(268\) 0 0
\(269\) −2.50000 + 4.33013i −0.152428 + 0.264013i −0.932119 0.362151i \(-0.882042\pi\)
0.779692 + 0.626164i \(0.215376\pi\)
\(270\) 0 0
\(271\) 3.50000 + 6.06218i 0.212610 + 0.368251i 0.952531 0.304443i \(-0.0984703\pi\)
−0.739921 + 0.672694i \(0.765137\pi\)
\(272\) 0 0
\(273\) 1.00000 3.46410i 0.0605228 0.209657i
\(274\) 0 0
\(275\) −0.500000 0.866025i −0.0301511 0.0522233i
\(276\) 0 0
\(277\) −10.5000 + 18.1865i −0.630884 + 1.09272i 0.356488 + 0.934300i \(0.383974\pi\)
−0.987371 + 0.158423i \(0.949359\pi\)
\(278\) 0 0
\(279\) 8.00000 13.8564i 0.478947 0.829561i
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 0 0
\(283\) 12.5000 + 21.6506i 0.743048 + 1.28700i 0.951101 + 0.308879i \(0.0999539\pi\)
−0.208053 + 0.978117i \(0.566713\pi\)
\(284\) 0 0
\(285\) −14.0000 −0.829288
\(286\) 0 0
\(287\) −11.0000 −0.649309
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 1.00000 0.0586210
\(292\) 0 0
\(293\) −4.50000 + 7.79423i −0.262893 + 0.455344i −0.967009 0.254741i \(-0.918010\pi\)
0.704117 + 0.710084i \(0.251343\pi\)
\(294\) 0 0
\(295\) 9.00000 15.5885i 0.524000 0.907595i
\(296\) 0 0
\(297\) 2.50000 + 4.33013i 0.145065 + 0.251259i
\(298\) 0 0
\(299\) −3.50000 + 0.866025i −0.202410 + 0.0500835i
\(300\) 0 0
\(301\) −5.50000 9.52628i −0.317015 0.549086i
\(302\) 0 0
\(303\) 8.50000 14.7224i 0.488312 0.845782i
\(304\) 0 0
\(305\) 9.00000 15.5885i 0.515339 0.892592i
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) −4.00000 6.92820i −0.227552 0.394132i
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 30.0000 1.69570 0.847850 0.530236i \(-0.177897\pi\)
0.847850 + 0.530236i \(0.177897\pi\)
\(314\) 0 0
\(315\) 2.00000 + 3.46410i 0.112687 + 0.195180i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) −1.50000 + 2.59808i −0.0839839 + 0.145464i
\(320\) 0 0
\(321\) −8.50000 + 14.7224i −0.474424 + 0.821726i
\(322\) 0 0
\(323\) 10.5000 + 18.1865i 0.584236 + 1.01193i
\(324\) 0 0
\(325\) −1.00000 + 3.46410i −0.0554700 + 0.192154i
\(326\) 0 0
\(327\) −5.00000 8.66025i −0.276501 0.478913i
\(328\) 0 0
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) 0 0
\(331\) 13.5000 23.3827i 0.742027 1.28523i −0.209544 0.977799i \(-0.567198\pi\)
0.951571 0.307429i \(-0.0994688\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) 3.00000 + 5.19615i 0.163908 + 0.283896i
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) −11.0000 −0.597438
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) −1.00000 + 1.73205i −0.0538382 + 0.0932505i
\(346\) 0 0
\(347\) 13.5000 23.3827i 0.724718 1.25525i −0.234372 0.972147i \(-0.575303\pi\)
0.959090 0.283101i \(-0.0913633\pi\)
\(348\) 0 0
\(349\) −4.50000 7.79423i −0.240879 0.417215i 0.720086 0.693885i \(-0.244103\pi\)
−0.960965 + 0.276670i \(0.910769\pi\)
\(350\) 0 0
\(351\) 5.00000 17.3205i 0.266880 0.924500i
\(352\) 0 0
\(353\) 12.5000 + 21.6506i 0.665308 + 1.15235i 0.979202 + 0.202889i \(0.0650330\pi\)
−0.313894 + 0.949458i \(0.601634\pi\)
\(354\) 0 0
\(355\) −5.00000 + 8.66025i −0.265372 + 0.459639i
\(356\) 0 0
\(357\) −1.50000 + 2.59808i −0.0793884 + 0.137505i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) 7.50000 + 12.9904i 0.391497 + 0.678092i 0.992647 0.121044i \(-0.0386241\pi\)
−0.601150 + 0.799136i \(0.705291\pi\)
\(368\) 0 0
\(369\) −22.0000 −1.14527
\(370\) 0 0
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 5.50000 9.52628i 0.284779 0.493252i −0.687776 0.725923i \(-0.741413\pi\)
0.972556 + 0.232671i \(0.0747464\pi\)
\(374\) 0 0
\(375\) 6.00000 + 10.3923i 0.309839 + 0.536656i
\(376\) 0 0
\(377\) 10.5000 2.59808i 0.540778 0.133808i
\(378\) 0 0
\(379\) −7.50000 12.9904i −0.385249 0.667271i 0.606555 0.795042i \(-0.292551\pi\)
−0.991804 + 0.127771i \(0.959218\pi\)
\(380\) 0 0
\(381\) 6.50000 11.2583i 0.333005 0.576782i
\(382\) 0 0
\(383\) 16.5000 28.5788i 0.843111 1.46031i −0.0441413 0.999025i \(-0.514055\pi\)
0.887252 0.461285i \(-0.152611\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) −11.0000 19.0526i −0.559161 0.968496i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 3.00000 0.151717
\(392\) 0 0
\(393\) −6.00000 10.3923i −0.302660 0.524222i
\(394\) 0 0
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) 9.50000 16.4545i 0.476791 0.825827i −0.522855 0.852422i \(-0.675133\pi\)
0.999646 + 0.0265948i \(0.00846640\pi\)
\(398\) 0 0
\(399\) 3.50000 6.06218i 0.175219 0.303488i
\(400\) 0 0
\(401\) −13.5000 23.3827i −0.674158 1.16768i −0.976714 0.214544i \(-0.931173\pi\)
0.302556 0.953131i \(-0.402160\pi\)
\(402\) 0 0
\(403\) 8.00000 27.7128i 0.398508 1.38047i
\(404\) 0 0
\(405\) 1.00000 + 1.73205i 0.0496904 + 0.0860663i
\(406\) 0 0
\(407\) 0.500000 0.866025i 0.0247841 0.0429273i
\(408\) 0 0
\(409\) −17.5000 + 30.3109i −0.865319 + 1.49878i 0.00141047 + 0.999999i \(0.499551\pi\)
−0.866730 + 0.498778i \(0.833782\pi\)
\(410\) 0 0
\(411\) 9.00000 0.443937
\(412\) 0 0
\(413\) 4.50000 + 7.79423i 0.221431 + 0.383529i
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −9.00000 −0.440732
\(418\) 0 0
\(419\) 10.5000 + 18.1865i 0.512959 + 0.888470i 0.999887 + 0.0150285i \(0.00478389\pi\)
−0.486928 + 0.873442i \(0.661883\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 12.0000 20.7846i 0.583460 1.01058i
\(424\) 0 0
\(425\) 1.50000 2.59808i 0.0727607 0.126025i
\(426\) 0 0
\(427\) 4.50000 + 7.79423i 0.217770 + 0.377189i
\(428\) 0 0
\(429\) 2.50000 + 2.59808i 0.120701 + 0.125436i
\(430\) 0 0
\(431\) 5.50000 + 9.52628i 0.264926 + 0.458865i 0.967544 0.252702i \(-0.0813192\pi\)
−0.702618 + 0.711567i \(0.747986\pi\)
\(432\) 0 0
\(433\) −9.50000 + 16.4545i −0.456541 + 0.790752i −0.998775 0.0494752i \(-0.984245\pi\)
0.542234 + 0.840227i \(0.317578\pi\)
\(434\) 0 0
\(435\) 3.00000 5.19615i 0.143839 0.249136i
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −1.00000 1.73205i −0.0474045 0.0821071i
\(446\) 0 0
\(447\) −1.00000 −0.0472984
\(448\) 0 0
\(449\) 10.5000 18.1865i 0.495526 0.858276i −0.504461 0.863434i \(-0.668309\pi\)
0.999987 + 0.00515887i \(0.00164213\pi\)
\(450\) 0 0
\(451\) 5.50000 9.52628i 0.258985 0.448575i
\(452\) 0 0
\(453\) 8.00000 + 13.8564i 0.375873 + 0.651031i
\(454\) 0 0
\(455\) 5.00000 + 5.19615i 0.234404 + 0.243599i
\(456\) 0 0
\(457\) −3.50000 6.06218i −0.163723 0.283577i 0.772478 0.635042i \(-0.219017\pi\)
−0.936201 + 0.351465i \(0.885684\pi\)
\(458\) 0 0
\(459\) −7.50000 + 12.9904i −0.350070 + 0.606339i
\(460\) 0 0
\(461\) 1.50000 2.59808i 0.0698620 0.121004i −0.828978 0.559281i \(-0.811077\pi\)
0.898840 + 0.438276i \(0.144411\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) −8.00000 13.8564i −0.370991 0.642575i
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −3.00000 −0.138527
\(470\) 0 0
\(471\) −5.00000 8.66025i −0.230388 0.399043i
\(472\) 0 0
\(473\) 11.0000 0.505781
\(474\) 0 0
\(475\) −3.50000 + 6.06218i −0.160591 + 0.278152i
\(476\) 0 0
\(477\) 6.00000 10.3923i 0.274721 0.475831i
\(478\) 0 0
\(479\) 13.5000 + 23.3827i 0.616831 + 1.06838i 0.990060 + 0.140643i \(0.0449170\pi\)
−0.373230 + 0.927739i \(0.621750\pi\)
\(480\) 0 0
\(481\) −3.50000 + 0.866025i −0.159586 + 0.0394874i
\(482\) 0 0
\(483\) −0.500000 0.866025i −0.0227508 0.0394055i
\(484\) 0 0
\(485\) −1.00000 + 1.73205i −0.0454077 + 0.0786484i
\(486\) 0 0
\(487\) 6.50000 11.2583i 0.294543 0.510164i −0.680335 0.732901i \(-0.738166\pi\)
0.974879 + 0.222737i \(0.0714992\pi\)
\(488\) 0 0
\(489\) −5.00000 −0.226108
\(490\) 0 0
\(491\) −1.50000 2.59808i −0.0676941 0.117250i 0.830192 0.557478i \(-0.188231\pi\)
−0.897886 + 0.440228i \(0.854898\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −2.50000 4.33013i −0.112140 0.194233i
\(498\) 0 0
\(499\) −36.0000 −1.61158 −0.805791 0.592200i \(-0.798259\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 0 0
\(501\) −3.50000 + 6.06218i −0.156368 + 0.270838i
\(502\) 0 0
\(503\) 12.5000 21.6506i 0.557347 0.965354i −0.440369 0.897817i \(-0.645152\pi\)
0.997717 0.0675374i \(-0.0215142\pi\)
\(504\) 0 0
\(505\) 17.0000 + 29.4449i 0.756490 + 1.31028i
\(506\) 0 0
\(507\) 0.500000 12.9904i 0.0222058 0.576923i
\(508\) 0 0
\(509\) −0.500000 0.866025i −0.0221621 0.0383859i 0.854732 0.519070i \(-0.173722\pi\)
−0.876894 + 0.480684i \(0.840388\pi\)
\(510\) 0 0
\(511\) −1.00000 + 1.73205i −0.0442374 + 0.0766214i
\(512\) 0 0
\(513\) 17.5000 30.3109i 0.772644 1.33826i
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) 6.00000 + 10.3923i 0.263880 + 0.457053i
\(518\) 0 0
\(519\) −9.00000 −0.395056
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −9.50000 16.4545i −0.415406 0.719504i 0.580065 0.814570i \(-0.303027\pi\)
−0.995471 + 0.0950659i \(0.969694\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) −12.0000 + 20.7846i −0.522728 + 0.905392i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 0 0
\(531\) 9.00000 + 15.5885i 0.390567 + 0.676481i
\(532\) 0 0
\(533\) −38.5000 + 9.52628i −1.66762 + 0.412629i
\(534\) 0 0
\(535\) −17.0000 29.4449i −0.734974 1.27301i
\(536\) 0 0
\(537\) −4.50000 + 7.79423i −0.194189 + 0.336346i
\(538\) 0 0
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) 7.00000 + 12.1244i 0.300399 + 0.520306i
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) −12.0000 −0.513083 −0.256541 0.966533i \(-0.582583\pi\)
−0.256541 + 0.966533i \(0.582583\pi\)
\(548\) 0 0
\(549\) 9.00000 + 15.5885i 0.384111 + 0.665299i
\(550\) 0 0
\(551\) 21.0000 0.894630
\(552\) 0 0
\(553\) −6.00000 + 10.3923i −0.255146 + 0.441926i
\(554\) 0 0
\(555\) −1.00000 + 1.73205i −0.0424476 + 0.0735215i
\(556\) 0 0
\(557\) 9.50000 + 16.4545i 0.402528 + 0.697199i 0.994030 0.109104i \(-0.0347983\pi\)
−0.591502 + 0.806303i \(0.701465\pi\)
\(558\) 0 0
\(559\) −27.5000 28.5788i −1.16313 1.20876i
\(560\) 0 0
\(561\) −1.50000 2.59808i −0.0633300 0.109691i
\(562\) 0 0
\(563\) −4.50000 + 7.79423i −0.189652 + 0.328488i −0.945134 0.326682i \(-0.894069\pi\)
0.755482 + 0.655169i \(0.227403\pi\)
\(564\) 0 0
\(565\) 11.0000 19.0526i 0.462773 0.801547i
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 8.50000 + 14.7224i 0.356339 + 0.617196i 0.987346 0.158580i \(-0.0506917\pi\)
−0.631008 + 0.775777i \(0.717358\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) −7.00000 −0.292429
\(574\) 0 0
\(575\) 0.500000 + 0.866025i 0.0208514 + 0.0361158i
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) −2.50000 + 4.33013i −0.103896 + 0.179954i
\(580\) 0 0
\(581\) 2.00000 3.46410i 0.0829740 0.143715i
\(582\) 0 0
\(583\) 3.00000 + 5.19615i 0.124247 + 0.215203i
\(584\) 0 0
\(585\) 10.0000 + 10.3923i 0.413449 + 0.429669i
\(586\) 0 0
\(587\) 10.5000 + 18.1865i 0.433381 + 0.750639i 0.997162 0.0752860i \(-0.0239870\pi\)
−0.563781 + 0.825925i \(0.690654\pi\)
\(588\) 0 0
\(589\) 28.0000 48.4974i 1.15372 1.99830i
\(590\) 0 0
\(591\) 6.50000 11.2583i 0.267374 0.463106i
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) −3.00000 5.19615i −0.122988 0.213021i
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) −44.0000 −1.79779 −0.898896 0.438163i \(-0.855629\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(600\) 0 0
\(601\) 10.5000 + 18.1865i 0.428304 + 0.741844i 0.996723 0.0808953i \(-0.0257779\pi\)
−0.568419 + 0.822739i \(0.692445\pi\)
\(602\) 0 0
\(603\) −6.00000 −0.244339
\(604\) 0 0
\(605\) −10.0000 + 17.3205i −0.406558 + 0.704179i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 0 0
\(609\) 1.50000 + 2.59808i 0.0607831 + 0.105279i
\(610\) 0 0
\(611\) 12.0000 41.5692i 0.485468 1.68171i
\(612\) 0 0
\(613\) 19.5000 + 33.7750i 0.787598 + 1.36416i 0.927435 + 0.373985i \(0.122009\pi\)
−0.139837 + 0.990174i \(0.544658\pi\)
\(614\) 0 0
\(615\) −11.0000 + 19.0526i −0.443563 + 0.768273i
\(616\) 0 0
\(617\) −23.5000 + 40.7032i −0.946074 + 1.63865i −0.192489 + 0.981299i \(0.561656\pi\)
−0.753586 + 0.657350i \(0.771677\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) −2.50000 4.33013i −0.100322 0.173762i
\(622\) 0 0
\(623\) 1.00000 0.0400642
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 3.50000 + 6.06218i 0.139777 + 0.242100i
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −13.5000 + 23.3827i −0.537427 + 0.930850i 0.461615 + 0.887080i \(0.347270\pi\)
−0.999042 + 0.0437697i \(0.986063\pi\)
\(632\) 0 0
\(633\) −0.500000 + 0.866025i −0.0198732 + 0.0344214i
\(634\) 0 0
\(635\) 13.0000 + 22.5167i 0.515889 + 0.893546i
\(636\) 0 0
\(637\) 21.0000 5.19615i 0.832050 0.205879i
\(638\) 0 0
\(639\) −5.00000 8.66025i −0.197797 0.342594i
\(640\) 0 0
\(641\) −5.50000 + 9.52628i −0.217237 + 0.376265i −0.953962 0.299927i \(-0.903038\pi\)
0.736725 + 0.676192i \(0.236371\pi\)
\(642\) 0 0
\(643\) 9.50000 16.4545i 0.374643 0.648901i −0.615630 0.788035i \(-0.711098\pi\)
0.990274 + 0.139134i \(0.0444318\pi\)
\(644\) 0 0
\(645\) −22.0000 −0.866249
\(646\) 0 0
\(647\) 1.50000 + 2.59808i 0.0589711 + 0.102141i 0.894004 0.448059i \(-0.147885\pi\)
−0.835033 + 0.550200i \(0.814551\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) −4.50000 7.79423i −0.176099 0.305012i 0.764442 0.644692i \(-0.223014\pi\)
−0.940541 + 0.339680i \(0.889681\pi\)
\(654\) 0 0
\(655\) 24.0000 0.937758
\(656\) 0 0
\(657\) −2.00000 + 3.46410i −0.0780274 + 0.135147i
\(658\) 0 0
\(659\) −14.5000 + 25.1147i −0.564840 + 0.978331i 0.432225 + 0.901766i \(0.357729\pi\)
−0.997065 + 0.0765653i \(0.975605\pi\)
\(660\) 0 0
\(661\) −12.5000 21.6506i −0.486194 0.842112i 0.513680 0.857982i \(-0.328282\pi\)
−0.999874 + 0.0158695i \(0.994948\pi\)
\(662\) 0 0
\(663\) −3.00000 + 10.3923i −0.116510 + 0.403604i
\(664\) 0 0
\(665\) 7.00000 + 12.1244i 0.271448 + 0.470162i
\(666\) 0 0
\(667\) 1.50000 2.59808i 0.0580802 0.100598i
\(668\) 0 0
\(669\) 0.500000 0.866025i 0.0193311 0.0334825i
\(670\) 0 0
\(671\) −9.00000 −0.347441
\(672\) 0 0
\(673\) −19.5000 33.7750i −0.751670 1.30193i −0.947013 0.321195i \(-0.895915\pi\)
0.195343 0.980735i \(-0.437418\pi\)
\(674\) 0 0
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −0.500000 0.866025i −0.0191882 0.0332350i
\(680\) 0 0
\(681\) −1.00000 −0.0383201
\(682\) 0 0
\(683\) −4.50000 + 7.79423i −0.172188 + 0.298238i −0.939184 0.343413i \(-0.888417\pi\)
0.766997 + 0.641651i \(0.221750\pi\)
\(684\) 0 0
\(685\) −9.00000 + 15.5885i −0.343872 + 0.595604i
\(686\) 0 0
\(687\) 3.00000 + 5.19615i 0.114457 + 0.198246i
\(688\) 0 0
\(689\) 6.00000 20.7846i 0.228582 0.791831i
\(690\) 0 0
\(691\) 12.5000 + 21.6506i 0.475522 + 0.823629i 0.999607 0.0280373i \(-0.00892572\pi\)
−0.524084 + 0.851666i \(0.675592\pi\)
\(692\) 0 0
\(693\) 1.00000 1.73205i 0.0379869 0.0657952i
\(694\) 0 0
\(695\) 9.00000 15.5885i 0.341389 0.591304i
\(696\) 0 0
\(697\) 33.0000 1.24996
\(698\) 0 0
\(699\) −13.0000 22.5167i −0.491705 0.851658i
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) −7.00000 −0.264010
\(704\) 0 0
\(705\) −12.0000 20.7846i −0.451946 0.782794i
\(706\) 0 0
\(707\) −17.0000 −0.639351
\(708\) 0 0
\(709\) −14.5000 + 25.1147i −0.544559 + 0.943204i 0.454076 + 0.890963i \(0.349970\pi\)
−0.998635 + 0.0522406i \(0.983364\pi\)
\(710\) 0 0
\(711\) −12.0000 + 20.7846i −0.450035 + 0.779484i
\(712\) 0 0
\(713\) −4.00000 6.92820i −0.149801 0.259463i
\(714\) 0 0
\(715\) −7.00000 + 1.73205i −0.261785 + 0.0647750i
\(716\) 0 0
\(717\) −12.0000 20.7846i −0.448148 0.776215i
\(718\) 0 0
\(719\) −19.5000 + 33.7750i −0.727227 + 1.25959i 0.230823 + 0.972996i \(0.425858\pi\)
−0.958051 + 0.286599i \(0.907475\pi\)
\(720\) 0 0
\(721\) −4.00000 + 6.92820i −0.148968 + 0.258020i
\(722\) 0 0
\(723\) −11.0000 −0.409094
\(724\) 0 0
\(725\) −1.50000 2.59808i −0.0557086 0.0964901i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 16.5000 + 28.5788i 0.610275 + 1.05703i
\(732\) 0 0
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 0 0
\(735\) 6.00000 10.3923i 0.221313 0.383326i
\(736\) 0 0
\(737\) 1.50000 2.59808i 0.0552532 0.0957014i
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 0 0
\(741\) 7.00000 24.2487i 0.257151 0.890799i
\(742\) 0 0
\(743\) −14.5000 25.1147i −0.531953 0.921370i −0.999304 0.0372984i \(-0.988125\pi\)
0.467351 0.884072i \(-0.345209\pi\)
\(744\) 0 0
\(745\) 1.00000 1.73205i 0.0366372 0.0634574i
\(746\) 0 0
\(747\) 4.00000 6.92820i 0.146352 0.253490i
\(748\) 0 0
\(749\) 17.0000 0.621166
\(750\) 0 0
\(751\) −8.50000 14.7224i −0.310169 0.537229i 0.668229 0.743955i \(-0.267052\pi\)
−0.978399 + 0.206726i \(0.933719\pi\)
\(752\) 0 0
\(753\) −13.0000 −0.473746
\(754\) 0 0
\(755\) −32.0000 −1.16460
\(756\) 0 0
\(757\) 23.5000 + 40.7032i 0.854122 + 1.47938i 0.877457 + 0.479655i \(0.159238\pi\)
−0.0233351 + 0.999728i \(0.507428\pi\)
\(758\) 0 0
\(759\) 1.00000 0.0362977
\(760\) 0 0
\(761\) −1.50000 + 2.59808i −0.0543750 + 0.0941802i −0.891932 0.452170i \(-0.850650\pi\)
0.837557 + 0.546350i \(0.183983\pi\)
\(762\) 0 0
\(763\) −5.00000 + 8.66025i −0.181012 + 0.313522i
\(764\) 0 0
\(765\) −6.00000 10.3923i −0.216930 0.375735i
\(766\) 0 0
\(767\) 22.5000 + 23.3827i 0.812428 + 0.844300i
\(768\) 0 0
\(769\) 2.50000 + 4.33013i 0.0901523 + 0.156148i 0.907575 0.419890i \(-0.137931\pi\)
−0.817423 + 0.576038i \(0.804598\pi\)
\(770\) 0 0
\(771\) −6.50000 + 11.2583i −0.234092 + 0.405459i
\(772\) 0 0
\(773\) 1.50000 2.59808i 0.0539513 0.0934463i −0.837788 0.545995i \(-0.816152\pi\)
0.891740 + 0.452549i \(0.149485\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) −0.500000 0.866025i −0.0179374 0.0310685i
\(778\) 0 0
\(779\) −77.0000 −2.75881
\(780\) 0 0
\(781\) 5.00000 0.178914
\(782\) 0 0
\(783\) 7.50000 + 12.9904i 0.268028 + 0.464238i
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) −10.5000 + 18.1865i −0.374285 + 0.648280i −0.990220 0.139517i \(-0.955445\pi\)
0.615935 + 0.787797i \(0.288778\pi\)
\(788\) 0 0
\(789\) −15.5000 + 26.8468i −0.551815 + 0.955771i
\(790\) 0 0
\(791\) 5.50000 + 9.52628i 0.195557 + 0.338716i
\(792\) 0 0
\(793\) 22.5000 + 23.3827i 0.798998 + 0.830344i
\(794\) 0 0
\(795\) −6.00000 10.3923i −0.212798 0.368577i
\(796\) 0 0
\(797\) 11.5000 19.9186i 0.407351 0.705552i −0.587241 0.809412i \(-0.699786\pi\)
0.994592 + 0.103860i \(0.0331193\pi\)
\(798\) 0 0
\(799\) −18.0000 + 31.1769i −0.636794 + 1.10296i
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) −1.00000 1.73205i −0.0352892 0.0611227i
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) −5.00000 −0.176008
\(808\) 0 0
\(809\) −13.5000 23.3827i −0.474635 0.822091i 0.524943 0.851137i \(-0.324086\pi\)
−0.999578 + 0.0290457i \(0.990753\pi\)
\(810\) 0 0
\(811\) −32.0000 −1.12367 −0.561836 0.827249i \(-0.689905\pi\)
−0.561836 + 0.827249i \(0.689905\pi\)
\(812\) 0 0
\(813\) −3.50000 + 6.06218i −0.122750 + 0.212610i
\(814\) 0 0
\(815\) 5.00000 8.66025i 0.175142 0.303355i
\(816\) 0 0
\(817\) −38.5000 66.6840i −1.34694 2.33298i
\(818\) 0 0
\(819\) −7.00000 + 1.73205i −0.244600 + 0.0605228i
\(820\) 0 0
\(821\) −2.50000 4.33013i −0.0872506 0.151122i 0.819097 0.573654i \(-0.194475\pi\)
−0.906348 + 0.422532i \(0.861141\pi\)
\(822\) 0 0
\(823\) 14.5000 25.1147i 0.505438 0.875445i −0.494542 0.869154i \(-0.664664\pi\)
0.999980 0.00629095i \(-0.00200248\pi\)
\(824\) 0 0
\(825\) 0.500000 0.866025i 0.0174078 0.0301511i
\(826\) 0 0
\(827\) −20.0000 −0.695468 −0.347734 0.937593i \(-0.613049\pi\)
−0.347734 + 0.937593i \(0.613049\pi\)
\(828\) 0 0
\(829\) 1.50000 + 2.59808i 0.0520972 + 0.0902349i 0.890898 0.454204i \(-0.150076\pi\)
−0.838801 + 0.544438i \(0.816743\pi\)
\(830\) 0 0
\(831\) −21.0000 −0.728482
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) −7.00000 12.1244i −0.242245 0.419581i
\(836\) 0 0
\(837\) 40.0000 1.38260
\(838\) 0 0
\(839\) −13.5000 + 23.3827i −0.466072 + 0.807260i −0.999249 0.0387435i \(-0.987664\pi\)
0.533177 + 0.846003i \(0.320998\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 7.00000 + 12.1244i 0.241093 + 0.417585i
\(844\) 0 0
\(845\) 22.0000 + 13.8564i 0.756823 + 0.476675i
\(846\) 0 0
\(847\) −5.00000 8.66025i −0.171802 0.297570i
\(848\) 0 0
\(849\) −12.5000 + 21.6506i −0.428999 + 0.743048i
\(850\) 0 0
\(851\) −0.500000 + 0.866025i −0.0171398 + 0.0296870i
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 14.0000 + 24.2487i 0.478790 + 0.829288i
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) −5.50000 9.52628i −0.187439 0.324655i
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) 0 0
\(867\) −4.00000 + 6.92820i −0.135847 + 0.235294i
\(868\) 0 0
\(869\) −6.00000 10.3923i −0.203536 0.352535i
\(870\) 0 0
\(871\) −10.5000 + 2.59808i −0.355779 + 0.0880325i
\(872\) 0 0
\(873\) −1.00000 1.73205i −0.0338449 0.0586210i
\(874\) 0 0
\(875\) 6.00000 10.3923i 0.202837 0.351324i
\(876\) 0 0
\(877\) −0.500000 + 0.866025i −0.0168838 + 0.0292436i −0.874344 0.485307i \(-0.838708\pi\)
0.857460 + 0.514551i \(0.172041\pi\)
\(878\) 0 0
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) 22.5000 + 38.9711i 0.758044 + 1.31297i 0.943847 + 0.330384i \(0.107178\pi\)
−0.185802 + 0.982587i \(0.559488\pi\)
\(882\) 0 0
\(883\) 12.0000 0.403832 0.201916 0.979403i \(-0.435283\pi\)
0.201916 + 0.979403i \(0.435283\pi\)
\(884\) 0 0
\(885\) 18.0000 0.605063
\(886\) 0 0
\(887\) 13.5000 + 23.3827i 0.453286 + 0.785114i 0.998588 0.0531258i \(-0.0169184\pi\)
−0.545302 + 0.838240i \(0.683585\pi\)
\(888\) 0 0
\(889\) −13.0000 −0.436006
\(890\) 0 0
\(891\) 0.500000 0.866025i 0.0167506 0.0290129i
\(892\) 0 0
\(893\) 42.0000 72.7461i 1.40548 2.43436i
\(894\) 0 0
\(895\) −9.00000 15.5885i −0.300837 0.521065i
\(896\) 0 0
\(897\) −2.50000 2.59808i −0.0834726 0.0867472i
\(898\) 0 0
\(899\) 12.0000 + 20.7846i 0.400222 + 0.693206i
\(900\) 0 0
\(901\) −9.00000 + 15.5885i −0.299833 + 0.519327i
\(902\) 0 0
\(903\) 5.50000 9.52628i 0.183029 0.317015i
\(904\) 0 0
\(905\) −28.0000 −0.930751
\(906\) 0 0
\(907\) 12.5000 + 21.6506i 0.415056 + 0.718898i 0.995434 0.0954492i \(-0.0304288\pi\)
−0.580379 + 0.814347i \(0.697095\pi\)
\(908\) 0 0
\(909\) −34.0000 −1.12771
\(910\) 0 0
\(911\) −16.0000 −0.530104 −0.265052 0.964234i \(-0.585389\pi\)
−0.265052 + 0.964234i \(0.585389\pi\)
\(912\) 0 0
\(913\) 2.00000 + 3.46410i 0.0661903 + 0.114645i
\(914\) 0 0
\(915\) 18.0000 0.595062
\(916\) 0 0
\(917\) −6.00000 + 10.3923i −0.198137 + 0.343184i
\(918\) 0 0
\(919\) −7.50000 + 12.9904i −0.247402 + 0.428513i −0.962804 0.270200i \(-0.912910\pi\)
0.715402 + 0.698713i \(0.246244\pi\)
\(920\) 0 0
\(921\) 10.0000 + 17.3205i 0.329511 + 0.570730i
\(922\) 0 0
\(923\) −12.5000 12.9904i −0.411443 0.427584i
\(924\) 0 0
\(925\) 0.500000 + 0.866025i 0.0164399 + 0.0284747i
\(926\) 0 0
\(927\) −8.00000 + 13.8564i −0.262754 + 0.455104i
\(928\) 0 0
\(929\) 2.50000 4.33013i 0.0820223 0.142067i −0.822096 0.569349i \(-0.807195\pi\)
0.904118 + 0.427282i \(0.140529\pi\)
\(930\) 0 0
\(931\) 42.0000 1.37649
\(932\) 0 0
\(933\) 4.00000 + 6.92820i 0.130954 + 0.226819i
\(934\) 0 0
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 15.0000 + 25.9808i 0.489506 + 0.847850i
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) −5.50000 + 9.52628i −0.179105 + 0.310218i
\(944\) 0 0
\(945\) −5.00000 + 8.66025i −0.162650 + 0.281718i
\(946\) 0 0
\(947\) −19.5000 33.7750i −0.633665 1.09754i −0.986796 0.161966i \(-0.948217\pi\)
0.353131 0.935574i \(-0.385117\pi\)
\(948\) 0 0
\(949\) −2.00000 + 6.92820i −0.0649227 + 0.224899i
\(950\) 0 0
\(951\) 1.00000 + 1.73205i 0.0324272 + 0.0561656i
\(952\) 0 0
\(953\) 4.50000 7.79423i 0.145769 0.252480i −0.783890 0.620899i \(-0.786768\pi\)
0.929660 + 0.368419i \(0.120101\pi\)
\(954\) 0 0
\(955\) 7.00000 12.1244i 0.226515 0.392335i
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) −4.50000 7.79423i −0.145313 0.251689i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 34.0000 1.09563
\(964\) 0 0
\(965\) −5.00000 8.66025i −0.160956 0.278783i
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) 0 0
\(969\) −10.5000 + 18.1865i −0.337309 + 0.584236i
\(970\) 0 0
\(971\) 13.5000 23.3827i 0.433236 0.750386i −0.563914 0.825833i \(-0.690705\pi\)
0.997150 + 0.0754473i \(0.0240385\pi\)
\(972\) 0 0
\(973\) 4.50000 + 7.79423i 0.144263 + 0.249871i
\(974\) 0 0
\(975\) −3.50000 + 0.866025i −0.112090 + 0.0277350i
\(976\) 0 0
\(977\) 4.50000 + 7.79423i 0.143968 + 0.249359i 0.928987 0.370111i \(-0.120681\pi\)
−0.785020 + 0.619471i \(0.787347\pi\)
\(978\) 0 0
\(979\) −0.500000 + 0.866025i −0.0159801 + 0.0276783i
\(980\) 0 0
\(981\) −10.0000 + 17.3205i −0.319275 + 0.553001i
\(982\) 0 0
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 0 0
\(985\) 13.0000 + 22.5167i 0.414214 + 0.717440i
\(986\) 0 0
\(987\) 12.0000 0.381964
\(988\) 0 0
\(989\) −11.0000 −0.349780
\(990\) 0 0
\(991\) −6.50000 11.2583i −0.206479 0.357633i 0.744124 0.668042i \(-0.232867\pi\)
−0.950603 + 0.310409i \(0.899534\pi\)
\(992\) 0 0
\(993\) 27.0000 0.856819
\(994\) 0 0
\(995\) 3.00000 5.19615i 0.0951064 0.164729i
\(996\) 0 0
\(997\) −12.5000 + 21.6506i −0.395879 + 0.685682i −0.993213 0.116310i \(-0.962893\pi\)
0.597334 + 0.801993i \(0.296227\pi\)
\(998\) 0 0
\(999\) −2.50000 4.33013i −0.0790965 0.136999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.g.705.1 2
4.3 odd 2 832.2.i.d.705.1 2
8.3 odd 2 208.2.i.c.81.1 2
8.5 even 2 104.2.i.a.81.1 yes 2
13.9 even 3 inner 832.2.i.g.321.1 2
24.5 odd 2 936.2.t.c.289.1 2
24.11 even 2 1872.2.t.d.289.1 2
52.35 odd 6 832.2.i.d.321.1 2
104.3 odd 6 2704.2.a.e.1.1 1
104.5 odd 4 1352.2.o.b.361.1 4
104.11 even 12 2704.2.f.c.337.2 2
104.21 odd 4 1352.2.o.b.361.2 4
104.29 even 6 1352.2.a.c.1.1 1
104.35 odd 6 208.2.i.c.113.1 2
104.37 odd 12 1352.2.f.a.337.2 2
104.45 odd 12 1352.2.o.b.1161.1 4
104.61 even 6 104.2.i.a.9.1 2
104.67 even 12 2704.2.f.c.337.1 2
104.69 even 6 1352.2.i.a.529.1 2
104.75 odd 6 2704.2.a.c.1.1 1
104.77 even 2 1352.2.i.a.1329.1 2
104.85 odd 12 1352.2.o.b.1161.2 4
104.93 odd 12 1352.2.f.a.337.1 2
104.101 even 6 1352.2.a.a.1.1 1
312.35 even 6 1872.2.t.d.1153.1 2
312.269 odd 6 936.2.t.c.217.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.a.9.1 2 104.61 even 6
104.2.i.a.81.1 yes 2 8.5 even 2
208.2.i.c.81.1 2 8.3 odd 2
208.2.i.c.113.1 2 104.35 odd 6
832.2.i.d.321.1 2 52.35 odd 6
832.2.i.d.705.1 2 4.3 odd 2
832.2.i.g.321.1 2 13.9 even 3 inner
832.2.i.g.705.1 2 1.1 even 1 trivial
936.2.t.c.217.1 2 312.269 odd 6
936.2.t.c.289.1 2 24.5 odd 2
1352.2.a.a.1.1 1 104.101 even 6
1352.2.a.c.1.1 1 104.29 even 6
1352.2.f.a.337.1 2 104.93 odd 12
1352.2.f.a.337.2 2 104.37 odd 12
1352.2.i.a.529.1 2 104.69 even 6
1352.2.i.a.1329.1 2 104.77 even 2
1352.2.o.b.361.1 4 104.5 odd 4
1352.2.o.b.361.2 4 104.21 odd 4
1352.2.o.b.1161.1 4 104.45 odd 12
1352.2.o.b.1161.2 4 104.85 odd 12
1872.2.t.d.289.1 2 24.11 even 2
1872.2.t.d.1153.1 2 312.35 even 6
2704.2.a.c.1.1 1 104.75 odd 6
2704.2.a.e.1.1 1 104.3 odd 6
2704.2.f.c.337.1 2 104.67 even 12
2704.2.f.c.337.2 2 104.11 even 12