Properties

Label 832.2.i.d.321.1
Level $832$
Weight $2$
Character 832.321
Analytic conductor $6.644$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,2,Mod(321,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-4,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 321.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 832.321
Dual form 832.2.i.d.705.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} -2.00000 q^{5} +(-0.500000 - 0.866025i) q^{7} +(1.00000 + 1.73205i) q^{9} +(-0.500000 + 0.866025i) q^{11} +(1.00000 + 3.46410i) q^{13} +(1.00000 - 1.73205i) q^{15} +(-1.50000 - 2.59808i) q^{17} +(-3.50000 - 6.06218i) q^{19} +1.00000 q^{21} +(0.500000 - 0.866025i) q^{23} -1.00000 q^{25} -5.00000 q^{27} +(1.50000 - 2.59808i) q^{29} -8.00000 q^{31} +(-0.500000 - 0.866025i) q^{33} +(1.00000 + 1.73205i) q^{35} +(-0.500000 + 0.866025i) q^{37} +(-3.50000 - 0.866025i) q^{39} +(-5.50000 + 9.52628i) q^{41} +(-5.50000 - 9.52628i) q^{43} +(-2.00000 - 3.46410i) q^{45} -12.0000 q^{47} +(3.00000 - 5.19615i) q^{49} +3.00000 q^{51} +6.00000 q^{53} +(1.00000 - 1.73205i) q^{55} +7.00000 q^{57} +(4.50000 + 7.79423i) q^{59} +(-4.50000 - 7.79423i) q^{61} +(1.00000 - 1.73205i) q^{63} +(-2.00000 - 6.92820i) q^{65} +(1.50000 - 2.59808i) q^{67} +(0.500000 + 0.866025i) q^{69} +(-2.50000 - 4.33013i) q^{71} -2.00000 q^{73} +(0.500000 - 0.866025i) q^{75} +1.00000 q^{77} +12.0000 q^{79} +(-0.500000 + 0.866025i) q^{81} -4.00000 q^{83} +(3.00000 + 5.19615i) q^{85} +(1.50000 + 2.59808i) q^{87} +(0.500000 - 0.866025i) q^{89} +(2.50000 - 2.59808i) q^{91} +(4.00000 - 6.92820i) q^{93} +(7.00000 + 12.1244i) q^{95} +(0.500000 + 0.866025i) q^{97} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 4 q^{5} - q^{7} + 2 q^{9} - q^{11} + 2 q^{13} + 2 q^{15} - 3 q^{17} - 7 q^{19} + 2 q^{21} + q^{23} - 2 q^{25} - 10 q^{27} + 3 q^{29} - 16 q^{31} - q^{33} + 2 q^{35} - q^{37} - 7 q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i \(-0.881504\pi\)
0.780750 + 0.624844i \(0.214837\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 1.00000 1.73205i 0.258199 0.447214i
\(16\) 0 0
\(17\) −1.50000 2.59808i −0.363803 0.630126i 0.624780 0.780801i \(-0.285189\pi\)
−0.988583 + 0.150675i \(0.951855\pi\)
\(18\) 0 0
\(19\) −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i \(-0.869927\pi\)
0.114708 0.993399i \(-0.463407\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i \(-0.800087\pi\)
0.913434 + 0.406986i \(0.133420\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) −0.500000 0.866025i −0.0870388 0.150756i
\(34\) 0 0
\(35\) 1.00000 + 1.73205i 0.169031 + 0.292770i
\(36\) 0 0
\(37\) −0.500000 + 0.866025i −0.0821995 + 0.142374i −0.904194 0.427121i \(-0.859528\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −3.50000 0.866025i −0.560449 0.138675i
\(40\) 0 0
\(41\) −5.50000 + 9.52628i −0.858956 + 1.48775i 0.0139704 + 0.999902i \(0.495553\pi\)
−0.872926 + 0.487852i \(0.837780\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 0 0
\(45\) −2.00000 3.46410i −0.298142 0.516398i
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 1.00000 1.73205i 0.134840 0.233550i
\(56\) 0 0
\(57\) 7.00000 0.927173
\(58\) 0 0
\(59\) 4.50000 + 7.79423i 0.585850 + 1.01472i 0.994769 + 0.102151i \(0.0325726\pi\)
−0.408919 + 0.912571i \(0.634094\pi\)
\(60\) 0 0
\(61\) −4.50000 7.79423i −0.576166 0.997949i −0.995914 0.0903080i \(-0.971215\pi\)
0.419748 0.907641i \(-0.362118\pi\)
\(62\) 0 0
\(63\) 1.00000 1.73205i 0.125988 0.218218i
\(64\) 0 0
\(65\) −2.00000 6.92820i −0.248069 0.859338i
\(66\) 0 0
\(67\) 1.50000 2.59808i 0.183254 0.317406i −0.759733 0.650236i \(-0.774670\pi\)
0.942987 + 0.332830i \(0.108004\pi\)
\(68\) 0 0
\(69\) 0.500000 + 0.866025i 0.0601929 + 0.104257i
\(70\) 0 0
\(71\) −2.50000 4.33013i −0.296695 0.513892i 0.678682 0.734432i \(-0.262551\pi\)
−0.975378 + 0.220540i \(0.929218\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 0 0
\(87\) 1.50000 + 2.59808i 0.160817 + 0.278543i
\(88\) 0 0
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) 0 0
\(91\) 2.50000 2.59808i 0.262071 0.272352i
\(92\) 0 0
\(93\) 4.00000 6.92820i 0.414781 0.718421i
\(94\) 0 0
\(95\) 7.00000 + 12.1244i 0.718185 + 1.24393i
\(96\) 0 0
\(97\) 0.500000 + 0.866025i 0.0507673 + 0.0879316i 0.890292 0.455389i \(-0.150500\pi\)
−0.839525 + 0.543321i \(0.817167\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −8.50000 + 14.7224i −0.845782 + 1.46494i 0.0391591 + 0.999233i \(0.487532\pi\)
−0.884941 + 0.465704i \(0.845801\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −8.50000 + 14.7224i −0.821726 + 1.42327i 0.0826699 + 0.996577i \(0.473655\pi\)
−0.904396 + 0.426694i \(0.859678\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −0.500000 0.866025i −0.0474579 0.0821995i
\(112\) 0 0
\(113\) −5.50000 9.52628i −0.517396 0.896157i −0.999796 0.0202056i \(-0.993568\pi\)
0.482399 0.875951i \(-0.339765\pi\)
\(114\) 0 0
\(115\) −1.00000 + 1.73205i −0.0932505 + 0.161515i
\(116\) 0 0
\(117\) −5.00000 + 5.19615i −0.462250 + 0.480384i
\(118\) 0 0
\(119\) −1.50000 + 2.59808i −0.137505 + 0.238165i
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 0 0
\(123\) −5.50000 9.52628i −0.495918 0.858956i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 6.50000 11.2583i 0.576782 0.999015i −0.419064 0.907957i \(-0.637642\pi\)
0.995846 0.0910585i \(-0.0290250\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) −3.50000 + 6.06218i −0.303488 + 0.525657i
\(134\) 0 0
\(135\) 10.0000 0.860663
\(136\) 0 0
\(137\) 4.50000 + 7.79423i 0.384461 + 0.665906i 0.991694 0.128618i \(-0.0410540\pi\)
−0.607233 + 0.794524i \(0.707721\pi\)
\(138\) 0 0
\(139\) 4.50000 + 7.79423i 0.381685 + 0.661098i 0.991303 0.131597i \(-0.0420106\pi\)
−0.609618 + 0.792695i \(0.708677\pi\)
\(140\) 0 0
\(141\) 6.00000 10.3923i 0.505291 0.875190i
\(142\) 0 0
\(143\) −3.50000 0.866025i −0.292685 0.0724207i
\(144\) 0 0
\(145\) −3.00000 + 5.19615i −0.249136 + 0.431517i
\(146\) 0 0
\(147\) 3.00000 + 5.19615i 0.247436 + 0.428571i
\(148\) 0 0
\(149\) −0.500000 0.866025i −0.0409616 0.0709476i 0.844818 0.535054i \(-0.179709\pi\)
−0.885779 + 0.464107i \(0.846375\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 3.00000 5.19615i 0.242536 0.420084i
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −10.0000 −0.798087 −0.399043 0.916932i \(-0.630658\pi\)
−0.399043 + 0.916932i \(0.630658\pi\)
\(158\) 0 0
\(159\) −3.00000 + 5.19615i −0.237915 + 0.412082i
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 2.50000 + 4.33013i 0.195815 + 0.339162i 0.947167 0.320740i \(-0.103931\pi\)
−0.751352 + 0.659901i \(0.770598\pi\)
\(164\) 0 0
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) 0 0
\(167\) −3.50000 + 6.06218i −0.270838 + 0.469105i −0.969077 0.246760i \(-0.920634\pi\)
0.698239 + 0.715865i \(0.253967\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 7.00000 12.1244i 0.535303 0.927173i
\(172\) 0 0
\(173\) −4.50000 7.79423i −0.342129 0.592584i 0.642699 0.766119i \(-0.277815\pi\)
−0.984828 + 0.173534i \(0.944481\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) −4.50000 + 7.79423i −0.336346 + 0.582568i −0.983742 0.179585i \(-0.942524\pi\)
0.647397 + 0.762153i \(0.275858\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 9.00000 0.665299
\(184\) 0 0
\(185\) 1.00000 1.73205i 0.0735215 0.127343i
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 2.50000 + 4.33013i 0.181848 + 0.314970i
\(190\) 0 0
\(191\) 3.50000 + 6.06218i 0.253251 + 0.438644i 0.964419 0.264378i \(-0.0851668\pi\)
−0.711168 + 0.703022i \(0.751833\pi\)
\(192\) 0 0
\(193\) 2.50000 4.33013i 0.179954 0.311689i −0.761911 0.647682i \(-0.775738\pi\)
0.941865 + 0.335993i \(0.109072\pi\)
\(194\) 0 0
\(195\) 7.00000 + 1.73205i 0.501280 + 0.124035i
\(196\) 0 0
\(197\) −6.50000 + 11.2583i −0.463106 + 0.802123i −0.999114 0.0420901i \(-0.986598\pi\)
0.536008 + 0.844213i \(0.319932\pi\)
\(198\) 0 0
\(199\) 1.50000 + 2.59808i 0.106332 + 0.184173i 0.914282 0.405079i \(-0.132756\pi\)
−0.807950 + 0.589252i \(0.799423\pi\)
\(200\) 0 0
\(201\) 1.50000 + 2.59808i 0.105802 + 0.183254i
\(202\) 0 0
\(203\) −3.00000 −0.210559
\(204\) 0 0
\(205\) 11.0000 19.0526i 0.768273 1.33069i
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) 7.00000 0.484200
\(210\) 0 0
\(211\) −0.500000 + 0.866025i −0.0344214 + 0.0596196i −0.882723 0.469894i \(-0.844292\pi\)
0.848301 + 0.529514i \(0.177626\pi\)
\(212\) 0 0
\(213\) 5.00000 0.342594
\(214\) 0 0
\(215\) 11.0000 + 19.0526i 0.750194 + 1.29937i
\(216\) 0 0
\(217\) 4.00000 + 6.92820i 0.271538 + 0.470317i
\(218\) 0 0
\(219\) 1.00000 1.73205i 0.0675737 0.117041i
\(220\) 0 0
\(221\) 7.50000 7.79423i 0.504505 0.524297i
\(222\) 0 0
\(223\) 0.500000 0.866025i 0.0334825 0.0579934i −0.848799 0.528716i \(-0.822674\pi\)
0.882281 + 0.470723i \(0.156007\pi\)
\(224\) 0 0
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) 0 0
\(227\) 0.500000 + 0.866025i 0.0331862 + 0.0574801i 0.882141 0.470985i \(-0.156101\pi\)
−0.848955 + 0.528465i \(0.822768\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −0.500000 + 0.866025i −0.0328976 + 0.0569803i
\(232\) 0 0
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 0 0
\(237\) −6.00000 + 10.3923i −0.389742 + 0.675053i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −5.50000 9.52628i −0.354286 0.613642i 0.632709 0.774389i \(-0.281943\pi\)
−0.986996 + 0.160748i \(0.948609\pi\)
\(242\) 0 0
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) 0 0
\(245\) −6.00000 + 10.3923i −0.383326 + 0.663940i
\(246\) 0 0
\(247\) 17.5000 18.1865i 1.11350 1.15718i
\(248\) 0 0
\(249\) 2.00000 3.46410i 0.126745 0.219529i
\(250\) 0 0
\(251\) 6.50000 + 11.2583i 0.410276 + 0.710620i 0.994920 0.100671i \(-0.0320989\pi\)
−0.584643 + 0.811290i \(0.698766\pi\)
\(252\) 0 0
\(253\) 0.500000 + 0.866025i 0.0314347 + 0.0544466i
\(254\) 0 0
\(255\) −6.00000 −0.375735
\(256\) 0 0
\(257\) 6.50000 11.2583i 0.405459 0.702275i −0.588916 0.808194i \(-0.700445\pi\)
0.994375 + 0.105919i \(0.0337784\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −15.5000 + 26.8468i −0.955771 + 1.65544i −0.223177 + 0.974778i \(0.571643\pi\)
−0.732594 + 0.680666i \(0.761691\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 0.500000 + 0.866025i 0.0305995 + 0.0529999i
\(268\) 0 0
\(269\) −2.50000 4.33013i −0.152428 0.264013i 0.779692 0.626164i \(-0.215376\pi\)
−0.932119 + 0.362151i \(0.882042\pi\)
\(270\) 0 0
\(271\) −3.50000 + 6.06218i −0.212610 + 0.368251i −0.952531 0.304443i \(-0.901530\pi\)
0.739921 + 0.672694i \(0.234863\pi\)
\(272\) 0 0
\(273\) 1.00000 + 3.46410i 0.0605228 + 0.209657i
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 0 0
\(277\) −10.5000 18.1865i −0.630884 1.09272i −0.987371 0.158423i \(-0.949359\pi\)
0.356488 0.934300i \(-0.383974\pi\)
\(278\) 0 0
\(279\) −8.00000 13.8564i −0.478947 0.829561i
\(280\) 0 0
\(281\) 14.0000 0.835170 0.417585 0.908638i \(-0.362877\pi\)
0.417585 + 0.908638i \(0.362877\pi\)
\(282\) 0 0
\(283\) −12.5000 + 21.6506i −0.743048 + 1.28700i 0.208053 + 0.978117i \(0.433287\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) 0 0
\(285\) −14.0000 −0.829288
\(286\) 0 0
\(287\) 11.0000 0.649309
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 0 0
\(291\) −1.00000 −0.0586210
\(292\) 0 0
\(293\) −4.50000 7.79423i −0.262893 0.455344i 0.704117 0.710084i \(-0.251343\pi\)
−0.967009 + 0.254741i \(0.918010\pi\)
\(294\) 0 0
\(295\) −9.00000 15.5885i −0.524000 0.907595i
\(296\) 0 0
\(297\) 2.50000 4.33013i 0.145065 0.251259i
\(298\) 0 0
\(299\) 3.50000 + 0.866025i 0.202410 + 0.0500835i
\(300\) 0 0
\(301\) −5.50000 + 9.52628i −0.317015 + 0.549086i
\(302\) 0 0
\(303\) −8.50000 14.7224i −0.488312 0.845782i
\(304\) 0 0
\(305\) 9.00000 + 15.5885i 0.515339 + 0.892592i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) −4.00000 + 6.92820i −0.227552 + 0.394132i
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 30.0000 1.69570 0.847850 0.530236i \(-0.177897\pi\)
0.847850 + 0.530236i \(0.177897\pi\)
\(314\) 0 0
\(315\) −2.00000 + 3.46410i −0.112687 + 0.195180i
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 1.50000 + 2.59808i 0.0839839 + 0.145464i
\(320\) 0 0
\(321\) −8.50000 14.7224i −0.474424 0.821726i
\(322\) 0 0
\(323\) −10.5000 + 18.1865i −0.584236 + 1.01193i
\(324\) 0 0
\(325\) −1.00000 3.46410i −0.0554700 0.192154i
\(326\) 0 0
\(327\) 5.00000 8.66025i 0.276501 0.478913i
\(328\) 0 0
\(329\) 6.00000 + 10.3923i 0.330791 + 0.572946i
\(330\) 0 0
\(331\) −13.5000 23.3827i −0.742027 1.28523i −0.951571 0.307429i \(-0.900531\pi\)
0.209544 0.977799i \(-0.432802\pi\)
\(332\) 0 0
\(333\) −2.00000 −0.109599
\(334\) 0 0
\(335\) −3.00000 + 5.19615i −0.163908 + 0.283896i
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 0 0
\(339\) 11.0000 0.597438
\(340\) 0 0
\(341\) 4.00000 6.92820i 0.216612 0.375183i
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) −1.00000 1.73205i −0.0538382 0.0932505i
\(346\) 0 0
\(347\) −13.5000 23.3827i −0.724718 1.25525i −0.959090 0.283101i \(-0.908637\pi\)
0.234372 0.972147i \(-0.424697\pi\)
\(348\) 0 0
\(349\) −4.50000 + 7.79423i −0.240879 + 0.417215i −0.960965 0.276670i \(-0.910769\pi\)
0.720086 + 0.693885i \(0.244103\pi\)
\(350\) 0 0
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 0 0
\(353\) 12.5000 21.6506i 0.665308 1.15235i −0.313894 0.949458i \(-0.601634\pi\)
0.979202 0.202889i \(-0.0650330\pi\)
\(354\) 0 0
\(355\) 5.00000 + 8.66025i 0.265372 + 0.459639i
\(356\) 0 0
\(357\) −1.50000 2.59808i −0.0793884 0.137505i
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −15.0000 + 25.9808i −0.789474 + 1.36741i
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) 4.00000 0.209370
\(366\) 0 0
\(367\) −7.50000 + 12.9904i −0.391497 + 0.678092i −0.992647 0.121044i \(-0.961376\pi\)
0.601150 + 0.799136i \(0.294709\pi\)
\(368\) 0 0
\(369\) −22.0000 −1.14527
\(370\) 0 0
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) 5.50000 + 9.52628i 0.284779 + 0.493252i 0.972556 0.232671i \(-0.0747464\pi\)
−0.687776 + 0.725923i \(0.741413\pi\)
\(374\) 0 0
\(375\) −6.00000 + 10.3923i −0.309839 + 0.536656i
\(376\) 0 0
\(377\) 10.5000 + 2.59808i 0.540778 + 0.133808i
\(378\) 0 0
\(379\) 7.50000 12.9904i 0.385249 0.667271i −0.606555 0.795042i \(-0.707449\pi\)
0.991804 + 0.127771i \(0.0407822\pi\)
\(380\) 0 0
\(381\) 6.50000 + 11.2583i 0.333005 + 0.576782i
\(382\) 0 0
\(383\) −16.5000 28.5788i −0.843111 1.46031i −0.887252 0.461285i \(-0.847389\pi\)
0.0441413 0.999025i \(-0.485945\pi\)
\(384\) 0 0
\(385\) −2.00000 −0.101929
\(386\) 0 0
\(387\) 11.0000 19.0526i 0.559161 0.968496i
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −3.00000 −0.151717
\(392\) 0 0
\(393\) −6.00000 + 10.3923i −0.302660 + 0.524222i
\(394\) 0 0
\(395\) −24.0000 −1.20757
\(396\) 0 0
\(397\) 9.50000 + 16.4545i 0.476791 + 0.825827i 0.999646 0.0265948i \(-0.00846640\pi\)
−0.522855 + 0.852422i \(0.675133\pi\)
\(398\) 0 0
\(399\) −3.50000 6.06218i −0.175219 0.303488i
\(400\) 0 0
\(401\) −13.5000 + 23.3827i −0.674158 + 1.16768i 0.302556 + 0.953131i \(0.402160\pi\)
−0.976714 + 0.214544i \(0.931173\pi\)
\(402\) 0 0
\(403\) −8.00000 27.7128i −0.398508 1.38047i
\(404\) 0 0
\(405\) 1.00000 1.73205i 0.0496904 0.0860663i
\(406\) 0 0
\(407\) −0.500000 0.866025i −0.0247841 0.0429273i
\(408\) 0 0
\(409\) −17.5000 30.3109i −0.865319 1.49878i −0.866730 0.498778i \(-0.833782\pi\)
0.00141047 0.999999i \(-0.499551\pi\)
\(410\) 0 0
\(411\) −9.00000 −0.443937
\(412\) 0 0
\(413\) 4.50000 7.79423i 0.221431 0.383529i
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 0 0
\(417\) −9.00000 −0.440732
\(418\) 0 0
\(419\) −10.5000 + 18.1865i −0.512959 + 0.888470i 0.486928 + 0.873442i \(0.338117\pi\)
−0.999887 + 0.0150285i \(0.995216\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) −12.0000 20.7846i −0.583460 1.01058i
\(424\) 0 0
\(425\) 1.50000 + 2.59808i 0.0727607 + 0.126025i
\(426\) 0 0
\(427\) −4.50000 + 7.79423i −0.217770 + 0.377189i
\(428\) 0 0
\(429\) 2.50000 2.59808i 0.120701 0.125436i
\(430\) 0 0
\(431\) −5.50000 + 9.52628i −0.264926 + 0.458865i −0.967544 0.252702i \(-0.918681\pi\)
0.702618 + 0.711567i \(0.252014\pi\)
\(432\) 0 0
\(433\) −9.50000 16.4545i −0.456541 0.790752i 0.542234 0.840227i \(-0.317578\pi\)
−0.998775 + 0.0494752i \(0.984245\pi\)
\(434\) 0 0
\(435\) −3.00000 5.19615i −0.143839 0.249136i
\(436\) 0 0
\(437\) −7.00000 −0.334855
\(438\) 0 0
\(439\) −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i \(0.481332\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) −1.00000 + 1.73205i −0.0474045 + 0.0821071i
\(446\) 0 0
\(447\) 1.00000 0.0472984
\(448\) 0 0
\(449\) 10.5000 + 18.1865i 0.495526 + 0.858276i 0.999987 0.00515887i \(-0.00164213\pi\)
−0.504461 + 0.863434i \(0.668309\pi\)
\(450\) 0 0
\(451\) −5.50000 9.52628i −0.258985 0.448575i
\(452\) 0 0
\(453\) 8.00000 13.8564i 0.375873 0.651031i
\(454\) 0 0
\(455\) −5.00000 + 5.19615i −0.234404 + 0.243599i
\(456\) 0 0
\(457\) −3.50000 + 6.06218i −0.163723 + 0.283577i −0.936201 0.351465i \(-0.885684\pi\)
0.772478 + 0.635042i \(0.219017\pi\)
\(458\) 0 0
\(459\) 7.50000 + 12.9904i 0.350070 + 0.606339i
\(460\) 0 0
\(461\) 1.50000 + 2.59808i 0.0698620 + 0.121004i 0.898840 0.438276i \(-0.144411\pi\)
−0.828978 + 0.559281i \(0.811077\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) −8.00000 + 13.8564i −0.370991 + 0.642575i
\(466\) 0 0
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −3.00000 −0.138527
\(470\) 0 0
\(471\) 5.00000 8.66025i 0.230388 0.399043i
\(472\) 0 0
\(473\) 11.0000 0.505781
\(474\) 0 0
\(475\) 3.50000 + 6.06218i 0.160591 + 0.278152i
\(476\) 0 0
\(477\) 6.00000 + 10.3923i 0.274721 + 0.475831i
\(478\) 0 0
\(479\) −13.5000 + 23.3827i −0.616831 + 1.06838i 0.373230 + 0.927739i \(0.378250\pi\)
−0.990060 + 0.140643i \(0.955083\pi\)
\(480\) 0 0
\(481\) −3.50000 0.866025i −0.159586 0.0394874i
\(482\) 0 0
\(483\) 0.500000 0.866025i 0.0227508 0.0394055i
\(484\) 0 0
\(485\) −1.00000 1.73205i −0.0454077 0.0786484i
\(486\) 0 0
\(487\) −6.50000 11.2583i −0.294543 0.510164i 0.680335 0.732901i \(-0.261834\pi\)
−0.974879 + 0.222737i \(0.928501\pi\)
\(488\) 0 0
\(489\) −5.00000 −0.226108
\(490\) 0 0
\(491\) 1.50000 2.59808i 0.0676941 0.117250i −0.830192 0.557478i \(-0.811769\pi\)
0.897886 + 0.440228i \(0.145102\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −2.50000 + 4.33013i −0.112140 + 0.194233i
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) −3.50000 6.06218i −0.156368 0.270838i
\(502\) 0 0
\(503\) −12.5000 21.6506i −0.557347 0.965354i −0.997717 0.0675374i \(-0.978486\pi\)
0.440369 0.897817i \(-0.354848\pi\)
\(504\) 0 0
\(505\) 17.0000 29.4449i 0.756490 1.31028i
\(506\) 0 0
\(507\) −0.500000 12.9904i −0.0222058 0.576923i
\(508\) 0 0
\(509\) −0.500000 + 0.866025i −0.0221621 + 0.0383859i −0.876894 0.480684i \(-0.840388\pi\)
0.854732 + 0.519070i \(0.173722\pi\)
\(510\) 0 0
\(511\) 1.00000 + 1.73205i 0.0442374 + 0.0766214i
\(512\) 0 0
\(513\) 17.5000 + 30.3109i 0.772644 + 1.33826i
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 6.00000 10.3923i 0.263880 0.457053i
\(518\) 0 0
\(519\) 9.00000 0.395056
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) 9.50000 16.4545i 0.415406 0.719504i −0.580065 0.814570i \(-0.696973\pi\)
0.995471 + 0.0950659i \(0.0303062\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) 12.0000 + 20.7846i 0.522728 + 0.905392i
\(528\) 0 0
\(529\) 11.0000 + 19.0526i 0.478261 + 0.828372i
\(530\) 0 0
\(531\) −9.00000 + 15.5885i −0.390567 + 0.676481i
\(532\) 0 0
\(533\) −38.5000 9.52628i −1.66762 0.412629i
\(534\) 0 0
\(535\) 17.0000 29.4449i 0.734974 1.27301i
\(536\) 0 0
\(537\) −4.50000 7.79423i −0.194189 0.336346i
\(538\) 0 0
\(539\) 3.00000 + 5.19615i 0.129219 + 0.223814i
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) −7.00000 + 12.1244i −0.300399 + 0.520306i
\(544\) 0 0
\(545\) 20.0000 0.856706
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 9.00000 15.5885i 0.384111 0.665299i
\(550\) 0 0
\(551\) −21.0000 −0.894630
\(552\) 0 0
\(553\) −6.00000 10.3923i −0.255146 0.441926i
\(554\) 0 0
\(555\) 1.00000 + 1.73205i 0.0424476 + 0.0735215i
\(556\) 0 0
\(557\) 9.50000 16.4545i 0.402528 0.697199i −0.591502 0.806303i \(-0.701465\pi\)
0.994030 + 0.109104i \(0.0347983\pi\)
\(558\) 0 0
\(559\) 27.5000 28.5788i 1.16313 1.20876i
\(560\) 0 0
\(561\) −1.50000 + 2.59808i −0.0633300 + 0.109691i
\(562\) 0 0
\(563\) 4.50000 + 7.79423i 0.189652 + 0.328488i 0.945134 0.326682i \(-0.105931\pi\)
−0.755482 + 0.655169i \(0.772597\pi\)
\(564\) 0 0
\(565\) 11.0000 + 19.0526i 0.462773 + 0.801547i
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 8.50000 14.7224i 0.356339 0.617196i −0.631008 0.775777i \(-0.717358\pi\)
0.987346 + 0.158580i \(0.0506917\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) −7.00000 −0.292429
\(574\) 0 0
\(575\) −0.500000 + 0.866025i −0.0208514 + 0.0361158i
\(576\) 0 0
\(577\) 22.0000 0.915872 0.457936 0.888985i \(-0.348589\pi\)
0.457936 + 0.888985i \(0.348589\pi\)
\(578\) 0 0
\(579\) 2.50000 + 4.33013i 0.103896 + 0.179954i
\(580\) 0 0
\(581\) 2.00000 + 3.46410i 0.0829740 + 0.143715i
\(582\) 0 0
\(583\) −3.00000 + 5.19615i −0.124247 + 0.215203i
\(584\) 0 0
\(585\) 10.0000 10.3923i 0.413449 0.429669i
\(586\) 0 0
\(587\) −10.5000 + 18.1865i −0.433381 + 0.750639i −0.997162 0.0752860i \(-0.976013\pi\)
0.563781 + 0.825925i \(0.309346\pi\)
\(588\) 0 0
\(589\) 28.0000 + 48.4974i 1.15372 + 1.99830i
\(590\) 0 0
\(591\) −6.50000 11.2583i −0.267374 0.463106i
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) 3.00000 5.19615i 0.122988 0.213021i
\(596\) 0 0
\(597\) −3.00000 −0.122782
\(598\) 0 0
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 0 0
\(601\) 10.5000 18.1865i 0.428304 0.741844i −0.568419 0.822739i \(-0.692445\pi\)
0.996723 + 0.0808953i \(0.0257779\pi\)
\(602\) 0 0
\(603\) 6.00000 0.244339
\(604\) 0 0
\(605\) −10.0000 17.3205i −0.406558 0.704179i
\(606\) 0 0
\(607\) −6.50000 11.2583i −0.263827 0.456962i 0.703429 0.710766i \(-0.251651\pi\)
−0.967256 + 0.253804i \(0.918318\pi\)
\(608\) 0 0
\(609\) 1.50000 2.59808i 0.0607831 0.105279i
\(610\) 0 0
\(611\) −12.0000 41.5692i −0.485468 1.68171i
\(612\) 0 0
\(613\) 19.5000 33.7750i 0.787598 1.36416i −0.139837 0.990174i \(-0.544658\pi\)
0.927435 0.373985i \(-0.122009\pi\)
\(614\) 0 0
\(615\) 11.0000 + 19.0526i 0.443563 + 0.768273i
\(616\) 0 0
\(617\) −23.5000 40.7032i −0.946074 1.63865i −0.753586 0.657350i \(-0.771677\pi\)
−0.192489 0.981299i \(-0.561656\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −2.50000 + 4.33013i −0.100322 + 0.173762i
\(622\) 0 0
\(623\) −1.00000 −0.0400642
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) −3.50000 + 6.06218i −0.139777 + 0.242100i
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) 13.5000 + 23.3827i 0.537427 + 0.930850i 0.999042 + 0.0437697i \(0.0139368\pi\)
−0.461615 + 0.887080i \(0.652730\pi\)
\(632\) 0 0
\(633\) −0.500000 0.866025i −0.0198732 0.0344214i
\(634\) 0 0
\(635\) −13.0000 + 22.5167i −0.515889 + 0.893546i
\(636\) 0 0
\(637\) 21.0000 + 5.19615i 0.832050 + 0.205879i
\(638\) 0 0
\(639\) 5.00000 8.66025i 0.197797 0.342594i
\(640\) 0 0
\(641\) −5.50000 9.52628i −0.217237 0.376265i 0.736725 0.676192i \(-0.236371\pi\)
−0.953962 + 0.299927i \(0.903038\pi\)
\(642\) 0 0
\(643\) −9.50000 16.4545i −0.374643 0.648901i 0.615630 0.788035i \(-0.288902\pi\)
−0.990274 + 0.139134i \(0.955568\pi\)
\(644\) 0 0
\(645\) −22.0000 −0.866249
\(646\) 0 0
\(647\) −1.50000 + 2.59808i −0.0589711 + 0.102141i −0.894004 0.448059i \(-0.852115\pi\)
0.835033 + 0.550200i \(0.185449\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) −8.00000 −0.313545
\(652\) 0 0
\(653\) −4.50000 + 7.79423i −0.176099 + 0.305012i −0.940541 0.339680i \(-0.889681\pi\)
0.764442 + 0.644692i \(0.223014\pi\)
\(654\) 0 0
\(655\) −24.0000 −0.937758
\(656\) 0 0
\(657\) −2.00000 3.46410i −0.0780274 0.135147i
\(658\) 0 0
\(659\) 14.5000 + 25.1147i 0.564840 + 0.978331i 0.997065 + 0.0765653i \(0.0243954\pi\)
−0.432225 + 0.901766i \(0.642271\pi\)
\(660\) 0 0
\(661\) −12.5000 + 21.6506i −0.486194 + 0.842112i −0.999874 0.0158695i \(-0.994948\pi\)
0.513680 + 0.857982i \(0.328282\pi\)
\(662\) 0 0
\(663\) 3.00000 + 10.3923i 0.116510 + 0.403604i
\(664\) 0 0
\(665\) 7.00000 12.1244i 0.271448 0.470162i
\(666\) 0 0
\(667\) −1.50000 2.59808i −0.0580802 0.100598i
\(668\) 0 0
\(669\) 0.500000 + 0.866025i 0.0193311 + 0.0334825i
\(670\) 0 0
\(671\) 9.00000 0.347441
\(672\) 0 0
\(673\) −19.5000 + 33.7750i −0.751670 + 1.30193i 0.195343 + 0.980735i \(0.437418\pi\)
−0.947013 + 0.321195i \(0.895915\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0.500000 0.866025i 0.0191882 0.0332350i
\(680\) 0 0
\(681\) −1.00000 −0.0383201
\(682\) 0 0
\(683\) 4.50000 + 7.79423i 0.172188 + 0.298238i 0.939184 0.343413i \(-0.111583\pi\)
−0.766997 + 0.641651i \(0.778250\pi\)
\(684\) 0 0
\(685\) −9.00000 15.5885i −0.343872 0.595604i
\(686\) 0 0
\(687\) −3.00000 + 5.19615i −0.114457 + 0.198246i
\(688\) 0 0
\(689\) 6.00000 + 20.7846i 0.228582 + 0.791831i
\(690\) 0 0
\(691\) −12.5000 + 21.6506i −0.475522 + 0.823629i −0.999607 0.0280373i \(-0.991074\pi\)
0.524084 + 0.851666i \(0.324408\pi\)
\(692\) 0 0
\(693\) 1.00000 + 1.73205i 0.0379869 + 0.0657952i
\(694\) 0 0
\(695\) −9.00000 15.5885i −0.341389 0.591304i
\(696\) 0 0
\(697\) 33.0000 1.24996
\(698\) 0 0
\(699\) 13.0000 22.5167i 0.491705 0.851658i
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 7.00000 0.264010
\(704\) 0 0
\(705\) −12.0000 + 20.7846i −0.451946 + 0.782794i
\(706\) 0 0
\(707\) 17.0000 0.639351
\(708\) 0 0
\(709\) −14.5000 25.1147i −0.544559 0.943204i −0.998635 0.0522406i \(-0.983364\pi\)
0.454076 0.890963i \(-0.349970\pi\)
\(710\) 0 0
\(711\) 12.0000 + 20.7846i 0.450035 + 0.779484i
\(712\) 0 0
\(713\) −4.00000 + 6.92820i −0.149801 + 0.259463i
\(714\) 0 0
\(715\) 7.00000 + 1.73205i 0.261785 + 0.0647750i
\(716\) 0 0
\(717\) −12.0000 + 20.7846i −0.448148 + 0.776215i
\(718\) 0 0
\(719\) 19.5000 + 33.7750i 0.727227 + 1.25959i 0.958051 + 0.286599i \(0.0925247\pi\)
−0.230823 + 0.972996i \(0.574142\pi\)
\(720\) 0 0
\(721\) −4.00000 6.92820i −0.148968 0.258020i
\(722\) 0 0
\(723\) 11.0000 0.409094
\(724\) 0 0
\(725\) −1.50000 + 2.59808i −0.0557086 + 0.0964901i
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −16.5000 + 28.5788i −0.610275 + 1.05703i
\(732\) 0 0
\(733\) −46.0000 −1.69905 −0.849524 0.527549i \(-0.823111\pi\)
−0.849524 + 0.527549i \(0.823111\pi\)
\(734\) 0 0
\(735\) −6.00000 10.3923i −0.221313 0.383326i
\(736\) 0 0
\(737\) 1.50000 + 2.59808i 0.0552532 + 0.0957014i
\(738\) 0 0
\(739\) 5.50000 9.52628i 0.202321 0.350430i −0.746955 0.664875i \(-0.768485\pi\)
0.949276 + 0.314445i \(0.101818\pi\)
\(740\) 0 0
\(741\) 7.00000 + 24.2487i 0.257151 + 0.890799i
\(742\) 0 0
\(743\) 14.5000 25.1147i 0.531953 0.921370i −0.467351 0.884072i \(-0.654791\pi\)
0.999304 0.0372984i \(-0.0118752\pi\)
\(744\) 0 0
\(745\) 1.00000 + 1.73205i 0.0366372 + 0.0634574i
\(746\) 0 0
\(747\) −4.00000 6.92820i −0.146352 0.253490i
\(748\) 0 0
\(749\) 17.0000 0.621166
\(750\) 0 0
\(751\) 8.50000 14.7224i 0.310169 0.537229i −0.668229 0.743955i \(-0.732948\pi\)
0.978399 + 0.206726i \(0.0662809\pi\)
\(752\) 0 0
\(753\) −13.0000 −0.473746
\(754\) 0 0
\(755\) 32.0000 1.16460
\(756\) 0 0
\(757\) 23.5000 40.7032i 0.854122 1.47938i −0.0233351 0.999728i \(-0.507428\pi\)
0.877457 0.479655i \(-0.159238\pi\)
\(758\) 0 0
\(759\) −1.00000 −0.0362977
\(760\) 0 0
\(761\) −1.50000 2.59808i −0.0543750 0.0941802i 0.837557 0.546350i \(-0.183983\pi\)
−0.891932 + 0.452170i \(0.850650\pi\)
\(762\) 0 0
\(763\) 5.00000 + 8.66025i 0.181012 + 0.313522i
\(764\) 0 0
\(765\) −6.00000 + 10.3923i −0.216930 + 0.375735i
\(766\) 0 0
\(767\) −22.5000 + 23.3827i −0.812428 + 0.844300i
\(768\) 0 0
\(769\) 2.50000 4.33013i 0.0901523 0.156148i −0.817423 0.576038i \(-0.804598\pi\)
0.907575 + 0.419890i \(0.137931\pi\)
\(770\) 0 0
\(771\) 6.50000 + 11.2583i 0.234092 + 0.405459i
\(772\) 0 0
\(773\) 1.50000 + 2.59808i 0.0539513 + 0.0934463i 0.891740 0.452549i \(-0.149485\pi\)
−0.837788 + 0.545995i \(0.816152\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) −0.500000 + 0.866025i −0.0179374 + 0.0310685i
\(778\) 0 0
\(779\) 77.0000 2.75881
\(780\) 0 0
\(781\) 5.00000 0.178914
\(782\) 0 0
\(783\) −7.50000 + 12.9904i −0.268028 + 0.464238i
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) 10.5000 + 18.1865i 0.374285 + 0.648280i 0.990220 0.139517i \(-0.0445550\pi\)
−0.615935 + 0.787797i \(0.711222\pi\)
\(788\) 0 0
\(789\) −15.5000 26.8468i −0.551815 0.955771i
\(790\) 0 0
\(791\) −5.50000 + 9.52628i −0.195557 + 0.338716i
\(792\) 0 0
\(793\) 22.5000 23.3827i 0.798998 0.830344i
\(794\) 0 0
\(795\) 6.00000 10.3923i 0.212798 0.368577i
\(796\) 0 0
\(797\) 11.5000 + 19.9186i 0.407351 + 0.705552i 0.994592 0.103860i \(-0.0331193\pi\)
−0.587241 + 0.809412i \(0.699786\pi\)
\(798\) 0 0
\(799\) 18.0000 + 31.1769i 0.636794 + 1.10296i
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 1.00000 1.73205i 0.0352892 0.0611227i
\(804\) 0 0
\(805\) 2.00000 0.0704907
\(806\) 0 0
\(807\) 5.00000 0.176008
\(808\) 0 0
\(809\) −13.5000 + 23.3827i −0.474635 + 0.822091i −0.999578 0.0290457i \(-0.990753\pi\)
0.524943 + 0.851137i \(0.324086\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) −3.50000 6.06218i −0.122750 0.212610i
\(814\) 0 0
\(815\) −5.00000 8.66025i −0.175142 0.303355i
\(816\) 0 0
\(817\) −38.5000 + 66.6840i −1.34694 + 2.33298i
\(818\) 0 0
\(819\) 7.00000 + 1.73205i 0.244600 + 0.0605228i
\(820\) 0 0
\(821\) −2.50000 + 4.33013i −0.0872506 + 0.151122i −0.906348 0.422532i \(-0.861141\pi\)
0.819097 + 0.573654i \(0.194475\pi\)
\(822\) 0 0
\(823\) −14.5000 25.1147i −0.505438 0.875445i −0.999980 0.00629095i \(-0.997998\pi\)
0.494542 0.869154i \(-0.335336\pi\)
\(824\) 0 0
\(825\) 0.500000 + 0.866025i 0.0174078 + 0.0301511i
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) 1.50000 2.59808i 0.0520972 0.0902349i −0.838801 0.544438i \(-0.816743\pi\)
0.890898 + 0.454204i \(0.150076\pi\)
\(830\) 0 0
\(831\) 21.0000 0.728482
\(832\) 0 0
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 7.00000 12.1244i 0.242245 0.419581i
\(836\) 0 0
\(837\) 40.0000 1.38260
\(838\) 0 0
\(839\) 13.5000 + 23.3827i 0.466072 + 0.807260i 0.999249 0.0387435i \(-0.0123355\pi\)
−0.533177 + 0.846003i \(0.679002\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) −7.00000 + 12.1244i −0.241093 + 0.417585i
\(844\) 0 0
\(845\) 22.0000 13.8564i 0.756823 0.476675i
\(846\) 0 0
\(847\) 5.00000 8.66025i 0.171802 0.297570i
\(848\) 0 0
\(849\) −12.5000 21.6506i −0.428999 0.743048i
\(850\) 0 0
\(851\) 0.500000 + 0.866025i 0.0171398 + 0.0296870i
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) −14.0000 + 24.2487i −0.478790 + 0.829288i
\(856\) 0 0
\(857\) −18.0000 −0.614868 −0.307434 0.951569i \(-0.599470\pi\)
−0.307434 + 0.951569i \(0.599470\pi\)
\(858\) 0 0
\(859\) 20.0000 0.682391 0.341196 0.939992i \(-0.389168\pi\)
0.341196 + 0.939992i \(0.389168\pi\)
\(860\) 0 0
\(861\) −5.50000 + 9.52628i −0.187439 + 0.324655i
\(862\) 0 0
\(863\) 16.0000 0.544646 0.272323 0.962206i \(-0.412208\pi\)
0.272323 + 0.962206i \(0.412208\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 0 0
\(867\) 4.00000 + 6.92820i 0.135847 + 0.235294i
\(868\) 0 0
\(869\) −6.00000 + 10.3923i −0.203536 + 0.352535i
\(870\) 0 0
\(871\) 10.5000 + 2.59808i 0.355779 + 0.0880325i
\(872\) 0 0
\(873\) −1.00000 + 1.73205i −0.0338449 + 0.0586210i
\(874\) 0 0
\(875\) −6.00000 10.3923i −0.202837 0.351324i
\(876\) 0 0
\(877\) −0.500000 0.866025i −0.0168838 0.0292436i 0.857460 0.514551i \(-0.172041\pi\)
−0.874344 + 0.485307i \(0.838708\pi\)
\(878\) 0 0
\(879\) 9.00000 0.303562
\(880\) 0 0
\(881\) 22.5000 38.9711i 0.758044 1.31297i −0.185802 0.982587i \(-0.559488\pi\)
0.943847 0.330384i \(-0.107178\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 18.0000 0.605063
\(886\) 0 0
\(887\) −13.5000 + 23.3827i −0.453286 + 0.785114i −0.998588 0.0531258i \(-0.983082\pi\)
0.545302 + 0.838240i \(0.316415\pi\)
\(888\) 0 0
\(889\) −13.0000 −0.436006
\(890\) 0 0
\(891\) −0.500000 0.866025i −0.0167506 0.0290129i
\(892\) 0 0
\(893\) 42.0000 + 72.7461i 1.40548 + 2.43436i
\(894\) 0 0
\(895\) 9.00000 15.5885i 0.300837 0.521065i
\(896\) 0 0
\(897\) −2.50000 + 2.59808i −0.0834726 + 0.0867472i
\(898\) 0 0
\(899\) −12.0000 + 20.7846i −0.400222 + 0.693206i
\(900\) 0 0
\(901\) −9.00000 15.5885i −0.299833 0.519327i
\(902\) 0 0
\(903\) −5.50000 9.52628i −0.183029 0.317015i
\(904\) 0 0
\(905\) −28.0000 −0.930751
\(906\) 0 0
\(907\) −12.5000 + 21.6506i −0.415056 + 0.718898i −0.995434 0.0954492i \(-0.969571\pi\)
0.580379 + 0.814347i \(0.302905\pi\)
\(908\) 0 0
\(909\) −34.0000 −1.12771
\(910\) 0 0
\(911\) 16.0000 0.530104 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(912\) 0 0
\(913\) 2.00000 3.46410i 0.0661903 0.114645i
\(914\) 0 0
\(915\) −18.0000 −0.595062
\(916\) 0 0
\(917\) −6.00000 10.3923i −0.198137 0.343184i
\(918\) 0 0
\(919\) 7.50000 + 12.9904i 0.247402 + 0.428513i 0.962804 0.270200i \(-0.0870898\pi\)
−0.715402 + 0.698713i \(0.753756\pi\)
\(920\) 0 0
\(921\) 10.0000 17.3205i 0.329511 0.570730i
\(922\) 0 0
\(923\) 12.5000 12.9904i 0.411443 0.427584i
\(924\) 0 0
\(925\) 0.500000 0.866025i 0.0164399 0.0284747i
\(926\) 0 0
\(927\) 8.00000 + 13.8564i 0.262754 + 0.455104i
\(928\) 0 0
\(929\) 2.50000 + 4.33013i 0.0820223 + 0.142067i 0.904118 0.427282i \(-0.140529\pi\)
−0.822096 + 0.569349i \(0.807195\pi\)
\(930\) 0 0
\(931\) −42.0000 −1.37649
\(932\) 0 0
\(933\) 4.00000 6.92820i 0.130954 0.226819i
\(934\) 0 0
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) −15.0000 + 25.9808i −0.489506 + 0.847850i
\(940\) 0 0
\(941\) −14.0000 −0.456387 −0.228193 0.973616i \(-0.573282\pi\)
−0.228193 + 0.973616i \(0.573282\pi\)
\(942\) 0 0
\(943\) 5.50000 + 9.52628i 0.179105 + 0.310218i
\(944\) 0 0
\(945\) −5.00000 8.66025i −0.162650 0.281718i
\(946\) 0 0
\(947\) 19.5000 33.7750i 0.633665 1.09754i −0.353131 0.935574i \(-0.614883\pi\)
0.986796 0.161966i \(-0.0517835\pi\)
\(948\) 0 0
\(949\) −2.00000 6.92820i −0.0649227 0.224899i
\(950\) 0 0
\(951\) −1.00000 + 1.73205i −0.0324272 + 0.0561656i
\(952\) 0 0
\(953\) 4.50000 + 7.79423i 0.145769 + 0.252480i 0.929660 0.368419i \(-0.120101\pi\)
−0.783890 + 0.620899i \(0.786768\pi\)
\(954\) 0 0
\(955\) −7.00000 12.1244i −0.226515 0.392335i
\(956\) 0 0
\(957\) −3.00000 −0.0969762
\(958\) 0 0
\(959\) 4.50000 7.79423i 0.145313 0.251689i
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −34.0000 −1.09563
\(964\) 0 0
\(965\) −5.00000 + 8.66025i −0.160956 + 0.278783i
\(966\) 0 0
\(967\) 16.0000 0.514525 0.257263 0.966342i \(-0.417179\pi\)
0.257263 + 0.966342i \(0.417179\pi\)
\(968\) 0 0
\(969\) −10.5000 18.1865i −0.337309 0.584236i
\(970\) 0 0
\(971\) −13.5000 23.3827i −0.433236 0.750386i 0.563914 0.825833i \(-0.309295\pi\)
−0.997150 + 0.0754473i \(0.975962\pi\)
\(972\) 0 0
\(973\) 4.50000 7.79423i 0.144263 0.249871i
\(974\) 0 0
\(975\) 3.50000 + 0.866025i 0.112090 + 0.0277350i
\(976\) 0 0
\(977\) 4.50000 7.79423i 0.143968 0.249359i −0.785020 0.619471i \(-0.787347\pi\)
0.928987 + 0.370111i \(0.120681\pi\)
\(978\) 0 0
\(979\) 0.500000 + 0.866025i 0.0159801 + 0.0276783i
\(980\) 0 0
\(981\) −10.0000 17.3205i −0.319275 0.553001i
\(982\) 0 0
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 13.0000 22.5167i 0.414214 0.717440i
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) −11.0000 −0.349780
\(990\) 0 0
\(991\) 6.50000 11.2583i 0.206479 0.357633i −0.744124 0.668042i \(-0.767133\pi\)
0.950603 + 0.310409i \(0.100466\pi\)
\(992\) 0 0
\(993\) 27.0000 0.856819
\(994\) 0 0
\(995\) −3.00000 5.19615i −0.0951064 0.164729i
\(996\) 0 0
\(997\) −12.5000 21.6506i −0.395879 0.685682i 0.597334 0.801993i \(-0.296227\pi\)
−0.993213 + 0.116310i \(0.962893\pi\)
\(998\) 0 0
\(999\) 2.50000 4.33013i 0.0790965 0.136999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.i.d.321.1 2
4.3 odd 2 832.2.i.g.321.1 2
8.3 odd 2 104.2.i.a.9.1 2
8.5 even 2 208.2.i.c.113.1 2
13.3 even 3 inner 832.2.i.d.705.1 2
24.5 odd 2 1872.2.t.d.1153.1 2
24.11 even 2 936.2.t.c.217.1 2
52.3 odd 6 832.2.i.g.705.1 2
104.3 odd 6 104.2.i.a.81.1 yes 2
104.11 even 12 1352.2.o.b.361.2 4
104.19 even 12 1352.2.f.a.337.1 2
104.29 even 6 208.2.i.c.81.1 2
104.35 odd 6 1352.2.a.c.1.1 1
104.43 odd 6 1352.2.a.a.1.1 1
104.45 odd 12 2704.2.f.c.337.1 2
104.51 odd 2 1352.2.i.a.529.1 2
104.59 even 12 1352.2.f.a.337.2 2
104.61 even 6 2704.2.a.e.1.1 1
104.67 even 12 1352.2.o.b.361.1 4
104.69 even 6 2704.2.a.c.1.1 1
104.75 odd 6 1352.2.i.a.1329.1 2
104.83 even 4 1352.2.o.b.1161.1 4
104.85 odd 12 2704.2.f.c.337.2 2
104.99 even 4 1352.2.o.b.1161.2 4
312.29 odd 6 1872.2.t.d.289.1 2
312.107 even 6 936.2.t.c.289.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.i.a.9.1 2 8.3 odd 2
104.2.i.a.81.1 yes 2 104.3 odd 6
208.2.i.c.81.1 2 104.29 even 6
208.2.i.c.113.1 2 8.5 even 2
832.2.i.d.321.1 2 1.1 even 1 trivial
832.2.i.d.705.1 2 13.3 even 3 inner
832.2.i.g.321.1 2 4.3 odd 2
832.2.i.g.705.1 2 52.3 odd 6
936.2.t.c.217.1 2 24.11 even 2
936.2.t.c.289.1 2 312.107 even 6
1352.2.a.a.1.1 1 104.43 odd 6
1352.2.a.c.1.1 1 104.35 odd 6
1352.2.f.a.337.1 2 104.19 even 12
1352.2.f.a.337.2 2 104.59 even 12
1352.2.i.a.529.1 2 104.51 odd 2
1352.2.i.a.1329.1 2 104.75 odd 6
1352.2.o.b.361.1 4 104.67 even 12
1352.2.o.b.361.2 4 104.11 even 12
1352.2.o.b.1161.1 4 104.83 even 4
1352.2.o.b.1161.2 4 104.99 even 4
1872.2.t.d.289.1 2 312.29 odd 6
1872.2.t.d.1153.1 2 24.5 odd 2
2704.2.a.c.1.1 1 104.69 even 6
2704.2.a.e.1.1 1 104.61 even 6
2704.2.f.c.337.1 2 104.45 odd 12
2704.2.f.c.337.2 2 104.85 odd 12