Properties

Label 832.2.bu.g.639.1
Level $832$
Weight $2$
Character 832.639
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,2,Mod(63,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.bu (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 639.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 832.639
Dual form 832.2.bu.g.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633975 - 0.366025i) q^{3} +(1.36603 - 1.36603i) q^{5} +(-1.00000 - 3.73205i) q^{7} +(-1.23205 + 2.13397i) q^{9} +(-2.73205 - 0.732051i) q^{11} +(3.50000 - 0.866025i) q^{13} +(0.366025 - 1.36603i) q^{15} +(-5.59808 - 3.23205i) q^{17} +(6.09808 - 1.63397i) q^{19} +(-2.00000 - 2.00000i) q^{21} +(-2.63397 - 4.56218i) q^{23} +1.26795i q^{25} +4.00000i q^{27} +(-1.23205 - 2.13397i) q^{29} +(-4.46410 - 4.46410i) q^{31} +(-2.00000 + 0.535898i) q^{33} +(-6.46410 - 3.73205i) q^{35} +(-1.59808 + 5.96410i) q^{37} +(1.90192 - 1.83013i) q^{39} +(9.06218 + 2.42820i) q^{41} +(2.26795 - 3.92820i) q^{43} +(1.23205 + 4.59808i) q^{45} +(-4.46410 + 4.46410i) q^{47} +(-6.86603 + 3.96410i) q^{49} -4.73205 q^{51} +1.73205 q^{53} +(-4.73205 + 2.73205i) q^{55} +(3.26795 - 3.26795i) q^{57} +(-2.26795 - 8.46410i) q^{59} +(5.33013 - 9.23205i) q^{61} +(9.19615 + 2.46410i) q^{63} +(3.59808 - 5.96410i) q^{65} +(0.169873 - 0.633975i) q^{67} +(-3.33975 - 1.92820i) q^{69} +(9.56218 - 2.56218i) q^{71} +(6.29423 + 6.29423i) q^{73} +(0.464102 + 0.803848i) q^{75} +10.9282i q^{77} -2.53590i q^{79} +(-2.23205 - 3.86603i) q^{81} +(4.19615 + 4.19615i) q^{83} +(-12.0622 + 3.23205i) q^{85} +(-1.56218 - 0.901924i) q^{87} +(2.43782 - 9.09808i) q^{89} +(-6.73205 - 12.1962i) q^{91} +(-4.46410 - 1.19615i) q^{93} +(6.09808 - 10.5622i) q^{95} +(2.83013 + 10.5622i) q^{97} +(4.92820 - 4.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{3} + 2 q^{5} - 4 q^{7} + 2 q^{9} - 4 q^{11} + 14 q^{13} - 2 q^{15} - 12 q^{17} + 14 q^{19} - 8 q^{21} - 14 q^{23} + 2 q^{29} - 4 q^{31} - 8 q^{33} - 12 q^{35} + 4 q^{37} + 18 q^{39} + 12 q^{41}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.633975 0.366025i 0.366025 0.211325i −0.305695 0.952129i \(-0.598889\pi\)
0.671721 + 0.740805i \(0.265556\pi\)
\(4\) 0 0
\(5\) 1.36603 1.36603i 0.610905 0.610905i −0.332277 0.943182i \(-0.607817\pi\)
0.943182 + 0.332277i \(0.107817\pi\)
\(6\) 0 0
\(7\) −1.00000 3.73205i −0.377964 1.41058i −0.848965 0.528450i \(-0.822774\pi\)
0.471000 0.882133i \(-0.343893\pi\)
\(8\) 0 0
\(9\) −1.23205 + 2.13397i −0.410684 + 0.711325i
\(10\) 0 0
\(11\) −2.73205 0.732051i −0.823744 0.220722i −0.177762 0.984074i \(-0.556886\pi\)
−0.645983 + 0.763352i \(0.723552\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 0 0
\(15\) 0.366025 1.36603i 0.0945074 0.352706i
\(16\) 0 0
\(17\) −5.59808 3.23205i −1.35773 0.783887i −0.368415 0.929661i \(-0.620099\pi\)
−0.989318 + 0.145774i \(0.953433\pi\)
\(18\) 0 0
\(19\) 6.09808 1.63397i 1.39899 0.374859i 0.521011 0.853550i \(-0.325555\pi\)
0.877984 + 0.478691i \(0.158888\pi\)
\(20\) 0 0
\(21\) −2.00000 2.00000i −0.436436 0.436436i
\(22\) 0 0
\(23\) −2.63397 4.56218i −0.549222 0.951280i −0.998328 0.0578016i \(-0.981591\pi\)
0.449106 0.893478i \(-0.351742\pi\)
\(24\) 0 0
\(25\) 1.26795i 0.253590i
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) −1.23205 2.13397i −0.228786 0.396269i 0.728663 0.684873i \(-0.240142\pi\)
−0.957449 + 0.288604i \(0.906809\pi\)
\(30\) 0 0
\(31\) −4.46410 4.46410i −0.801776 0.801776i 0.181597 0.983373i \(-0.441873\pi\)
−0.983373 + 0.181597i \(0.941873\pi\)
\(32\) 0 0
\(33\) −2.00000 + 0.535898i −0.348155 + 0.0932879i
\(34\) 0 0
\(35\) −6.46410 3.73205i −1.09263 0.630832i
\(36\) 0 0
\(37\) −1.59808 + 5.96410i −0.262722 + 0.980492i 0.700908 + 0.713252i \(0.252778\pi\)
−0.963630 + 0.267240i \(0.913888\pi\)
\(38\) 0 0
\(39\) 1.90192 1.83013i 0.304552 0.293055i
\(40\) 0 0
\(41\) 9.06218 + 2.42820i 1.41527 + 0.379222i 0.883805 0.467856i \(-0.154973\pi\)
0.531470 + 0.847077i \(0.321640\pi\)
\(42\) 0 0
\(43\) 2.26795 3.92820i 0.345859 0.599045i −0.639650 0.768666i \(-0.720921\pi\)
0.985509 + 0.169621i \(0.0542542\pi\)
\(44\) 0 0
\(45\) 1.23205 + 4.59808i 0.183663 + 0.685441i
\(46\) 0 0
\(47\) −4.46410 + 4.46410i −0.651156 + 0.651156i −0.953271 0.302115i \(-0.902307\pi\)
0.302115 + 0.953271i \(0.402307\pi\)
\(48\) 0 0
\(49\) −6.86603 + 3.96410i −0.980861 + 0.566300i
\(50\) 0 0
\(51\) −4.73205 −0.662620
\(52\) 0 0
\(53\) 1.73205 0.237915 0.118958 0.992899i \(-0.462045\pi\)
0.118958 + 0.992899i \(0.462045\pi\)
\(54\) 0 0
\(55\) −4.73205 + 2.73205i −0.638070 + 0.368390i
\(56\) 0 0
\(57\) 3.26795 3.26795i 0.432850 0.432850i
\(58\) 0 0
\(59\) −2.26795 8.46410i −0.295262 1.10193i −0.941009 0.338381i \(-0.890121\pi\)
0.645747 0.763551i \(-0.276546\pi\)
\(60\) 0 0
\(61\) 5.33013 9.23205i 0.682453 1.18204i −0.291777 0.956486i \(-0.594247\pi\)
0.974230 0.225557i \(-0.0724201\pi\)
\(62\) 0 0
\(63\) 9.19615 + 2.46410i 1.15861 + 0.310448i
\(64\) 0 0
\(65\) 3.59808 5.96410i 0.446286 0.739756i
\(66\) 0 0
\(67\) 0.169873 0.633975i 0.0207533 0.0774523i −0.954773 0.297337i \(-0.903901\pi\)
0.975526 + 0.219885i \(0.0705681\pi\)
\(68\) 0 0
\(69\) −3.33975 1.92820i −0.402058 0.232128i
\(70\) 0 0
\(71\) 9.56218 2.56218i 1.13482 0.304075i 0.357955 0.933739i \(-0.383474\pi\)
0.776867 + 0.629664i \(0.216808\pi\)
\(72\) 0 0
\(73\) 6.29423 + 6.29423i 0.736684 + 0.736684i 0.971935 0.235251i \(-0.0755912\pi\)
−0.235251 + 0.971935i \(0.575591\pi\)
\(74\) 0 0
\(75\) 0.464102 + 0.803848i 0.0535898 + 0.0928203i
\(76\) 0 0
\(77\) 10.9282i 1.24538i
\(78\) 0 0
\(79\) 2.53590i 0.285311i −0.989772 0.142655i \(-0.954436\pi\)
0.989772 0.142655i \(-0.0455641\pi\)
\(80\) 0 0
\(81\) −2.23205 3.86603i −0.248006 0.429558i
\(82\) 0 0
\(83\) 4.19615 + 4.19615i 0.460588 + 0.460588i 0.898848 0.438260i \(-0.144405\pi\)
−0.438260 + 0.898848i \(0.644405\pi\)
\(84\) 0 0
\(85\) −12.0622 + 3.23205i −1.30833 + 0.350565i
\(86\) 0 0
\(87\) −1.56218 0.901924i −0.167483 0.0966964i
\(88\) 0 0
\(89\) 2.43782 9.09808i 0.258409 0.964394i −0.707754 0.706459i \(-0.750291\pi\)
0.966162 0.257935i \(-0.0830420\pi\)
\(90\) 0 0
\(91\) −6.73205 12.1962i −0.705711 1.27850i
\(92\) 0 0
\(93\) −4.46410 1.19615i −0.462906 0.124035i
\(94\) 0 0
\(95\) 6.09808 10.5622i 0.625649 1.08366i
\(96\) 0 0
\(97\) 2.83013 + 10.5622i 0.287356 + 1.07243i 0.947101 + 0.320937i \(0.103998\pi\)
−0.659745 + 0.751490i \(0.729336\pi\)
\(98\) 0 0
\(99\) 4.92820 4.92820i 0.495303 0.495303i
\(100\) 0 0
\(101\) −1.79423 + 1.03590i −0.178532 + 0.103076i −0.586603 0.809875i \(-0.699535\pi\)
0.408071 + 0.912950i \(0.366202\pi\)
\(102\) 0 0
\(103\) −3.26795 −0.322001 −0.161000 0.986954i \(-0.551472\pi\)
−0.161000 + 0.986954i \(0.551472\pi\)
\(104\) 0 0
\(105\) −5.46410 −0.533242
\(106\) 0 0
\(107\) −2.36603 + 1.36603i −0.228732 + 0.132059i −0.609987 0.792411i \(-0.708825\pi\)
0.381255 + 0.924470i \(0.375492\pi\)
\(108\) 0 0
\(109\) 0.803848 0.803848i 0.0769946 0.0769946i −0.667561 0.744555i \(-0.732662\pi\)
0.744555 + 0.667561i \(0.232662\pi\)
\(110\) 0 0
\(111\) 1.16987 + 4.36603i 0.111039 + 0.414405i
\(112\) 0 0
\(113\) 3.59808 6.23205i 0.338479 0.586262i −0.645668 0.763618i \(-0.723421\pi\)
0.984147 + 0.177356i \(0.0567544\pi\)
\(114\) 0 0
\(115\) −9.83013 2.63397i −0.916664 0.245619i
\(116\) 0 0
\(117\) −2.46410 + 8.53590i −0.227806 + 0.789144i
\(118\) 0 0
\(119\) −6.46410 + 24.1244i −0.592563 + 2.21148i
\(120\) 0 0
\(121\) −2.59808 1.50000i −0.236189 0.136364i
\(122\) 0 0
\(123\) 6.63397 1.77757i 0.598165 0.160278i
\(124\) 0 0
\(125\) 8.56218 + 8.56218i 0.765824 + 0.765824i
\(126\) 0 0
\(127\) 8.09808 + 14.0263i 0.718588 + 1.24463i 0.961559 + 0.274598i \(0.0885446\pi\)
−0.242971 + 0.970034i \(0.578122\pi\)
\(128\) 0 0
\(129\) 3.32051i 0.292354i
\(130\) 0 0
\(131\) 14.1962i 1.24032i 0.784474 + 0.620162i \(0.212933\pi\)
−0.784474 + 0.620162i \(0.787067\pi\)
\(132\) 0 0
\(133\) −12.1962 21.1244i −1.05754 1.83171i
\(134\) 0 0
\(135\) 5.46410 + 5.46410i 0.470275 + 0.470275i
\(136\) 0 0
\(137\) −1.50000 + 0.401924i −0.128154 + 0.0343387i −0.322326 0.946629i \(-0.604465\pi\)
0.194172 + 0.980967i \(0.437798\pi\)
\(138\) 0 0
\(139\) 18.1244 + 10.4641i 1.53729 + 0.887554i 0.998996 + 0.0447948i \(0.0142634\pi\)
0.538292 + 0.842759i \(0.319070\pi\)
\(140\) 0 0
\(141\) −1.19615 + 4.46410i −0.100734 + 0.375945i
\(142\) 0 0
\(143\) −10.1962 0.196152i −0.852645 0.0164031i
\(144\) 0 0
\(145\) −4.59808 1.23205i −0.381849 0.102316i
\(146\) 0 0
\(147\) −2.90192 + 5.02628i −0.239347 + 0.414561i
\(148\) 0 0
\(149\) −4.13397 15.4282i −0.338668 1.26393i −0.899837 0.436226i \(-0.856315\pi\)
0.561169 0.827701i \(-0.310352\pi\)
\(150\) 0 0
\(151\) −6.46410 + 6.46410i −0.526041 + 0.526041i −0.919390 0.393348i \(-0.871317\pi\)
0.393348 + 0.919390i \(0.371317\pi\)
\(152\) 0 0
\(153\) 13.7942 7.96410i 1.11520 0.643859i
\(154\) 0 0
\(155\) −12.1962 −0.979619
\(156\) 0 0
\(157\) 15.5359 1.23990 0.619950 0.784641i \(-0.287153\pi\)
0.619950 + 0.784641i \(0.287153\pi\)
\(158\) 0 0
\(159\) 1.09808 0.633975i 0.0870831 0.0502775i
\(160\) 0 0
\(161\) −14.3923 + 14.3923i −1.13427 + 1.13427i
\(162\) 0 0
\(163\) 4.26795 + 15.9282i 0.334292 + 1.24759i 0.904635 + 0.426187i \(0.140143\pi\)
−0.570344 + 0.821406i \(0.693190\pi\)
\(164\) 0 0
\(165\) −2.00000 + 3.46410i −0.155700 + 0.269680i
\(166\) 0 0
\(167\) 6.19615 + 1.66025i 0.479473 + 0.128474i 0.490457 0.871465i \(-0.336830\pi\)
−0.0109844 + 0.999940i \(0.503497\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) −4.02628 + 15.0263i −0.307897 + 1.14909i
\(172\) 0 0
\(173\) 12.5885 + 7.26795i 0.957083 + 0.552572i 0.895274 0.445516i \(-0.146980\pi\)
0.0618087 + 0.998088i \(0.480313\pi\)
\(174\) 0 0
\(175\) 4.73205 1.26795i 0.357709 0.0958479i
\(176\) 0 0
\(177\) −4.53590 4.53590i −0.340939 0.340939i
\(178\) 0 0
\(179\) 0.732051 + 1.26795i 0.0547160 + 0.0947710i 0.892086 0.451865i \(-0.149241\pi\)
−0.837370 + 0.546636i \(0.815908\pi\)
\(180\) 0 0
\(181\) 3.19615i 0.237568i 0.992920 + 0.118784i \(0.0378996\pi\)
−0.992920 + 0.118784i \(0.962100\pi\)
\(182\) 0 0
\(183\) 7.80385i 0.576877i
\(184\) 0 0
\(185\) 5.96410 + 10.3301i 0.438489 + 0.759486i
\(186\) 0 0
\(187\) 12.9282 + 12.9282i 0.945404 + 0.945404i
\(188\) 0 0
\(189\) 14.9282 4.00000i 1.08587 0.290957i
\(190\) 0 0
\(191\) −19.0981 11.0263i −1.38189 0.797834i −0.389505 0.921024i \(-0.627354\pi\)
−0.992383 + 0.123191i \(0.960687\pi\)
\(192\) 0 0
\(193\) 1.33013 4.96410i 0.0957446 0.357324i −0.901387 0.433015i \(-0.857450\pi\)
0.997131 + 0.0756913i \(0.0241163\pi\)
\(194\) 0 0
\(195\) 0.0980762 5.09808i 0.00702338 0.365081i
\(196\) 0 0
\(197\) 3.83013 + 1.02628i 0.272885 + 0.0731194i 0.392667 0.919681i \(-0.371553\pi\)
−0.119781 + 0.992800i \(0.538219\pi\)
\(198\) 0 0
\(199\) 7.29423 12.6340i 0.517074 0.895599i −0.482729 0.875770i \(-0.660354\pi\)
0.999803 0.0198291i \(-0.00631220\pi\)
\(200\) 0 0
\(201\) −0.124356 0.464102i −0.00877137 0.0327352i
\(202\) 0 0
\(203\) −6.73205 + 6.73205i −0.472497 + 0.472497i
\(204\) 0 0
\(205\) 15.6962 9.06218i 1.09627 0.632930i
\(206\) 0 0
\(207\) 12.9808 0.902225
\(208\) 0 0
\(209\) −17.8564 −1.23515
\(210\) 0 0
\(211\) 21.6340 12.4904i 1.48934 0.859873i 0.489418 0.872049i \(-0.337209\pi\)
0.999926 + 0.0121758i \(0.00387578\pi\)
\(212\) 0 0
\(213\) 5.12436 5.12436i 0.351115 0.351115i
\(214\) 0 0
\(215\) −2.26795 8.46410i −0.154673 0.577247i
\(216\) 0 0
\(217\) −12.1962 + 21.1244i −0.827929 + 1.43401i
\(218\) 0 0
\(219\) 6.29423 + 1.68653i 0.425325 + 0.113965i
\(220\) 0 0
\(221\) −22.3923 6.46410i −1.50627 0.434823i
\(222\) 0 0
\(223\) −7.56218 + 28.2224i −0.506401 + 1.88991i −0.0530277 + 0.998593i \(0.516887\pi\)
−0.453373 + 0.891321i \(0.649780\pi\)
\(224\) 0 0
\(225\) −2.70577 1.56218i −0.180385 0.104145i
\(226\) 0 0
\(227\) −4.36603 + 1.16987i −0.289783 + 0.0776472i −0.400782 0.916173i \(-0.631262\pi\)
0.110999 + 0.993821i \(0.464595\pi\)
\(228\) 0 0
\(229\) −12.2679 12.2679i −0.810689 0.810689i 0.174048 0.984737i \(-0.444315\pi\)
−0.984737 + 0.174048i \(0.944315\pi\)
\(230\) 0 0
\(231\) 4.00000 + 6.92820i 0.263181 + 0.455842i
\(232\) 0 0
\(233\) 15.4641i 1.01309i 0.862214 + 0.506543i \(0.169077\pi\)
−0.862214 + 0.506543i \(0.830923\pi\)
\(234\) 0 0
\(235\) 12.1962i 0.795589i
\(236\) 0 0
\(237\) −0.928203 1.60770i −0.0602933 0.104431i
\(238\) 0 0
\(239\) 7.26795 + 7.26795i 0.470125 + 0.470125i 0.901955 0.431830i \(-0.142132\pi\)
−0.431830 + 0.901955i \(0.642132\pi\)
\(240\) 0 0
\(241\) −1.50000 + 0.401924i −0.0966235 + 0.0258902i −0.306807 0.951772i \(-0.599261\pi\)
0.210183 + 0.977662i \(0.432594\pi\)
\(242\) 0 0
\(243\) −13.2224 7.63397i −0.848219 0.489720i
\(244\) 0 0
\(245\) −3.96410 + 14.7942i −0.253257 + 0.945169i
\(246\) 0 0
\(247\) 19.9282 11.0000i 1.26800 0.699913i
\(248\) 0 0
\(249\) 4.19615 + 1.12436i 0.265920 + 0.0712531i
\(250\) 0 0
\(251\) −4.63397 + 8.02628i −0.292494 + 0.506614i −0.974399 0.224827i \(-0.927818\pi\)
0.681905 + 0.731441i \(0.261152\pi\)
\(252\) 0 0
\(253\) 3.85641 + 14.3923i 0.242450 + 0.904836i
\(254\) 0 0
\(255\) −6.46410 + 6.46410i −0.404798 + 0.404798i
\(256\) 0 0
\(257\) −3.23205 + 1.86603i −0.201610 + 0.116399i −0.597406 0.801939i \(-0.703802\pi\)
0.395796 + 0.918338i \(0.370469\pi\)
\(258\) 0 0
\(259\) 23.8564 1.48236
\(260\) 0 0
\(261\) 6.07180 0.375835
\(262\) 0 0
\(263\) −21.5885 + 12.4641i −1.33120 + 0.768569i −0.985484 0.169769i \(-0.945698\pi\)
−0.345717 + 0.938339i \(0.612364\pi\)
\(264\) 0 0
\(265\) 2.36603 2.36603i 0.145344 0.145344i
\(266\) 0 0
\(267\) −1.78461 6.66025i −0.109216 0.407601i
\(268\) 0 0
\(269\) −4.00000 + 6.92820i −0.243884 + 0.422420i −0.961817 0.273692i \(-0.911755\pi\)
0.717933 + 0.696112i \(0.245088\pi\)
\(270\) 0 0
\(271\) −17.1962 4.60770i −1.04459 0.279898i −0.304577 0.952488i \(-0.598515\pi\)
−0.740015 + 0.672590i \(0.765182\pi\)
\(272\) 0 0
\(273\) −8.73205 5.26795i −0.528488 0.318831i
\(274\) 0 0
\(275\) 0.928203 3.46410i 0.0559728 0.208893i
\(276\) 0 0
\(277\) 7.66987 + 4.42820i 0.460838 + 0.266065i 0.712397 0.701777i \(-0.247610\pi\)
−0.251559 + 0.967842i \(0.580943\pi\)
\(278\) 0 0
\(279\) 15.0263 4.02628i 0.899600 0.241047i
\(280\) 0 0
\(281\) −11.6340 11.6340i −0.694025 0.694025i 0.269090 0.963115i \(-0.413277\pi\)
−0.963115 + 0.269090i \(0.913277\pi\)
\(282\) 0 0
\(283\) 7.00000 + 12.1244i 0.416107 + 0.720718i 0.995544 0.0942988i \(-0.0300609\pi\)
−0.579437 + 0.815017i \(0.696728\pi\)
\(284\) 0 0
\(285\) 8.92820i 0.528861i
\(286\) 0 0
\(287\) 36.2487i 2.13969i
\(288\) 0 0
\(289\) 12.3923 + 21.4641i 0.728959 + 1.26259i
\(290\) 0 0
\(291\) 5.66025 + 5.66025i 0.331810 + 0.331810i
\(292\) 0 0
\(293\) 0.232051 0.0621778i 0.0135566 0.00363247i −0.252034 0.967718i \(-0.581100\pi\)
0.265591 + 0.964086i \(0.414433\pi\)
\(294\) 0 0
\(295\) −14.6603 8.46410i −0.853553 0.492799i
\(296\) 0 0
\(297\) 2.92820 10.9282i 0.169912 0.634119i
\(298\) 0 0
\(299\) −13.1699 13.6865i −0.761633 0.791513i
\(300\) 0 0
\(301\) −16.9282 4.53590i −0.975725 0.261445i
\(302\) 0 0
\(303\) −0.758330 + 1.31347i −0.0435649 + 0.0754567i
\(304\) 0 0
\(305\) −5.33013 19.8923i −0.305202 1.13903i
\(306\) 0 0
\(307\) −15.7321 + 15.7321i −0.897876 + 0.897876i −0.995248 0.0973724i \(-0.968956\pi\)
0.0973724 + 0.995248i \(0.468956\pi\)
\(308\) 0 0
\(309\) −2.07180 + 1.19615i −0.117860 + 0.0680467i
\(310\) 0 0
\(311\) 6.58846 0.373597 0.186799 0.982398i \(-0.440189\pi\)
0.186799 + 0.982398i \(0.440189\pi\)
\(312\) 0 0
\(313\) −4.53590 −0.256384 −0.128192 0.991749i \(-0.540917\pi\)
−0.128192 + 0.991749i \(0.540917\pi\)
\(314\) 0 0
\(315\) 15.9282 9.19615i 0.897453 0.518144i
\(316\) 0 0
\(317\) −3.09808 + 3.09808i −0.174005 + 0.174005i −0.788737 0.614731i \(-0.789264\pi\)
0.614731 + 0.788737i \(0.289264\pi\)
\(318\) 0 0
\(319\) 1.80385 + 6.73205i 0.100996 + 0.376922i
\(320\) 0 0
\(321\) −1.00000 + 1.73205i −0.0558146 + 0.0966736i
\(322\) 0 0
\(323\) −39.4186 10.5622i −2.19331 0.587695i
\(324\) 0 0
\(325\) 1.09808 + 4.43782i 0.0609103 + 0.246166i
\(326\) 0 0
\(327\) 0.215390 0.803848i 0.0119111 0.0444529i
\(328\) 0 0
\(329\) 21.1244 + 12.1962i 1.16462 + 0.672396i
\(330\) 0 0
\(331\) 29.8564 8.00000i 1.64106 0.439720i 0.683967 0.729513i \(-0.260253\pi\)
0.957089 + 0.289793i \(0.0935865\pi\)
\(332\) 0 0
\(333\) −10.7583 10.7583i −0.589553 0.589553i
\(334\) 0 0
\(335\) −0.633975 1.09808i −0.0346377 0.0599943i
\(336\) 0 0
\(337\) 30.8564i 1.68086i −0.541924 0.840428i \(-0.682304\pi\)
0.541924 0.840428i \(-0.317696\pi\)
\(338\) 0 0
\(339\) 5.26795i 0.286116i
\(340\) 0 0
\(341\) 8.92820 + 15.4641i 0.483489 + 0.837428i
\(342\) 0 0
\(343\) 2.53590 + 2.53590i 0.136926 + 0.136926i
\(344\) 0 0
\(345\) −7.19615 + 1.92820i −0.387428 + 0.103811i
\(346\) 0 0
\(347\) −30.7583 17.7583i −1.65119 0.953317i −0.976582 0.215144i \(-0.930978\pi\)
−0.674611 0.738173i \(-0.735689\pi\)
\(348\) 0 0
\(349\) 2.63397 9.83013i 0.140993 0.526195i −0.858908 0.512130i \(-0.828856\pi\)
0.999901 0.0140642i \(-0.00447691\pi\)
\(350\) 0 0
\(351\) 3.46410 + 14.0000i 0.184900 + 0.747265i
\(352\) 0 0
\(353\) 34.3564 + 9.20577i 1.82861 + 0.489974i 0.997782 0.0665606i \(-0.0212026\pi\)
0.830825 + 0.556534i \(0.187869\pi\)
\(354\) 0 0
\(355\) 9.56218 16.5622i 0.507508 0.879029i
\(356\) 0 0
\(357\) 4.73205 + 17.6603i 0.250447 + 0.934680i
\(358\) 0 0
\(359\) −9.07180 + 9.07180i −0.478791 + 0.478791i −0.904745 0.425954i \(-0.859939\pi\)
0.425954 + 0.904745i \(0.359939\pi\)
\(360\) 0 0
\(361\) 18.0622 10.4282i 0.950641 0.548853i
\(362\) 0 0
\(363\) −2.19615 −0.115268
\(364\) 0 0
\(365\) 17.1962 0.900088
\(366\) 0 0
\(367\) 20.4904 11.8301i 1.06959 0.617528i 0.141520 0.989935i \(-0.454801\pi\)
0.928069 + 0.372408i \(0.121468\pi\)
\(368\) 0 0
\(369\) −16.3468 + 16.3468i −0.850980 + 0.850980i
\(370\) 0 0
\(371\) −1.73205 6.46410i −0.0899236 0.335599i
\(372\) 0 0
\(373\) 5.03590 8.72243i 0.260749 0.451630i −0.705692 0.708519i \(-0.749364\pi\)
0.966441 + 0.256888i \(0.0826972\pi\)
\(374\) 0 0
\(375\) 8.56218 + 2.29423i 0.442149 + 0.118473i
\(376\) 0 0
\(377\) −6.16025 6.40192i −0.317269 0.329716i
\(378\) 0 0
\(379\) 1.02628 3.83013i 0.0527164 0.196740i −0.934546 0.355844i \(-0.884194\pi\)
0.987262 + 0.159103i \(0.0508603\pi\)
\(380\) 0 0
\(381\) 10.2679 + 5.92820i 0.526043 + 0.303711i
\(382\) 0 0
\(383\) −6.92820 + 1.85641i −0.354015 + 0.0948579i −0.431444 0.902140i \(-0.641996\pi\)
0.0774289 + 0.996998i \(0.475329\pi\)
\(384\) 0 0
\(385\) 14.9282 + 14.9282i 0.760812 + 0.760812i
\(386\) 0 0
\(387\) 5.58846 + 9.67949i 0.284077 + 0.492036i
\(388\) 0 0
\(389\) 10.6603i 0.540496i −0.962791 0.270248i \(-0.912894\pi\)
0.962791 0.270248i \(-0.0871057\pi\)
\(390\) 0 0
\(391\) 34.0526i 1.72211i
\(392\) 0 0
\(393\) 5.19615 + 9.00000i 0.262111 + 0.453990i
\(394\) 0 0
\(395\) −3.46410 3.46410i −0.174298 0.174298i
\(396\) 0 0
\(397\) 4.56218 1.22243i 0.228969 0.0613521i −0.142510 0.989793i \(-0.545517\pi\)
0.371479 + 0.928441i \(0.378851\pi\)
\(398\) 0 0
\(399\) −15.4641 8.92820i −0.774173 0.446969i
\(400\) 0 0
\(401\) 3.03590 11.3301i 0.151606 0.565800i −0.847767 0.530369i \(-0.822053\pi\)
0.999372 0.0354301i \(-0.0112801\pi\)
\(402\) 0 0
\(403\) −19.4904 11.7583i −0.970885 0.585724i
\(404\) 0 0
\(405\) −8.33013 2.23205i −0.413927 0.110911i
\(406\) 0 0
\(407\) 8.73205 15.1244i 0.432832 0.749686i
\(408\) 0 0
\(409\) −1.25833 4.69615i −0.0622204 0.232210i 0.927812 0.373047i \(-0.121687\pi\)
−0.990033 + 0.140838i \(0.955020\pi\)
\(410\) 0 0
\(411\) −0.803848 + 0.803848i −0.0396509 + 0.0396509i
\(412\) 0 0
\(413\) −29.3205 + 16.9282i −1.44277 + 0.832982i
\(414\) 0 0
\(415\) 11.4641 0.562751
\(416\) 0 0
\(417\) 15.3205 0.750249
\(418\) 0 0
\(419\) 19.9019 11.4904i 0.972273 0.561342i 0.0723443 0.997380i \(-0.476952\pi\)
0.899928 + 0.436038i \(0.143619\pi\)
\(420\) 0 0
\(421\) −19.2942 + 19.2942i −0.940343 + 0.940343i −0.998318 0.0579749i \(-0.981536\pi\)
0.0579749 + 0.998318i \(0.481536\pi\)
\(422\) 0 0
\(423\) −4.02628 15.0263i −0.195764 0.730603i
\(424\) 0 0
\(425\) 4.09808 7.09808i 0.198786 0.344307i
\(426\) 0 0
\(427\) −39.7846 10.6603i −1.92531 0.515886i
\(428\) 0 0
\(429\) −6.53590 + 3.60770i −0.315556 + 0.174181i
\(430\) 0 0
\(431\) 0.875644 3.26795i 0.0421783 0.157412i −0.941625 0.336664i \(-0.890701\pi\)
0.983803 + 0.179253i \(0.0573679\pi\)
\(432\) 0 0
\(433\) −28.2846 16.3301i −1.35927 0.784776i −0.369746 0.929133i \(-0.620555\pi\)
−0.989526 + 0.144357i \(0.953889\pi\)
\(434\) 0 0
\(435\) −3.36603 + 0.901924i −0.161389 + 0.0432439i
\(436\) 0 0
\(437\) −23.5167 23.5167i −1.12495 1.12495i
\(438\) 0 0
\(439\) −1.53590 2.66025i −0.0733044 0.126967i 0.827043 0.562138i \(-0.190021\pi\)
−0.900348 + 0.435171i \(0.856688\pi\)
\(440\) 0 0
\(441\) 19.5359i 0.930281i
\(442\) 0 0
\(443\) 17.8564i 0.848383i −0.905572 0.424192i \(-0.860558\pi\)
0.905572 0.424192i \(-0.139442\pi\)
\(444\) 0 0
\(445\) −9.09808 15.7583i −0.431290 0.747016i
\(446\) 0 0
\(447\) −8.26795 8.26795i −0.391061 0.391061i
\(448\) 0 0
\(449\) 30.9545 8.29423i 1.46083 0.391429i 0.561055 0.827778i \(-0.310396\pi\)
0.899777 + 0.436350i \(0.143729\pi\)
\(450\) 0 0
\(451\) −22.9808 13.2679i −1.08212 0.624763i
\(452\) 0 0
\(453\) −1.73205 + 6.46410i −0.0813788 + 0.303710i
\(454\) 0 0
\(455\) −25.8564 7.46410i −1.21217 0.349922i
\(456\) 0 0
\(457\) −14.2583 3.82051i −0.666977 0.178716i −0.0905841 0.995889i \(-0.528873\pi\)
−0.576393 + 0.817173i \(0.695540\pi\)
\(458\) 0 0
\(459\) 12.9282 22.3923i 0.603437 1.04518i
\(460\) 0 0
\(461\) −8.66987 32.3564i −0.403796 1.50699i −0.806265 0.591554i \(-0.798514\pi\)
0.402469 0.915434i \(-0.368152\pi\)
\(462\) 0 0
\(463\) 10.7321 10.7321i 0.498761 0.498761i −0.412291 0.911052i \(-0.635271\pi\)
0.911052 + 0.412291i \(0.135271\pi\)
\(464\) 0 0
\(465\) −7.73205 + 4.46410i −0.358565 + 0.207018i
\(466\) 0 0
\(467\) 13.8564 0.641198 0.320599 0.947215i \(-0.396116\pi\)
0.320599 + 0.947215i \(0.396116\pi\)
\(468\) 0 0
\(469\) −2.53590 −0.117097
\(470\) 0 0
\(471\) 9.84936 5.68653i 0.453835 0.262022i
\(472\) 0 0
\(473\) −9.07180 + 9.07180i −0.417122 + 0.417122i
\(474\) 0 0
\(475\) 2.07180 + 7.73205i 0.0950606 + 0.354771i
\(476\) 0 0
\(477\) −2.13397 + 3.69615i −0.0977080 + 0.169235i
\(478\) 0 0
\(479\) 5.63397 + 1.50962i 0.257423 + 0.0689763i 0.385222 0.922824i \(-0.374125\pi\)
−0.127800 + 0.991800i \(0.540791\pi\)
\(480\) 0 0
\(481\) −0.428203 + 22.2583i −0.0195244 + 1.01489i
\(482\) 0 0
\(483\) −3.85641 + 14.3923i −0.175473 + 0.654873i
\(484\) 0 0
\(485\) 18.2942 + 10.5622i 0.830698 + 0.479604i
\(486\) 0 0
\(487\) −5.00000 + 1.33975i −0.226572 + 0.0607097i −0.370319 0.928905i \(-0.620752\pi\)
0.143747 + 0.989614i \(0.454085\pi\)
\(488\) 0 0
\(489\) 8.53590 + 8.53590i 0.386007 + 0.386007i
\(490\) 0 0
\(491\) −5.53590 9.58846i −0.249832 0.432721i 0.713647 0.700505i \(-0.247042\pi\)
−0.963479 + 0.267784i \(0.913709\pi\)
\(492\) 0 0
\(493\) 15.9282i 0.717370i
\(494\) 0 0
\(495\) 13.4641i 0.605166i
\(496\) 0 0
\(497\) −19.1244 33.1244i −0.857845 1.48583i
\(498\) 0 0
\(499\) 7.39230 + 7.39230i 0.330925 + 0.330925i 0.852938 0.522013i \(-0.174819\pi\)
−0.522013 + 0.852938i \(0.674819\pi\)
\(500\) 0 0
\(501\) 4.53590 1.21539i 0.202649 0.0542996i
\(502\) 0 0
\(503\) −28.3923 16.3923i −1.26595 0.730897i −0.291731 0.956500i \(-0.594231\pi\)
−0.974219 + 0.225604i \(0.927565\pi\)
\(504\) 0 0
\(505\) −1.03590 + 3.86603i −0.0460969 + 0.172036i
\(506\) 0 0
\(507\) 5.07180 8.05256i 0.225246 0.357627i
\(508\) 0 0
\(509\) −3.96410 1.06218i −0.175706 0.0470802i 0.169893 0.985462i \(-0.445658\pi\)
−0.345599 + 0.938382i \(0.612324\pi\)
\(510\) 0 0
\(511\) 17.1962 29.7846i 0.760713 1.31759i
\(512\) 0 0
\(513\) 6.53590 + 24.3923i 0.288567 + 1.07695i
\(514\) 0 0
\(515\) −4.46410 + 4.46410i −0.196712 + 0.196712i
\(516\) 0 0
\(517\) 15.4641 8.92820i 0.680110 0.392662i
\(518\) 0 0
\(519\) 10.6410 0.467089
\(520\) 0 0
\(521\) −38.6603 −1.69374 −0.846868 0.531803i \(-0.821515\pi\)
−0.846868 + 0.531803i \(0.821515\pi\)
\(522\) 0 0
\(523\) 8.32051 4.80385i 0.363830 0.210058i −0.306929 0.951732i \(-0.599302\pi\)
0.670760 + 0.741675i \(0.265968\pi\)
\(524\) 0 0
\(525\) 2.53590 2.53590i 0.110676 0.110676i
\(526\) 0 0
\(527\) 10.5622 + 39.4186i 0.460096 + 1.71710i
\(528\) 0 0
\(529\) −2.37564 + 4.11474i −0.103289 + 0.178902i
\(530\) 0 0
\(531\) 20.8564 + 5.58846i 0.905091 + 0.242518i
\(532\) 0 0
\(533\) 33.8205 + 0.650635i 1.46493 + 0.0281821i
\(534\) 0 0
\(535\) −1.36603 + 5.09808i −0.0590584 + 0.220409i
\(536\) 0 0
\(537\) 0.928203 + 0.535898i 0.0400549 + 0.0231257i
\(538\) 0 0
\(539\) 21.6603 5.80385i 0.932973 0.249989i
\(540\) 0 0
\(541\) 31.5622 + 31.5622i 1.35696 + 1.35696i 0.877636 + 0.479328i \(0.159120\pi\)
0.479328 + 0.877636i \(0.340880\pi\)
\(542\) 0 0
\(543\) 1.16987 + 2.02628i 0.0502041 + 0.0869560i
\(544\) 0 0
\(545\) 2.19615i 0.0940728i
\(546\) 0 0
\(547\) 7.80385i 0.333668i −0.985985 0.166834i \(-0.946646\pi\)
0.985985 0.166834i \(-0.0533545\pi\)
\(548\) 0 0
\(549\) 13.1340 + 22.7487i 0.560544 + 0.970891i
\(550\) 0 0
\(551\) −11.0000 11.0000i −0.468616 0.468616i
\(552\) 0 0
\(553\) −9.46410 + 2.53590i −0.402455 + 0.107837i
\(554\) 0 0
\(555\) 7.56218 + 4.36603i 0.320997 + 0.185327i
\(556\) 0 0
\(557\) −3.03590 + 11.3301i −0.128635 + 0.480073i −0.999943 0.0106637i \(-0.996606\pi\)
0.871308 + 0.490737i \(0.163272\pi\)
\(558\) 0 0
\(559\) 4.53590 15.7128i 0.191848 0.664581i
\(560\) 0 0
\(561\) 12.9282 + 3.46410i 0.545829 + 0.146254i
\(562\) 0 0
\(563\) 6.46410 11.1962i 0.272429 0.471862i −0.697054 0.717019i \(-0.745506\pi\)
0.969483 + 0.245157i \(0.0788395\pi\)
\(564\) 0 0
\(565\) −3.59808 13.4282i −0.151372 0.564929i
\(566\) 0 0
\(567\) −12.1962 + 12.1962i −0.512190 + 0.512190i
\(568\) 0 0
\(569\) −15.0000 + 8.66025i −0.628833 + 0.363057i −0.780300 0.625406i \(-0.784934\pi\)
0.151467 + 0.988462i \(0.451600\pi\)
\(570\) 0 0
\(571\) −43.3205 −1.81291 −0.906453 0.422306i \(-0.861221\pi\)
−0.906453 + 0.422306i \(0.861221\pi\)
\(572\) 0 0
\(573\) −16.1436 −0.674408
\(574\) 0 0
\(575\) 5.78461 3.33975i 0.241235 0.139277i
\(576\) 0 0
\(577\) 19.1506 19.1506i 0.797251 0.797251i −0.185410 0.982661i \(-0.559361\pi\)
0.982661 + 0.185410i \(0.0593613\pi\)
\(578\) 0 0
\(579\) −0.973721 3.63397i −0.0404664 0.151023i
\(580\) 0 0
\(581\) 11.4641 19.8564i 0.475611 0.823783i
\(582\) 0 0
\(583\) −4.73205 1.26795i −0.195982 0.0525131i
\(584\) 0 0
\(585\) 8.29423 + 15.0263i 0.342924 + 0.621260i
\(586\) 0 0
\(587\) −9.73205 + 36.3205i −0.401685 + 1.49911i 0.408404 + 0.912801i \(0.366085\pi\)
−0.810089 + 0.586307i \(0.800581\pi\)
\(588\) 0 0
\(589\) −34.5167 19.9282i −1.42223 0.821127i
\(590\) 0 0
\(591\) 2.80385 0.751289i 0.115335 0.0309039i
\(592\) 0 0
\(593\) 20.8301 + 20.8301i 0.855391 + 0.855391i 0.990791 0.135400i \(-0.0432320\pi\)
−0.135400 + 0.990791i \(0.543232\pi\)
\(594\) 0 0
\(595\) 24.1244 + 41.7846i 0.989002 + 1.71300i
\(596\) 0 0
\(597\) 10.6795i 0.437083i
\(598\) 0 0
\(599\) 22.0526i 0.901043i −0.892766 0.450522i \(-0.851238\pi\)
0.892766 0.450522i \(-0.148762\pi\)
\(600\) 0 0
\(601\) −0.330127 0.571797i −0.0134662 0.0233241i 0.859214 0.511617i \(-0.170953\pi\)
−0.872680 + 0.488293i \(0.837620\pi\)
\(602\) 0 0
\(603\) 1.14359 + 1.14359i 0.0465707 + 0.0465707i
\(604\) 0 0
\(605\) −5.59808 + 1.50000i −0.227594 + 0.0609837i
\(606\) 0 0
\(607\) −27.8827 16.0981i −1.13172 0.653401i −0.187356 0.982292i \(-0.559992\pi\)
−0.944368 + 0.328891i \(0.893325\pi\)
\(608\) 0 0
\(609\) −1.80385 + 6.73205i −0.0730956 + 0.272796i
\(610\) 0 0
\(611\) −11.7583 + 19.4904i −0.475691 + 0.788496i
\(612\) 0 0
\(613\) 31.9186 + 8.55256i 1.28918 + 0.345435i 0.837349 0.546669i \(-0.184104\pi\)
0.451831 + 0.892104i \(0.350771\pi\)
\(614\) 0 0
\(615\) 6.63397 11.4904i 0.267508 0.463337i
\(616\) 0 0
\(617\) −3.37564 12.5981i −0.135898 0.507179i −0.999993 0.00384944i \(-0.998775\pi\)
0.864094 0.503330i \(-0.167892\pi\)
\(618\) 0 0
\(619\) 16.7321 16.7321i 0.672518 0.672518i −0.285778 0.958296i \(-0.592252\pi\)
0.958296 + 0.285778i \(0.0922520\pi\)
\(620\) 0 0
\(621\) 18.2487 10.5359i 0.732296 0.422791i
\(622\) 0 0
\(623\) −36.3923 −1.45803
\(624\) 0 0
\(625\) 17.0526 0.682102
\(626\) 0 0
\(627\) −11.3205 + 6.53590i −0.452098 + 0.261019i
\(628\) 0 0
\(629\) 28.2224 28.2224i 1.12530 1.12530i
\(630\) 0 0
\(631\) 3.32051 + 12.3923i 0.132187 + 0.493330i 0.999994 0.00357280i \(-0.00113726\pi\)
−0.867806 + 0.496903i \(0.834471\pi\)
\(632\) 0 0
\(633\) 9.14359 15.8372i 0.363425 0.629471i
\(634\) 0 0
\(635\) 30.2224 + 8.09808i 1.19934 + 0.321362i
\(636\) 0 0
\(637\) −20.5981 + 19.8205i −0.816125 + 0.785317i
\(638\) 0 0
\(639\) −6.31347 + 23.5622i −0.249757 + 0.932105i
\(640\) 0 0
\(641\) 25.6699 + 14.8205i 1.01390 + 0.585375i 0.912331 0.409454i \(-0.134281\pi\)
0.101568 + 0.994829i \(0.467614\pi\)
\(642\) 0 0
\(643\) 14.1962 3.80385i 0.559842 0.150009i 0.0322080 0.999481i \(-0.489746\pi\)
0.527634 + 0.849472i \(0.323079\pi\)
\(644\) 0 0
\(645\) −4.53590 4.53590i −0.178601 0.178601i
\(646\) 0 0
\(647\) 9.49038 + 16.4378i 0.373105 + 0.646237i 0.990042 0.140776i \(-0.0449597\pi\)
−0.616936 + 0.787013i \(0.711626\pi\)
\(648\) 0 0
\(649\) 24.7846i 0.972881i
\(650\) 0 0
\(651\) 17.8564i 0.699848i
\(652\) 0 0
\(653\) −8.53590 14.7846i −0.334036 0.578566i 0.649264 0.760563i \(-0.275077\pi\)
−0.983299 + 0.181997i \(0.941744\pi\)
\(654\) 0 0
\(655\) 19.3923 + 19.3923i 0.757720 + 0.757720i
\(656\) 0 0
\(657\) −21.1865 + 5.67691i −0.826565 + 0.221478i
\(658\) 0 0
\(659\) −16.0526 9.26795i −0.625319 0.361028i 0.153618 0.988130i \(-0.450907\pi\)
−0.778937 + 0.627102i \(0.784241\pi\)
\(660\) 0 0
\(661\) −4.54552 + 16.9641i −0.176800 + 0.659827i 0.819438 + 0.573168i \(0.194286\pi\)
−0.996238 + 0.0866591i \(0.972381\pi\)
\(662\) 0 0
\(663\) −16.5622 + 4.09808i −0.643222 + 0.159156i
\(664\) 0 0
\(665\) −45.5167 12.1962i −1.76506 0.472947i
\(666\) 0 0
\(667\) −6.49038 + 11.2417i −0.251309 + 0.435279i
\(668\) 0 0
\(669\) 5.53590 + 20.6603i 0.214030 + 0.798772i
\(670\) 0 0
\(671\) −21.3205 + 21.3205i −0.823069 + 0.823069i
\(672\) 0 0
\(673\) −30.6506 + 17.6962i −1.18150 + 0.682137i −0.956360 0.292191i \(-0.905616\pi\)
−0.225135 + 0.974328i \(0.572282\pi\)
\(674\) 0 0
\(675\) −5.07180 −0.195214
\(676\) 0 0
\(677\) 5.07180 0.194925 0.0974625 0.995239i \(-0.468927\pi\)
0.0974625 + 0.995239i \(0.468927\pi\)
\(678\) 0 0
\(679\) 36.5885 21.1244i 1.40414 0.810678i
\(680\) 0 0
\(681\) −2.33975 + 2.33975i −0.0896593 + 0.0896593i
\(682\) 0 0
\(683\) 10.6340 + 39.6865i 0.406898 + 1.51856i 0.800529 + 0.599294i \(0.204552\pi\)
−0.393631 + 0.919269i \(0.628781\pi\)
\(684\) 0 0
\(685\) −1.50000 + 2.59808i −0.0573121 + 0.0992674i
\(686\) 0 0
\(687\) −12.2679 3.28719i −0.468051 0.125414i
\(688\) 0 0
\(689\) 6.06218 1.50000i 0.230951 0.0571454i
\(690\) 0 0
\(691\) 2.67949 10.0000i 0.101933 0.380418i −0.896046 0.443960i \(-0.853573\pi\)
0.997979 + 0.0635424i \(0.0202398\pi\)
\(692\) 0 0
\(693\) −23.3205 13.4641i −0.885873 0.511459i
\(694\) 0 0
\(695\) 39.0526 10.4641i 1.48135 0.396926i
\(696\) 0 0
\(697\) −42.8827 42.8827i −1.62430 1.62430i
\(698\) 0 0
\(699\) 5.66025 + 9.80385i 0.214090 + 0.370816i
\(700\) 0 0
\(701\) 11.0718i 0.418176i −0.977897 0.209088i \(-0.932950\pi\)
0.977897 0.209088i \(-0.0670495\pi\)
\(702\) 0 0
\(703\) 38.9808i 1.47019i
\(704\) 0 0
\(705\) 4.46410 + 7.73205i 0.168128 + 0.291206i
\(706\) 0 0
\(707\) 5.66025 + 5.66025i 0.212876 + 0.212876i
\(708\) 0 0
\(709\) −26.5263 + 7.10770i −0.996215 + 0.266935i −0.719859 0.694120i \(-0.755794\pi\)
−0.276356 + 0.961055i \(0.589127\pi\)
\(710\) 0 0
\(711\) 5.41154 + 3.12436i 0.202949 + 0.117172i
\(712\) 0 0
\(713\) −8.60770 + 32.1244i −0.322361 + 1.20307i
\(714\) 0 0
\(715\) −14.1962 + 13.6603i −0.530906 + 0.510865i
\(716\) 0 0
\(717\) 7.26795 + 1.94744i 0.271427 + 0.0727285i
\(718\) 0 0
\(719\) −5.53590 + 9.58846i −0.206454 + 0.357589i −0.950595 0.310434i \(-0.899526\pi\)
0.744141 + 0.668023i \(0.232859\pi\)
\(720\) 0 0
\(721\) 3.26795 + 12.1962i 0.121705 + 0.454208i
\(722\) 0 0
\(723\) −0.803848 + 0.803848i −0.0298954 + 0.0298954i
\(724\) 0 0
\(725\) 2.70577 1.56218i 0.100490 0.0580178i
\(726\) 0 0
\(727\) 3.21539 0.119252 0.0596261 0.998221i \(-0.481009\pi\)
0.0596261 + 0.998221i \(0.481009\pi\)
\(728\) 0 0
\(729\) 2.21539 0.0820515
\(730\) 0 0
\(731\) −25.3923 + 14.6603i −0.939168 + 0.542229i
\(732\) 0 0
\(733\) 23.6147 23.6147i 0.872230 0.872230i −0.120485 0.992715i \(-0.538445\pi\)
0.992715 + 0.120485i \(0.0384450\pi\)
\(734\) 0 0
\(735\) 2.90192 + 10.8301i 0.107039 + 0.399475i
\(736\) 0 0
\(737\) −0.928203 + 1.60770i −0.0341908 + 0.0592202i
\(738\) 0 0
\(739\) 9.66025 + 2.58846i 0.355358 + 0.0952179i 0.432082 0.901834i \(-0.357779\pi\)
−0.0767235 + 0.997052i \(0.524446\pi\)
\(740\) 0 0
\(741\) 8.60770 14.2679i 0.316212 0.524146i
\(742\) 0 0
\(743\) −5.39230 + 20.1244i −0.197824 + 0.738291i 0.793693 + 0.608318i \(0.208156\pi\)
−0.991518 + 0.129973i \(0.958511\pi\)
\(744\) 0 0
\(745\) −26.7224 15.4282i −0.979034 0.565246i
\(746\) 0 0
\(747\) −14.1244 + 3.78461i −0.516783 + 0.138472i
\(748\) 0 0
\(749\) 7.46410 + 7.46410i 0.272732 + 0.272732i
\(750\) 0 0
\(751\) 0.124356 + 0.215390i 0.00453780 + 0.00785970i 0.868285 0.496065i \(-0.165222\pi\)
−0.863748 + 0.503925i \(0.831889\pi\)
\(752\) 0 0
\(753\) 6.78461i 0.247245i
\(754\) 0 0
\(755\) 17.6603i 0.642722i
\(756\) 0 0
\(757\) 19.3923 + 33.5885i 0.704825 + 1.22079i 0.966755 + 0.255706i \(0.0823080\pi\)
−0.261929 + 0.965087i \(0.584359\pi\)
\(758\) 0 0
\(759\) 7.71281 + 7.71281i 0.279957 + 0.279957i
\(760\) 0 0
\(761\) 3.83013 1.02628i 0.138842 0.0372026i −0.188729 0.982029i \(-0.560437\pi\)
0.327571 + 0.944827i \(0.393770\pi\)
\(762\) 0 0
\(763\) −3.80385 2.19615i −0.137709 0.0795061i
\(764\) 0 0
\(765\) 7.96410 29.7224i 0.287943 1.07462i
\(766\) 0 0
\(767\) −15.2679 27.6603i −0.551294 0.998754i
\(768\) 0 0
\(769\) −3.09808 0.830127i −0.111719 0.0299351i 0.202526 0.979277i \(-0.435085\pi\)
−0.314246 + 0.949342i \(0.601752\pi\)
\(770\) 0 0
\(771\) −1.36603 + 2.36603i −0.0491962 + 0.0852103i
\(772\) 0 0
\(773\) −2.22243 8.29423i −0.0799353 0.298323i 0.914372 0.404876i \(-0.132685\pi\)
−0.994307 + 0.106553i \(0.966019\pi\)
\(774\) 0 0
\(775\) 5.66025 5.66025i 0.203322 0.203322i
\(776\) 0 0
\(777\) 15.1244 8.73205i 0.542583 0.313261i
\(778\) 0 0
\(779\) 59.2295 2.12212
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) 0 0
\(783\) 8.53590 4.92820i 0.305048 0.176120i
\(784\) 0 0
\(785\) 21.2224 21.2224i 0.757461 0.757461i
\(786\) 0 0
\(787\) −3.04552 11.3660i −0.108561 0.405155i 0.890164 0.455641i \(-0.150590\pi\)
−0.998725 + 0.0504856i \(0.983923\pi\)
\(788\) 0 0
\(789\) −9.12436 + 15.8038i −0.324836 + 0.562632i
\(790\) 0 0
\(791\) −26.8564 7.19615i −0.954904 0.255866i
\(792\) 0 0
\(793\) 10.6603 36.9282i 0.378557 1.31136i
\(794\) 0 0
\(795\) 0.633975 2.36603i 0.0224848 0.0839143i
\(796\) 0 0
\(797\) −4.85641 2.80385i −0.172023 0.0993174i 0.411517 0.911402i \(-0.364999\pi\)
−0.583539 + 0.812085i \(0.698333\pi\)
\(798\) 0 0
\(799\) 39.4186 10.5622i 1.39453 0.373663i
\(800\) 0 0
\(801\) 16.4115 + 16.4115i 0.579873 + 0.579873i
\(802\) 0 0
\(803\) −12.5885 21.8038i −0.444237 0.769441i
\(804\) 0 0
\(805\) 39.3205i 1.38587i
\(806\) 0 0
\(807\) 5.85641i 0.206155i
\(808\) 0 0
\(809\) 4.79423 + 8.30385i 0.168556 + 0.291948i 0.937912 0.346872i \(-0.112756\pi\)
−0.769356 + 0.638820i \(0.779423\pi\)
\(810\) 0 0
\(811\) −10.6077 10.6077i −0.372487 0.372487i 0.495896 0.868382i \(-0.334840\pi\)
−0.868382 + 0.495896i \(0.834840\pi\)
\(812\) 0 0
\(813\) −12.5885 + 3.37307i −0.441496 + 0.118299i
\(814\) 0 0
\(815\) 27.5885 + 15.9282i 0.966382 + 0.557941i
\(816\) 0 0
\(817\) 7.41154 27.6603i 0.259297 0.967710i
\(818\) 0 0
\(819\) 34.3205 + 0.660254i 1.19926 + 0.0230711i
\(820\) 0 0
\(821\) −20.9545 5.61474i −0.731316 0.195956i −0.126101 0.992017i \(-0.540246\pi\)
−0.605215 + 0.796062i \(0.706913\pi\)
\(822\) 0 0
\(823\) −19.0000 + 32.9090i −0.662298 + 1.14713i 0.317712 + 0.948187i \(0.397086\pi\)
−0.980010 + 0.198947i \(0.936248\pi\)
\(824\) 0 0
\(825\) −0.679492 2.53590i −0.0236569 0.0882886i
\(826\) 0 0
\(827\) −23.3205 + 23.3205i −0.810934 + 0.810934i −0.984774 0.173840i \(-0.944382\pi\)
0.173840 + 0.984774i \(0.444382\pi\)
\(828\) 0 0
\(829\) −35.0429 + 20.2321i −1.21709 + 0.702688i −0.964295 0.264831i \(-0.914684\pi\)
−0.252797 + 0.967519i \(0.581350\pi\)
\(830\) 0 0
\(831\) 6.48334 0.224905
\(832\) 0 0
\(833\) 51.2487 1.77566
\(834\) 0 0
\(835\) 10.7321 6.19615i 0.371398 0.214427i
\(836\) 0 0
\(837\) 17.8564 17.8564i 0.617208 0.617208i
\(838\) 0 0
\(839\) −3.90192 14.5622i −0.134709 0.502742i −0.999999 0.00146984i \(-0.999532\pi\)
0.865290 0.501272i \(-0.167135\pi\)
\(840\) 0 0
\(841\) 11.4641 19.8564i 0.395314 0.684704i
\(842\) 0 0
\(843\) −11.6340 3.11731i −0.400695 0.107366i
\(844\) 0 0
\(845\) 7.42820 23.9904i 0.255538 0.825294i
\(846\) 0 0
\(847\) −3.00000 + 11.1962i −0.103081 + 0.384704i
\(848\) 0 0
\(849\) 8.87564 + 5.12436i 0.304611 + 0.175867i
\(850\) 0 0
\(851\) 31.4186 8.41858i 1.07702 0.288585i
\(852\) 0 0
\(853\) 25.2942 + 25.2942i 0.866058 + 0.866058i 0.992033 0.125975i \(-0.0402061\pi\)
−0.125975 + 0.992033i \(0.540206\pi\)
\(854\) 0 0
\(855\) 15.0263 + 26.0263i 0.513888 + 0.890080i
\(856\) 0 0
\(857\) 47.0526i 1.60728i 0.595113 + 0.803642i \(0.297107\pi\)
−0.595113 + 0.803642i \(0.702893\pi\)
\(858\) 0 0
\(859\) 13.2679i 0.452697i −0.974046 0.226348i \(-0.927321\pi\)
0.974046 0.226348i \(-0.0726788\pi\)
\(860\) 0 0
\(861\) −13.2679 22.9808i −0.452170 0.783182i
\(862\) 0 0
\(863\) 29.8038 + 29.8038i 1.01453 + 1.01453i 0.999893 + 0.0146420i \(0.00466085\pi\)
0.0146420 + 0.999893i \(0.495339\pi\)
\(864\) 0 0
\(865\) 27.1244 7.26795i 0.922256 0.247118i
\(866\) 0 0
\(867\) 15.7128 + 9.07180i 0.533635 + 0.308094i
\(868\) 0 0
\(869\) −1.85641 + 6.92820i −0.0629743 + 0.235023i
\(870\) 0 0
\(871\) 0.0455173 2.36603i 0.00154230 0.0801697i
\(872\) 0 0
\(873\) −26.0263 6.97372i −0.880856 0.236025i
\(874\) 0 0
\(875\) 23.3923 40.5167i 0.790804 1.36971i
\(876\) 0 0
\(877\) 1.83975 + 6.86603i 0.0621238 + 0.231849i 0.990006 0.141024i \(-0.0450394\pi\)
−0.927882 + 0.372873i \(0.878373\pi\)
\(878\) 0 0
\(879\) 0.124356 0.124356i 0.00419441 0.00419441i
\(880\) 0 0
\(881\) −11.8923 + 6.86603i −0.400662 + 0.231322i −0.686770 0.726875i \(-0.740972\pi\)
0.286108 + 0.958197i \(0.407639\pi\)
\(882\) 0 0
\(883\) −24.3397 −0.819098 −0.409549 0.912288i \(-0.634314\pi\)
−0.409549 + 0.912288i \(0.634314\pi\)
\(884\) 0 0
\(885\) −12.3923 −0.416563
\(886\) 0 0
\(887\) −16.3923 + 9.46410i −0.550400 + 0.317773i −0.749283 0.662250i \(-0.769602\pi\)
0.198883 + 0.980023i \(0.436268\pi\)
\(888\) 0 0
\(889\) 44.2487 44.2487i 1.48405 1.48405i
\(890\) 0 0
\(891\) 3.26795 + 12.1962i 0.109480 + 0.408586i
\(892\) 0 0
\(893\) −19.9282 + 34.5167i −0.666872 + 1.15506i
\(894\) 0 0
\(895\) 2.73205 + 0.732051i 0.0913224 + 0.0244698i
\(896\) 0 0
\(897\) −13.3590 3.85641i −0.446043 0.128762i
\(898\) 0 0
\(899\) −4.02628 + 15.0263i −0.134284 + 0.501154i
\(900\) 0 0
\(901\) −9.69615 5.59808i −0.323026 0.186499i
\(902\) 0 0
\(903\) −12.3923 + 3.32051i −0.412390 + 0.110500i
\(904\) 0 0
\(905\) 4.36603 + 4.36603i 0.145132 + 0.145132i
\(906\) 0 0
\(907\) −15.0526 26.0718i −0.499812 0.865700i 0.500188 0.865917i \(-0.333264\pi\)
−1.00000 0.000217054i \(0.999931\pi\)
\(908\) 0 0
\(909\) 5.10512i 0.169326i
\(910\) 0 0
\(911\) 43.1769i 1.43051i 0.698861 + 0.715257i \(0.253691\pi\)
−0.698861 + 0.715257i \(0.746309\pi\)
\(912\) 0 0
\(913\) −8.39230 14.5359i −0.277745 0.481068i
\(914\) 0 0
\(915\) −10.6603 10.6603i −0.352417 0.352417i
\(916\) 0 0
\(917\) 52.9808 14.1962i 1.74958 0.468798i
\(918\) 0 0
\(919\) 7.56218 + 4.36603i 0.249453 + 0.144022i 0.619514 0.784986i \(-0.287330\pi\)
−0.370061 + 0.929008i \(0.620663\pi\)
\(920\) 0 0
\(921\) −4.21539 + 15.7321i −0.138902 + 0.518389i
\(922\) 0 0
\(923\) 31.2487 17.2487i 1.02856 0.567748i
\(924\) 0 0
\(925\) −7.56218 2.02628i −0.248643 0.0666237i
\(926\) 0 0
\(927\) 4.02628 6.97372i 0.132240 0.229047i
\(928\) 0 0
\(929\) 1.65064 + 6.16025i 0.0541556 + 0.202111i 0.987703 0.156343i \(-0.0499705\pi\)
−0.933547 + 0.358454i \(0.883304\pi\)
\(930\) 0 0
\(931\) −35.3923 + 35.3923i −1.15994 + 1.15994i
\(932\) 0 0
\(933\) 4.17691 2.41154i 0.136746 0.0789504i
\(934\) 0 0
\(935\) 35.3205 1.15510
\(936\) 0 0
\(937\) 31.0000 1.01273 0.506363 0.862320i \(-0.330990\pi\)
0.506363 + 0.862320i \(0.330990\pi\)
\(938\) 0 0
\(939\) −2.87564 + 1.66025i −0.0938431 + 0.0541803i
\(940\) 0 0
\(941\) −39.7846 + 39.7846i −1.29694 + 1.29694i −0.366538 + 0.930403i \(0.619457\pi\)
−0.930403 + 0.366538i \(0.880543\pi\)
\(942\) 0 0
\(943\) −12.7917 47.7391i −0.416553 1.55460i
\(944\) 0 0
\(945\) 14.9282 25.8564i 0.485614 0.841109i
\(946\) 0 0
\(947\) 2.16987 + 0.581416i 0.0705114 + 0.0188935i 0.293902 0.955835i \(-0.405046\pi\)
−0.223391 + 0.974729i \(0.571713\pi\)
\(948\) 0 0
\(949\) 27.4808 + 16.5788i 0.892063 + 0.538172i
\(950\) 0 0
\(951\) −0.830127 + 3.09808i −0.0269187 + 0.100462i
\(952\) 0 0
\(953\) −28.6410 16.5359i −0.927774 0.535650i −0.0416668 0.999132i \(-0.513267\pi\)
−0.886107 + 0.463481i \(0.846600\pi\)
\(954\) 0 0
\(955\) −41.1506 + 11.0263i −1.33160 + 0.356802i
\(956\) 0 0
\(957\) 3.60770 + 3.60770i 0.116620 + 0.116620i
\(958\) 0 0
\(959\) 3.00000 + 5.19615i 0.0968751 + 0.167793i
\(960\) 0 0
\(961\) 8.85641i 0.285691i
\(962\) 0 0
\(963\) 6.73205i 0.216937i
\(964\) 0 0
\(965\) −4.96410 8.59808i −0.159800 0.276782i
\(966\) 0 0
\(967\) 20.6603 + 20.6603i 0.664389 + 0.664389i 0.956411 0.292022i \(-0.0943282\pi\)
−0.292022 + 0.956411i \(0.594328\pi\)
\(968\) 0 0
\(969\) −28.8564 + 7.73205i −0.927001 + 0.248389i
\(970\) 0 0
\(971\) −49.0070 28.2942i −1.57271 0.908005i −0.995835 0.0911731i \(-0.970938\pi\)
−0.576876 0.816832i \(-0.695728\pi\)
\(972\) 0 0
\(973\) 20.9282 78.1051i 0.670927 2.50394i
\(974\) 0 0
\(975\) 2.32051 + 2.41154i 0.0743157 + 0.0772312i
\(976\) 0 0
\(977\) −26.5263 7.10770i −0.848651 0.227395i −0.191817 0.981431i \(-0.561438\pi\)
−0.656834 + 0.754035i \(0.728105\pi\)
\(978\) 0 0
\(979\) −13.3205 + 23.0718i −0.425725 + 0.737378i
\(980\) 0 0
\(981\) 0.725009 + 2.70577i 0.0231478 + 0.0863886i
\(982\) 0 0
\(983\) −17.7846 + 17.7846i −0.567241 + 0.567241i −0.931355 0.364114i \(-0.881372\pi\)
0.364114 + 0.931355i \(0.381372\pi\)
\(984\) 0 0
\(985\) 6.63397 3.83013i 0.211376 0.122038i
\(986\) 0 0
\(987\) 17.8564 0.568376
\(988\) 0 0
\(989\) −23.8949 −0.759813
\(990\) 0 0
\(991\) −26.8301 + 15.4904i −0.852287 + 0.492068i −0.861422 0.507890i \(-0.830426\pi\)
0.00913480 + 0.999958i \(0.497092\pi\)
\(992\) 0 0
\(993\) 16.0000 16.0000i 0.507745 0.507745i
\(994\) 0 0
\(995\) −7.29423 27.2224i −0.231243 0.863009i
\(996\) 0 0
\(997\) 5.52628 9.57180i 0.175019 0.303142i −0.765149 0.643853i \(-0.777335\pi\)
0.940168 + 0.340712i \(0.110668\pi\)
\(998\) 0 0
\(999\) −23.8564 6.39230i −0.754783 0.202244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.bu.g.639.1 4
4.3 odd 2 832.2.bu.b.639.1 4
8.3 odd 2 416.2.bu.b.223.1 yes 4
8.5 even 2 416.2.bu.a.223.1 4
13.7 odd 12 832.2.bu.b.319.1 4
52.7 even 12 inner 832.2.bu.g.319.1 4
104.59 even 12 416.2.bu.a.319.1 yes 4
104.85 odd 12 416.2.bu.b.319.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.bu.a.223.1 4 8.5 even 2
416.2.bu.a.319.1 yes 4 104.59 even 12
416.2.bu.b.223.1 yes 4 8.3 odd 2
416.2.bu.b.319.1 yes 4 104.85 odd 12
832.2.bu.b.319.1 4 13.7 odd 12
832.2.bu.b.639.1 4 4.3 odd 2
832.2.bu.g.319.1 4 52.7 even 12 inner
832.2.bu.g.639.1 4 1.1 even 1 trivial