Properties

Label 416.2.bu.a.223.1
Level $416$
Weight $2$
Character 416.223
Analytic conductor $3.322$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [416,2,Mod(63,416)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(416, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("416.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.bu (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-6,0,-2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 223.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 416.223
Dual form 416.2.bu.a.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.633975 + 0.366025i) q^{3} +(-1.36603 + 1.36603i) q^{5} +(-1.00000 - 3.73205i) q^{7} +(-1.23205 + 2.13397i) q^{9} +(2.73205 + 0.732051i) q^{11} +(-3.50000 + 0.866025i) q^{13} +(0.366025 - 1.36603i) q^{15} +(-5.59808 - 3.23205i) q^{17} +(-6.09808 + 1.63397i) q^{19} +(2.00000 + 2.00000i) q^{21} +(-2.63397 - 4.56218i) q^{23} +1.26795i q^{25} -4.00000i q^{27} +(1.23205 + 2.13397i) q^{29} +(-4.46410 - 4.46410i) q^{31} +(-2.00000 + 0.535898i) q^{33} +(6.46410 + 3.73205i) q^{35} +(1.59808 - 5.96410i) q^{37} +(1.90192 - 1.83013i) q^{39} +(9.06218 + 2.42820i) q^{41} +(-2.26795 + 3.92820i) q^{43} +(-1.23205 - 4.59808i) q^{45} +(-4.46410 + 4.46410i) q^{47} +(-6.86603 + 3.96410i) q^{49} +4.73205 q^{51} -1.73205 q^{53} +(-4.73205 + 2.73205i) q^{55} +(3.26795 - 3.26795i) q^{57} +(2.26795 + 8.46410i) q^{59} +(-5.33013 + 9.23205i) q^{61} +(9.19615 + 2.46410i) q^{63} +(3.59808 - 5.96410i) q^{65} +(-0.169873 + 0.633975i) q^{67} +(3.33975 + 1.92820i) q^{69} +(9.56218 - 2.56218i) q^{71} +(6.29423 + 6.29423i) q^{73} +(-0.464102 - 0.803848i) q^{75} -10.9282i q^{77} -2.53590i q^{79} +(-2.23205 - 3.86603i) q^{81} +(-4.19615 - 4.19615i) q^{83} +(12.0622 - 3.23205i) q^{85} +(-1.56218 - 0.901924i) q^{87} +(2.43782 - 9.09808i) q^{89} +(6.73205 + 12.1962i) q^{91} +(4.46410 + 1.19615i) q^{93} +(6.09808 - 10.5622i) q^{95} +(2.83013 + 10.5622i) q^{97} +(-4.92820 + 4.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 2 q^{5} - 4 q^{7} + 2 q^{9} + 4 q^{11} - 14 q^{13} - 2 q^{15} - 12 q^{17} - 14 q^{19} + 8 q^{21} - 14 q^{23} - 2 q^{29} - 4 q^{31} - 8 q^{33} + 12 q^{35} - 4 q^{37} + 18 q^{39} + 12 q^{41}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.633975 + 0.366025i −0.366025 + 0.211325i −0.671721 0.740805i \(-0.734444\pi\)
0.305695 + 0.952129i \(0.401111\pi\)
\(4\) 0 0
\(5\) −1.36603 + 1.36603i −0.610905 + 0.610905i −0.943182 0.332277i \(-0.892183\pi\)
0.332277 + 0.943182i \(0.392183\pi\)
\(6\) 0 0
\(7\) −1.00000 3.73205i −0.377964 1.41058i −0.848965 0.528450i \(-0.822774\pi\)
0.471000 0.882133i \(-0.343893\pi\)
\(8\) 0 0
\(9\) −1.23205 + 2.13397i −0.410684 + 0.711325i
\(10\) 0 0
\(11\) 2.73205 + 0.732051i 0.823744 + 0.220722i 0.645983 0.763352i \(-0.276448\pi\)
0.177762 + 0.984074i \(0.443114\pi\)
\(12\) 0 0
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) 0.366025 1.36603i 0.0945074 0.352706i
\(16\) 0 0
\(17\) −5.59808 3.23205i −1.35773 0.783887i −0.368415 0.929661i \(-0.620099\pi\)
−0.989318 + 0.145774i \(0.953433\pi\)
\(18\) 0 0
\(19\) −6.09808 + 1.63397i −1.39899 + 0.374859i −0.877984 0.478691i \(-0.841112\pi\)
−0.521011 + 0.853550i \(0.674445\pi\)
\(20\) 0 0
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 0 0
\(23\) −2.63397 4.56218i −0.549222 0.951280i −0.998328 0.0578016i \(-0.981591\pi\)
0.449106 0.893478i \(-0.351742\pi\)
\(24\) 0 0
\(25\) 1.26795i 0.253590i
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 1.23205 + 2.13397i 0.228786 + 0.396269i 0.957449 0.288604i \(-0.0931910\pi\)
−0.728663 + 0.684873i \(0.759858\pi\)
\(30\) 0 0
\(31\) −4.46410 4.46410i −0.801776 0.801776i 0.181597 0.983373i \(-0.441873\pi\)
−0.983373 + 0.181597i \(0.941873\pi\)
\(32\) 0 0
\(33\) −2.00000 + 0.535898i −0.348155 + 0.0932879i
\(34\) 0 0
\(35\) 6.46410 + 3.73205i 1.09263 + 0.630832i
\(36\) 0 0
\(37\) 1.59808 5.96410i 0.262722 0.980492i −0.700908 0.713252i \(-0.747222\pi\)
0.963630 0.267240i \(-0.0861118\pi\)
\(38\) 0 0
\(39\) 1.90192 1.83013i 0.304552 0.293055i
\(40\) 0 0
\(41\) 9.06218 + 2.42820i 1.41527 + 0.379222i 0.883805 0.467856i \(-0.154973\pi\)
0.531470 + 0.847077i \(0.321640\pi\)
\(42\) 0 0
\(43\) −2.26795 + 3.92820i −0.345859 + 0.599045i −0.985509 0.169621i \(-0.945746\pi\)
0.639650 + 0.768666i \(0.279079\pi\)
\(44\) 0 0
\(45\) −1.23205 4.59808i −0.183663 0.685441i
\(46\) 0 0
\(47\) −4.46410 + 4.46410i −0.651156 + 0.651156i −0.953271 0.302115i \(-0.902307\pi\)
0.302115 + 0.953271i \(0.402307\pi\)
\(48\) 0 0
\(49\) −6.86603 + 3.96410i −0.980861 + 0.566300i
\(50\) 0 0
\(51\) 4.73205 0.662620
\(52\) 0 0
\(53\) −1.73205 −0.237915 −0.118958 0.992899i \(-0.537955\pi\)
−0.118958 + 0.992899i \(0.537955\pi\)
\(54\) 0 0
\(55\) −4.73205 + 2.73205i −0.638070 + 0.368390i
\(56\) 0 0
\(57\) 3.26795 3.26795i 0.432850 0.432850i
\(58\) 0 0
\(59\) 2.26795 + 8.46410i 0.295262 + 1.10193i 0.941009 + 0.338381i \(0.109879\pi\)
−0.645747 + 0.763551i \(0.723454\pi\)
\(60\) 0 0
\(61\) −5.33013 + 9.23205i −0.682453 + 1.18204i 0.291777 + 0.956486i \(0.405753\pi\)
−0.974230 + 0.225557i \(0.927580\pi\)
\(62\) 0 0
\(63\) 9.19615 + 2.46410i 1.15861 + 0.310448i
\(64\) 0 0
\(65\) 3.59808 5.96410i 0.446286 0.739756i
\(66\) 0 0
\(67\) −0.169873 + 0.633975i −0.0207533 + 0.0774523i −0.975526 0.219885i \(-0.929432\pi\)
0.954773 + 0.297337i \(0.0960985\pi\)
\(68\) 0 0
\(69\) 3.33975 + 1.92820i 0.402058 + 0.232128i
\(70\) 0 0
\(71\) 9.56218 2.56218i 1.13482 0.304075i 0.357955 0.933739i \(-0.383474\pi\)
0.776867 + 0.629664i \(0.216808\pi\)
\(72\) 0 0
\(73\) 6.29423 + 6.29423i 0.736684 + 0.736684i 0.971935 0.235251i \(-0.0755912\pi\)
−0.235251 + 0.971935i \(0.575591\pi\)
\(74\) 0 0
\(75\) −0.464102 0.803848i −0.0535898 0.0928203i
\(76\) 0 0
\(77\) 10.9282i 1.24538i
\(78\) 0 0
\(79\) 2.53590i 0.285311i −0.989772 0.142655i \(-0.954436\pi\)
0.989772 0.142655i \(-0.0455641\pi\)
\(80\) 0 0
\(81\) −2.23205 3.86603i −0.248006 0.429558i
\(82\) 0 0
\(83\) −4.19615 4.19615i −0.460588 0.460588i 0.438260 0.898848i \(-0.355595\pi\)
−0.898848 + 0.438260i \(0.855595\pi\)
\(84\) 0 0
\(85\) 12.0622 3.23205i 1.30833 0.350565i
\(86\) 0 0
\(87\) −1.56218 0.901924i −0.167483 0.0966964i
\(88\) 0 0
\(89\) 2.43782 9.09808i 0.258409 0.964394i −0.707754 0.706459i \(-0.750291\pi\)
0.966162 0.257935i \(-0.0830420\pi\)
\(90\) 0 0
\(91\) 6.73205 + 12.1962i 0.705711 + 1.27850i
\(92\) 0 0
\(93\) 4.46410 + 1.19615i 0.462906 + 0.124035i
\(94\) 0 0
\(95\) 6.09808 10.5622i 0.625649 1.08366i
\(96\) 0 0
\(97\) 2.83013 + 10.5622i 0.287356 + 1.07243i 0.947101 + 0.320937i \(0.103998\pi\)
−0.659745 + 0.751490i \(0.729336\pi\)
\(98\) 0 0
\(99\) −4.92820 + 4.92820i −0.495303 + 0.495303i
\(100\) 0 0
\(101\) 1.79423 1.03590i 0.178532 0.103076i −0.408071 0.912950i \(-0.633798\pi\)
0.586603 + 0.809875i \(0.300465\pi\)
\(102\) 0 0
\(103\) −3.26795 −0.322001 −0.161000 0.986954i \(-0.551472\pi\)
−0.161000 + 0.986954i \(0.551472\pi\)
\(104\) 0 0
\(105\) −5.46410 −0.533242
\(106\) 0 0
\(107\) 2.36603 1.36603i 0.228732 0.132059i −0.381255 0.924470i \(-0.624508\pi\)
0.609987 + 0.792411i \(0.291175\pi\)
\(108\) 0 0
\(109\) −0.803848 + 0.803848i −0.0769946 + 0.0769946i −0.744555 0.667561i \(-0.767338\pi\)
0.667561 + 0.744555i \(0.267338\pi\)
\(110\) 0 0
\(111\) 1.16987 + 4.36603i 0.111039 + 0.414405i
\(112\) 0 0
\(113\) 3.59808 6.23205i 0.338479 0.586262i −0.645668 0.763618i \(-0.723421\pi\)
0.984147 + 0.177356i \(0.0567544\pi\)
\(114\) 0 0
\(115\) 9.83013 + 2.63397i 0.916664 + 0.245619i
\(116\) 0 0
\(117\) 2.46410 8.53590i 0.227806 0.789144i
\(118\) 0 0
\(119\) −6.46410 + 24.1244i −0.592563 + 2.21148i
\(120\) 0 0
\(121\) −2.59808 1.50000i −0.236189 0.136364i
\(122\) 0 0
\(123\) −6.63397 + 1.77757i −0.598165 + 0.160278i
\(124\) 0 0
\(125\) −8.56218 8.56218i −0.765824 0.765824i
\(126\) 0 0
\(127\) 8.09808 + 14.0263i 0.718588 + 1.24463i 0.961559 + 0.274598i \(0.0885446\pi\)
−0.242971 + 0.970034i \(0.578122\pi\)
\(128\) 0 0
\(129\) 3.32051i 0.292354i
\(130\) 0 0
\(131\) 14.1962i 1.24032i −0.784474 0.620162i \(-0.787067\pi\)
0.784474 0.620162i \(-0.212933\pi\)
\(132\) 0 0
\(133\) 12.1962 + 21.1244i 1.05754 + 1.83171i
\(134\) 0 0
\(135\) 5.46410 + 5.46410i 0.470275 + 0.470275i
\(136\) 0 0
\(137\) −1.50000 + 0.401924i −0.128154 + 0.0343387i −0.322326 0.946629i \(-0.604465\pi\)
0.194172 + 0.980967i \(0.437798\pi\)
\(138\) 0 0
\(139\) −18.1244 10.4641i −1.53729 0.887554i −0.998996 0.0447948i \(-0.985737\pi\)
−0.538292 0.842759i \(-0.680930\pi\)
\(140\) 0 0
\(141\) 1.19615 4.46410i 0.100734 0.375945i
\(142\) 0 0
\(143\) −10.1962 0.196152i −0.852645 0.0164031i
\(144\) 0 0
\(145\) −4.59808 1.23205i −0.381849 0.102316i
\(146\) 0 0
\(147\) 2.90192 5.02628i 0.239347 0.414561i
\(148\) 0 0
\(149\) 4.13397 + 15.4282i 0.338668 + 1.26393i 0.899837 + 0.436226i \(0.143685\pi\)
−0.561169 + 0.827701i \(0.689648\pi\)
\(150\) 0 0
\(151\) −6.46410 + 6.46410i −0.526041 + 0.526041i −0.919390 0.393348i \(-0.871317\pi\)
0.393348 + 0.919390i \(0.371317\pi\)
\(152\) 0 0
\(153\) 13.7942 7.96410i 1.11520 0.643859i
\(154\) 0 0
\(155\) 12.1962 0.979619
\(156\) 0 0
\(157\) −15.5359 −1.23990 −0.619950 0.784641i \(-0.712847\pi\)
−0.619950 + 0.784641i \(0.712847\pi\)
\(158\) 0 0
\(159\) 1.09808 0.633975i 0.0870831 0.0502775i
\(160\) 0 0
\(161\) −14.3923 + 14.3923i −1.13427 + 1.13427i
\(162\) 0 0
\(163\) −4.26795 15.9282i −0.334292 1.24759i −0.904635 0.426187i \(-0.859857\pi\)
0.570344 0.821406i \(-0.306810\pi\)
\(164\) 0 0
\(165\) 2.00000 3.46410i 0.155700 0.269680i
\(166\) 0 0
\(167\) 6.19615 + 1.66025i 0.479473 + 0.128474i 0.490457 0.871465i \(-0.336830\pi\)
−0.0109844 + 0.999940i \(0.503497\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 4.02628 15.0263i 0.307897 1.14909i
\(172\) 0 0
\(173\) −12.5885 7.26795i −0.957083 0.552572i −0.0618087 0.998088i \(-0.519687\pi\)
−0.895274 + 0.445516i \(0.853020\pi\)
\(174\) 0 0
\(175\) 4.73205 1.26795i 0.357709 0.0958479i
\(176\) 0 0
\(177\) −4.53590 4.53590i −0.340939 0.340939i
\(178\) 0 0
\(179\) −0.732051 1.26795i −0.0547160 0.0947710i 0.837370 0.546636i \(-0.184092\pi\)
−0.892086 + 0.451865i \(0.850759\pi\)
\(180\) 0 0
\(181\) 3.19615i 0.237568i −0.992920 0.118784i \(-0.962100\pi\)
0.992920 0.118784i \(-0.0378996\pi\)
\(182\) 0 0
\(183\) 7.80385i 0.576877i
\(184\) 0 0
\(185\) 5.96410 + 10.3301i 0.438489 + 0.759486i
\(186\) 0 0
\(187\) −12.9282 12.9282i −0.945404 0.945404i
\(188\) 0 0
\(189\) −14.9282 + 4.00000i −1.08587 + 0.290957i
\(190\) 0 0
\(191\) −19.0981 11.0263i −1.38189 0.797834i −0.389505 0.921024i \(-0.627354\pi\)
−0.992383 + 0.123191i \(0.960687\pi\)
\(192\) 0 0
\(193\) 1.33013 4.96410i 0.0957446 0.357324i −0.901387 0.433015i \(-0.857450\pi\)
0.997131 + 0.0756913i \(0.0241163\pi\)
\(194\) 0 0
\(195\) −0.0980762 + 5.09808i −0.00702338 + 0.365081i
\(196\) 0 0
\(197\) −3.83013 1.02628i −0.272885 0.0731194i 0.119781 0.992800i \(-0.461781\pi\)
−0.392667 + 0.919681i \(0.628447\pi\)
\(198\) 0 0
\(199\) 7.29423 12.6340i 0.517074 0.895599i −0.482729 0.875770i \(-0.660354\pi\)
0.999803 0.0198291i \(-0.00631220\pi\)
\(200\) 0 0
\(201\) −0.124356 0.464102i −0.00877137 0.0327352i
\(202\) 0 0
\(203\) 6.73205 6.73205i 0.472497 0.472497i
\(204\) 0 0
\(205\) −15.6962 + 9.06218i −1.09627 + 0.632930i
\(206\) 0 0
\(207\) 12.9808 0.902225
\(208\) 0 0
\(209\) −17.8564 −1.23515
\(210\) 0 0
\(211\) −21.6340 + 12.4904i −1.48934 + 0.859873i −0.999926 0.0121758i \(-0.996124\pi\)
−0.489418 + 0.872049i \(0.662791\pi\)
\(212\) 0 0
\(213\) −5.12436 + 5.12436i −0.351115 + 0.351115i
\(214\) 0 0
\(215\) −2.26795 8.46410i −0.154673 0.577247i
\(216\) 0 0
\(217\) −12.1962 + 21.1244i −0.827929 + 1.43401i
\(218\) 0 0
\(219\) −6.29423 1.68653i −0.425325 0.113965i
\(220\) 0 0
\(221\) 22.3923 + 6.46410i 1.50627 + 0.434823i
\(222\) 0 0
\(223\) −7.56218 + 28.2224i −0.506401 + 1.88991i −0.0530277 + 0.998593i \(0.516887\pi\)
−0.453373 + 0.891321i \(0.649780\pi\)
\(224\) 0 0
\(225\) −2.70577 1.56218i −0.180385 0.104145i
\(226\) 0 0
\(227\) 4.36603 1.16987i 0.289783 0.0776472i −0.110999 0.993821i \(-0.535405\pi\)
0.400782 + 0.916173i \(0.368738\pi\)
\(228\) 0 0
\(229\) 12.2679 + 12.2679i 0.810689 + 0.810689i 0.984737 0.174048i \(-0.0556849\pi\)
−0.174048 + 0.984737i \(0.555685\pi\)
\(230\) 0 0
\(231\) 4.00000 + 6.92820i 0.263181 + 0.455842i
\(232\) 0 0
\(233\) 15.4641i 1.01309i 0.862214 + 0.506543i \(0.169077\pi\)
−0.862214 + 0.506543i \(0.830923\pi\)
\(234\) 0 0
\(235\) 12.1962i 0.795589i
\(236\) 0 0
\(237\) 0.928203 + 1.60770i 0.0602933 + 0.104431i
\(238\) 0 0
\(239\) 7.26795 + 7.26795i 0.470125 + 0.470125i 0.901955 0.431830i \(-0.142132\pi\)
−0.431830 + 0.901955i \(0.642132\pi\)
\(240\) 0 0
\(241\) −1.50000 + 0.401924i −0.0966235 + 0.0258902i −0.306807 0.951772i \(-0.599261\pi\)
0.210183 + 0.977662i \(0.432594\pi\)
\(242\) 0 0
\(243\) 13.2224 + 7.63397i 0.848219 + 0.489720i
\(244\) 0 0
\(245\) 3.96410 14.7942i 0.253257 0.945169i
\(246\) 0 0
\(247\) 19.9282 11.0000i 1.26800 0.699913i
\(248\) 0 0
\(249\) 4.19615 + 1.12436i 0.265920 + 0.0712531i
\(250\) 0 0
\(251\) 4.63397 8.02628i 0.292494 0.506614i −0.681905 0.731441i \(-0.738848\pi\)
0.974399 + 0.224827i \(0.0721816\pi\)
\(252\) 0 0
\(253\) −3.85641 14.3923i −0.242450 0.904836i
\(254\) 0 0
\(255\) −6.46410 + 6.46410i −0.404798 + 0.404798i
\(256\) 0 0
\(257\) −3.23205 + 1.86603i −0.201610 + 0.116399i −0.597406 0.801939i \(-0.703802\pi\)
0.395796 + 0.918338i \(0.370469\pi\)
\(258\) 0 0
\(259\) −23.8564 −1.48236
\(260\) 0 0
\(261\) −6.07180 −0.375835
\(262\) 0 0
\(263\) −21.5885 + 12.4641i −1.33120 + 0.768569i −0.985484 0.169769i \(-0.945698\pi\)
−0.345717 + 0.938339i \(0.612364\pi\)
\(264\) 0 0
\(265\) 2.36603 2.36603i 0.145344 0.145344i
\(266\) 0 0
\(267\) 1.78461 + 6.66025i 0.109216 + 0.407601i
\(268\) 0 0
\(269\) 4.00000 6.92820i 0.243884 0.422420i −0.717933 0.696112i \(-0.754912\pi\)
0.961817 + 0.273692i \(0.0882449\pi\)
\(270\) 0 0
\(271\) −17.1962 4.60770i −1.04459 0.279898i −0.304577 0.952488i \(-0.598515\pi\)
−0.740015 + 0.672590i \(0.765182\pi\)
\(272\) 0 0
\(273\) −8.73205 5.26795i −0.528488 0.318831i
\(274\) 0 0
\(275\) −0.928203 + 3.46410i −0.0559728 + 0.208893i
\(276\) 0 0
\(277\) −7.66987 4.42820i −0.460838 0.266065i 0.251559 0.967842i \(-0.419057\pi\)
−0.712397 + 0.701777i \(0.752390\pi\)
\(278\) 0 0
\(279\) 15.0263 4.02628i 0.899600 0.241047i
\(280\) 0 0
\(281\) −11.6340 11.6340i −0.694025 0.694025i 0.269090 0.963115i \(-0.413277\pi\)
−0.963115 + 0.269090i \(0.913277\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 8.92820i 0.528861i
\(286\) 0 0
\(287\) 36.2487i 2.13969i
\(288\) 0 0
\(289\) 12.3923 + 21.4641i 0.728959 + 1.26259i
\(290\) 0 0
\(291\) −5.66025 5.66025i −0.331810 0.331810i
\(292\) 0 0
\(293\) −0.232051 + 0.0621778i −0.0135566 + 0.00363247i −0.265591 0.964086i \(-0.585567\pi\)
0.252034 + 0.967718i \(0.418900\pi\)
\(294\) 0 0
\(295\) −14.6603 8.46410i −0.853553 0.492799i
\(296\) 0 0
\(297\) 2.92820 10.9282i 0.169912 0.634119i
\(298\) 0 0
\(299\) 13.1699 + 13.6865i 0.761633 + 0.791513i
\(300\) 0 0
\(301\) 16.9282 + 4.53590i 0.975725 + 0.261445i
\(302\) 0 0
\(303\) −0.758330 + 1.31347i −0.0435649 + 0.0754567i
\(304\) 0 0
\(305\) −5.33013 19.8923i −0.305202 1.13903i
\(306\) 0 0
\(307\) 15.7321 15.7321i 0.897876 0.897876i −0.0973724 0.995248i \(-0.531044\pi\)
0.995248 + 0.0973724i \(0.0310438\pi\)
\(308\) 0 0
\(309\) 2.07180 1.19615i 0.117860 0.0680467i
\(310\) 0 0
\(311\) 6.58846 0.373597 0.186799 0.982398i \(-0.440189\pi\)
0.186799 + 0.982398i \(0.440189\pi\)
\(312\) 0 0
\(313\) −4.53590 −0.256384 −0.128192 0.991749i \(-0.540917\pi\)
−0.128192 + 0.991749i \(0.540917\pi\)
\(314\) 0 0
\(315\) −15.9282 + 9.19615i −0.897453 + 0.518144i
\(316\) 0 0
\(317\) 3.09808 3.09808i 0.174005 0.174005i −0.614731 0.788737i \(-0.710736\pi\)
0.788737 + 0.614731i \(0.210736\pi\)
\(318\) 0 0
\(319\) 1.80385 + 6.73205i 0.100996 + 0.376922i
\(320\) 0 0
\(321\) −1.00000 + 1.73205i −0.0558146 + 0.0966736i
\(322\) 0 0
\(323\) 39.4186 + 10.5622i 2.19331 + 0.587695i
\(324\) 0 0
\(325\) −1.09808 4.43782i −0.0609103 0.246166i
\(326\) 0 0
\(327\) 0.215390 0.803848i 0.0119111 0.0444529i
\(328\) 0 0
\(329\) 21.1244 + 12.1962i 1.16462 + 0.672396i
\(330\) 0 0
\(331\) −29.8564 + 8.00000i −1.64106 + 0.439720i −0.957089 0.289793i \(-0.906414\pi\)
−0.683967 + 0.729513i \(0.739747\pi\)
\(332\) 0 0
\(333\) 10.7583 + 10.7583i 0.589553 + 0.589553i
\(334\) 0 0
\(335\) −0.633975 1.09808i −0.0346377 0.0599943i
\(336\) 0 0
\(337\) 30.8564i 1.68086i −0.541924 0.840428i \(-0.682304\pi\)
0.541924 0.840428i \(-0.317696\pi\)
\(338\) 0 0
\(339\) 5.26795i 0.286116i
\(340\) 0 0
\(341\) −8.92820 15.4641i −0.483489 0.837428i
\(342\) 0 0
\(343\) 2.53590 + 2.53590i 0.136926 + 0.136926i
\(344\) 0 0
\(345\) −7.19615 + 1.92820i −0.387428 + 0.103811i
\(346\) 0 0
\(347\) 30.7583 + 17.7583i 1.65119 + 0.953317i 0.976582 + 0.215144i \(0.0690221\pi\)
0.674611 + 0.738173i \(0.264311\pi\)
\(348\) 0 0
\(349\) −2.63397 + 9.83013i −0.140993 + 0.526195i 0.858908 + 0.512130i \(0.171144\pi\)
−0.999901 + 0.0140642i \(0.995523\pi\)
\(350\) 0 0
\(351\) 3.46410 + 14.0000i 0.184900 + 0.747265i
\(352\) 0 0
\(353\) 34.3564 + 9.20577i 1.82861 + 0.489974i 0.997782 0.0665606i \(-0.0212026\pi\)
0.830825 + 0.556534i \(0.187869\pi\)
\(354\) 0 0
\(355\) −9.56218 + 16.5622i −0.507508 + 0.879029i
\(356\) 0 0
\(357\) −4.73205 17.6603i −0.250447 0.934680i
\(358\) 0 0
\(359\) −9.07180 + 9.07180i −0.478791 + 0.478791i −0.904745 0.425954i \(-0.859939\pi\)
0.425954 + 0.904745i \(0.359939\pi\)
\(360\) 0 0
\(361\) 18.0622 10.4282i 0.950641 0.548853i
\(362\) 0 0
\(363\) 2.19615 0.115268
\(364\) 0 0
\(365\) −17.1962 −0.900088
\(366\) 0 0
\(367\) 20.4904 11.8301i 1.06959 0.617528i 0.141520 0.989935i \(-0.454801\pi\)
0.928069 + 0.372408i \(0.121468\pi\)
\(368\) 0 0
\(369\) −16.3468 + 16.3468i −0.850980 + 0.850980i
\(370\) 0 0
\(371\) 1.73205 + 6.46410i 0.0899236 + 0.335599i
\(372\) 0 0
\(373\) −5.03590 + 8.72243i −0.260749 + 0.451630i −0.966441 0.256888i \(-0.917303\pi\)
0.705692 + 0.708519i \(0.250636\pi\)
\(374\) 0 0
\(375\) 8.56218 + 2.29423i 0.442149 + 0.118473i
\(376\) 0 0
\(377\) −6.16025 6.40192i −0.317269 0.329716i
\(378\) 0 0
\(379\) −1.02628 + 3.83013i −0.0527164 + 0.196740i −0.987262 0.159103i \(-0.949140\pi\)
0.934546 + 0.355844i \(0.115806\pi\)
\(380\) 0 0
\(381\) −10.2679 5.92820i −0.526043 0.303711i
\(382\) 0 0
\(383\) −6.92820 + 1.85641i −0.354015 + 0.0948579i −0.431444 0.902140i \(-0.641996\pi\)
0.0774289 + 0.996998i \(0.475329\pi\)
\(384\) 0 0
\(385\) 14.9282 + 14.9282i 0.760812 + 0.760812i
\(386\) 0 0
\(387\) −5.58846 9.67949i −0.284077 0.492036i
\(388\) 0 0
\(389\) 10.6603i 0.540496i 0.962791 + 0.270248i \(0.0871057\pi\)
−0.962791 + 0.270248i \(0.912894\pi\)
\(390\) 0 0
\(391\) 34.0526i 1.72211i
\(392\) 0 0
\(393\) 5.19615 + 9.00000i 0.262111 + 0.453990i
\(394\) 0 0
\(395\) 3.46410 + 3.46410i 0.174298 + 0.174298i
\(396\) 0 0
\(397\) −4.56218 + 1.22243i −0.228969 + 0.0613521i −0.371479 0.928441i \(-0.621149\pi\)
0.142510 + 0.989793i \(0.454483\pi\)
\(398\) 0 0
\(399\) −15.4641 8.92820i −0.774173 0.446969i
\(400\) 0 0
\(401\) 3.03590 11.3301i 0.151606 0.565800i −0.847767 0.530369i \(-0.822053\pi\)
0.999372 0.0354301i \(-0.0112801\pi\)
\(402\) 0 0
\(403\) 19.4904 + 11.7583i 0.970885 + 0.585724i
\(404\) 0 0
\(405\) 8.33013 + 2.23205i 0.413927 + 0.110911i
\(406\) 0 0
\(407\) 8.73205 15.1244i 0.432832 0.749686i
\(408\) 0 0
\(409\) −1.25833 4.69615i −0.0622204 0.232210i 0.927812 0.373047i \(-0.121687\pi\)
−0.990033 + 0.140838i \(0.955020\pi\)
\(410\) 0 0
\(411\) 0.803848 0.803848i 0.0396509 0.0396509i
\(412\) 0 0
\(413\) 29.3205 16.9282i 1.44277 0.832982i
\(414\) 0 0
\(415\) 11.4641 0.562751
\(416\) 0 0
\(417\) 15.3205 0.750249
\(418\) 0 0
\(419\) −19.9019 + 11.4904i −0.972273 + 0.561342i −0.899928 0.436038i \(-0.856381\pi\)
−0.0723443 + 0.997380i \(0.523048\pi\)
\(420\) 0 0
\(421\) 19.2942 19.2942i 0.940343 0.940343i −0.0579749 0.998318i \(-0.518464\pi\)
0.998318 + 0.0579749i \(0.0184643\pi\)
\(422\) 0 0
\(423\) −4.02628 15.0263i −0.195764 0.730603i
\(424\) 0 0
\(425\) 4.09808 7.09808i 0.198786 0.344307i
\(426\) 0 0
\(427\) 39.7846 + 10.6603i 1.92531 + 0.515886i
\(428\) 0 0
\(429\) 6.53590 3.60770i 0.315556 0.174181i
\(430\) 0 0
\(431\) 0.875644 3.26795i 0.0421783 0.157412i −0.941625 0.336664i \(-0.890701\pi\)
0.983803 + 0.179253i \(0.0573679\pi\)
\(432\) 0 0
\(433\) −28.2846 16.3301i −1.35927 0.784776i −0.369746 0.929133i \(-0.620555\pi\)
−0.989526 + 0.144357i \(0.953889\pi\)
\(434\) 0 0
\(435\) 3.36603 0.901924i 0.161389 0.0432439i
\(436\) 0 0
\(437\) 23.5167 + 23.5167i 1.12495 + 1.12495i
\(438\) 0 0
\(439\) −1.53590 2.66025i −0.0733044 0.126967i 0.827043 0.562138i \(-0.190021\pi\)
−0.900348 + 0.435171i \(0.856688\pi\)
\(440\) 0 0
\(441\) 19.5359i 0.930281i
\(442\) 0 0
\(443\) 17.8564i 0.848383i 0.905572 + 0.424192i \(0.139442\pi\)
−0.905572 + 0.424192i \(0.860558\pi\)
\(444\) 0 0
\(445\) 9.09808 + 15.7583i 0.431290 + 0.747016i
\(446\) 0 0
\(447\) −8.26795 8.26795i −0.391061 0.391061i
\(448\) 0 0
\(449\) 30.9545 8.29423i 1.46083 0.391429i 0.561055 0.827778i \(-0.310396\pi\)
0.899777 + 0.436350i \(0.143729\pi\)
\(450\) 0 0
\(451\) 22.9808 + 13.2679i 1.08212 + 0.624763i
\(452\) 0 0
\(453\) 1.73205 6.46410i 0.0813788 0.303710i
\(454\) 0 0
\(455\) −25.8564 7.46410i −1.21217 0.349922i
\(456\) 0 0
\(457\) −14.2583 3.82051i −0.666977 0.178716i −0.0905841 0.995889i \(-0.528873\pi\)
−0.576393 + 0.817173i \(0.695540\pi\)
\(458\) 0 0
\(459\) −12.9282 + 22.3923i −0.603437 + 1.04518i
\(460\) 0 0
\(461\) 8.66987 + 32.3564i 0.403796 + 1.50699i 0.806265 + 0.591554i \(0.201486\pi\)
−0.402469 + 0.915434i \(0.631848\pi\)
\(462\) 0 0
\(463\) 10.7321 10.7321i 0.498761 0.498761i −0.412291 0.911052i \(-0.635271\pi\)
0.911052 + 0.412291i \(0.135271\pi\)
\(464\) 0 0
\(465\) −7.73205 + 4.46410i −0.358565 + 0.207018i
\(466\) 0 0
\(467\) −13.8564 −0.641198 −0.320599 0.947215i \(-0.603884\pi\)
−0.320599 + 0.947215i \(0.603884\pi\)
\(468\) 0 0
\(469\) 2.53590 0.117097
\(470\) 0 0
\(471\) 9.84936 5.68653i 0.453835 0.262022i
\(472\) 0 0
\(473\) −9.07180 + 9.07180i −0.417122 + 0.417122i
\(474\) 0 0
\(475\) −2.07180 7.73205i −0.0950606 0.354771i
\(476\) 0 0
\(477\) 2.13397 3.69615i 0.0977080 0.169235i
\(478\) 0 0
\(479\) 5.63397 + 1.50962i 0.257423 + 0.0689763i 0.385222 0.922824i \(-0.374125\pi\)
−0.127800 + 0.991800i \(0.540791\pi\)
\(480\) 0 0
\(481\) −0.428203 + 22.2583i −0.0195244 + 1.01489i
\(482\) 0 0
\(483\) 3.85641 14.3923i 0.175473 0.654873i
\(484\) 0 0
\(485\) −18.2942 10.5622i −0.830698 0.479604i
\(486\) 0 0
\(487\) −5.00000 + 1.33975i −0.226572 + 0.0607097i −0.370319 0.928905i \(-0.620752\pi\)
0.143747 + 0.989614i \(0.454085\pi\)
\(488\) 0 0
\(489\) 8.53590 + 8.53590i 0.386007 + 0.386007i
\(490\) 0 0
\(491\) 5.53590 + 9.58846i 0.249832 + 0.432721i 0.963479 0.267784i \(-0.0862914\pi\)
−0.713647 + 0.700505i \(0.752958\pi\)
\(492\) 0 0
\(493\) 15.9282i 0.717370i
\(494\) 0 0
\(495\) 13.4641i 0.605166i
\(496\) 0 0
\(497\) −19.1244 33.1244i −0.857845 1.48583i
\(498\) 0 0
\(499\) −7.39230 7.39230i −0.330925 0.330925i 0.522013 0.852938i \(-0.325181\pi\)
−0.852938 + 0.522013i \(0.825181\pi\)
\(500\) 0 0
\(501\) −4.53590 + 1.21539i −0.202649 + 0.0542996i
\(502\) 0 0
\(503\) −28.3923 16.3923i −1.26595 0.730897i −0.291731 0.956500i \(-0.594231\pi\)
−0.974219 + 0.225604i \(0.927565\pi\)
\(504\) 0 0
\(505\) −1.03590 + 3.86603i −0.0460969 + 0.172036i
\(506\) 0 0
\(507\) −5.07180 + 8.05256i −0.225246 + 0.357627i
\(508\) 0 0
\(509\) 3.96410 + 1.06218i 0.175706 + 0.0470802i 0.345599 0.938382i \(-0.387676\pi\)
−0.169893 + 0.985462i \(0.554342\pi\)
\(510\) 0 0
\(511\) 17.1962 29.7846i 0.760713 1.31759i
\(512\) 0 0
\(513\) 6.53590 + 24.3923i 0.288567 + 1.07695i
\(514\) 0 0
\(515\) 4.46410 4.46410i 0.196712 0.196712i
\(516\) 0 0
\(517\) −15.4641 + 8.92820i −0.680110 + 0.392662i
\(518\) 0 0
\(519\) 10.6410 0.467089
\(520\) 0 0
\(521\) −38.6603 −1.69374 −0.846868 0.531803i \(-0.821515\pi\)
−0.846868 + 0.531803i \(0.821515\pi\)
\(522\) 0 0
\(523\) −8.32051 + 4.80385i −0.363830 + 0.210058i −0.670760 0.741675i \(-0.734032\pi\)
0.306929 + 0.951732i \(0.400698\pi\)
\(524\) 0 0
\(525\) −2.53590 + 2.53590i −0.110676 + 0.110676i
\(526\) 0 0
\(527\) 10.5622 + 39.4186i 0.460096 + 1.71710i
\(528\) 0 0
\(529\) −2.37564 + 4.11474i −0.103289 + 0.178902i
\(530\) 0 0
\(531\) −20.8564 5.58846i −0.905091 0.242518i
\(532\) 0 0
\(533\) −33.8205 0.650635i −1.46493 0.0281821i
\(534\) 0 0
\(535\) −1.36603 + 5.09808i −0.0590584 + 0.220409i
\(536\) 0 0
\(537\) 0.928203 + 0.535898i 0.0400549 + 0.0231257i
\(538\) 0 0
\(539\) −21.6603 + 5.80385i −0.932973 + 0.249989i
\(540\) 0 0
\(541\) −31.5622 31.5622i −1.35696 1.35696i −0.877636 0.479328i \(-0.840880\pi\)
−0.479328 0.877636i \(-0.659120\pi\)
\(542\) 0 0
\(543\) 1.16987 + 2.02628i 0.0502041 + 0.0869560i
\(544\) 0 0
\(545\) 2.19615i 0.0940728i
\(546\) 0 0
\(547\) 7.80385i 0.333668i 0.985985 + 0.166834i \(0.0533545\pi\)
−0.985985 + 0.166834i \(0.946646\pi\)
\(548\) 0 0
\(549\) −13.1340 22.7487i −0.560544 0.970891i
\(550\) 0 0
\(551\) −11.0000 11.0000i −0.468616 0.468616i
\(552\) 0 0
\(553\) −9.46410 + 2.53590i −0.402455 + 0.107837i
\(554\) 0 0
\(555\) −7.56218 4.36603i −0.320997 0.185327i
\(556\) 0 0
\(557\) 3.03590 11.3301i 0.128635 0.480073i −0.871308 0.490737i \(-0.836728\pi\)
0.999943 + 0.0106637i \(0.00339442\pi\)
\(558\) 0 0
\(559\) 4.53590 15.7128i 0.191848 0.664581i
\(560\) 0 0
\(561\) 12.9282 + 3.46410i 0.545829 + 0.146254i
\(562\) 0 0
\(563\) −6.46410 + 11.1962i −0.272429 + 0.471862i −0.969483 0.245157i \(-0.921160\pi\)
0.697054 + 0.717019i \(0.254494\pi\)
\(564\) 0 0
\(565\) 3.59808 + 13.4282i 0.151372 + 0.564929i
\(566\) 0 0
\(567\) −12.1962 + 12.1962i −0.512190 + 0.512190i
\(568\) 0 0
\(569\) −15.0000 + 8.66025i −0.628833 + 0.363057i −0.780300 0.625406i \(-0.784934\pi\)
0.151467 + 0.988462i \(0.451600\pi\)
\(570\) 0 0
\(571\) 43.3205 1.81291 0.906453 0.422306i \(-0.138779\pi\)
0.906453 + 0.422306i \(0.138779\pi\)
\(572\) 0 0
\(573\) 16.1436 0.674408
\(574\) 0 0
\(575\) 5.78461 3.33975i 0.241235 0.139277i
\(576\) 0 0
\(577\) 19.1506 19.1506i 0.797251 0.797251i −0.185410 0.982661i \(-0.559361\pi\)
0.982661 + 0.185410i \(0.0593613\pi\)
\(578\) 0 0
\(579\) 0.973721 + 3.63397i 0.0404664 + 0.151023i
\(580\) 0 0
\(581\) −11.4641 + 19.8564i −0.475611 + 0.823783i
\(582\) 0 0
\(583\) −4.73205 1.26795i −0.195982 0.0525131i
\(584\) 0 0
\(585\) 8.29423 + 15.0263i 0.342924 + 0.621260i
\(586\) 0 0
\(587\) 9.73205 36.3205i 0.401685 1.49911i −0.408404 0.912801i \(-0.633915\pi\)
0.810089 0.586307i \(-0.199419\pi\)
\(588\) 0 0
\(589\) 34.5167 + 19.9282i 1.42223 + 0.821127i
\(590\) 0 0
\(591\) 2.80385 0.751289i 0.115335 0.0309039i
\(592\) 0 0
\(593\) 20.8301 + 20.8301i 0.855391 + 0.855391i 0.990791 0.135400i \(-0.0432320\pi\)
−0.135400 + 0.990791i \(0.543232\pi\)
\(594\) 0 0
\(595\) −24.1244 41.7846i −0.989002 1.71300i
\(596\) 0 0
\(597\) 10.6795i 0.437083i
\(598\) 0 0
\(599\) 22.0526i 0.901043i −0.892766 0.450522i \(-0.851238\pi\)
0.892766 0.450522i \(-0.148762\pi\)
\(600\) 0 0
\(601\) −0.330127 0.571797i −0.0134662 0.0233241i 0.859214 0.511617i \(-0.170953\pi\)
−0.872680 + 0.488293i \(0.837620\pi\)
\(602\) 0 0
\(603\) −1.14359 1.14359i −0.0465707 0.0465707i
\(604\) 0 0
\(605\) 5.59808 1.50000i 0.227594 0.0609837i
\(606\) 0 0
\(607\) −27.8827 16.0981i −1.13172 0.653401i −0.187356 0.982292i \(-0.559992\pi\)
−0.944368 + 0.328891i \(0.893325\pi\)
\(608\) 0 0
\(609\) −1.80385 + 6.73205i −0.0730956 + 0.272796i
\(610\) 0 0
\(611\) 11.7583 19.4904i 0.475691 0.788496i
\(612\) 0 0
\(613\) −31.9186 8.55256i −1.28918 0.345435i −0.451831 0.892104i \(-0.649229\pi\)
−0.837349 + 0.546669i \(0.815896\pi\)
\(614\) 0 0
\(615\) 6.63397 11.4904i 0.267508 0.463337i
\(616\) 0 0
\(617\) −3.37564 12.5981i −0.135898 0.507179i −0.999993 0.00384944i \(-0.998775\pi\)
0.864094 0.503330i \(-0.167892\pi\)
\(618\) 0 0
\(619\) −16.7321 + 16.7321i −0.672518 + 0.672518i −0.958296 0.285778i \(-0.907748\pi\)
0.285778 + 0.958296i \(0.407748\pi\)
\(620\) 0 0
\(621\) −18.2487 + 10.5359i −0.732296 + 0.422791i
\(622\) 0 0
\(623\) −36.3923 −1.45803
\(624\) 0 0
\(625\) 17.0526 0.682102
\(626\) 0 0
\(627\) 11.3205 6.53590i 0.452098 0.261019i
\(628\) 0 0
\(629\) −28.2224 + 28.2224i −1.12530 + 1.12530i
\(630\) 0 0
\(631\) 3.32051 + 12.3923i 0.132187 + 0.493330i 0.999994 0.00357280i \(-0.00113726\pi\)
−0.867806 + 0.496903i \(0.834471\pi\)
\(632\) 0 0
\(633\) 9.14359 15.8372i 0.363425 0.629471i
\(634\) 0 0
\(635\) −30.2224 8.09808i −1.19934 0.321362i
\(636\) 0 0
\(637\) 20.5981 19.8205i 0.816125 0.785317i
\(638\) 0 0
\(639\) −6.31347 + 23.5622i −0.249757 + 0.932105i
\(640\) 0 0
\(641\) 25.6699 + 14.8205i 1.01390 + 0.585375i 0.912331 0.409454i \(-0.134281\pi\)
0.101568 + 0.994829i \(0.467614\pi\)
\(642\) 0 0
\(643\) −14.1962 + 3.80385i −0.559842 + 0.150009i −0.527634 0.849472i \(-0.676921\pi\)
−0.0322080 + 0.999481i \(0.510254\pi\)
\(644\) 0 0
\(645\) 4.53590 + 4.53590i 0.178601 + 0.178601i
\(646\) 0 0
\(647\) 9.49038 + 16.4378i 0.373105 + 0.646237i 0.990042 0.140776i \(-0.0449597\pi\)
−0.616936 + 0.787013i \(0.711626\pi\)
\(648\) 0 0
\(649\) 24.7846i 0.972881i
\(650\) 0 0
\(651\) 17.8564i 0.699848i
\(652\) 0 0
\(653\) 8.53590 + 14.7846i 0.334036 + 0.578566i 0.983299 0.181997i \(-0.0582561\pi\)
−0.649264 + 0.760563i \(0.724923\pi\)
\(654\) 0 0
\(655\) 19.3923 + 19.3923i 0.757720 + 0.757720i
\(656\) 0 0
\(657\) −21.1865 + 5.67691i −0.826565 + 0.221478i
\(658\) 0 0
\(659\) 16.0526 + 9.26795i 0.625319 + 0.361028i 0.778937 0.627102i \(-0.215759\pi\)
−0.153618 + 0.988130i \(0.549093\pi\)
\(660\) 0 0
\(661\) 4.54552 16.9641i 0.176800 0.659827i −0.819438 0.573168i \(-0.805714\pi\)
0.996238 0.0866591i \(-0.0276191\pi\)
\(662\) 0 0
\(663\) −16.5622 + 4.09808i −0.643222 + 0.159156i
\(664\) 0 0
\(665\) −45.5167 12.1962i −1.76506 0.472947i
\(666\) 0 0
\(667\) 6.49038 11.2417i 0.251309 0.435279i
\(668\) 0 0
\(669\) −5.53590 20.6603i −0.214030 0.798772i
\(670\) 0 0
\(671\) −21.3205 + 21.3205i −0.823069 + 0.823069i
\(672\) 0 0
\(673\) −30.6506 + 17.6962i −1.18150 + 0.682137i −0.956360 0.292191i \(-0.905616\pi\)
−0.225135 + 0.974328i \(0.572282\pi\)
\(674\) 0 0
\(675\) 5.07180 0.195214
\(676\) 0 0
\(677\) −5.07180 −0.194925 −0.0974625 0.995239i \(-0.531073\pi\)
−0.0974625 + 0.995239i \(0.531073\pi\)
\(678\) 0 0
\(679\) 36.5885 21.1244i 1.40414 0.810678i
\(680\) 0 0
\(681\) −2.33975 + 2.33975i −0.0896593 + 0.0896593i
\(682\) 0 0
\(683\) −10.6340 39.6865i −0.406898 1.51856i −0.800529 0.599294i \(-0.795448\pi\)
0.393631 0.919269i \(-0.371219\pi\)
\(684\) 0 0
\(685\) 1.50000 2.59808i 0.0573121 0.0992674i
\(686\) 0 0
\(687\) −12.2679 3.28719i −0.468051 0.125414i
\(688\) 0 0
\(689\) 6.06218 1.50000i 0.230951 0.0571454i
\(690\) 0 0
\(691\) −2.67949 + 10.0000i −0.101933 + 0.380418i −0.997979 0.0635424i \(-0.979760\pi\)
0.896046 + 0.443960i \(0.146427\pi\)
\(692\) 0 0
\(693\) 23.3205 + 13.4641i 0.885873 + 0.511459i
\(694\) 0 0
\(695\) 39.0526 10.4641i 1.48135 0.396926i
\(696\) 0 0
\(697\) −42.8827 42.8827i −1.62430 1.62430i
\(698\) 0 0
\(699\) −5.66025 9.80385i −0.214090 0.370816i
\(700\) 0 0
\(701\) 11.0718i 0.418176i 0.977897 + 0.209088i \(0.0670495\pi\)
−0.977897 + 0.209088i \(0.932950\pi\)
\(702\) 0 0
\(703\) 38.9808i 1.47019i
\(704\) 0 0
\(705\) 4.46410 + 7.73205i 0.168128 + 0.291206i
\(706\) 0 0
\(707\) −5.66025 5.66025i −0.212876 0.212876i
\(708\) 0 0
\(709\) 26.5263 7.10770i 0.996215 0.266935i 0.276356 0.961055i \(-0.410873\pi\)
0.719859 + 0.694120i \(0.244206\pi\)
\(710\) 0 0
\(711\) 5.41154 + 3.12436i 0.202949 + 0.117172i
\(712\) 0 0
\(713\) −8.60770 + 32.1244i −0.322361 + 1.20307i
\(714\) 0 0
\(715\) 14.1962 13.6603i 0.530906 0.510865i
\(716\) 0 0
\(717\) −7.26795 1.94744i −0.271427 0.0727285i
\(718\) 0 0
\(719\) −5.53590 + 9.58846i −0.206454 + 0.357589i −0.950595 0.310434i \(-0.899526\pi\)
0.744141 + 0.668023i \(0.232859\pi\)
\(720\) 0 0
\(721\) 3.26795 + 12.1962i 0.121705 + 0.454208i
\(722\) 0 0
\(723\) 0.803848 0.803848i 0.0298954 0.0298954i
\(724\) 0 0
\(725\) −2.70577 + 1.56218i −0.100490 + 0.0580178i
\(726\) 0 0
\(727\) 3.21539 0.119252 0.0596261 0.998221i \(-0.481009\pi\)
0.0596261 + 0.998221i \(0.481009\pi\)
\(728\) 0 0
\(729\) 2.21539 0.0820515
\(730\) 0 0
\(731\) 25.3923 14.6603i 0.939168 0.542229i
\(732\) 0 0
\(733\) −23.6147 + 23.6147i −0.872230 + 0.872230i −0.992715 0.120485i \(-0.961555\pi\)
0.120485 + 0.992715i \(0.461555\pi\)
\(734\) 0 0
\(735\) 2.90192 + 10.8301i 0.107039 + 0.399475i
\(736\) 0 0
\(737\) −0.928203 + 1.60770i −0.0341908 + 0.0592202i
\(738\) 0 0
\(739\) −9.66025 2.58846i −0.355358 0.0952179i 0.0767235 0.997052i \(-0.475554\pi\)
−0.432082 + 0.901834i \(0.642221\pi\)
\(740\) 0 0
\(741\) −8.60770 + 14.2679i −0.316212 + 0.524146i
\(742\) 0 0
\(743\) −5.39230 + 20.1244i −0.197824 + 0.738291i 0.793693 + 0.608318i \(0.208156\pi\)
−0.991518 + 0.129973i \(0.958511\pi\)
\(744\) 0 0
\(745\) −26.7224 15.4282i −0.979034 0.565246i
\(746\) 0 0
\(747\) 14.1244 3.78461i 0.516783 0.138472i
\(748\) 0 0
\(749\) −7.46410 7.46410i −0.272732 0.272732i
\(750\) 0 0
\(751\) 0.124356 + 0.215390i 0.00453780 + 0.00785970i 0.868285 0.496065i \(-0.165222\pi\)
−0.863748 + 0.503925i \(0.831889\pi\)
\(752\) 0 0
\(753\) 6.78461i 0.247245i
\(754\) 0 0
\(755\) 17.6603i 0.642722i
\(756\) 0 0
\(757\) −19.3923 33.5885i −0.704825 1.22079i −0.966755 0.255706i \(-0.917692\pi\)
0.261929 0.965087i \(-0.415641\pi\)
\(758\) 0 0
\(759\) 7.71281 + 7.71281i 0.279957 + 0.279957i
\(760\) 0 0
\(761\) 3.83013 1.02628i 0.138842 0.0372026i −0.188729 0.982029i \(-0.560437\pi\)
0.327571 + 0.944827i \(0.393770\pi\)
\(762\) 0 0
\(763\) 3.80385 + 2.19615i 0.137709 + 0.0795061i
\(764\) 0 0
\(765\) −7.96410 + 29.7224i −0.287943 + 1.07462i
\(766\) 0 0
\(767\) −15.2679 27.6603i −0.551294 0.998754i
\(768\) 0 0
\(769\) −3.09808 0.830127i −0.111719 0.0299351i 0.202526 0.979277i \(-0.435085\pi\)
−0.314246 + 0.949342i \(0.601752\pi\)
\(770\) 0 0
\(771\) 1.36603 2.36603i 0.0491962 0.0852103i
\(772\) 0 0
\(773\) 2.22243 + 8.29423i 0.0799353 + 0.298323i 0.994307 0.106553i \(-0.0339814\pi\)
−0.914372 + 0.404876i \(0.867315\pi\)
\(774\) 0 0
\(775\) 5.66025 5.66025i 0.203322 0.203322i
\(776\) 0 0
\(777\) 15.1244 8.73205i 0.542583 0.313261i
\(778\) 0 0
\(779\) −59.2295 −2.12212
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 8.53590 4.92820i 0.305048 0.176120i
\(784\) 0 0
\(785\) 21.2224 21.2224i 0.757461 0.757461i
\(786\) 0 0
\(787\) 3.04552 + 11.3660i 0.108561 + 0.405155i 0.998725 0.0504856i \(-0.0160769\pi\)
−0.890164 + 0.455641i \(0.849410\pi\)
\(788\) 0 0
\(789\) 9.12436 15.8038i 0.324836 0.562632i
\(790\) 0 0
\(791\) −26.8564 7.19615i −0.954904 0.255866i
\(792\) 0 0
\(793\) 10.6603 36.9282i 0.378557 1.31136i
\(794\) 0 0
\(795\) −0.633975 + 2.36603i −0.0224848 + 0.0839143i
\(796\) 0 0
\(797\) 4.85641 + 2.80385i 0.172023 + 0.0993174i 0.583539 0.812085i \(-0.301667\pi\)
−0.411517 + 0.911402i \(0.635001\pi\)
\(798\) 0 0
\(799\) 39.4186 10.5622i 1.39453 0.373663i
\(800\) 0 0
\(801\) 16.4115 + 16.4115i 0.579873 + 0.579873i
\(802\) 0 0
\(803\) 12.5885 + 21.8038i 0.444237 + 0.769441i
\(804\) 0 0
\(805\) 39.3205i 1.38587i
\(806\) 0 0
\(807\) 5.85641i 0.206155i
\(808\) 0 0
\(809\) 4.79423 + 8.30385i 0.168556 + 0.291948i 0.937912 0.346872i \(-0.112756\pi\)
−0.769356 + 0.638820i \(0.779423\pi\)
\(810\) 0 0
\(811\) 10.6077 + 10.6077i 0.372487 + 0.372487i 0.868382 0.495896i \(-0.165160\pi\)
−0.495896 + 0.868382i \(0.665160\pi\)
\(812\) 0 0
\(813\) 12.5885 3.37307i 0.441496 0.118299i
\(814\) 0 0
\(815\) 27.5885 + 15.9282i 0.966382 + 0.557941i
\(816\) 0 0
\(817\) 7.41154 27.6603i 0.259297 0.967710i
\(818\) 0 0
\(819\) −34.3205 0.660254i −1.19926 0.0230711i
\(820\) 0 0
\(821\) 20.9545 + 5.61474i 0.731316 + 0.195956i 0.605215 0.796062i \(-0.293087\pi\)
0.126101 + 0.992017i \(0.459754\pi\)
\(822\) 0 0
\(823\) −19.0000 + 32.9090i −0.662298 + 1.14713i 0.317712 + 0.948187i \(0.397086\pi\)
−0.980010 + 0.198947i \(0.936248\pi\)
\(824\) 0 0
\(825\) −0.679492 2.53590i −0.0236569 0.0882886i
\(826\) 0 0
\(827\) 23.3205 23.3205i 0.810934 0.810934i −0.173840 0.984774i \(-0.555618\pi\)
0.984774 + 0.173840i \(0.0556177\pi\)
\(828\) 0 0
\(829\) 35.0429 20.2321i 1.21709 0.702688i 0.252797 0.967519i \(-0.418650\pi\)
0.964295 + 0.264831i \(0.0853162\pi\)
\(830\) 0 0
\(831\) 6.48334 0.224905
\(832\) 0 0
\(833\) 51.2487 1.77566
\(834\) 0 0
\(835\) −10.7321 + 6.19615i −0.371398 + 0.214427i
\(836\) 0 0
\(837\) −17.8564 + 17.8564i −0.617208 + 0.617208i
\(838\) 0 0
\(839\) −3.90192 14.5622i −0.134709 0.502742i −0.999999 0.00146984i \(-0.999532\pi\)
0.865290 0.501272i \(-0.167135\pi\)
\(840\) 0 0
\(841\) 11.4641 19.8564i 0.395314 0.684704i
\(842\) 0 0
\(843\) 11.6340 + 3.11731i 0.400695 + 0.107366i
\(844\) 0 0
\(845\) −7.42820 + 23.9904i −0.255538 + 0.825294i
\(846\) 0 0
\(847\) −3.00000 + 11.1962i −0.103081 + 0.384704i
\(848\) 0 0
\(849\) 8.87564 + 5.12436i 0.304611 + 0.175867i
\(850\) 0 0
\(851\) −31.4186 + 8.41858i −1.07702 + 0.288585i
\(852\) 0 0
\(853\) −25.2942 25.2942i −0.866058 0.866058i 0.125975 0.992033i \(-0.459794\pi\)
−0.992033 + 0.125975i \(0.959794\pi\)
\(854\) 0 0
\(855\) 15.0263 + 26.0263i 0.513888 + 0.890080i
\(856\) 0 0
\(857\) 47.0526i 1.60728i 0.595113 + 0.803642i \(0.297107\pi\)
−0.595113 + 0.803642i \(0.702893\pi\)
\(858\) 0 0
\(859\) 13.2679i 0.452697i 0.974046 + 0.226348i \(0.0726788\pi\)
−0.974046 + 0.226348i \(0.927321\pi\)
\(860\) 0 0
\(861\) 13.2679 + 22.9808i 0.452170 + 0.783182i
\(862\) 0 0
\(863\) 29.8038 + 29.8038i 1.01453 + 1.01453i 0.999893 + 0.0146420i \(0.00466085\pi\)
0.0146420 + 0.999893i \(0.495339\pi\)
\(864\) 0 0
\(865\) 27.1244 7.26795i 0.922256 0.247118i
\(866\) 0 0
\(867\) −15.7128 9.07180i −0.533635 0.308094i
\(868\) 0 0
\(869\) 1.85641 6.92820i 0.0629743 0.235023i
\(870\) 0 0
\(871\) 0.0455173 2.36603i 0.00154230 0.0801697i
\(872\) 0 0
\(873\) −26.0263 6.97372i −0.880856 0.236025i
\(874\) 0 0
\(875\) −23.3923 + 40.5167i −0.790804 + 1.36971i
\(876\) 0 0
\(877\) −1.83975 6.86603i −0.0621238 0.231849i 0.927882 0.372873i \(-0.121627\pi\)
−0.990006 + 0.141024i \(0.954961\pi\)
\(878\) 0 0
\(879\) 0.124356 0.124356i 0.00419441 0.00419441i
\(880\) 0 0
\(881\) −11.8923 + 6.86603i −0.400662 + 0.231322i −0.686770 0.726875i \(-0.740972\pi\)
0.286108 + 0.958197i \(0.407639\pi\)
\(882\) 0 0
\(883\) 24.3397 0.819098 0.409549 0.912288i \(-0.365686\pi\)
0.409549 + 0.912288i \(0.365686\pi\)
\(884\) 0 0
\(885\) 12.3923 0.416563
\(886\) 0 0
\(887\) −16.3923 + 9.46410i −0.550400 + 0.317773i −0.749283 0.662250i \(-0.769602\pi\)
0.198883 + 0.980023i \(0.436268\pi\)
\(888\) 0 0
\(889\) 44.2487 44.2487i 1.48405 1.48405i
\(890\) 0 0
\(891\) −3.26795 12.1962i −0.109480 0.408586i
\(892\) 0 0
\(893\) 19.9282 34.5167i 0.666872 1.15506i
\(894\) 0 0
\(895\) 2.73205 + 0.732051i 0.0913224 + 0.0244698i
\(896\) 0 0
\(897\) −13.3590 3.85641i −0.446043 0.128762i
\(898\) 0 0
\(899\) 4.02628 15.0263i 0.134284 0.501154i
\(900\) 0 0
\(901\) 9.69615 + 5.59808i 0.323026 + 0.186499i
\(902\) 0 0
\(903\) −12.3923 + 3.32051i −0.412390 + 0.110500i
\(904\) 0 0
\(905\) 4.36603 + 4.36603i 0.145132 + 0.145132i
\(906\) 0 0
\(907\) 15.0526 + 26.0718i 0.499812 + 0.865700i 1.00000 0.000217054i \(-6.90903e-5\pi\)
−0.500188 + 0.865917i \(0.666736\pi\)
\(908\) 0 0
\(909\) 5.10512i 0.169326i
\(910\) 0 0
\(911\) 43.1769i 1.43051i 0.698861 + 0.715257i \(0.253691\pi\)
−0.698861 + 0.715257i \(0.746309\pi\)
\(912\) 0 0
\(913\) −8.39230 14.5359i −0.277745 0.481068i
\(914\) 0 0
\(915\) 10.6603 + 10.6603i 0.352417 + 0.352417i
\(916\) 0 0
\(917\) −52.9808 + 14.1962i −1.74958 + 0.468798i
\(918\) 0 0
\(919\) 7.56218 + 4.36603i 0.249453 + 0.144022i 0.619514 0.784986i \(-0.287330\pi\)
−0.370061 + 0.929008i \(0.620663\pi\)
\(920\) 0 0
\(921\) −4.21539 + 15.7321i −0.138902 + 0.518389i
\(922\) 0 0
\(923\) −31.2487 + 17.2487i −1.02856 + 0.567748i
\(924\) 0 0
\(925\) 7.56218 + 2.02628i 0.248643 + 0.0666237i
\(926\) 0 0
\(927\) 4.02628 6.97372i 0.132240 0.229047i
\(928\) 0 0
\(929\) 1.65064 + 6.16025i 0.0541556 + 0.202111i 0.987703 0.156343i \(-0.0499705\pi\)
−0.933547 + 0.358454i \(0.883304\pi\)
\(930\) 0 0
\(931\) 35.3923 35.3923i 1.15994 1.15994i
\(932\) 0 0
\(933\) −4.17691 + 2.41154i −0.136746 + 0.0789504i
\(934\) 0 0
\(935\) 35.3205 1.15510
\(936\) 0 0
\(937\) 31.0000 1.01273 0.506363 0.862320i \(-0.330990\pi\)
0.506363 + 0.862320i \(0.330990\pi\)
\(938\) 0 0
\(939\) 2.87564 1.66025i 0.0938431 0.0541803i
\(940\) 0 0
\(941\) 39.7846 39.7846i 1.29694 1.29694i 0.366538 0.930403i \(-0.380543\pi\)
0.930403 0.366538i \(-0.119457\pi\)
\(942\) 0 0
\(943\) −12.7917 47.7391i −0.416553 1.55460i
\(944\) 0 0
\(945\) 14.9282 25.8564i 0.485614 0.841109i
\(946\) 0 0
\(947\) −2.16987 0.581416i −0.0705114 0.0188935i 0.223391 0.974729i \(-0.428287\pi\)
−0.293902 + 0.955835i \(0.594954\pi\)
\(948\) 0 0
\(949\) −27.4808 16.5788i −0.892063 0.538172i
\(950\) 0 0
\(951\) −0.830127 + 3.09808i −0.0269187 + 0.100462i
\(952\) 0 0
\(953\) −28.6410 16.5359i −0.927774 0.535650i −0.0416668 0.999132i \(-0.513267\pi\)
−0.886107 + 0.463481i \(0.846600\pi\)
\(954\) 0 0
\(955\) 41.1506 11.0263i 1.33160 0.356802i
\(956\) 0 0
\(957\) −3.60770 3.60770i −0.116620 0.116620i
\(958\) 0 0
\(959\) 3.00000 + 5.19615i 0.0968751 + 0.167793i
\(960\) 0 0
\(961\) 8.85641i 0.285691i
\(962\) 0 0
\(963\) 6.73205i 0.216937i
\(964\) 0 0
\(965\) 4.96410 + 8.59808i 0.159800 + 0.276782i
\(966\) 0 0
\(967\) 20.6603 + 20.6603i 0.664389 + 0.664389i 0.956411 0.292022i \(-0.0943282\pi\)
−0.292022 + 0.956411i \(0.594328\pi\)
\(968\) 0 0
\(969\) −28.8564 + 7.73205i −0.927001 + 0.248389i
\(970\) 0 0
\(971\) 49.0070 + 28.2942i 1.57271 + 0.908005i 0.995835 + 0.0911731i \(0.0290617\pi\)
0.576876 + 0.816832i \(0.304272\pi\)
\(972\) 0 0
\(973\) −20.9282 + 78.1051i −0.670927 + 2.50394i
\(974\) 0 0
\(975\) 2.32051 + 2.41154i 0.0743157 + 0.0772312i
\(976\) 0 0
\(977\) −26.5263 7.10770i −0.848651 0.227395i −0.191817 0.981431i \(-0.561438\pi\)
−0.656834 + 0.754035i \(0.728105\pi\)
\(978\) 0 0
\(979\) 13.3205 23.0718i 0.425725 0.737378i
\(980\) 0 0
\(981\) −0.725009 2.70577i −0.0231478 0.0863886i
\(982\) 0 0
\(983\) −17.7846 + 17.7846i −0.567241 + 0.567241i −0.931355 0.364114i \(-0.881372\pi\)
0.364114 + 0.931355i \(0.381372\pi\)
\(984\) 0 0
\(985\) 6.63397 3.83013i 0.211376 0.122038i
\(986\) 0 0
\(987\) −17.8564 −0.568376
\(988\) 0 0
\(989\) 23.8949 0.759813
\(990\) 0 0
\(991\) −26.8301 + 15.4904i −0.852287 + 0.492068i −0.861422 0.507890i \(-0.830426\pi\)
0.00913480 + 0.999958i \(0.497092\pi\)
\(992\) 0 0
\(993\) 16.0000 16.0000i 0.507745 0.507745i
\(994\) 0 0
\(995\) 7.29423 + 27.2224i 0.231243 + 0.863009i
\(996\) 0 0
\(997\) −5.52628 + 9.57180i −0.175019 + 0.303142i −0.940168 0.340712i \(-0.889332\pi\)
0.765149 + 0.643853i \(0.222665\pi\)
\(998\) 0 0
\(999\) −23.8564 6.39230i −0.754783 0.202244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.bu.a.223.1 4
4.3 odd 2 416.2.bu.b.223.1 yes 4
8.3 odd 2 832.2.bu.b.639.1 4
8.5 even 2 832.2.bu.g.639.1 4
13.7 odd 12 416.2.bu.b.319.1 yes 4
52.7 even 12 inner 416.2.bu.a.319.1 yes 4
104.59 even 12 832.2.bu.g.319.1 4
104.85 odd 12 832.2.bu.b.319.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.bu.a.223.1 4 1.1 even 1 trivial
416.2.bu.a.319.1 yes 4 52.7 even 12 inner
416.2.bu.b.223.1 yes 4 4.3 odd 2
416.2.bu.b.319.1 yes 4 13.7 odd 12
832.2.bu.b.319.1 4 104.85 odd 12
832.2.bu.b.639.1 4 8.3 odd 2
832.2.bu.g.319.1 4 104.59 even 12
832.2.bu.g.639.1 4 8.5 even 2