Properties

Label 8281.2.a.ce.1.4
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8281,2,Mod(1,8281)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8281.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8281, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,-1,4,1,-9,0,3,-3,-4,4,-5,0,0,-2,-8,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.51235\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.851125 q^{2} +0.661223 q^{3} -1.27559 q^{4} -3.44148 q^{5} +0.562784 q^{6} -2.78793 q^{8} -2.56278 q^{9} -2.92913 q^{10} +0.897986 q^{11} -0.843447 q^{12} -2.27559 q^{15} +0.178289 q^{16} +1.93681 q^{17} -2.18125 q^{18} -1.03804 q^{19} +4.38990 q^{20} +0.764299 q^{22} +5.65013 q^{23} -1.84345 q^{24} +6.84378 q^{25} -3.67824 q^{27} -1.83594 q^{29} -1.93681 q^{30} +9.13385 q^{31} +5.72761 q^{32} +0.593769 q^{33} +1.64847 q^{34} +3.26905 q^{36} +10.6000 q^{37} -0.883501 q^{38} +9.59462 q^{40} +5.33143 q^{41} -3.91465 q^{43} -1.14546 q^{44} +8.81977 q^{45} +4.80897 q^{46} -7.19129 q^{47} +0.117889 q^{48} +5.82491 q^{50} +1.28066 q^{51} -9.38648 q^{53} -3.13065 q^{54} -3.09040 q^{55} -0.686375 q^{57} -1.56261 q^{58} +0.510517 q^{59} +2.90270 q^{60} +1.43619 q^{61} +7.77405 q^{62} +4.51834 q^{64} +0.505372 q^{66} +8.44932 q^{67} -2.47057 q^{68} +3.73600 q^{69} +3.44837 q^{71} +7.14487 q^{72} -10.9005 q^{73} +9.02195 q^{74} +4.52526 q^{75} +1.32411 q^{76} -12.0918 q^{79} -0.613579 q^{80} +5.25621 q^{81} +4.53771 q^{82} -1.51669 q^{83} -6.66549 q^{85} -3.33185 q^{86} -1.21396 q^{87} -2.50353 q^{88} -13.6078 q^{89} +7.50673 q^{90} -7.20722 q^{92} +6.03951 q^{93} -6.12069 q^{94} +3.57239 q^{95} +3.78723 q^{96} -0.506241 q^{97} -2.30134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - q^{3} + 4 q^{4} + q^{5} - 9 q^{6} + 3 q^{8} - 3 q^{9} - 4 q^{10} + 4 q^{11} - 5 q^{12} - 2 q^{15} - 8 q^{16} - 5 q^{17} + 3 q^{18} - q^{19} - q^{20} + 5 q^{22} + q^{23} - 11 q^{24}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.851125 0.601837 0.300918 0.953650i \(-0.402707\pi\)
0.300918 + 0.953650i \(0.402707\pi\)
\(3\) 0.661223 0.381757 0.190879 0.981614i \(-0.438866\pi\)
0.190879 + 0.981614i \(0.438866\pi\)
\(4\) −1.27559 −0.637793
\(5\) −3.44148 −1.53908 −0.769538 0.638601i \(-0.779513\pi\)
−0.769538 + 0.638601i \(0.779513\pi\)
\(6\) 0.562784 0.229756
\(7\) 0 0
\(8\) −2.78793 −0.985684
\(9\) −2.56278 −0.854261
\(10\) −2.92913 −0.926272
\(11\) 0.897986 0.270753 0.135377 0.990794i \(-0.456776\pi\)
0.135377 + 0.990794i \(0.456776\pi\)
\(12\) −0.843447 −0.243482
\(13\) 0 0
\(14\) 0 0
\(15\) −2.27559 −0.587554
\(16\) 0.178289 0.0445723
\(17\) 1.93681 0.469745 0.234873 0.972026i \(-0.424533\pi\)
0.234873 + 0.972026i \(0.424533\pi\)
\(18\) −2.18125 −0.514126
\(19\) −1.03804 −0.238142 −0.119071 0.992886i \(-0.537992\pi\)
−0.119071 + 0.992886i \(0.537992\pi\)
\(20\) 4.38990 0.981612
\(21\) 0 0
\(22\) 0.764299 0.162949
\(23\) 5.65013 1.17813 0.589067 0.808084i \(-0.299496\pi\)
0.589067 + 0.808084i \(0.299496\pi\)
\(24\) −1.84345 −0.376292
\(25\) 6.84378 1.36876
\(26\) 0 0
\(27\) −3.67824 −0.707878
\(28\) 0 0
\(29\) −1.83594 −0.340925 −0.170463 0.985364i \(-0.554526\pi\)
−0.170463 + 0.985364i \(0.554526\pi\)
\(30\) −1.93681 −0.353611
\(31\) 9.13385 1.64049 0.820244 0.572014i \(-0.193838\pi\)
0.820244 + 0.572014i \(0.193838\pi\)
\(32\) 5.72761 1.01251
\(33\) 0.593769 0.103362
\(34\) 1.64847 0.282710
\(35\) 0 0
\(36\) 3.26905 0.544842
\(37\) 10.6000 1.74263 0.871316 0.490722i \(-0.163267\pi\)
0.871316 + 0.490722i \(0.163267\pi\)
\(38\) −0.883501 −0.143323
\(39\) 0 0
\(40\) 9.59462 1.51704
\(41\) 5.33143 0.832629 0.416314 0.909221i \(-0.363322\pi\)
0.416314 + 0.909221i \(0.363322\pi\)
\(42\) 0 0
\(43\) −3.91465 −0.596978 −0.298489 0.954413i \(-0.596483\pi\)
−0.298489 + 0.954413i \(0.596483\pi\)
\(44\) −1.14546 −0.172684
\(45\) 8.81977 1.31477
\(46\) 4.80897 0.709044
\(47\) −7.19129 −1.04896 −0.524479 0.851423i \(-0.675740\pi\)
−0.524479 + 0.851423i \(0.675740\pi\)
\(48\) 0.117889 0.0170158
\(49\) 0 0
\(50\) 5.82491 0.823767
\(51\) 1.28066 0.179329
\(52\) 0 0
\(53\) −9.38648 −1.28933 −0.644666 0.764464i \(-0.723004\pi\)
−0.644666 + 0.764464i \(0.723004\pi\)
\(54\) −3.13065 −0.426027
\(55\) −3.09040 −0.416710
\(56\) 0 0
\(57\) −0.686375 −0.0909127
\(58\) −1.56261 −0.205181
\(59\) 0.510517 0.0664637 0.0332318 0.999448i \(-0.489420\pi\)
0.0332318 + 0.999448i \(0.489420\pi\)
\(60\) 2.90270 0.374737
\(61\) 1.43619 0.183885 0.0919426 0.995764i \(-0.470692\pi\)
0.0919426 + 0.995764i \(0.470692\pi\)
\(62\) 7.77405 0.987305
\(63\) 0 0
\(64\) 4.51834 0.564792
\(65\) 0 0
\(66\) 0.505372 0.0622070
\(67\) 8.44932 1.03225 0.516124 0.856514i \(-0.327374\pi\)
0.516124 + 0.856514i \(0.327374\pi\)
\(68\) −2.47057 −0.299600
\(69\) 3.73600 0.449761
\(70\) 0 0
\(71\) 3.44837 0.409247 0.204623 0.978841i \(-0.434403\pi\)
0.204623 + 0.978841i \(0.434403\pi\)
\(72\) 7.14487 0.842031
\(73\) −10.9005 −1.27581 −0.637905 0.770115i \(-0.720199\pi\)
−0.637905 + 0.770115i \(0.720199\pi\)
\(74\) 9.02195 1.04878
\(75\) 4.52526 0.522532
\(76\) 1.32411 0.151886
\(77\) 0 0
\(78\) 0 0
\(79\) −12.0918 −1.36043 −0.680216 0.733012i \(-0.738114\pi\)
−0.680216 + 0.733012i \(0.738114\pi\)
\(80\) −0.613579 −0.0686002
\(81\) 5.25621 0.584024
\(82\) 4.53771 0.501107
\(83\) −1.51669 −0.166479 −0.0832393 0.996530i \(-0.526527\pi\)
−0.0832393 + 0.996530i \(0.526527\pi\)
\(84\) 0 0
\(85\) −6.66549 −0.722973
\(86\) −3.33185 −0.359283
\(87\) −1.21396 −0.130151
\(88\) −2.50353 −0.266877
\(89\) −13.6078 −1.44243 −0.721213 0.692714i \(-0.756415\pi\)
−0.721213 + 0.692714i \(0.756415\pi\)
\(90\) 7.50673 0.791279
\(91\) 0 0
\(92\) −7.20722 −0.751405
\(93\) 6.03951 0.626268
\(94\) −6.12069 −0.631301
\(95\) 3.57239 0.366519
\(96\) 3.78723 0.386533
\(97\) −0.506241 −0.0514010 −0.0257005 0.999670i \(-0.508182\pi\)
−0.0257005 + 0.999670i \(0.508182\pi\)
\(98\) 0 0
\(99\) −2.30134 −0.231294
\(100\) −8.72982 −0.872982
\(101\) −5.98654 −0.595683 −0.297842 0.954615i \(-0.596267\pi\)
−0.297842 + 0.954615i \(0.596267\pi\)
\(102\) 1.09000 0.107927
\(103\) −4.13302 −0.407239 −0.203619 0.979050i \(-0.565270\pi\)
−0.203619 + 0.979050i \(0.565270\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.98908 −0.775968
\(107\) −14.1234 −1.36536 −0.682679 0.730718i \(-0.739185\pi\)
−0.682679 + 0.730718i \(0.739185\pi\)
\(108\) 4.69191 0.451479
\(109\) 4.20237 0.402514 0.201257 0.979538i \(-0.435497\pi\)
0.201257 + 0.979538i \(0.435497\pi\)
\(110\) −2.63032 −0.250791
\(111\) 7.00898 0.665263
\(112\) 0 0
\(113\) 13.7694 1.29532 0.647660 0.761929i \(-0.275748\pi\)
0.647660 + 0.761929i \(0.275748\pi\)
\(114\) −0.584192 −0.0547146
\(115\) −19.4448 −1.81324
\(116\) 2.34190 0.217440
\(117\) 0 0
\(118\) 0.434514 0.0400003
\(119\) 0 0
\(120\) 6.34418 0.579142
\(121\) −10.1936 −0.926693
\(122\) 1.22238 0.110669
\(123\) 3.52526 0.317862
\(124\) −11.6510 −1.04629
\(125\) −6.34531 −0.567542
\(126\) 0 0
\(127\) 1.94496 0.172588 0.0862938 0.996270i \(-0.472498\pi\)
0.0862938 + 0.996270i \(0.472498\pi\)
\(128\) −7.60956 −0.672596
\(129\) −2.58845 −0.227901
\(130\) 0 0
\(131\) −12.0354 −1.05154 −0.525769 0.850627i \(-0.676222\pi\)
−0.525769 + 0.850627i \(0.676222\pi\)
\(132\) −0.757404 −0.0659235
\(133\) 0 0
\(134\) 7.19143 0.621245
\(135\) 12.6586 1.08948
\(136\) −5.39970 −0.463020
\(137\) −8.71715 −0.744756 −0.372378 0.928081i \(-0.621457\pi\)
−0.372378 + 0.928081i \(0.621457\pi\)
\(138\) 3.17980 0.270683
\(139\) 4.21250 0.357299 0.178650 0.983913i \(-0.442827\pi\)
0.178650 + 0.983913i \(0.442827\pi\)
\(140\) 0 0
\(141\) −4.75505 −0.400447
\(142\) 2.93500 0.246300
\(143\) 0 0
\(144\) −0.456917 −0.0380764
\(145\) 6.31834 0.524710
\(146\) −9.27771 −0.767829
\(147\) 0 0
\(148\) −13.5212 −1.11144
\(149\) −5.86484 −0.480466 −0.240233 0.970715i \(-0.577224\pi\)
−0.240233 + 0.970715i \(0.577224\pi\)
\(150\) 3.85157 0.314479
\(151\) 16.8568 1.37179 0.685893 0.727702i \(-0.259412\pi\)
0.685893 + 0.727702i \(0.259412\pi\)
\(152\) 2.89398 0.234733
\(153\) −4.96362 −0.401285
\(154\) 0 0
\(155\) −31.4339 −2.52483
\(156\) 0 0
\(157\) −1.93900 −0.154749 −0.0773746 0.997002i \(-0.524654\pi\)
−0.0773746 + 0.997002i \(0.524654\pi\)
\(158\) −10.2916 −0.818757
\(159\) −6.20656 −0.492212
\(160\) −19.7115 −1.55833
\(161\) 0 0
\(162\) 4.47370 0.351487
\(163\) 11.8959 0.931762 0.465881 0.884847i \(-0.345738\pi\)
0.465881 + 0.884847i \(0.345738\pi\)
\(164\) −6.80069 −0.531045
\(165\) −2.04344 −0.159082
\(166\) −1.29090 −0.100193
\(167\) −16.5760 −1.28269 −0.641346 0.767252i \(-0.721624\pi\)
−0.641346 + 0.767252i \(0.721624\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −5.67316 −0.435112
\(171\) 2.66027 0.203436
\(172\) 4.99346 0.380748
\(173\) −9.98656 −0.759264 −0.379632 0.925138i \(-0.623949\pi\)
−0.379632 + 0.925138i \(0.623949\pi\)
\(174\) −1.03324 −0.0783295
\(175\) 0 0
\(176\) 0.160101 0.0120681
\(177\) 0.337566 0.0253730
\(178\) −11.5820 −0.868105
\(179\) 9.17657 0.685889 0.342945 0.939356i \(-0.388576\pi\)
0.342945 + 0.939356i \(0.388576\pi\)
\(180\) −11.2504 −0.838553
\(181\) 6.00489 0.446340 0.223170 0.974780i \(-0.428360\pi\)
0.223170 + 0.974780i \(0.428360\pi\)
\(182\) 0 0
\(183\) 0.949642 0.0701995
\(184\) −15.7522 −1.16127
\(185\) −36.4797 −2.68204
\(186\) 5.14038 0.376911
\(187\) 1.73923 0.127185
\(188\) 9.17311 0.669018
\(189\) 0 0
\(190\) 3.04055 0.220585
\(191\) 1.31612 0.0952313 0.0476156 0.998866i \(-0.484838\pi\)
0.0476156 + 0.998866i \(0.484838\pi\)
\(192\) 2.98763 0.215614
\(193\) 16.4254 1.18233 0.591163 0.806552i \(-0.298669\pi\)
0.591163 + 0.806552i \(0.298669\pi\)
\(194\) −0.430874 −0.0309350
\(195\) 0 0
\(196\) 0 0
\(197\) 25.5875 1.82303 0.911517 0.411262i \(-0.134912\pi\)
0.911517 + 0.411262i \(0.134912\pi\)
\(198\) −1.95873 −0.139201
\(199\) −25.3788 −1.79906 −0.899528 0.436864i \(-0.856089\pi\)
−0.899528 + 0.436864i \(0.856089\pi\)
\(200\) −19.0800 −1.34916
\(201\) 5.58688 0.394068
\(202\) −5.09530 −0.358504
\(203\) 0 0
\(204\) −1.63359 −0.114375
\(205\) −18.3480 −1.28148
\(206\) −3.51772 −0.245091
\(207\) −14.4801 −1.00643
\(208\) 0 0
\(209\) −0.932145 −0.0644778
\(210\) 0 0
\(211\) −5.69648 −0.392162 −0.196081 0.980588i \(-0.562822\pi\)
−0.196081 + 0.980588i \(0.562822\pi\)
\(212\) 11.9733 0.822327
\(213\) 2.28014 0.156233
\(214\) −12.0208 −0.821723
\(215\) 13.4722 0.918794
\(216\) 10.2547 0.697744
\(217\) 0 0
\(218\) 3.57675 0.242248
\(219\) −7.20768 −0.487050
\(220\) 3.94207 0.265774
\(221\) 0 0
\(222\) 5.96552 0.400380
\(223\) −2.35812 −0.157912 −0.0789558 0.996878i \(-0.525159\pi\)
−0.0789558 + 0.996878i \(0.525159\pi\)
\(224\) 0 0
\(225\) −17.5391 −1.16927
\(226\) 11.7195 0.779571
\(227\) −26.2926 −1.74510 −0.872551 0.488523i \(-0.837536\pi\)
−0.872551 + 0.488523i \(0.837536\pi\)
\(228\) 0.875531 0.0579834
\(229\) −0.0685555 −0.00453027 −0.00226514 0.999997i \(-0.500721\pi\)
−0.00226514 + 0.999997i \(0.500721\pi\)
\(230\) −16.5500 −1.09127
\(231\) 0 0
\(232\) 5.11847 0.336044
\(233\) 14.6703 0.961082 0.480541 0.876972i \(-0.340440\pi\)
0.480541 + 0.876972i \(0.340440\pi\)
\(234\) 0 0
\(235\) 24.7487 1.61443
\(236\) −0.651208 −0.0423901
\(237\) −7.99536 −0.519355
\(238\) 0 0
\(239\) −3.35434 −0.216974 −0.108487 0.994098i \(-0.534601\pi\)
−0.108487 + 0.994098i \(0.534601\pi\)
\(240\) −0.405713 −0.0261886
\(241\) 8.57978 0.552672 0.276336 0.961061i \(-0.410880\pi\)
0.276336 + 0.961061i \(0.410880\pi\)
\(242\) −8.67605 −0.557718
\(243\) 14.5103 0.930833
\(244\) −1.83198 −0.117281
\(245\) 0 0
\(246\) 3.00044 0.191301
\(247\) 0 0
\(248\) −25.4646 −1.61700
\(249\) −1.00287 −0.0635544
\(250\) −5.40066 −0.341568
\(251\) 21.5151 1.35802 0.679010 0.734129i \(-0.262409\pi\)
0.679010 + 0.734129i \(0.262409\pi\)
\(252\) 0 0
\(253\) 5.07374 0.318983
\(254\) 1.65541 0.103870
\(255\) −4.40737 −0.276000
\(256\) −15.5134 −0.969585
\(257\) 4.93792 0.308019 0.154010 0.988069i \(-0.450781\pi\)
0.154010 + 0.988069i \(0.450781\pi\)
\(258\) −2.20310 −0.137159
\(259\) 0 0
\(260\) 0 0
\(261\) 4.70511 0.291239
\(262\) −10.2436 −0.632854
\(263\) −8.95439 −0.552151 −0.276076 0.961136i \(-0.589034\pi\)
−0.276076 + 0.961136i \(0.589034\pi\)
\(264\) −1.65539 −0.101882
\(265\) 32.3034 1.98438
\(266\) 0 0
\(267\) −8.99780 −0.550657
\(268\) −10.7778 −0.658360
\(269\) −4.82345 −0.294091 −0.147045 0.989130i \(-0.546976\pi\)
−0.147045 + 0.989130i \(0.546976\pi\)
\(270\) 10.7740 0.655688
\(271\) 7.42144 0.450820 0.225410 0.974264i \(-0.427628\pi\)
0.225410 + 0.974264i \(0.427628\pi\)
\(272\) 0.345312 0.0209376
\(273\) 0 0
\(274\) −7.41938 −0.448221
\(275\) 6.14562 0.370595
\(276\) −4.76558 −0.286854
\(277\) 3.81631 0.229300 0.114650 0.993406i \(-0.463425\pi\)
0.114650 + 0.993406i \(0.463425\pi\)
\(278\) 3.58536 0.215036
\(279\) −23.4081 −1.40140
\(280\) 0 0
\(281\) −8.54978 −0.510037 −0.255019 0.966936i \(-0.582082\pi\)
−0.255019 + 0.966936i \(0.582082\pi\)
\(282\) −4.04714 −0.241004
\(283\) 15.2643 0.907371 0.453686 0.891162i \(-0.350109\pi\)
0.453686 + 0.891162i \(0.350109\pi\)
\(284\) −4.39870 −0.261015
\(285\) 2.36215 0.139921
\(286\) 0 0
\(287\) 0 0
\(288\) −14.6786 −0.864947
\(289\) −13.2488 −0.779340
\(290\) 5.37770 0.315790
\(291\) −0.334738 −0.0196227
\(292\) 13.9045 0.813702
\(293\) 5.93964 0.346997 0.173499 0.984834i \(-0.444493\pi\)
0.173499 + 0.984834i \(0.444493\pi\)
\(294\) 0 0
\(295\) −1.75693 −0.102293
\(296\) −29.5522 −1.71768
\(297\) −3.30301 −0.191660
\(298\) −4.99171 −0.289162
\(299\) 0 0
\(300\) −5.77236 −0.333267
\(301\) 0 0
\(302\) 14.3472 0.825591
\(303\) −3.95844 −0.227406
\(304\) −0.185071 −0.0106146
\(305\) −4.94262 −0.283013
\(306\) −4.22467 −0.241508
\(307\) −22.2133 −1.26778 −0.633891 0.773422i \(-0.718543\pi\)
−0.633891 + 0.773422i \(0.718543\pi\)
\(308\) 0 0
\(309\) −2.73285 −0.155466
\(310\) −26.7542 −1.51954
\(311\) 9.84259 0.558122 0.279061 0.960273i \(-0.409977\pi\)
0.279061 + 0.960273i \(0.409977\pi\)
\(312\) 0 0
\(313\) −20.9125 −1.18205 −0.591023 0.806655i \(-0.701276\pi\)
−0.591023 + 0.806655i \(0.701276\pi\)
\(314\) −1.65033 −0.0931337
\(315\) 0 0
\(316\) 15.4241 0.867673
\(317\) 25.3603 1.42438 0.712188 0.701989i \(-0.247705\pi\)
0.712188 + 0.701989i \(0.247705\pi\)
\(318\) −5.28256 −0.296231
\(319\) −1.64865 −0.0923065
\(320\) −15.5498 −0.869259
\(321\) −9.33870 −0.521236
\(322\) 0 0
\(323\) −2.01048 −0.111866
\(324\) −6.70475 −0.372486
\(325\) 0 0
\(326\) 10.1249 0.560768
\(327\) 2.77871 0.153663
\(328\) −14.8637 −0.820709
\(329\) 0 0
\(330\) −1.73923 −0.0957413
\(331\) −1.78283 −0.0979935 −0.0489967 0.998799i \(-0.515602\pi\)
−0.0489967 + 0.998799i \(0.515602\pi\)
\(332\) 1.93467 0.106179
\(333\) −27.1656 −1.48866
\(334\) −14.1083 −0.771971
\(335\) −29.0781 −1.58871
\(336\) 0 0
\(337\) 9.56149 0.520848 0.260424 0.965494i \(-0.416138\pi\)
0.260424 + 0.965494i \(0.416138\pi\)
\(338\) 0 0
\(339\) 9.10468 0.494498
\(340\) 8.50240 0.461107
\(341\) 8.20207 0.444167
\(342\) 2.26422 0.122435
\(343\) 0 0
\(344\) 10.9138 0.588431
\(345\) −12.8573 −0.692216
\(346\) −8.49982 −0.456953
\(347\) 0.633389 0.0340021 0.0170010 0.999855i \(-0.494588\pi\)
0.0170010 + 0.999855i \(0.494588\pi\)
\(348\) 1.54852 0.0830092
\(349\) −30.5989 −1.63792 −0.818960 0.573850i \(-0.805449\pi\)
−0.818960 + 0.573850i \(0.805449\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5.14332 0.274140
\(353\) 1.10035 0.0585655 0.0292828 0.999571i \(-0.490678\pi\)
0.0292828 + 0.999571i \(0.490678\pi\)
\(354\) 0.287311 0.0152704
\(355\) −11.8675 −0.629862
\(356\) 17.3579 0.919969
\(357\) 0 0
\(358\) 7.81042 0.412793
\(359\) 9.77386 0.515845 0.257922 0.966166i \(-0.416962\pi\)
0.257922 + 0.966166i \(0.416962\pi\)
\(360\) −24.5889 −1.29595
\(361\) −17.9225 −0.943288
\(362\) 5.11091 0.268624
\(363\) −6.74026 −0.353772
\(364\) 0 0
\(365\) 37.5139 1.96357
\(366\) 0.808264 0.0422487
\(367\) −11.1473 −0.581882 −0.290941 0.956741i \(-0.593968\pi\)
−0.290941 + 0.956741i \(0.593968\pi\)
\(368\) 1.00736 0.0525121
\(369\) −13.6633 −0.711283
\(370\) −31.0488 −1.61415
\(371\) 0 0
\(372\) −7.70391 −0.399429
\(373\) −30.7301 −1.59115 −0.795573 0.605858i \(-0.792830\pi\)
−0.795573 + 0.605858i \(0.792830\pi\)
\(374\) 1.48030 0.0765445
\(375\) −4.19567 −0.216663
\(376\) 20.0489 1.03394
\(377\) 0 0
\(378\) 0 0
\(379\) −22.6572 −1.16382 −0.581912 0.813252i \(-0.697695\pi\)
−0.581912 + 0.813252i \(0.697695\pi\)
\(380\) −4.55689 −0.233763
\(381\) 1.28606 0.0658866
\(382\) 1.12019 0.0573137
\(383\) 0.589263 0.0301099 0.0150550 0.999887i \(-0.495208\pi\)
0.0150550 + 0.999887i \(0.495208\pi\)
\(384\) −5.03161 −0.256769
\(385\) 0 0
\(386\) 13.9801 0.711567
\(387\) 10.0324 0.509975
\(388\) 0.645753 0.0327832
\(389\) 5.69945 0.288974 0.144487 0.989507i \(-0.453847\pi\)
0.144487 + 0.989507i \(0.453847\pi\)
\(390\) 0 0
\(391\) 10.9432 0.553422
\(392\) 0 0
\(393\) −7.95809 −0.401433
\(394\) 21.7782 1.09717
\(395\) 41.6136 2.09381
\(396\) 2.93556 0.147518
\(397\) 25.5283 1.28123 0.640614 0.767863i \(-0.278680\pi\)
0.640614 + 0.767863i \(0.278680\pi\)
\(398\) −21.6005 −1.08274
\(399\) 0 0
\(400\) 1.22017 0.0610086
\(401\) −25.5011 −1.27347 −0.636733 0.771085i \(-0.719714\pi\)
−0.636733 + 0.771085i \(0.719714\pi\)
\(402\) 4.75514 0.237165
\(403\) 0 0
\(404\) 7.63635 0.379922
\(405\) −18.0891 −0.898857
\(406\) 0 0
\(407\) 9.51867 0.471823
\(408\) −3.57040 −0.176761
\(409\) −0.146988 −0.00726807 −0.00363403 0.999993i \(-0.501157\pi\)
−0.00363403 + 0.999993i \(0.501157\pi\)
\(410\) −15.6164 −0.771241
\(411\) −5.76398 −0.284316
\(412\) 5.27202 0.259734
\(413\) 0 0
\(414\) −12.3243 −0.605709
\(415\) 5.21966 0.256223
\(416\) 0 0
\(417\) 2.78540 0.136402
\(418\) −0.793372 −0.0388051
\(419\) 13.6959 0.669088 0.334544 0.942380i \(-0.391418\pi\)
0.334544 + 0.942380i \(0.391418\pi\)
\(420\) 0 0
\(421\) −3.44169 −0.167738 −0.0838688 0.996477i \(-0.526728\pi\)
−0.0838688 + 0.996477i \(0.526728\pi\)
\(422\) −4.84842 −0.236017
\(423\) 18.4297 0.896084
\(424\) 26.1689 1.27087
\(425\) 13.2551 0.642966
\(426\) 1.94069 0.0940267
\(427\) 0 0
\(428\) 18.0156 0.870816
\(429\) 0 0
\(430\) 11.4665 0.552964
\(431\) −22.2910 −1.07372 −0.536861 0.843671i \(-0.680390\pi\)
−0.536861 + 0.843671i \(0.680390\pi\)
\(432\) −0.655791 −0.0315518
\(433\) −25.8963 −1.24449 −0.622247 0.782821i \(-0.713780\pi\)
−0.622247 + 0.782821i \(0.713780\pi\)
\(434\) 0 0
\(435\) 4.17783 0.200312
\(436\) −5.36049 −0.256721
\(437\) −5.86505 −0.280564
\(438\) −6.13464 −0.293124
\(439\) −27.9838 −1.33560 −0.667798 0.744343i \(-0.732763\pi\)
−0.667798 + 0.744343i \(0.732763\pi\)
\(440\) 8.61583 0.410744
\(441\) 0 0
\(442\) 0 0
\(443\) 33.2089 1.57780 0.788900 0.614521i \(-0.210651\pi\)
0.788900 + 0.614521i \(0.210651\pi\)
\(444\) −8.94055 −0.424300
\(445\) 46.8310 2.22000
\(446\) −2.00706 −0.0950370
\(447\) −3.87796 −0.183421
\(448\) 0 0
\(449\) −19.6864 −0.929059 −0.464529 0.885558i \(-0.653777\pi\)
−0.464529 + 0.885558i \(0.653777\pi\)
\(450\) −14.9280 −0.703712
\(451\) 4.78755 0.225437
\(452\) −17.5641 −0.826146
\(453\) 11.1461 0.523690
\(454\) −22.3783 −1.05027
\(455\) 0 0
\(456\) 1.91357 0.0896111
\(457\) 0.746942 0.0349405 0.0174702 0.999847i \(-0.494439\pi\)
0.0174702 + 0.999847i \(0.494439\pi\)
\(458\) −0.0583493 −0.00272648
\(459\) −7.12405 −0.332522
\(460\) 24.8035 1.15647
\(461\) 33.1710 1.54493 0.772464 0.635058i \(-0.219024\pi\)
0.772464 + 0.635058i \(0.219024\pi\)
\(462\) 0 0
\(463\) 30.7521 1.42917 0.714586 0.699548i \(-0.246615\pi\)
0.714586 + 0.699548i \(0.246615\pi\)
\(464\) −0.327328 −0.0151958
\(465\) −20.7848 −0.963874
\(466\) 12.4863 0.578414
\(467\) −29.6065 −1.37003 −0.685013 0.728531i \(-0.740203\pi\)
−0.685013 + 0.728531i \(0.740203\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 21.0642 0.971621
\(471\) −1.28211 −0.0590766
\(472\) −1.42329 −0.0655122
\(473\) −3.51530 −0.161634
\(474\) −6.80506 −0.312567
\(475\) −7.10411 −0.325959
\(476\) 0 0
\(477\) 24.0555 1.10143
\(478\) −2.85496 −0.130583
\(479\) −14.0905 −0.643813 −0.321907 0.946771i \(-0.604324\pi\)
−0.321907 + 0.946771i \(0.604324\pi\)
\(480\) −13.0337 −0.594903
\(481\) 0 0
\(482\) 7.30247 0.332618
\(483\) 0 0
\(484\) 13.0028 0.591038
\(485\) 1.74222 0.0791100
\(486\) 12.3500 0.560210
\(487\) 16.7955 0.761075 0.380537 0.924766i \(-0.375739\pi\)
0.380537 + 0.924766i \(0.375739\pi\)
\(488\) −4.00400 −0.181253
\(489\) 7.86587 0.355707
\(490\) 0 0
\(491\) 21.6690 0.977908 0.488954 0.872310i \(-0.337379\pi\)
0.488954 + 0.872310i \(0.337379\pi\)
\(492\) −4.49677 −0.202730
\(493\) −3.55586 −0.160148
\(494\) 0 0
\(495\) 7.92003 0.355979
\(496\) 1.62847 0.0731203
\(497\) 0 0
\(498\) −0.853570 −0.0382494
\(499\) 23.3048 1.04327 0.521633 0.853170i \(-0.325323\pi\)
0.521633 + 0.853170i \(0.325323\pi\)
\(500\) 8.09399 0.361974
\(501\) −10.9605 −0.489677
\(502\) 18.3120 0.817306
\(503\) −43.8829 −1.95664 −0.978322 0.207090i \(-0.933601\pi\)
−0.978322 + 0.207090i \(0.933601\pi\)
\(504\) 0 0
\(505\) 20.6026 0.916802
\(506\) 4.31839 0.191976
\(507\) 0 0
\(508\) −2.48097 −0.110075
\(509\) −19.9242 −0.883125 −0.441563 0.897230i \(-0.645576\pi\)
−0.441563 + 0.897230i \(0.645576\pi\)
\(510\) −3.75123 −0.166107
\(511\) 0 0
\(512\) 2.01529 0.0890641
\(513\) 3.81816 0.168576
\(514\) 4.20279 0.185377
\(515\) 14.2237 0.626771
\(516\) 3.30179 0.145353
\(517\) −6.45768 −0.284009
\(518\) 0 0
\(519\) −6.60335 −0.289855
\(520\) 0 0
\(521\) −16.5241 −0.723933 −0.361967 0.932191i \(-0.617895\pi\)
−0.361967 + 0.932191i \(0.617895\pi\)
\(522\) 4.00464 0.175278
\(523\) −11.9962 −0.524556 −0.262278 0.964992i \(-0.584474\pi\)
−0.262278 + 0.964992i \(0.584474\pi\)
\(524\) 15.3522 0.670664
\(525\) 0 0
\(526\) −7.62131 −0.332305
\(527\) 17.6905 0.770611
\(528\) 0.105863 0.00460709
\(529\) 8.92395 0.387998
\(530\) 27.4942 1.19427
\(531\) −1.30835 −0.0567774
\(532\) 0 0
\(533\) 0 0
\(534\) −7.65826 −0.331405
\(535\) 48.6053 2.10139
\(536\) −23.5561 −1.01747
\(537\) 6.06776 0.261843
\(538\) −4.10536 −0.176995
\(539\) 0 0
\(540\) −16.1471 −0.694861
\(541\) −36.2317 −1.55772 −0.778860 0.627197i \(-0.784202\pi\)
−0.778860 + 0.627197i \(0.784202\pi\)
\(542\) 6.31658 0.271320
\(543\) 3.97057 0.170394
\(544\) 11.0933 0.475621
\(545\) −14.4624 −0.619500
\(546\) 0 0
\(547\) −7.34857 −0.314202 −0.157101 0.987583i \(-0.550215\pi\)
−0.157101 + 0.987583i \(0.550215\pi\)
\(548\) 11.1195 0.475000
\(549\) −3.68064 −0.157086
\(550\) 5.23069 0.223037
\(551\) 1.90578 0.0811888
\(552\) −10.4157 −0.443322
\(553\) 0 0
\(554\) 3.24816 0.138001
\(555\) −24.1213 −1.02389
\(556\) −5.37340 −0.227883
\(557\) −10.8280 −0.458796 −0.229398 0.973333i \(-0.573676\pi\)
−0.229398 + 0.973333i \(0.573676\pi\)
\(558\) −19.9232 −0.843417
\(559\) 0 0
\(560\) 0 0
\(561\) 1.15002 0.0485538
\(562\) −7.27694 −0.306959
\(563\) −13.8599 −0.584127 −0.292064 0.956399i \(-0.594342\pi\)
−0.292064 + 0.956399i \(0.594342\pi\)
\(564\) 6.06547 0.255402
\(565\) −47.3873 −1.99360
\(566\) 12.9919 0.546089
\(567\) 0 0
\(568\) −9.61384 −0.403388
\(569\) 27.4120 1.14917 0.574586 0.818444i \(-0.305163\pi\)
0.574586 + 0.818444i \(0.305163\pi\)
\(570\) 2.01048 0.0842099
\(571\) −0.207758 −0.00869439 −0.00434719 0.999991i \(-0.501384\pi\)
−0.00434719 + 0.999991i \(0.501384\pi\)
\(572\) 0 0
\(573\) 0.870251 0.0363552
\(574\) 0 0
\(575\) 38.6682 1.61258
\(576\) −11.5795 −0.482480
\(577\) 3.32656 0.138487 0.0692434 0.997600i \(-0.477942\pi\)
0.0692434 + 0.997600i \(0.477942\pi\)
\(578\) −11.2764 −0.469035
\(579\) 10.8609 0.451362
\(580\) −8.05959 −0.334656
\(581\) 0 0
\(582\) −0.284904 −0.0118097
\(583\) −8.42893 −0.349091
\(584\) 30.3899 1.25754
\(585\) 0 0
\(586\) 5.05538 0.208836
\(587\) 15.0810 0.622461 0.311230 0.950335i \(-0.399259\pi\)
0.311230 + 0.950335i \(0.399259\pi\)
\(588\) 0 0
\(589\) −9.48129 −0.390670
\(590\) −1.49537 −0.0615635
\(591\) 16.9191 0.695957
\(592\) 1.88987 0.0776732
\(593\) −25.8491 −1.06149 −0.530747 0.847530i \(-0.678089\pi\)
−0.530747 + 0.847530i \(0.678089\pi\)
\(594\) −2.81128 −0.115348
\(595\) 0 0
\(596\) 7.48110 0.306438
\(597\) −16.7810 −0.686803
\(598\) 0 0
\(599\) −35.5469 −1.45241 −0.726203 0.687480i \(-0.758717\pi\)
−0.726203 + 0.687480i \(0.758717\pi\)
\(600\) −12.6161 −0.515052
\(601\) −27.2947 −1.11338 −0.556688 0.830722i \(-0.687928\pi\)
−0.556688 + 0.830722i \(0.687928\pi\)
\(602\) 0 0
\(603\) −21.6538 −0.881810
\(604\) −21.5023 −0.874915
\(605\) 35.0811 1.42625
\(606\) −3.36913 −0.136862
\(607\) −38.9258 −1.57995 −0.789976 0.613138i \(-0.789907\pi\)
−0.789976 + 0.613138i \(0.789907\pi\)
\(608\) −5.94549 −0.241121
\(609\) 0 0
\(610\) −4.20679 −0.170328
\(611\) 0 0
\(612\) 6.33152 0.255937
\(613\) −0.886645 −0.0358113 −0.0179056 0.999840i \(-0.505700\pi\)
−0.0179056 + 0.999840i \(0.505700\pi\)
\(614\) −18.9063 −0.762997
\(615\) −12.1321 −0.489214
\(616\) 0 0
\(617\) −34.7888 −1.40054 −0.700272 0.713876i \(-0.746938\pi\)
−0.700272 + 0.713876i \(0.746938\pi\)
\(618\) −2.32600 −0.0935653
\(619\) −2.05562 −0.0826221 −0.0413111 0.999146i \(-0.513153\pi\)
−0.0413111 + 0.999146i \(0.513153\pi\)
\(620\) 40.0967 1.61032
\(621\) −20.7825 −0.833975
\(622\) 8.37728 0.335898
\(623\) 0 0
\(624\) 0 0
\(625\) −12.3816 −0.495265
\(626\) −17.7992 −0.711398
\(627\) −0.616356 −0.0246149
\(628\) 2.47336 0.0986979
\(629\) 20.5302 0.818593
\(630\) 0 0
\(631\) 45.2337 1.80073 0.900363 0.435139i \(-0.143301\pi\)
0.900363 + 0.435139i \(0.143301\pi\)
\(632\) 33.7111 1.34095
\(633\) −3.76665 −0.149711
\(634\) 21.5848 0.857241
\(635\) −6.69355 −0.265625
\(636\) 7.91700 0.313929
\(637\) 0 0
\(638\) −1.40321 −0.0555534
\(639\) −8.83744 −0.349604
\(640\) 26.1881 1.03518
\(641\) −19.0619 −0.752902 −0.376451 0.926437i \(-0.622856\pi\)
−0.376451 + 0.926437i \(0.622856\pi\)
\(642\) −7.94841 −0.313699
\(643\) 10.5351 0.415464 0.207732 0.978186i \(-0.433392\pi\)
0.207732 + 0.978186i \(0.433392\pi\)
\(644\) 0 0
\(645\) 8.90811 0.350756
\(646\) −1.71117 −0.0673252
\(647\) −24.1608 −0.949860 −0.474930 0.880024i \(-0.657527\pi\)
−0.474930 + 0.880024i \(0.657527\pi\)
\(648\) −14.6540 −0.575663
\(649\) 0.458438 0.0179952
\(650\) 0 0
\(651\) 0 0
\(652\) −15.1743 −0.594271
\(653\) −33.6890 −1.31835 −0.659176 0.751988i \(-0.729095\pi\)
−0.659176 + 0.751988i \(0.729095\pi\)
\(654\) 2.36503 0.0924799
\(655\) 41.4196 1.61840
\(656\) 0.950537 0.0371122
\(657\) 27.9357 1.08987
\(658\) 0 0
\(659\) −4.20059 −0.163632 −0.0818159 0.996647i \(-0.526072\pi\)
−0.0818159 + 0.996647i \(0.526072\pi\)
\(660\) 2.60659 0.101461
\(661\) −17.6726 −0.687385 −0.343693 0.939082i \(-0.611678\pi\)
−0.343693 + 0.939082i \(0.611678\pi\)
\(662\) −1.51742 −0.0589760
\(663\) 0 0
\(664\) 4.22844 0.164095
\(665\) 0 0
\(666\) −23.1213 −0.895932
\(667\) −10.3733 −0.401655
\(668\) 21.1441 0.818091
\(669\) −1.55925 −0.0602839
\(670\) −24.7491 −0.956143
\(671\) 1.28968 0.0497875
\(672\) 0 0
\(673\) −20.6103 −0.794469 −0.397235 0.917717i \(-0.630030\pi\)
−0.397235 + 0.917717i \(0.630030\pi\)
\(674\) 8.13803 0.313465
\(675\) −25.1731 −0.968911
\(676\) 0 0
\(677\) −21.3074 −0.818909 −0.409455 0.912330i \(-0.634281\pi\)
−0.409455 + 0.912330i \(0.634281\pi\)
\(678\) 7.74922 0.297607
\(679\) 0 0
\(680\) 18.5829 0.712623
\(681\) −17.3853 −0.666206
\(682\) 6.98099 0.267316
\(683\) 6.69757 0.256275 0.128138 0.991756i \(-0.459100\pi\)
0.128138 + 0.991756i \(0.459100\pi\)
\(684\) −3.39340 −0.129750
\(685\) 29.9999 1.14624
\(686\) 0 0
\(687\) −0.0453305 −0.00172946
\(688\) −0.697939 −0.0266087
\(689\) 0 0
\(690\) −10.9432 −0.416601
\(691\) 24.9263 0.948242 0.474121 0.880460i \(-0.342766\pi\)
0.474121 + 0.880460i \(0.342766\pi\)
\(692\) 12.7387 0.484253
\(693\) 0 0
\(694\) 0.539093 0.0204637
\(695\) −14.4972 −0.549911
\(696\) 3.38445 0.128287
\(697\) 10.3260 0.391123
\(698\) −26.0435 −0.985761
\(699\) 9.70033 0.366900
\(700\) 0 0
\(701\) −4.94583 −0.186801 −0.0934007 0.995629i \(-0.529774\pi\)
−0.0934007 + 0.995629i \(0.529774\pi\)
\(702\) 0 0
\(703\) −11.0032 −0.414995
\(704\) 4.05741 0.152919
\(705\) 16.3644 0.616319
\(706\) 0.936533 0.0352469
\(707\) 0 0
\(708\) −0.430594 −0.0161827
\(709\) 4.64497 0.174446 0.0872228 0.996189i \(-0.472201\pi\)
0.0872228 + 0.996189i \(0.472201\pi\)
\(710\) −10.1007 −0.379074
\(711\) 30.9886 1.16216
\(712\) 37.9377 1.42178
\(713\) 51.6074 1.93271
\(714\) 0 0
\(715\) 0 0
\(716\) −11.7055 −0.437455
\(717\) −2.21797 −0.0828315
\(718\) 8.31878 0.310454
\(719\) 31.7413 1.18375 0.591875 0.806030i \(-0.298388\pi\)
0.591875 + 0.806030i \(0.298388\pi\)
\(720\) 1.57247 0.0586025
\(721\) 0 0
\(722\) −15.2543 −0.567705
\(723\) 5.67315 0.210987
\(724\) −7.65975 −0.284672
\(725\) −12.5647 −0.466643
\(726\) −5.73681 −0.212913
\(727\) 47.8755 1.77560 0.887801 0.460227i \(-0.152232\pi\)
0.887801 + 0.460227i \(0.152232\pi\)
\(728\) 0 0
\(729\) −6.17412 −0.228671
\(730\) 31.9290 1.18175
\(731\) −7.58192 −0.280427
\(732\) −1.21135 −0.0447728
\(733\) 7.60208 0.280789 0.140395 0.990096i \(-0.455163\pi\)
0.140395 + 0.990096i \(0.455163\pi\)
\(734\) −9.48771 −0.350198
\(735\) 0 0
\(736\) 32.3618 1.19287
\(737\) 7.58737 0.279484
\(738\) −11.6292 −0.428076
\(739\) 33.4236 1.22951 0.614754 0.788719i \(-0.289255\pi\)
0.614754 + 0.788719i \(0.289255\pi\)
\(740\) 46.5330 1.71059
\(741\) 0 0
\(742\) 0 0
\(743\) 2.93823 0.107793 0.0538966 0.998547i \(-0.482836\pi\)
0.0538966 + 0.998547i \(0.482836\pi\)
\(744\) −16.8378 −0.617302
\(745\) 20.1837 0.739474
\(746\) −26.1552 −0.957609
\(747\) 3.88695 0.142216
\(748\) −2.21853 −0.0811176
\(749\) 0 0
\(750\) −3.57104 −0.130396
\(751\) 1.19678 0.0436711 0.0218355 0.999762i \(-0.493049\pi\)
0.0218355 + 0.999762i \(0.493049\pi\)
\(752\) −1.28213 −0.0467545
\(753\) 14.2263 0.518434
\(754\) 0 0
\(755\) −58.0123 −2.11128
\(756\) 0 0
\(757\) 11.5464 0.419662 0.209831 0.977738i \(-0.432709\pi\)
0.209831 + 0.977738i \(0.432709\pi\)
\(758\) −19.2841 −0.700432
\(759\) 3.35487 0.121774
\(760\) −9.95959 −0.361272
\(761\) −34.6497 −1.25605 −0.628026 0.778192i \(-0.716137\pi\)
−0.628026 + 0.778192i \(0.716137\pi\)
\(762\) 1.09459 0.0396530
\(763\) 0 0
\(764\) −1.67883 −0.0607378
\(765\) 17.0822 0.617608
\(766\) 0.501537 0.0181213
\(767\) 0 0
\(768\) −10.2578 −0.370146
\(769\) 6.54874 0.236154 0.118077 0.993004i \(-0.462327\pi\)
0.118077 + 0.993004i \(0.462327\pi\)
\(770\) 0 0
\(771\) 3.26507 0.117589
\(772\) −20.9520 −0.754079
\(773\) −33.9275 −1.22029 −0.610143 0.792291i \(-0.708888\pi\)
−0.610143 + 0.792291i \(0.708888\pi\)
\(774\) 8.53882 0.306922
\(775\) 62.5100 2.24542
\(776\) 1.41137 0.0506651
\(777\) 0 0
\(778\) 4.85095 0.173915
\(779\) −5.53423 −0.198284
\(780\) 0 0
\(781\) 3.09659 0.110805
\(782\) 9.31405 0.333070
\(783\) 6.75302 0.241333
\(784\) 0 0
\(785\) 6.67303 0.238171
\(786\) −6.77333 −0.241597
\(787\) −12.9743 −0.462485 −0.231243 0.972896i \(-0.574279\pi\)
−0.231243 + 0.972896i \(0.574279\pi\)
\(788\) −32.6390 −1.16272
\(789\) −5.92085 −0.210788
\(790\) 35.4184 1.26013
\(791\) 0 0
\(792\) 6.41600 0.227983
\(793\) 0 0
\(794\) 21.7278 0.771090
\(795\) 21.3597 0.757552
\(796\) 32.3728 1.14742
\(797\) 4.41913 0.156533 0.0782667 0.996932i \(-0.475061\pi\)
0.0782667 + 0.996932i \(0.475061\pi\)
\(798\) 0 0
\(799\) −13.9282 −0.492743
\(800\) 39.1985 1.38588
\(801\) 34.8739 1.23221
\(802\) −21.7047 −0.766418
\(803\) −9.78852 −0.345429
\(804\) −7.12655 −0.251334
\(805\) 0 0
\(806\) 0 0
\(807\) −3.18937 −0.112271
\(808\) 16.6901 0.587155
\(809\) 11.4716 0.403320 0.201660 0.979456i \(-0.435366\pi\)
0.201660 + 0.979456i \(0.435366\pi\)
\(810\) −15.3961 −0.540965
\(811\) −23.8664 −0.838063 −0.419032 0.907972i \(-0.637630\pi\)
−0.419032 + 0.907972i \(0.637630\pi\)
\(812\) 0 0
\(813\) 4.90723 0.172104
\(814\) 8.10159 0.283960
\(815\) −40.9396 −1.43405
\(816\) 0.228329 0.00799310
\(817\) 4.06355 0.142166
\(818\) −0.125105 −0.00437419
\(819\) 0 0
\(820\) 23.4044 0.817318
\(821\) −30.9694 −1.08084 −0.540420 0.841395i \(-0.681735\pi\)
−0.540420 + 0.841395i \(0.681735\pi\)
\(822\) −4.90587 −0.171112
\(823\) −8.61357 −0.300250 −0.150125 0.988667i \(-0.547968\pi\)
−0.150125 + 0.988667i \(0.547968\pi\)
\(824\) 11.5226 0.401408
\(825\) 4.06362 0.141477
\(826\) 0 0
\(827\) −22.9128 −0.796756 −0.398378 0.917221i \(-0.630427\pi\)
−0.398378 + 0.917221i \(0.630427\pi\)
\(828\) 18.4706 0.641896
\(829\) −42.5611 −1.47821 −0.739104 0.673591i \(-0.764751\pi\)
−0.739104 + 0.673591i \(0.764751\pi\)
\(830\) 4.44259 0.154204
\(831\) 2.52344 0.0875370
\(832\) 0 0
\(833\) 0 0
\(834\) 2.37073 0.0820915
\(835\) 57.0460 1.97416
\(836\) 1.18903 0.0411235
\(837\) −33.5965 −1.16126
\(838\) 11.6569 0.402682
\(839\) −1.84105 −0.0635601 −0.0317800 0.999495i \(-0.510118\pi\)
−0.0317800 + 0.999495i \(0.510118\pi\)
\(840\) 0 0
\(841\) −25.6293 −0.883770
\(842\) −2.92931 −0.100951
\(843\) −5.65332 −0.194711
\(844\) 7.26635 0.250118
\(845\) 0 0
\(846\) 15.6860 0.539296
\(847\) 0 0
\(848\) −1.67351 −0.0574686
\(849\) 10.0931 0.346396
\(850\) 11.2817 0.386960
\(851\) 59.8915 2.05305
\(852\) −2.90852 −0.0996442
\(853\) 27.0293 0.925466 0.462733 0.886498i \(-0.346869\pi\)
0.462733 + 0.886498i \(0.346869\pi\)
\(854\) 0 0
\(855\) −9.15526 −0.313103
\(856\) 39.3750 1.34581
\(857\) 16.7854 0.573377 0.286688 0.958024i \(-0.407446\pi\)
0.286688 + 0.958024i \(0.407446\pi\)
\(858\) 0 0
\(859\) 51.6116 1.76096 0.880482 0.474079i \(-0.157219\pi\)
0.880482 + 0.474079i \(0.157219\pi\)
\(860\) −17.1849 −0.586000
\(861\) 0 0
\(862\) −18.9725 −0.646205
\(863\) −21.9614 −0.747573 −0.373787 0.927515i \(-0.621941\pi\)
−0.373787 + 0.927515i \(0.621941\pi\)
\(864\) −21.0676 −0.716733
\(865\) 34.3685 1.16857
\(866\) −22.0410 −0.748983
\(867\) −8.76040 −0.297519
\(868\) 0 0
\(869\) −10.8583 −0.368341
\(870\) 3.55586 0.120555
\(871\) 0 0
\(872\) −11.7159 −0.396752
\(873\) 1.29739 0.0439098
\(874\) −4.99190 −0.168853
\(875\) 0 0
\(876\) 9.19401 0.310637
\(877\) 9.61745 0.324758 0.162379 0.986728i \(-0.448083\pi\)
0.162379 + 0.986728i \(0.448083\pi\)
\(878\) −23.8178 −0.803811
\(879\) 3.92743 0.132469
\(880\) −0.550986 −0.0185737
\(881\) 28.9726 0.976110 0.488055 0.872813i \(-0.337707\pi\)
0.488055 + 0.872813i \(0.337707\pi\)
\(882\) 0 0
\(883\) 6.60727 0.222352 0.111176 0.993801i \(-0.464538\pi\)
0.111176 + 0.993801i \(0.464538\pi\)
\(884\) 0 0
\(885\) −1.16173 −0.0390510
\(886\) 28.2649 0.949578
\(887\) −31.4144 −1.05479 −0.527397 0.849619i \(-0.676832\pi\)
−0.527397 + 0.849619i \(0.676832\pi\)
\(888\) −19.5406 −0.655739
\(889\) 0 0
\(890\) 39.8591 1.33608
\(891\) 4.72001 0.158126
\(892\) 3.00799 0.100715
\(893\) 7.46484 0.249801
\(894\) −3.30063 −0.110390
\(895\) −31.5810 −1.05564
\(896\) 0 0
\(897\) 0 0
\(898\) −16.7556 −0.559142
\(899\) −16.7692 −0.559283
\(900\) 22.3726 0.745755
\(901\) −18.1798 −0.605658
\(902\) 4.07480 0.135676
\(903\) 0 0
\(904\) −38.3883 −1.27678
\(905\) −20.6657 −0.686951
\(906\) 9.48673 0.315176
\(907\) 9.73642 0.323292 0.161646 0.986849i \(-0.448320\pi\)
0.161646 + 0.986849i \(0.448320\pi\)
\(908\) 33.5385 1.11301
\(909\) 15.3422 0.508869
\(910\) 0 0
\(911\) −38.4372 −1.27348 −0.636740 0.771078i \(-0.719718\pi\)
−0.636740 + 0.771078i \(0.719718\pi\)
\(912\) −0.122373 −0.00405219
\(913\) −1.36197 −0.0450746
\(914\) 0.635741 0.0210285
\(915\) −3.26817 −0.108042
\(916\) 0.0874483 0.00288937
\(917\) 0 0
\(918\) −6.06346 −0.200124
\(919\) 54.2804 1.79055 0.895273 0.445519i \(-0.146981\pi\)
0.895273 + 0.445519i \(0.146981\pi\)
\(920\) 54.2108 1.78728
\(921\) −14.6880 −0.483985
\(922\) 28.2327 0.929795
\(923\) 0 0
\(924\) 0 0
\(925\) 72.5442 2.38524
\(926\) 26.1739 0.860128
\(927\) 10.5920 0.347888
\(928\) −10.5155 −0.345190
\(929\) 38.1920 1.25304 0.626519 0.779406i \(-0.284479\pi\)
0.626519 + 0.779406i \(0.284479\pi\)
\(930\) −17.6905 −0.580095
\(931\) 0 0
\(932\) −18.7132 −0.612971
\(933\) 6.50815 0.213067
\(934\) −25.1988 −0.824531
\(935\) −5.98552 −0.195747
\(936\) 0 0
\(937\) −19.0376 −0.621931 −0.310966 0.950421i \(-0.600652\pi\)
−0.310966 + 0.950421i \(0.600652\pi\)
\(938\) 0 0
\(939\) −13.8278 −0.451255
\(940\) −31.5691 −1.02967
\(941\) −46.1622 −1.50484 −0.752422 0.658682i \(-0.771114\pi\)
−0.752422 + 0.658682i \(0.771114\pi\)
\(942\) −1.09124 −0.0355545
\(943\) 30.1232 0.980948
\(944\) 0.0910198 0.00296244
\(945\) 0 0
\(946\) −2.99196 −0.0972770
\(947\) 9.19374 0.298756 0.149378 0.988780i \(-0.452273\pi\)
0.149378 + 0.988780i \(0.452273\pi\)
\(948\) 10.1988 0.331241
\(949\) 0 0
\(950\) −6.04648 −0.196174
\(951\) 16.7688 0.543766
\(952\) 0 0
\(953\) −44.6463 −1.44624 −0.723118 0.690725i \(-0.757292\pi\)
−0.723118 + 0.690725i \(0.757292\pi\)
\(954\) 20.4743 0.662879
\(955\) −4.52941 −0.146568
\(956\) 4.27874 0.138385
\(957\) −1.09012 −0.0352387
\(958\) −11.9928 −0.387470
\(959\) 0 0
\(960\) −10.2819 −0.331846
\(961\) 52.4271 1.69120
\(962\) 0 0
\(963\) 36.1952 1.16637
\(964\) −10.9442 −0.352490
\(965\) −56.5276 −1.81969
\(966\) 0 0
\(967\) −13.8268 −0.444639 −0.222320 0.974974i \(-0.571363\pi\)
−0.222320 + 0.974974i \(0.571363\pi\)
\(968\) 28.4191 0.913426
\(969\) −1.32938 −0.0427058
\(970\) 1.48284 0.0476113
\(971\) 7.26873 0.233265 0.116632 0.993175i \(-0.462790\pi\)
0.116632 + 0.993175i \(0.462790\pi\)
\(972\) −18.5091 −0.593679
\(973\) 0 0
\(974\) 14.2950 0.458043
\(975\) 0 0
\(976\) 0.256057 0.00819619
\(977\) −42.8101 −1.36962 −0.684808 0.728723i \(-0.740114\pi\)
−0.684808 + 0.728723i \(0.740114\pi\)
\(978\) 6.69484 0.214077
\(979\) −12.2196 −0.390541
\(980\) 0 0
\(981\) −10.7698 −0.343852
\(982\) 18.4430 0.588541
\(983\) 46.3088 1.47702 0.738511 0.674242i \(-0.235529\pi\)
0.738511 + 0.674242i \(0.235529\pi\)
\(984\) −9.82820 −0.313312
\(985\) −88.0588 −2.80579
\(986\) −3.02648 −0.0963829
\(987\) 0 0
\(988\) 0 0
\(989\) −22.1182 −0.703319
\(990\) 6.74094 0.214241
\(991\) −58.2324 −1.84981 −0.924907 0.380194i \(-0.875857\pi\)
−0.924907 + 0.380194i \(0.875857\pi\)
\(992\) 52.3151 1.66101
\(993\) −1.17885 −0.0374097
\(994\) 0 0
\(995\) 87.3406 2.76888
\(996\) 1.27925 0.0405346
\(997\) −4.49479 −0.142351 −0.0711757 0.997464i \(-0.522675\pi\)
−0.0711757 + 0.997464i \(0.522675\pi\)
\(998\) 19.8353 0.627875
\(999\) −38.9894 −1.23357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.ce.1.4 6
7.2 even 3 1183.2.e.g.508.3 12
7.4 even 3 1183.2.e.g.170.3 12
7.6 odd 2 8281.2.a.cf.1.4 6
13.4 even 6 637.2.f.k.393.4 12
13.10 even 6 637.2.f.k.295.4 12
13.12 even 2 8281.2.a.bz.1.3 6
91.4 even 6 91.2.h.b.16.3 yes 12
91.10 odd 6 637.2.g.l.373.4 12
91.17 odd 6 637.2.h.l.471.3 12
91.23 even 6 91.2.h.b.74.3 yes 12
91.25 even 6 1183.2.e.h.170.4 12
91.30 even 6 91.2.g.b.81.4 yes 12
91.51 even 6 1183.2.e.h.508.4 12
91.62 odd 6 637.2.f.j.295.4 12
91.69 odd 6 637.2.f.j.393.4 12
91.75 odd 6 637.2.h.l.165.3 12
91.82 odd 6 637.2.g.l.263.4 12
91.88 even 6 91.2.g.b.9.4 12
91.90 odd 2 8281.2.a.ca.1.3 6
273.23 odd 6 819.2.s.d.802.4 12
273.95 odd 6 819.2.s.d.289.4 12
273.179 odd 6 819.2.n.d.100.3 12
273.212 odd 6 819.2.n.d.172.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.g.b.9.4 12 91.88 even 6
91.2.g.b.81.4 yes 12 91.30 even 6
91.2.h.b.16.3 yes 12 91.4 even 6
91.2.h.b.74.3 yes 12 91.23 even 6
637.2.f.j.295.4 12 91.62 odd 6
637.2.f.j.393.4 12 91.69 odd 6
637.2.f.k.295.4 12 13.10 even 6
637.2.f.k.393.4 12 13.4 even 6
637.2.g.l.263.4 12 91.82 odd 6
637.2.g.l.373.4 12 91.10 odd 6
637.2.h.l.165.3 12 91.75 odd 6
637.2.h.l.471.3 12 91.17 odd 6
819.2.n.d.100.3 12 273.179 odd 6
819.2.n.d.172.3 12 273.212 odd 6
819.2.s.d.289.4 12 273.95 odd 6
819.2.s.d.802.4 12 273.23 odd 6
1183.2.e.g.170.3 12 7.4 even 3
1183.2.e.g.508.3 12 7.2 even 3
1183.2.e.h.170.4 12 91.25 even 6
1183.2.e.h.508.4 12 91.51 even 6
8281.2.a.bz.1.3 6 13.12 even 2
8281.2.a.ca.1.3 6 91.90 odd 2
8281.2.a.ce.1.4 6 1.1 even 1 trivial
8281.2.a.cf.1.4 6 7.6 odd 2