Properties

Label 91.2.g.b.9.4
Level $91$
Weight $2$
Character 91.9
Analytic conductor $0.727$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 91 = 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 91.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.726638658394\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - x^{11} + 7 x^{10} - 2 x^{9} + 33 x^{8} - 11 x^{7} + 55 x^{6} + 17 x^{5} + 47 x^{4} + x^{3} + 8 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.4
Root \(0.756174 - 1.30973i\) of defining polynomial
Character \(\chi\) \(=\) 91.9
Dual form 91.2.g.b.81.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.425563 + 0.737096i) q^{2} +0.661223 q^{3} +(0.637793 - 1.10469i) q^{4} +(-1.72074 + 2.98041i) q^{5} +(0.281392 + 0.487385i) q^{6} +(1.82097 - 1.91940i) q^{7} +2.78793 q^{8} -2.56278 q^{9} +O(q^{10})\) \(q+(0.425563 + 0.737096i) q^{2} +0.661223 q^{3} +(0.637793 - 1.10469i) q^{4} +(-1.72074 + 2.98041i) q^{5} +(0.281392 + 0.487385i) q^{6} +(1.82097 - 1.91940i) q^{7} +2.78793 q^{8} -2.56278 q^{9} -2.92913 q^{10} -0.897986 q^{11} +(0.421723 - 0.730446i) q^{12} +(-3.07517 - 1.88237i) q^{13} +(2.18972 + 0.525403i) q^{14} +(-1.13779 + 1.97071i) q^{15} +(-0.0891447 - 0.154403i) q^{16} +(-0.968404 + 1.67733i) q^{17} +(-1.09063 - 1.88902i) q^{18} +1.03804 q^{19} +(2.19495 + 3.80177i) q^{20} +(1.20406 - 1.26915i) q^{21} +(-0.382150 - 0.661902i) q^{22} +(-2.82506 - 4.89315i) q^{23} +1.84345 q^{24} +(-3.42189 - 5.92688i) q^{25} +(0.0788077 - 3.06776i) q^{26} -3.67824 q^{27} +(-0.958938 - 3.23578i) q^{28} +(0.917969 - 1.58997i) q^{29} -1.93681 q^{30} +(4.56692 + 7.91014i) q^{31} +(2.86381 - 4.96026i) q^{32} -0.593769 q^{33} -1.64847 q^{34} +(2.58718 + 8.73000i) q^{35} +(-1.63452 + 2.83108i) q^{36} +(5.30001 + 9.17989i) q^{37} +(0.441751 + 0.765135i) q^{38} +(-2.03338 - 1.24467i) q^{39} +(-4.79731 + 8.30918i) q^{40} +(2.66571 - 4.61715i) q^{41} +(1.44789 + 0.347409i) q^{42} +(1.95732 + 3.39018i) q^{43} +(-0.572729 + 0.991996i) q^{44} +(4.40988 - 7.63814i) q^{45} +(2.40448 - 4.16469i) q^{46} +(-3.59565 + 6.22784i) q^{47} +(-0.0589445 - 0.102095i) q^{48} +(-0.368167 - 6.99031i) q^{49} +(2.91246 - 5.04452i) q^{50} +(-0.640331 + 1.10909i) q^{51} +(-4.04076 + 2.19655i) q^{52} +(4.69324 + 8.12893i) q^{53} +(-1.56532 - 2.71122i) q^{54} +(1.54520 - 2.67637i) q^{55} +(5.07673 - 5.35115i) q^{56} +0.686375 q^{57} +1.56261 q^{58} +(0.255259 - 0.442121i) q^{59} +(1.45135 + 2.51382i) q^{60} +1.43619 q^{61} +(-3.88702 + 6.73252i) q^{62} +(-4.66674 + 4.91900i) q^{63} +4.51834 q^{64} +(10.9018 - 5.92620i) q^{65} +(-0.252686 - 0.437665i) q^{66} -8.44932 q^{67} +(1.23528 + 2.13957i) q^{68} +(-1.86800 - 3.23547i) q^{69} +(-5.33385 + 5.62216i) q^{70} +(1.72419 + 2.98638i) q^{71} -7.14487 q^{72} +(-5.45026 - 9.44013i) q^{73} +(-4.51097 + 7.81324i) q^{74} +(-2.26263 - 3.91899i) q^{75} +(0.662054 - 1.14671i) q^{76} +(-1.63520 + 1.72359i) q^{77} +(0.0521095 - 2.02848i) q^{78} +(6.04589 - 10.4718i) q^{79} +0.613579 q^{80} +5.25621 q^{81} +4.53771 q^{82} +1.51669 q^{83} +(-0.634072 - 2.13957i) q^{84} +(-3.33274 - 5.77248i) q^{85} +(-1.66593 + 2.88547i) q^{86} +(0.606982 - 1.05132i) q^{87} -2.50353 q^{88} +(-6.80391 - 11.7847i) q^{89} +7.50673 q^{90} +(-9.21280 + 2.47475i) q^{91} -7.20722 q^{92} +(3.01976 + 5.23037i) q^{93} -6.12069 q^{94} +(-1.78619 + 3.09378i) q^{95} +(1.89362 - 3.27984i) q^{96} +(-0.253120 - 0.438417i) q^{97} +(4.99585 - 3.24619i) q^{98} +2.30134 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} + O(q^{10}) \) \( 12q + 2q^{2} - 2q^{3} - 4q^{4} + q^{5} - 9q^{6} + 9q^{7} - 6q^{8} - 6q^{9} - 8q^{10} - 8q^{11} + 5q^{12} - 2q^{13} - 2q^{14} - 2q^{15} + 8q^{16} + 5q^{17} + 3q^{18} + 2q^{19} - q^{20} - 9q^{21} - 5q^{22} - q^{23} + 22q^{24} + 7q^{25} + 5q^{26} - 8q^{27} - 7q^{28} + 3q^{29} + 10q^{30} + 16q^{31} + 8q^{32} - 32q^{33} + 32q^{34} + 8q^{35} - 21q^{36} - 13q^{37} - 17q^{38} - 23q^{39} - 5q^{40} - 8q^{41} + 2q^{42} - 11q^{43} + 21q^{44} - 7q^{45} + 16q^{46} - q^{47} + 21q^{48} - 3q^{49} + 6q^{50} - 20q^{51} - 25q^{52} - 2q^{53} - 18q^{54} + 9q^{55} - 18q^{56} + 42q^{57} + 16q^{58} + 13q^{59} + 20q^{60} + 10q^{61} + 5q^{62} + 32q^{63} - 30q^{64} + 19q^{65} + 18q^{66} + 22q^{67} + 29q^{68} + 23q^{69} - 39q^{70} + 6q^{71} - 50q^{72} - 30q^{73} - 3q^{74} - 3q^{75} - 9q^{76} + 11q^{77} + 16q^{78} + 7q^{79} + 14q^{80} + 12q^{81} - 2q^{82} - 54q^{83} + 5q^{84} - q^{85} - 7q^{86} + 16q^{87} + 4q^{89} - 16q^{90} - 20q^{91} + 54q^{92} - 7q^{93} - 90q^{94} - 6q^{95} + 19q^{96} - 35q^{97} + 62q^{98} - 20q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/91\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(66\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.425563 + 0.737096i 0.300918 + 0.521206i 0.976344 0.216222i \(-0.0693735\pi\)
−0.675426 + 0.737428i \(0.736040\pi\)
\(3\) 0.661223 0.381757 0.190879 0.981614i \(-0.438866\pi\)
0.190879 + 0.981614i \(0.438866\pi\)
\(4\) 0.637793 1.10469i 0.318896 0.552345i
\(5\) −1.72074 + 2.98041i −0.769538 + 1.33288i 0.168276 + 0.985740i \(0.446180\pi\)
−0.937814 + 0.347139i \(0.887153\pi\)
\(6\) 0.281392 + 0.487385i 0.114878 + 0.198974i
\(7\) 1.82097 1.91940i 0.688260 0.725464i
\(8\) 2.78793 0.985684
\(9\) −2.56278 −0.854261
\(10\) −2.92913 −0.926272
\(11\) −0.897986 −0.270753 −0.135377 0.990794i \(-0.543224\pi\)
−0.135377 + 0.990794i \(0.543224\pi\)
\(12\) 0.421723 0.730446i 0.121741 0.210862i
\(13\) −3.07517 1.88237i −0.852900 0.522075i
\(14\) 2.18972 + 0.525403i 0.585226 + 0.140420i
\(15\) −1.13779 + 1.97071i −0.293777 + 0.508836i
\(16\) −0.0891447 0.154403i −0.0222862 0.0386008i
\(17\) −0.968404 + 1.67733i −0.234873 + 0.406811i −0.959236 0.282607i \(-0.908801\pi\)
0.724363 + 0.689419i \(0.242134\pi\)
\(18\) −1.09063 1.88902i −0.257063 0.445246i
\(19\) 1.03804 0.238142 0.119071 0.992886i \(-0.462008\pi\)
0.119071 + 0.992886i \(0.462008\pi\)
\(20\) 2.19495 + 3.80177i 0.490806 + 0.850101i
\(21\) 1.20406 1.26915i 0.262748 0.276951i
\(22\) −0.382150 0.661902i −0.0814745 0.141118i
\(23\) −2.82506 4.89315i −0.589067 1.02029i −0.994355 0.106104i \(-0.966162\pi\)
0.405288 0.914189i \(-0.367171\pi\)
\(24\) 1.84345 0.376292
\(25\) −3.42189 5.92688i −0.684378 1.18538i
\(26\) 0.0788077 3.06776i 0.0154555 0.601638i
\(27\) −3.67824 −0.707878
\(28\) −0.958938 3.23578i −0.181222 0.611505i
\(29\) 0.917969 1.58997i 0.170463 0.295250i −0.768119 0.640307i \(-0.778807\pi\)
0.938582 + 0.345057i \(0.112140\pi\)
\(30\) −1.93681 −0.353611
\(31\) 4.56692 + 7.91014i 0.820244 + 1.42070i 0.905501 + 0.424345i \(0.139495\pi\)
−0.0852573 + 0.996359i \(0.527171\pi\)
\(32\) 2.86381 4.96026i 0.506254 0.876858i
\(33\) −0.593769 −0.103362
\(34\) −1.64847 −0.282710
\(35\) 2.58718 + 8.73000i 0.437313 + 1.47564i
\(36\) −1.63452 + 2.83108i −0.272421 + 0.471847i
\(37\) 5.30001 + 9.17989i 0.871316 + 1.50916i 0.860636 + 0.509221i \(0.170067\pi\)
0.0106808 + 0.999943i \(0.496600\pi\)
\(38\) 0.441751 + 0.765135i 0.0716614 + 0.124121i
\(39\) −2.03338 1.24467i −0.325601 0.199306i
\(40\) −4.79731 + 8.30918i −0.758521 + 1.31380i
\(41\) 2.66571 4.61715i 0.416314 0.721078i −0.579251 0.815149i \(-0.696655\pi\)
0.995565 + 0.0940715i \(0.0299882\pi\)
\(42\) 1.44789 + 0.347409i 0.223414 + 0.0536064i
\(43\) 1.95732 + 3.39018i 0.298489 + 0.516998i 0.975790 0.218708i \(-0.0701841\pi\)
−0.677302 + 0.735706i \(0.736851\pi\)
\(44\) −0.572729 + 0.991996i −0.0863422 + 0.149549i
\(45\) 4.40988 7.63814i 0.657387 1.13863i
\(46\) 2.40448 4.16469i 0.354522 0.614050i
\(47\) −3.59565 + 6.22784i −0.524479 + 0.908424i 0.475115 + 0.879924i \(0.342407\pi\)
−0.999594 + 0.0285004i \(0.990927\pi\)
\(48\) −0.0589445 0.102095i −0.00850791 0.0147361i
\(49\) −0.368167 6.99031i −0.0525953 0.998616i
\(50\) 2.91246 5.04452i 0.411883 0.713403i
\(51\) −0.640331 + 1.10909i −0.0896643 + 0.155303i
\(52\) −4.04076 + 2.19655i −0.560352 + 0.304607i
\(53\) 4.69324 + 8.12893i 0.644666 + 1.11659i 0.984378 + 0.176065i \(0.0563370\pi\)
−0.339712 + 0.940529i \(0.610330\pi\)
\(54\) −1.56532 2.71122i −0.213013 0.368950i
\(55\) 1.54520 2.67637i 0.208355 0.360881i
\(56\) 5.07673 5.35115i 0.678407 0.715078i
\(57\) 0.686375 0.0909127
\(58\) 1.56261 0.205181
\(59\) 0.255259 0.442121i 0.0332318 0.0575592i −0.848931 0.528503i \(-0.822753\pi\)
0.882163 + 0.470944i \(0.156087\pi\)
\(60\) 1.45135 + 2.51382i 0.187369 + 0.324532i
\(61\) 1.43619 0.183885 0.0919426 0.995764i \(-0.470692\pi\)
0.0919426 + 0.995764i \(0.470692\pi\)
\(62\) −3.88702 + 6.73252i −0.493653 + 0.855031i
\(63\) −4.66674 + 4.91900i −0.587954 + 0.619736i
\(64\) 4.51834 0.564792
\(65\) 10.9018 5.92620i 1.35220 0.735055i
\(66\) −0.252686 0.437665i −0.0311035 0.0538729i
\(67\) −8.44932 −1.03225 −0.516124 0.856514i \(-0.672626\pi\)
−0.516124 + 0.856514i \(0.672626\pi\)
\(68\) 1.23528 + 2.13957i 0.149800 + 0.259461i
\(69\) −1.86800 3.23547i −0.224881 0.389504i
\(70\) −5.33385 + 5.62216i −0.637516 + 0.671977i
\(71\) 1.72419 + 2.98638i 0.204623 + 0.354418i 0.950013 0.312211i \(-0.101070\pi\)
−0.745389 + 0.666629i \(0.767736\pi\)
\(72\) −7.14487 −0.842031
\(73\) −5.45026 9.44013i −0.637905 1.10488i −0.985892 0.167384i \(-0.946468\pi\)
0.347987 0.937499i \(-0.386865\pi\)
\(74\) −4.51097 + 7.81324i −0.524390 + 0.908270i
\(75\) −2.26263 3.91899i −0.261266 0.452526i
\(76\) 0.662054 1.14671i 0.0759428 0.131537i
\(77\) −1.63520 + 1.72359i −0.186349 + 0.196422i
\(78\) 0.0521095 2.02848i 0.00590024 0.229680i
\(79\) 6.04589 10.4718i 0.680216 1.17817i −0.294699 0.955590i \(-0.595219\pi\)
0.974915 0.222578i \(-0.0714472\pi\)
\(80\) 0.613579 0.0686002
\(81\) 5.25621 0.584024
\(82\) 4.53771 0.501107
\(83\) 1.51669 0.166479 0.0832393 0.996530i \(-0.473473\pi\)
0.0832393 + 0.996530i \(0.473473\pi\)
\(84\) −0.634072 2.13957i −0.0691830 0.233446i
\(85\) −3.33274 5.77248i −0.361487 0.626113i
\(86\) −1.66593 + 2.88547i −0.179642 + 0.311148i
\(87\) 0.606982 1.05132i 0.0650754 0.112714i
\(88\) −2.50353 −0.266877
\(89\) −6.80391 11.7847i −0.721213 1.24918i −0.960514 0.278232i \(-0.910252\pi\)
0.239301 0.970945i \(-0.423082\pi\)
\(90\) 7.50673 0.791279
\(91\) −9.21280 + 2.47475i −0.965763 + 0.259424i
\(92\) −7.20722 −0.751405
\(93\) 3.01976 + 5.23037i 0.313134 + 0.542364i
\(94\) −6.12069 −0.631301
\(95\) −1.78619 + 3.09378i −0.183260 + 0.317415i
\(96\) 1.89362 3.27984i 0.193266 0.334747i
\(97\) −0.253120 0.438417i −0.0257005 0.0445145i 0.852889 0.522092i \(-0.174848\pi\)
−0.878590 + 0.477578i \(0.841515\pi\)
\(98\) 4.99585 3.24619i 0.504657 0.327915i
\(99\) 2.30134 0.231294
\(100\) −8.72982 −0.872982
\(101\) −5.98654 −0.595683 −0.297842 0.954615i \(-0.596267\pi\)
−0.297842 + 0.954615i \(0.596267\pi\)
\(102\) −1.09000 −0.107927
\(103\) 2.06651 3.57930i 0.203619 0.352679i −0.746073 0.665865i \(-0.768063\pi\)
0.949692 + 0.313186i \(0.101396\pi\)
\(104\) −8.57338 5.24792i −0.840689 0.514601i
\(105\) 1.71070 + 5.77248i 0.166947 + 0.563336i
\(106\) −3.99454 + 6.91874i −0.387984 + 0.672008i
\(107\) 7.06169 + 12.2312i 0.682679 + 1.18243i 0.974160 + 0.225858i \(0.0725186\pi\)
−0.291481 + 0.956577i \(0.594148\pi\)
\(108\) −2.34596 + 4.06331i −0.225740 + 0.390993i
\(109\) 2.10119 + 3.63936i 0.201257 + 0.348588i 0.948934 0.315475i \(-0.102164\pi\)
−0.747677 + 0.664063i \(0.768831\pi\)
\(110\) 2.63032 0.250791
\(111\) 3.50449 + 6.06995i 0.332631 + 0.576135i
\(112\) −0.458690 0.110059i −0.0433421 0.0103996i
\(113\) −6.88472 11.9247i −0.647660 1.12178i −0.983680 0.179926i \(-0.942414\pi\)
0.336020 0.941855i \(-0.390919\pi\)
\(114\) 0.292096 + 0.505925i 0.0273573 + 0.0473842i
\(115\) 19.4448 1.81324
\(116\) −1.17095 2.02814i −0.108720 0.188308i
\(117\) 7.88100 + 4.82410i 0.728599 + 0.445989i
\(118\) 0.434514 0.0400003
\(119\) 1.45602 + 4.91310i 0.133473 + 0.450384i
\(120\) −3.17209 + 5.49422i −0.289571 + 0.501552i
\(121\) −10.1936 −0.926693
\(122\) 0.611189 + 1.05861i 0.0553344 + 0.0958420i
\(123\) 1.76263 3.05297i 0.158931 0.275277i
\(124\) 11.6510 1.04629
\(125\) 6.34531 0.567542
\(126\) −5.61177 1.34650i −0.499936 0.119955i
\(127\) −0.972482 + 1.68439i −0.0862938 + 0.149465i −0.905942 0.423402i \(-0.860836\pi\)
0.819648 + 0.572868i \(0.194169\pi\)
\(128\) −3.80478 6.59007i −0.336298 0.582485i
\(129\) 1.29423 + 2.24167i 0.113950 + 0.197368i
\(130\) 9.00758 + 5.51370i 0.790017 + 0.483584i
\(131\) 6.01770 10.4230i 0.525769 0.910659i −0.473780 0.880643i \(-0.657111\pi\)
0.999549 0.0300158i \(-0.00955576\pi\)
\(132\) −0.378702 + 0.655931i −0.0329618 + 0.0570914i
\(133\) 1.89023 1.99241i 0.163904 0.172764i
\(134\) −3.59571 6.22796i −0.310622 0.538014i
\(135\) 6.32930 10.9627i 0.544739 0.943516i
\(136\) −2.69985 + 4.67627i −0.231510 + 0.400987i
\(137\) −4.35857 + 7.54927i −0.372378 + 0.644978i −0.989931 0.141552i \(-0.954791\pi\)
0.617553 + 0.786529i \(0.288124\pi\)
\(138\) 1.58990 2.75379i 0.135341 0.234418i
\(139\) −2.10625 3.64813i −0.178650 0.309430i 0.762769 0.646672i \(-0.223840\pi\)
−0.941418 + 0.337241i \(0.890506\pi\)
\(140\) 11.2940 + 2.70990i 0.954519 + 0.229029i
\(141\) −2.37752 + 4.11799i −0.200224 + 0.346798i
\(142\) −1.46750 + 2.54178i −0.123150 + 0.213302i
\(143\) 2.76146 + 1.69034i 0.230925 + 0.141353i
\(144\) 0.228459 + 0.395702i 0.0190382 + 0.0329751i
\(145\) 3.15917 + 5.47184i 0.262355 + 0.454412i
\(146\) 4.63885 8.03473i 0.383914 0.664959i
\(147\) −0.243441 4.62216i −0.0200786 0.381229i
\(148\) 13.5212 1.11144
\(149\) 5.86484 0.480466 0.240233 0.970715i \(-0.422776\pi\)
0.240233 + 0.970715i \(0.422776\pi\)
\(150\) 1.92578 3.33555i 0.157240 0.272347i
\(151\) 8.42840 + 14.5984i 0.685893 + 1.18800i 0.973155 + 0.230150i \(0.0739216\pi\)
−0.287262 + 0.957852i \(0.592745\pi\)
\(152\) 2.89398 0.234733
\(153\) 2.48181 4.29862i 0.200643 0.347523i
\(154\) −1.96633 0.471805i −0.158452 0.0380191i
\(155\) −31.4339 −2.52483
\(156\) −2.67184 + 1.45241i −0.213919 + 0.116286i
\(157\) 0.969500 + 1.67922i 0.0773746 + 0.134017i 0.902116 0.431493i \(-0.142013\pi\)
−0.824742 + 0.565509i \(0.808680\pi\)
\(158\) 10.2916 0.818757
\(159\) 3.10328 + 5.37504i 0.246106 + 0.426268i
\(160\) 9.85573 + 17.0706i 0.779164 + 1.34955i
\(161\) −14.5362 3.48785i −1.14562 0.274881i
\(162\) 2.23685 + 3.87433i 0.175743 + 0.304396i
\(163\) −11.8959 −0.931762 −0.465881 0.884847i \(-0.654262\pi\)
−0.465881 + 0.884847i \(0.654262\pi\)
\(164\) −3.40035 5.88957i −0.265522 0.459898i
\(165\) 1.02172 1.76968i 0.0795410 0.137769i
\(166\) 0.645448 + 1.11795i 0.0500965 + 0.0867696i
\(167\) −8.28801 + 14.3553i −0.641346 + 1.11084i 0.343787 + 0.939048i \(0.388290\pi\)
−0.985133 + 0.171796i \(0.945043\pi\)
\(168\) 3.35685 3.53831i 0.258987 0.272986i
\(169\) 5.91338 + 11.5772i 0.454875 + 0.890555i
\(170\) 2.83658 4.91310i 0.217556 0.376818i
\(171\) −2.66027 −0.203436
\(172\) 4.99346 0.380748
\(173\) −9.98656 −0.759264 −0.379632 0.925138i \(-0.623949\pi\)
−0.379632 + 0.925138i \(0.623949\pi\)
\(174\) 1.03324 0.0783295
\(175\) −17.6072 4.22469i −1.33098 0.319357i
\(176\) 0.0800507 + 0.138652i 0.00603405 + 0.0104513i
\(177\) 0.168783 0.292341i 0.0126865 0.0219737i
\(178\) 5.79098 10.0303i 0.434052 0.751801i
\(179\) 9.17657 0.685889 0.342945 0.939356i \(-0.388576\pi\)
0.342945 + 0.939356i \(0.388576\pi\)
\(180\) −5.62518 9.74310i −0.419276 0.726208i
\(181\) 6.00489 0.446340 0.223170 0.974780i \(-0.428360\pi\)
0.223170 + 0.974780i \(0.428360\pi\)
\(182\) −5.74475 5.73756i −0.425829 0.425296i
\(183\) 0.949642 0.0701995
\(184\) −7.87609 13.6418i −0.580633 1.00569i
\(185\) −36.4797 −2.68204
\(186\) −2.57019 + 4.45170i −0.188456 + 0.326415i
\(187\) 0.869614 1.50622i 0.0635925 0.110145i
\(188\) 4.58655 + 7.94415i 0.334509 + 0.579386i
\(189\) −6.69795 + 7.06000i −0.487204 + 0.513540i
\(190\) −3.04055 −0.220585
\(191\) 1.31612 0.0952313 0.0476156 0.998866i \(-0.484838\pi\)
0.0476156 + 0.998866i \(0.484838\pi\)
\(192\) 2.98763 0.215614
\(193\) −16.4254 −1.18233 −0.591163 0.806552i \(-0.701331\pi\)
−0.591163 + 0.806552i \(0.701331\pi\)
\(194\) 0.215437 0.373148i 0.0154675 0.0267905i
\(195\) 7.20852 3.91854i 0.516213 0.280613i
\(196\) −7.95694 4.05166i −0.568353 0.289404i
\(197\) 12.7938 22.1594i 0.911517 1.57879i 0.0995951 0.995028i \(-0.468245\pi\)
0.811922 0.583766i \(-0.198421\pi\)
\(198\) 0.979367 + 1.69631i 0.0696006 + 0.120552i
\(199\) 12.6894 21.9787i 0.899528 1.55803i 0.0714284 0.997446i \(-0.477244\pi\)
0.828099 0.560582i \(-0.189422\pi\)
\(200\) −9.54000 16.5238i −0.674580 1.16841i
\(201\) −5.58688 −0.394068
\(202\) −2.54765 4.41266i −0.179252 0.310473i
\(203\) −1.38019 4.65723i −0.0968704 0.326873i
\(204\) 0.816797 + 1.41473i 0.0571873 + 0.0990512i
\(205\) 9.17399 + 15.8898i 0.640740 + 1.10979i
\(206\) 3.51772 0.245091
\(207\) 7.24003 + 12.5401i 0.503217 + 0.871597i
\(208\) −0.0165082 + 0.642619i −0.00114464 + 0.0445576i
\(209\) −0.932145 −0.0644778
\(210\) −3.52686 + 3.71750i −0.243377 + 0.256532i
\(211\) 2.84824 4.93330i 0.196081 0.339622i −0.751173 0.660105i \(-0.770512\pi\)
0.947254 + 0.320483i \(0.103845\pi\)
\(212\) 11.9733 0.822327
\(213\) 1.14007 + 1.97466i 0.0781165 + 0.135302i
\(214\) −6.01038 + 10.4103i −0.410861 + 0.711633i
\(215\) −13.4722 −0.918794
\(216\) −10.2547 −0.697744
\(217\) 23.4989 + 5.63836i 1.59521 + 0.382757i
\(218\) −1.78837 + 3.09755i −0.121124 + 0.209793i
\(219\) −3.60384 6.24203i −0.243525 0.421797i
\(220\) −1.97104 3.41393i −0.132887 0.230167i
\(221\) 6.13536 3.33517i 0.412709 0.224348i
\(222\) −2.98276 + 5.16629i −0.200190 + 0.346739i
\(223\) −1.17906 + 2.04219i −0.0789558 + 0.136755i −0.902800 0.430061i \(-0.858492\pi\)
0.823844 + 0.566817i \(0.191825\pi\)
\(224\) −4.30581 14.5292i −0.287694 0.970776i
\(225\) 8.76956 + 15.1893i 0.584637 + 1.01262i
\(226\) 5.85976 10.1494i 0.389786 0.675129i
\(227\) −13.1463 + 22.7701i −0.872551 + 1.51130i −0.0132022 + 0.999913i \(0.504203\pi\)
−0.859349 + 0.511390i \(0.829131\pi\)
\(228\) 0.437765 0.758232i 0.0289917 0.0502151i
\(229\) −0.0342777 + 0.0593708i −0.00226514 + 0.00392333i −0.867156 0.498037i \(-0.834054\pi\)
0.864891 + 0.501960i \(0.167388\pi\)
\(230\) 8.27498 + 14.3327i 0.545636 + 0.945069i
\(231\) −1.08123 + 1.13968i −0.0711400 + 0.0749854i
\(232\) 2.55924 4.43273i 0.168022 0.291023i
\(233\) −7.33514 + 12.7048i −0.480541 + 0.832322i −0.999751 0.0223253i \(-0.992893\pi\)
0.519210 + 0.854647i \(0.326226\pi\)
\(234\) −0.201967 + 7.86202i −0.0132030 + 0.513956i
\(235\) −12.3743 21.4330i −0.807213 1.39813i
\(236\) −0.325604 0.563963i −0.0211950 0.0367109i
\(237\) 3.99768 6.92419i 0.259677 0.449774i
\(238\) −3.00180 + 3.16406i −0.194578 + 0.205096i
\(239\) 3.35434 0.216974 0.108487 0.994098i \(-0.465399\pi\)
0.108487 + 0.994098i \(0.465399\pi\)
\(240\) 0.405713 0.0261886
\(241\) 4.28989 7.43031i 0.276336 0.478628i −0.694135 0.719845i \(-0.744213\pi\)
0.970471 + 0.241216i \(0.0775464\pi\)
\(242\) −4.33802 7.51368i −0.278859 0.482998i
\(243\) 14.5103 0.930833
\(244\) 0.915991 1.58654i 0.0586403 0.101568i
\(245\) 21.4675 + 10.9312i 1.37151 + 0.698370i
\(246\) 3.00044 0.191301
\(247\) −3.19215 1.95397i −0.203112 0.124328i
\(248\) 12.7323 + 22.0530i 0.808501 + 1.40036i
\(249\) 1.00287 0.0635544
\(250\) 2.70033 + 4.67711i 0.170784 + 0.295806i
\(251\) −10.7575 18.6326i −0.679010 1.17608i −0.975280 0.220975i \(-0.929076\pi\)
0.296270 0.955104i \(-0.404257\pi\)
\(252\) 2.45755 + 8.29260i 0.154811 + 0.522385i
\(253\) 2.53687 + 4.39399i 0.159492 + 0.276248i
\(254\) −1.65541 −0.103870
\(255\) −2.20369 3.81690i −0.138000 0.239023i
\(256\) 7.75668 13.4350i 0.484793 0.839686i
\(257\) −2.46896 4.27636i −0.154010 0.266752i 0.778688 0.627411i \(-0.215885\pi\)
−0.932698 + 0.360659i \(0.882552\pi\)
\(258\) −1.10155 + 1.90794i −0.0685795 + 0.118783i
\(259\) 27.2710 + 6.54344i 1.69454 + 0.406590i
\(260\) 0.406471 15.8228i 0.0252083 0.981288i
\(261\) −2.35256 + 4.07475i −0.145620 + 0.252221i
\(262\) 10.2436 0.632854
\(263\) −8.95439 −0.552151 −0.276076 0.961136i \(-0.589034\pi\)
−0.276076 + 0.961136i \(0.589034\pi\)
\(264\) −1.65539 −0.101882
\(265\) −32.3034 −1.98438
\(266\) 2.27301 + 0.545389i 0.139367 + 0.0334400i
\(267\) −4.49890 7.79233i −0.275328 0.476883i
\(268\) −5.38891 + 9.33387i −0.329180 + 0.570157i
\(269\) 2.41172 4.17723i 0.147045 0.254690i −0.783089 0.621910i \(-0.786357\pi\)
0.930134 + 0.367220i \(0.119690\pi\)
\(270\) 10.7740 0.655688
\(271\) 3.71072 + 6.42715i 0.225410 + 0.390422i 0.956442 0.291921i \(-0.0942945\pi\)
−0.731032 + 0.682343i \(0.760961\pi\)
\(272\) 0.345312 0.0209376
\(273\) −6.09171 + 1.63636i −0.368687 + 0.0990371i
\(274\) −7.41938 −0.448221
\(275\) 3.07281 + 5.32226i 0.185297 + 0.320944i
\(276\) −4.76558 −0.286854
\(277\) −1.90816 + 3.30503i −0.114650 + 0.198580i −0.917640 0.397413i \(-0.869908\pi\)
0.802990 + 0.595993i \(0.203241\pi\)
\(278\) 1.79268 3.10502i 0.107518 0.186226i
\(279\) −11.7040 20.2720i −0.700702 1.21365i
\(280\) 7.21288 + 24.3387i 0.431052 + 1.45451i
\(281\) 8.54978 0.510037 0.255019 0.966936i \(-0.417918\pi\)
0.255019 + 0.966936i \(0.417918\pi\)
\(282\) −4.04714 −0.241004
\(283\) 15.2643 0.907371 0.453686 0.891162i \(-0.350109\pi\)
0.453686 + 0.891162i \(0.350109\pi\)
\(284\) 4.39870 0.261015
\(285\) −1.18107 + 2.04568i −0.0699607 + 0.121176i
\(286\) −0.0707683 + 2.75481i −0.00418461 + 0.162895i
\(287\) −4.00797 13.5242i −0.236583 0.798310i
\(288\) −7.33932 + 12.7121i −0.432474 + 0.749066i
\(289\) 6.62439 + 11.4738i 0.389670 + 0.674928i
\(290\) −2.68885 + 4.65723i −0.157895 + 0.273482i
\(291\) −0.167369 0.289892i −0.00981135 0.0169938i
\(292\) −13.9045 −0.813702
\(293\) 2.96982 + 5.14388i 0.173499 + 0.300509i 0.939641 0.342163i \(-0.111159\pi\)
−0.766142 + 0.642671i \(0.777826\pi\)
\(294\) 3.30337 2.14646i 0.192657 0.125184i
\(295\) 0.878467 + 1.52155i 0.0511463 + 0.0885881i
\(296\) 14.7761 + 25.5929i 0.858842 + 1.48756i
\(297\) 3.30301 0.191660
\(298\) 2.49586 + 4.32295i 0.144581 + 0.250422i
\(299\) −0.523159 + 20.3651i −0.0302551 + 1.17774i
\(300\) −5.77236 −0.333267
\(301\) 10.0713 + 2.41653i 0.580501 + 0.139286i
\(302\) −7.17362 + 12.4251i −0.412796 + 0.714983i
\(303\) −3.95844 −0.227406
\(304\) −0.0925356 0.160276i −0.00530728 0.00919248i
\(305\) −2.47131 + 4.28043i −0.141507 + 0.245097i
\(306\) 4.22467 0.241508
\(307\) 22.2133 1.26778 0.633891 0.773422i \(-0.281457\pi\)
0.633891 + 0.773422i \(0.281457\pi\)
\(308\) 0.861114 + 2.90569i 0.0490665 + 0.165567i
\(309\) 1.36642 2.36672i 0.0777332 0.134638i
\(310\) −13.3771 23.1698i −0.759769 1.31596i
\(311\) −4.92130 8.52394i −0.279061 0.483348i 0.692091 0.721811i \(-0.256690\pi\)
−0.971152 + 0.238463i \(0.923357\pi\)
\(312\) −5.66892 3.47005i −0.320939 0.196453i
\(313\) 10.4563 18.1108i 0.591023 1.02368i −0.403072 0.915168i \(-0.632058\pi\)
0.994095 0.108513i \(-0.0346090\pi\)
\(314\) −0.825166 + 1.42923i −0.0465668 + 0.0806561i
\(315\) −6.63038 22.3731i −0.373579 1.26058i
\(316\) −7.71205 13.3577i −0.433837 0.751427i
\(317\) 12.6801 21.9626i 0.712188 1.23355i −0.251847 0.967767i \(-0.581038\pi\)
0.964034 0.265778i \(-0.0856288\pi\)
\(318\) −2.64128 + 4.57483i −0.148116 + 0.256544i
\(319\) −0.824324 + 1.42777i −0.0461533 + 0.0799398i
\(320\) −7.77489 + 13.4665i −0.434629 + 0.752800i
\(321\) 4.66935 + 8.08755i 0.260618 + 0.451403i
\(322\) −3.61521 12.1989i −0.201468 0.679819i
\(323\) −1.00524 + 1.74113i −0.0559331 + 0.0968790i
\(324\) 3.35237 5.80648i 0.186243 0.322582i
\(325\) −0.633681 + 24.6674i −0.0351503 + 1.36830i
\(326\) −5.06247 8.76845i −0.280384 0.485640i
\(327\) 1.38935 + 2.40643i 0.0768314 + 0.133076i
\(328\) 7.43183 12.8723i 0.410354 0.710755i
\(329\) 5.40615 + 18.2422i 0.298051 + 1.00572i
\(330\) 1.73923 0.0957413
\(331\) 1.78283 0.0979935 0.0489967 0.998799i \(-0.484398\pi\)
0.0489967 + 0.998799i \(0.484398\pi\)
\(332\) 0.967335 1.67547i 0.0530894 0.0919536i
\(333\) −13.5828 23.5261i −0.744332 1.28922i
\(334\) −14.1083 −0.771971
\(335\) 14.5391 25.1824i 0.794354 1.37586i
\(336\) −0.303297 0.0727734i −0.0165462 0.00397012i
\(337\) 9.56149 0.520848 0.260424 0.965494i \(-0.416138\pi\)
0.260424 + 0.965494i \(0.416138\pi\)
\(338\) −6.01701 + 9.28556i −0.327282 + 0.505068i
\(339\) −4.55234 7.88488i −0.247249 0.428248i
\(340\) −8.50240 −0.461107
\(341\) −4.10103 7.10320i −0.222083 0.384660i
\(342\) −1.13211 1.96087i −0.0612176 0.106032i
\(343\) −14.0876 12.0225i −0.760659 0.649152i
\(344\) 5.45689 + 9.45160i 0.294216 + 0.509596i
\(345\) 12.8573 0.692216
\(346\) −4.24991 7.36106i −0.228477 0.395733i
\(347\) −0.316694 + 0.548531i −0.0170010 + 0.0294467i −0.874401 0.485204i \(-0.838745\pi\)
0.857400 + 0.514651i \(0.172079\pi\)
\(348\) −0.774258 1.34105i −0.0415046 0.0718881i
\(349\) −15.2994 + 26.4994i −0.818960 + 1.41848i 0.0874885 + 0.996166i \(0.472116\pi\)
−0.906449 + 0.422315i \(0.861217\pi\)
\(350\) −4.37895 14.7761i −0.234065 0.789813i
\(351\) 11.3112 + 6.92381i 0.603749 + 0.369565i
\(352\) −2.57166 + 4.45425i −0.137070 + 0.237412i
\(353\) −1.10035 −0.0585655 −0.0292828 0.999571i \(-0.509322\pi\)
−0.0292828 + 0.999571i \(0.509322\pi\)
\(354\) 0.287311 0.0152704
\(355\) −11.8675 −0.629862
\(356\) −17.3579 −0.919969
\(357\) 0.962755 + 3.24866i 0.0509544 + 0.171937i
\(358\) 3.90521 + 6.76402i 0.206397 + 0.357489i
\(359\) 4.88693 8.46441i 0.257922 0.446734i −0.707763 0.706450i \(-0.750295\pi\)
0.965685 + 0.259716i \(0.0836288\pi\)
\(360\) 12.2945 21.2946i 0.647975 1.12233i
\(361\) −17.9225 −0.943288
\(362\) 2.55546 + 4.42618i 0.134312 + 0.232635i
\(363\) −6.74026 −0.353772
\(364\) −3.14203 + 11.7557i −0.164687 + 0.616164i
\(365\) 37.5139 1.96357
\(366\) 0.404132 + 0.699977i 0.0211243 + 0.0365884i
\(367\) −11.1473 −0.581882 −0.290941 0.956741i \(-0.593968\pi\)
−0.290941 + 0.956741i \(0.593968\pi\)
\(368\) −0.503679 + 0.872397i −0.0262561 + 0.0454769i
\(369\) −6.83165 + 11.8328i −0.355641 + 0.615989i
\(370\) −15.5244 26.8891i −0.807076 1.39790i
\(371\) 24.1489 + 5.79432i 1.25375 + 0.300826i
\(372\) 7.70391 0.399429
\(373\) −30.7301 −1.59115 −0.795573 0.605858i \(-0.792830\pi\)
−0.795573 + 0.605858i \(0.792830\pi\)
\(374\) 1.48030 0.0765445
\(375\) 4.19567 0.216663
\(376\) −10.0244 + 17.3628i −0.516970 + 0.895419i
\(377\) −5.81582 + 3.16147i −0.299530 + 0.162824i
\(378\) −8.05430 1.93256i −0.414269 0.0994002i
\(379\) −11.3286 + 19.6217i −0.581912 + 1.00790i 0.413341 + 0.910576i \(0.364362\pi\)
−0.995253 + 0.0973246i \(0.968972\pi\)
\(380\) 2.27844 + 3.94638i 0.116882 + 0.202445i
\(381\) −0.643028 + 1.11376i −0.0329433 + 0.0570595i
\(382\) 0.560093 + 0.970109i 0.0286568 + 0.0496351i
\(383\) −0.589263 −0.0301099 −0.0150550 0.999887i \(-0.504792\pi\)
−0.0150550 + 0.999887i \(0.504792\pi\)
\(384\) −2.51581 4.35751i −0.128384 0.222368i
\(385\) −2.32325 7.83942i −0.118404 0.399534i
\(386\) −6.99004 12.1071i −0.355783 0.616235i
\(387\) −5.01619 8.68830i −0.254988 0.441651i
\(388\) −0.645753 −0.0327832
\(389\) −2.84973 4.93587i −0.144487 0.250259i 0.784695 0.619883i \(-0.212820\pi\)
−0.929181 + 0.369624i \(0.879486\pi\)
\(390\) 5.95602 + 3.64579i 0.301595 + 0.184612i
\(391\) 10.9432 0.553422
\(392\) −1.02643 19.4885i −0.0518423 0.984319i
\(393\) 3.97904 6.89191i 0.200716 0.347651i
\(394\) 21.7782 1.09717
\(395\) 20.8068 + 36.0384i 1.04690 + 1.81329i
\(396\) 1.46778 2.54227i 0.0737588 0.127754i
\(397\) −25.5283 −1.28123 −0.640614 0.767863i \(-0.721320\pi\)
−0.640614 + 0.767863i \(0.721320\pi\)
\(398\) 21.6005 1.08274
\(399\) 1.24987 1.31743i 0.0625716 0.0659538i
\(400\) −0.610086 + 1.05670i −0.0305043 + 0.0528350i
\(401\) −12.7506 22.0846i −0.636733 1.10285i −0.986145 0.165884i \(-0.946952\pi\)
0.349413 0.936969i \(-0.386381\pi\)
\(402\) −2.37757 4.11807i −0.118582 0.205391i
\(403\) 0.845724 32.9217i 0.0421285 1.63995i
\(404\) −3.81817 + 6.61327i −0.189961 + 0.329022i
\(405\) −9.04457 + 15.6657i −0.449428 + 0.778433i
\(406\) 2.84547 2.99928i 0.141218 0.148852i
\(407\) −4.75934 8.24341i −0.235912 0.408611i
\(408\) −1.78520 + 3.09206i −0.0883807 + 0.153080i
\(409\) −0.0734938 + 0.127295i −0.00363403 + 0.00629433i −0.867837 0.496850i \(-0.834490\pi\)
0.864203 + 0.503144i \(0.167823\pi\)
\(410\) −7.80822 + 13.5242i −0.385621 + 0.667914i
\(411\) −2.88199 + 4.99175i −0.142158 + 0.246225i
\(412\) −2.63601 4.56570i −0.129867 0.224936i
\(413\) −0.383788 1.29503i −0.0188850 0.0637242i
\(414\) −6.16217 + 10.6732i −0.302854 + 0.524559i
\(415\) −2.60983 + 4.52036i −0.128112 + 0.221896i
\(416\) −18.1437 + 9.86292i −0.889570 + 0.483569i
\(417\) −1.39270 2.41223i −0.0682008 0.118127i
\(418\) −0.396686 0.687080i −0.0194026 0.0336062i
\(419\) −6.84795 + 11.8610i −0.334544 + 0.579447i −0.983397 0.181466i \(-0.941916\pi\)
0.648853 + 0.760914i \(0.275249\pi\)
\(420\) 7.46787 + 1.79185i 0.364395 + 0.0874334i
\(421\) 3.44169 0.167738 0.0838688 0.996477i \(-0.473272\pi\)
0.0838688 + 0.996477i \(0.473272\pi\)
\(422\) 4.84842 0.236017
\(423\) 9.21486 15.9606i 0.448042 0.776032i
\(424\) 13.0844 + 22.6629i 0.635437 + 1.10061i
\(425\) 13.2551 0.642966
\(426\) −0.970345 + 1.68069i −0.0470134 + 0.0814295i
\(427\) 2.61525 2.75662i 0.126561 0.133402i
\(428\) 18.0156 0.870816
\(429\) 1.82594 + 1.11769i 0.0881574 + 0.0539627i
\(430\) −5.73325 9.93028i −0.276482 0.478881i
\(431\) 22.2910 1.07372 0.536861 0.843671i \(-0.319610\pi\)
0.536861 + 0.843671i \(0.319610\pi\)
\(432\) 0.327896 + 0.567932i 0.0157759 + 0.0273246i
\(433\) 12.9481 + 22.4268i 0.622247 + 1.07776i 0.989066 + 0.147472i \(0.0471136\pi\)
−0.366819 + 0.930292i \(0.619553\pi\)
\(434\) 5.84424 + 19.7204i 0.280533 + 0.946611i
\(435\) 2.08892 + 3.61811i 0.100156 + 0.173475i
\(436\) 5.36049 0.256721
\(437\) −2.93253 5.07929i −0.140282 0.242975i
\(438\) 3.06732 5.31275i 0.146562 0.253853i
\(439\) 13.9919 + 24.2347i 0.667798 + 1.15666i 0.978519 + 0.206159i \(0.0660963\pi\)
−0.310721 + 0.950501i \(0.600570\pi\)
\(440\) 4.30792 7.46153i 0.205372 0.355715i
\(441\) 0.943533 + 17.9147i 0.0449301 + 0.853079i
\(442\) 5.06932 + 3.10302i 0.241123 + 0.147596i
\(443\) −16.6044 + 28.7597i −0.788900 + 1.36642i 0.137741 + 0.990468i \(0.456016\pi\)
−0.926641 + 0.375947i \(0.877317\pi\)
\(444\) 8.94055 0.424300
\(445\) 46.8310 2.22000
\(446\) −2.00706 −0.0950370
\(447\) 3.87796 0.183421
\(448\) 8.22774 8.67249i 0.388724 0.409736i
\(449\) −9.84320 17.0489i −0.464529 0.804589i 0.534651 0.845073i \(-0.320443\pi\)
−0.999180 + 0.0404845i \(0.987110\pi\)
\(450\) −7.46399 + 12.9280i −0.351856 + 0.609433i
\(451\) −2.39377 + 4.14614i −0.112718 + 0.195234i
\(452\) −17.5641 −0.826146
\(453\) 5.57305 + 9.65281i 0.261845 + 0.453528i
\(454\) −22.3783 −1.05027
\(455\) 8.47706 31.7163i 0.397411 1.48688i
\(456\) 1.91357 0.0896111
\(457\) 0.373471 + 0.646871i 0.0174702 + 0.0302593i 0.874628 0.484794i \(-0.161105\pi\)
−0.857158 + 0.515053i \(0.827772\pi\)
\(458\) −0.0583493 −0.00272648
\(459\) 3.56203 6.16961i 0.166261 0.287973i
\(460\) 12.4017 21.4805i 0.578235 1.00153i
\(461\) 16.5855 + 28.7269i 0.772464 + 1.33795i 0.936209 + 0.351445i \(0.114309\pi\)
−0.163744 + 0.986503i \(0.552357\pi\)
\(462\) −1.30019 0.311968i −0.0604901 0.0145141i
\(463\) −30.7521 −1.42917 −0.714586 0.699548i \(-0.753385\pi\)
−0.714586 + 0.699548i \(0.753385\pi\)
\(464\) −0.327328 −0.0151958
\(465\) −20.7848 −0.963874
\(466\) −12.4863 −0.578414
\(467\) 14.8033 25.6400i 0.685013 1.18648i −0.288420 0.957504i \(-0.593130\pi\)
0.973433 0.228973i \(-0.0735367\pi\)
\(468\) 10.3556 5.62928i 0.478687 0.260214i
\(469\) −15.3859 + 16.2176i −0.710456 + 0.748859i
\(470\) 10.5321 18.2422i 0.485810 0.841448i
\(471\) 0.641056 + 1.11034i 0.0295383 + 0.0511618i
\(472\) 0.711644 1.23260i 0.0327561 0.0567352i
\(473\) −1.75765 3.04434i −0.0808168 0.139979i
\(474\) 6.80506 0.312567
\(475\) −3.55205 6.15234i −0.162979 0.282289i
\(476\) 6.35609 + 1.52509i 0.291331 + 0.0699024i
\(477\) −12.0278 20.8327i −0.550714 0.953864i
\(478\) 1.42748 + 2.47247i 0.0652915 + 0.113088i
\(479\) 14.0905 0.643813 0.321907 0.946771i \(-0.395676\pi\)
0.321907 + 0.946771i \(0.395676\pi\)
\(480\) 6.51684 + 11.2875i 0.297452 + 0.515201i
\(481\) 0.981481 38.2063i 0.0447517 1.74206i
\(482\) 7.30247 0.332618
\(483\) −9.61171 2.30625i −0.437348 0.104938i
\(484\) −6.50142 + 11.2608i −0.295519 + 0.511854i
\(485\) 1.74222 0.0791100
\(486\) 6.17502 + 10.6955i 0.280105 + 0.485156i
\(487\) 8.39773 14.5453i 0.380537 0.659110i −0.610602 0.791938i \(-0.709072\pi\)
0.991139 + 0.132828i \(0.0424057\pi\)
\(488\) 4.00400 0.181253
\(489\) −7.86587 −0.355707
\(490\) 1.07841 + 20.4755i 0.0487176 + 0.924990i
\(491\) −10.8345 + 18.7659i −0.488954 + 0.846893i −0.999919 0.0127081i \(-0.995955\pi\)
0.510965 + 0.859601i \(0.329288\pi\)
\(492\) −2.24839 3.89432i −0.101365 0.175570i
\(493\) 1.77793 + 3.07947i 0.0800740 + 0.138692i
\(494\) 0.0818055 3.18446i 0.00368060 0.143276i
\(495\) −3.96001 + 6.85895i −0.177989 + 0.308287i
\(496\) 0.814234 1.41029i 0.0365602 0.0633241i
\(497\) 8.87173 + 2.12870i 0.397952 + 0.0954851i
\(498\) 0.426785 + 0.739213i 0.0191247 + 0.0331249i
\(499\) 11.6524 20.1825i 0.521633 0.903495i −0.478051 0.878332i \(-0.658656\pi\)
0.999683 0.0251622i \(-0.00801023\pi\)
\(500\) 4.04699 7.00960i 0.180987 0.313479i
\(501\) −5.48023 + 9.49203i −0.244838 + 0.424073i
\(502\) 9.15601 15.8587i 0.408653 0.707807i
\(503\) 21.9415 + 38.0037i 0.978322 + 1.69450i 0.668506 + 0.743707i \(0.266934\pi\)
0.309816 + 0.950796i \(0.399732\pi\)
\(504\) −13.0106 + 13.7138i −0.579537 + 0.610863i
\(505\) 10.3013 17.8423i 0.458401 0.793974i
\(506\) −2.15919 + 3.73983i −0.0959879 + 0.166256i
\(507\) 3.91006 + 7.65512i 0.173652 + 0.339976i
\(508\) 1.24048 + 2.14858i 0.0550376 + 0.0953279i
\(509\) −9.96210 17.2549i −0.441563 0.764809i 0.556243 0.831020i \(-0.312242\pi\)
−0.997806 + 0.0662109i \(0.978909\pi\)
\(510\) 1.87561 3.24866i 0.0830536 0.143853i
\(511\) −28.0441 6.72894i −1.24060 0.297671i
\(512\) −2.01529 −0.0890641
\(513\) −3.81816 −0.168576
\(514\) 2.10139 3.63972i 0.0926886 0.160541i
\(515\) 7.11185 + 12.3181i 0.313386 + 0.542800i
\(516\) 3.30179 0.145353
\(517\) 3.22884 5.59252i 0.142004 0.245959i
\(518\) 6.78237 + 22.8860i 0.298000 + 1.00555i
\(519\) −6.60335 −0.289855
\(520\) 30.3935 16.5219i 1.33284 0.724532i
\(521\) 8.26204 + 14.3103i 0.361967 + 0.626944i 0.988284 0.152623i \(-0.0487721\pi\)
−0.626318 + 0.779568i \(0.715439\pi\)
\(522\) −4.00464 −0.175278
\(523\) 5.99809 + 10.3890i 0.262278 + 0.454279i 0.966847 0.255357i \(-0.0821929\pi\)
−0.704569 + 0.709636i \(0.748860\pi\)
\(524\) −7.67609 13.2954i −0.335332 0.580812i
\(525\) −11.6423 2.79346i −0.508111 0.121917i
\(526\) −3.81065 6.60024i −0.166152 0.287784i
\(527\) −17.6905 −0.770611
\(528\) 0.0529314 + 0.0916798i 0.00230354 + 0.00398985i
\(529\) −4.46197 + 7.72837i −0.193999 + 0.336016i
\(530\) −13.7471 23.8107i −0.597137 1.03427i
\(531\) −0.654173 + 1.13306i −0.0283887 + 0.0491706i
\(532\) −0.995416 3.35886i −0.0431567 0.145625i
\(533\) −16.8887 + 9.18068i −0.731531 + 0.397660i
\(534\) 3.82913 6.63225i 0.165703 0.287005i
\(535\) −48.6053 −2.10139
\(536\) −23.5561 −1.01747
\(537\) 6.06776 0.261843
\(538\) 4.10536 0.176995
\(539\) 0.330609 + 6.27720i 0.0142403 + 0.270378i
\(540\) −8.07356 13.9838i −0.347431 0.601767i
\(541\) −18.1158 + 31.3775i −0.778860 + 1.34903i 0.153739 + 0.988112i \(0.450869\pi\)
−0.932599 + 0.360914i \(0.882465\pi\)
\(542\) −3.15829 + 5.47031i −0.135660 + 0.234970i
\(543\) 3.97057 0.170394
\(544\) 5.54665 + 9.60707i 0.237811 + 0.411900i
\(545\) −14.4624 −0.619500
\(546\) −3.79856 3.79381i −0.162563 0.162360i
\(547\) −7.34857 −0.314202 −0.157101 0.987583i \(-0.550215\pi\)
−0.157101 + 0.987583i \(0.550215\pi\)
\(548\) 5.55973 + 9.62974i 0.237500 + 0.411362i
\(549\) −3.68064 −0.157086
\(550\) −2.61535 + 4.52991i −0.111519 + 0.193156i
\(551\) 0.952888 1.65045i 0.0405944 0.0703115i
\(552\) −5.20786 9.02027i −0.221661 0.383928i
\(553\) −9.09016 30.6732i −0.386553 1.30436i
\(554\) −3.24816 −0.138001
\(555\) −24.1213 −1.02389
\(556\) −5.37340 −0.227883
\(557\) 10.8280 0.458796 0.229398 0.973333i \(-0.426324\pi\)
0.229398 + 0.973333i \(0.426324\pi\)
\(558\) 9.96160 17.2540i 0.421708 0.730420i
\(559\) 0.362466 14.1098i 0.0153307 0.596781i
\(560\) 1.11731 1.17770i 0.0472148 0.0497670i
\(561\) 0.575009 0.995945i 0.0242769 0.0420488i
\(562\) 3.63847 + 6.30201i 0.153480 + 0.265834i
\(563\) 6.92997 12.0031i 0.292064 0.505869i −0.682234 0.731134i \(-0.738991\pi\)
0.974298 + 0.225265i \(0.0723248\pi\)
\(564\) 3.03274 + 5.25285i 0.127701 + 0.221185i
\(565\) 47.3873 1.99360
\(566\) 6.49594 + 11.2513i 0.273045 + 0.472927i
\(567\) 9.57138 10.0888i 0.401960 0.423688i
\(568\) 4.80692 + 8.32583i 0.201694 + 0.349344i
\(569\) −13.7060 23.7395i −0.574586 0.995212i −0.996086 0.0883842i \(-0.971830\pi\)
0.421500 0.906828i \(-0.361504\pi\)
\(570\) −2.01048 −0.0842099
\(571\) 0.103879 + 0.179923i 0.00434719 + 0.00752956i 0.868191 0.496230i \(-0.165283\pi\)
−0.863844 + 0.503760i \(0.831950\pi\)
\(572\) 3.62854 1.97247i 0.151717 0.0824732i
\(573\) 0.870251 0.0363552
\(574\) 8.26302 8.70967i 0.344892 0.363535i
\(575\) −19.3341 + 33.4876i −0.806288 + 1.39653i
\(576\) −11.5795 −0.482480
\(577\) 1.66328 + 2.88089i 0.0692434 + 0.119933i 0.898568 0.438833i \(-0.144608\pi\)
−0.829325 + 0.558766i \(0.811275\pi\)
\(578\) −5.63818 + 9.76562i −0.234518 + 0.406196i
\(579\) −10.8609 −0.451362
\(580\) 8.05959 0.334656
\(581\) 2.76184 2.91113i 0.114581 0.120774i
\(582\) 0.142452 0.246734i 0.00590483 0.0102275i
\(583\) −4.21447 7.29967i −0.174545 0.302321i
\(584\) −15.1950 26.3185i −0.628772 1.08907i
\(585\) −27.9389 + 15.1876i −1.15513 + 0.627929i
\(586\) −2.52769 + 4.37809i −0.104418 + 0.180857i
\(587\) 7.54051 13.0606i 0.311230 0.539067i −0.667399 0.744701i \(-0.732592\pi\)
0.978629 + 0.205634i \(0.0659256\pi\)
\(588\) −5.26131 2.67905i −0.216973 0.110482i
\(589\) 4.74064 + 8.21104i 0.195335 + 0.338330i
\(590\) −0.747686 + 1.29503i −0.0307817 + 0.0533155i
\(591\) 8.45953 14.6523i 0.347978 0.602716i
\(592\) 0.944935 1.63668i 0.0388366 0.0672670i
\(593\) −12.9245 + 22.3859i −0.530747 + 0.919281i 0.468609 + 0.883405i \(0.344755\pi\)
−0.999356 + 0.0358751i \(0.988578\pi\)
\(594\) 1.40564 + 2.43464i 0.0576740 + 0.0998944i
\(595\) −17.1485 4.11463i −0.703020 0.168684i
\(596\) 3.74055 6.47882i 0.153219 0.265383i
\(597\) 8.39052 14.5328i 0.343401 0.594788i
\(598\) −15.2337 + 8.28101i −0.622952 + 0.338636i
\(599\) 17.7734 + 30.7845i 0.726203 + 1.25782i 0.958477 + 0.285170i \(0.0920501\pi\)
−0.232274 + 0.972650i \(0.574617\pi\)
\(600\) −6.30807 10.9259i −0.257526 0.446048i
\(601\) 13.6474 23.6379i 0.556688 0.964212i −0.441082 0.897467i \(-0.645405\pi\)
0.997770 0.0667449i \(-0.0212614\pi\)
\(602\) 2.50477 + 8.45192i 0.102087 + 0.344474i
\(603\) 21.6538 0.881810
\(604\) 21.5023 0.874915
\(605\) 17.5406 30.3811i 0.713125 1.23517i
\(606\) −1.68456 2.91775i −0.0684308 0.118526i
\(607\) −38.9258 −1.57995 −0.789976 0.613138i \(-0.789907\pi\)
−0.789976 + 0.613138i \(0.789907\pi\)
\(608\) 2.97274 5.14894i 0.120561 0.208817i
\(609\) −0.912614 3.07947i −0.0369810 0.124786i
\(610\) −4.20679 −0.170328
\(611\) 22.7803 12.3834i 0.921593 0.500977i
\(612\) −3.16576 5.48326i −0.127968 0.221648i
\(613\) 0.886645 0.0358113 0.0179056 0.999840i \(-0.494300\pi\)
0.0179056 + 0.999840i \(0.494300\pi\)
\(614\) 9.45317 + 16.3734i 0.381499 + 0.660775i
\(615\) 6.06606 + 10.5067i 0.244607 + 0.423672i
\(616\) −4.55884 + 4.80526i −0.183681 + 0.193609i
\(617\) −17.3944 30.1280i −0.700272 1.21291i −0.968371 0.249515i \(-0.919729\pi\)
0.268099 0.963391i \(-0.413605\pi\)
\(618\) 2.32600 0.0935653
\(619\) −1.02781 1.78021i −0.0413111 0.0715529i 0.844631 0.535350i \(-0.179820\pi\)
−0.885942 + 0.463797i \(0.846487\pi\)
\(620\) −20.0483 + 34.7247i −0.805161 + 1.39458i
\(621\) 10.3913 + 17.9982i 0.416987 + 0.722243i
\(622\) 4.18864 7.25494i 0.167949 0.290897i
\(623\) −35.0092 8.40016i −1.40262 0.336545i
\(624\) −0.0109156 + 0.424915i −0.000436975 + 0.0170102i
\(625\) 6.19081 10.7228i 0.247632 0.428912i
\(626\) 17.7992 0.711398
\(627\) −0.616356 −0.0246149
\(628\) 2.47336 0.0986979
\(629\) −20.5302 −0.818593
\(630\) 13.6695 14.4084i 0.544606 0.574044i
\(631\) 22.6169 + 39.1736i 0.900363 + 1.55947i 0.827023 + 0.562168i \(0.190033\pi\)
0.0733401 + 0.997307i \(0.476634\pi\)
\(632\) 16.8555 29.1946i 0.670477 1.16130i
\(633\) 1.88332 3.26201i 0.0748554 0.129653i
\(634\) 21.5848 0.857241
\(635\) −3.34678 5.79679i −0.132813 0.230038i
\(636\) 7.91700 0.313929
\(637\) −12.0262 + 22.1894i −0.476494 + 0.879178i
\(638\) −1.40321 −0.0555534
\(639\) −4.41872 7.65345i −0.174802 0.302766i
\(640\) 26.1881 1.03518
\(641\) 9.53097 16.5081i 0.376451 0.652032i −0.614092 0.789234i \(-0.710478\pi\)
0.990543 + 0.137202i \(0.0438111\pi\)
\(642\) −3.97420 + 6.88352i −0.156849 + 0.271671i
\(643\) 5.26755 + 9.12367i 0.207732 + 0.359802i 0.951000 0.309192i \(-0.100058\pi\)
−0.743268 + 0.668994i \(0.766725\pi\)
\(644\) −13.1241 + 13.8335i −0.517162 + 0.545117i
\(645\) −8.90811 −0.350756
\(646\) −1.71117 −0.0673252
\(647\) −24.1608 −0.949860 −0.474930 0.880024i \(-0.657527\pi\)
−0.474930 + 0.880024i \(0.657527\pi\)
\(648\) 14.6540 0.575663
\(649\) −0.229219 + 0.397019i −0.00899762 + 0.0155843i
\(650\) −18.4520 + 10.0305i −0.723745 + 0.393427i
\(651\) 15.5380 + 3.72822i 0.608983 + 0.146120i
\(652\) −7.58714 + 13.1413i −0.297135 + 0.514654i
\(653\) 16.8445 + 29.1755i 0.659176 + 1.14173i 0.980829 + 0.194869i \(0.0624282\pi\)
−0.321653 + 0.946858i \(0.604238\pi\)
\(654\) −1.18251 + 2.04817i −0.0462400 + 0.0800900i
\(655\) 20.7098 + 35.8704i 0.809199 + 1.40157i
\(656\) −0.950537 −0.0371122
\(657\) 13.9678 + 24.1930i 0.544937 + 0.943859i
\(658\) −11.1456 + 11.7480i −0.434500 + 0.457986i
\(659\) 2.10030 + 3.63782i 0.0818159 + 0.141709i 0.904030 0.427469i \(-0.140595\pi\)
−0.822214 + 0.569178i \(0.807261\pi\)
\(660\) −1.30329 2.25737i −0.0507307 0.0878681i
\(661\) 17.6726 0.687385 0.343693 0.939082i \(-0.388322\pi\)
0.343693 + 0.939082i \(0.388322\pi\)
\(662\) 0.758708 + 1.31412i 0.0294880 + 0.0510748i
\(663\) 4.05684 2.20529i 0.157555 0.0856465i
\(664\) 4.22844 0.164095
\(665\) 2.68559 + 9.06208i 0.104143 + 0.351413i
\(666\) 11.5607 20.0236i 0.447966 0.775900i
\(667\) −10.3733 −0.401655
\(668\) 10.5721 + 18.3114i 0.409046 + 0.708488i
\(669\) −0.779623 + 1.35035i −0.0301420 + 0.0522074i
\(670\) 24.7491 0.956143
\(671\) −1.28968 −0.0497875
\(672\) −2.84710 9.60707i −0.109829 0.370601i
\(673\) 10.3052 17.8491i 0.397235 0.688031i −0.596149 0.802874i \(-0.703303\pi\)
0.993384 + 0.114843i \(0.0366366\pi\)
\(674\) 4.06901 + 7.04774i 0.156733 + 0.271469i
\(675\) 12.5865 + 21.8005i 0.484456 + 0.839102i
\(676\) 16.5607 + 0.851419i 0.636952 + 0.0327469i
\(677\) 10.6537 18.4527i 0.409455 0.709196i −0.585374 0.810763i \(-0.699052\pi\)
0.994829 + 0.101567i \(0.0323857\pi\)
\(678\) 3.87461 6.71102i 0.148804 0.257735i
\(679\) −1.30242 0.312505i −0.0499823 0.0119928i
\(680\) −9.29147 16.0933i −0.356312 0.617150i
\(681\) −8.69264 + 15.0561i −0.333103 + 0.576951i
\(682\) 3.49049 6.04571i 0.133658 0.231502i
\(683\) 3.34878 5.80026i 0.128138 0.221941i −0.794817 0.606849i \(-0.792433\pi\)
0.922955 + 0.384908i \(0.125767\pi\)
\(684\) −1.69670 + 2.93877i −0.0648750 + 0.112367i
\(685\) −14.9999 25.9806i −0.573118 0.992670i
\(686\) 2.86655 15.5002i 0.109445 0.591801i
\(687\) −0.0226652 + 0.0392573i −0.000864732 + 0.00149776i
\(688\) 0.348970 0.604433i 0.0133043 0.0230438i
\(689\) 0.869117 33.8323i 0.0331107 1.28891i
\(690\) 5.47161 + 9.47710i 0.208301 + 0.360787i
\(691\) 12.4632 + 21.5868i 0.474121 + 0.821202i 0.999561 0.0296291i \(-0.00943262\pi\)
−0.525440 + 0.850831i \(0.676099\pi\)
\(692\) −6.36936 + 11.0321i −0.242127 + 0.419376i
\(693\) 4.19067 4.41719i 0.159190 0.167795i
\(694\) −0.539093 −0.0204637
\(695\) 14.4972 0.549911
\(696\) 1.69223 2.93102i 0.0641437 0.111100i
\(697\) 5.16298 + 8.94254i 0.195562 + 0.338723i
\(698\) −26.0435 −0.985761
\(699\) −4.85017 + 8.40073i −0.183450 + 0.317745i
\(700\) −15.8967 + 16.7560i −0.600839 + 0.633317i
\(701\) −4.94583 −0.186801 −0.0934007 0.995629i \(-0.529774\pi\)
−0.0934007 + 0.995629i \(0.529774\pi\)
\(702\) −0.289874 + 11.2840i −0.0109406 + 0.425886i
\(703\) 5.50162 + 9.52908i 0.207497 + 0.359396i
\(704\) −4.05741 −0.152919
\(705\) −8.18220 14.1720i −0.308160 0.533748i
\(706\) −0.468266 0.811061i −0.0176234 0.0305247i
\(707\) −10.9013 + 11.4905i −0.409985 + 0.432147i
\(708\) −0.215297 0.372905i −0.00809136 0.0140146i
\(709\) −4.64497 −0.174446 −0.0872228 0.996189i \(-0.527799\pi\)
−0.0872228 + 0.996189i \(0.527799\pi\)
\(710\) −5.05037 8.74749i −0.189537 0.328288i
\(711\) −15.4943 + 26.8369i −0.581082 + 1.00646i
\(712\) −18.9688 32.8550i −0.710888 1.23129i
\(713\) 25.8037 44.6933i 0.966356 1.67378i
\(714\) −1.98486 + 2.09215i −0.0742816 + 0.0782968i
\(715\) −9.78966 + 5.32165i −0.366113 + 0.199018i
\(716\) 5.85275 10.1373i 0.218728 0.378847i
\(717\) 2.21797 0.0828315
\(718\) 8.31878 0.310454
\(719\) 31.7413 1.18375 0.591875 0.806030i \(-0.298388\pi\)
0.591875 + 0.806030i \(0.298388\pi\)
\(720\) −1.57247 −0.0586025
\(721\) −3.10705 10.4842i −0.115713 0.390453i
\(722\) −7.62714 13.2106i −0.283853 0.491647i
\(723\) 2.83658 4.91309i 0.105493 0.182720i
\(724\) 3.82987 6.63354i 0.142336 0.246533i
\(725\) −12.5647 −0.466643
\(726\) −2.86840 4.96822i −0.106456 0.184388i
\(727\) 47.8755 1.77560 0.887801 0.460227i \(-0.152232\pi\)
0.887801 + 0.460227i \(0.152232\pi\)
\(728\) −25.6847 + 6.89944i −0.951937 + 0.255710i
\(729\) −6.17412 −0.228671
\(730\) 15.9645 + 27.6514i 0.590873 + 1.02342i
\(731\) −7.58192 −0.280427
\(732\) 0.605675 1.04906i 0.0223864 0.0387743i
\(733\) 3.80104 6.58359i 0.140395 0.243171i −0.787251 0.616633i \(-0.788496\pi\)
0.927645 + 0.373463i \(0.121830\pi\)
\(734\) −4.74386 8.21660i −0.175099 0.303280i
\(735\) 14.1948 + 7.22797i 0.523583 + 0.266608i
\(736\) −32.3618 −1.19287
\(737\) 7.58737 0.279484
\(738\) −11.6292 −0.428076
\(739\) −33.4236 −1.22951 −0.614754 0.788719i \(-0.710745\pi\)
−0.614754 + 0.788719i \(0.710745\pi\)
\(740\) −23.2665 + 40.2988i −0.855294 + 1.48141i
\(741\) −2.11072 1.29201i −0.0775394 0.0474632i
\(742\) 6.00589 + 20.2659i 0.220483 + 0.743984i
\(743\) 1.46912 2.54458i 0.0538966 0.0933517i −0.837818 0.545949i \(-0.816169\pi\)
0.891715 + 0.452597i \(0.149503\pi\)
\(744\) 8.41888 + 14.5819i 0.308651 + 0.534599i
\(745\) −10.0919 + 17.4796i −0.369737 + 0.640403i
\(746\) −13.0776 22.6511i −0.478805 0.829314i
\(747\) −3.88695 −0.142216
\(748\) −1.10927 1.92131i −0.0405588 0.0702499i
\(749\) 36.3356 + 8.71842i 1.32767 + 0.318564i
\(750\) 1.78552 + 3.09261i 0.0651980 + 0.112926i
\(751\) −0.598389 1.03644i −0.0218355 0.0378202i 0.854901 0.518791i \(-0.173618\pi\)
−0.876737 + 0.480971i \(0.840284\pi\)
\(752\) 1.28213 0.0467545
\(753\) −7.11313 12.3203i −0.259217 0.448977i
\(754\) −4.80531 2.94141i −0.174999 0.107120i
\(755\) −58.0123 −2.11128
\(756\) 3.52721 + 11.9020i 0.128283 + 0.432871i
\(757\) −5.77321 + 9.99950i −0.209831 + 0.363438i −0.951661 0.307150i \(-0.900625\pi\)
0.741830 + 0.670588i \(0.233958\pi\)
\(758\) −19.2841 −0.700432
\(759\) 1.67744 + 2.90541i 0.0608871 + 0.105460i
\(760\) −4.97979 + 8.62525i −0.180636 + 0.312871i
\(761\) 34.6497 1.25605 0.628026 0.778192i \(-0.283863\pi\)
0.628026 + 0.778192i \(0.283863\pi\)
\(762\) −1.09459 −0.0396530
\(763\) 10.8116 + 2.59414i 0.391405 + 0.0939143i
\(764\) 0.839413 1.45391i 0.0303689 0.0526005i
\(765\) 8.54110 + 14.7936i 0.308804 + 0.534864i
\(766\) −0.250768 0.434344i −0.00906063 0.0156935i
\(767\) −1.61720 + 0.879108i −0.0583937 + 0.0317427i
\(768\) 5.12890 8.88351i 0.185073 0.320556i
\(769\) 3.27437 5.67138i 0.118077 0.204515i −0.800929 0.598760i \(-0.795660\pi\)
0.919006 + 0.394245i \(0.128994\pi\)
\(770\) 4.78972 5.04862i 0.172610 0.181940i
\(771\) −1.63253 2.82763i −0.0587943 0.101835i
\(772\) −10.4760 + 18.1450i −0.377039 + 0.653051i
\(773\) −16.9637 + 29.3821i −0.610143 + 1.05680i 0.381073 + 0.924545i \(0.375555\pi\)
−0.991216 + 0.132254i \(0.957779\pi\)
\(774\) 4.26941 7.39484i 0.153461 0.265802i
\(775\) 31.2550 54.1352i 1.12271 1.94459i
\(776\) −0.705683 1.22228i −0.0253325 0.0438772i