Properties

Label 828.3.d.a.737.16
Level $828$
Weight $3$
Character 828.737
Analytic conductor $22.561$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,3,Mod(737,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.737"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 828.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.5613658890\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 236 x^{14} + 21460 x^{12} + 962776 x^{10} + 22691080 x^{8} + 272328848 x^{6} + 1422566992 x^{4} + \cdots + 390615696 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 737.16
Root \(9.02853i\) of defining polynomial
Character \(\chi\) \(=\) 828.737
Dual form 828.3.d.a.737.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.02853i q^{5} -2.91592 q^{7} -14.2162i q^{11} -12.0916 q^{13} +29.9697i q^{17} +0.454908 q^{19} -4.79583i q^{23} -56.5143 q^{25} +11.9932i q^{29} -2.91889 q^{31} -26.3265i q^{35} -8.71329 q^{37} -48.3972i q^{41} -7.20046 q^{43} -86.6479i q^{47} -40.4974 q^{49} -52.9607i q^{53} +128.352 q^{55} -7.37931i q^{59} -0.539425 q^{61} -109.169i q^{65} -29.5166 q^{67} -79.0353i q^{71} -24.9609 q^{73} +41.4535i q^{77} -147.262 q^{79} +111.470i q^{83} -270.583 q^{85} +42.8828i q^{89} +35.2581 q^{91} +4.10715i q^{95} +59.7681 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{13} + 40 q^{19} - 72 q^{25} - 32 q^{31} - 64 q^{37} + 48 q^{43} + 8 q^{49} + 144 q^{55} - 48 q^{61} - 40 q^{67} + 48 q^{73} - 24 q^{79} - 8 q^{85} - 24 q^{91} + 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 9.02853i 1.80571i 0.429950 + 0.902853i \(0.358531\pi\)
−0.429950 + 0.902853i \(0.641469\pi\)
\(6\) 0 0
\(7\) −2.91592 −0.416560 −0.208280 0.978069i \(-0.566787\pi\)
−0.208280 + 0.978069i \(0.566787\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 14.2162i − 1.29239i −0.763174 0.646193i \(-0.776360\pi\)
0.763174 0.646193i \(-0.223640\pi\)
\(12\) 0 0
\(13\) −12.0916 −0.930121 −0.465060 0.885279i \(-0.653967\pi\)
−0.465060 + 0.885279i \(0.653967\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 29.9697i 1.76293i 0.472253 + 0.881463i \(0.343441\pi\)
−0.472253 + 0.881463i \(0.656559\pi\)
\(18\) 0 0
\(19\) 0.454908 0.0239425 0.0119713 0.999928i \(-0.496189\pi\)
0.0119713 + 0.999928i \(0.496189\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.79583i − 0.208514i
\(24\) 0 0
\(25\) −56.5143 −2.26057
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 11.9932i 0.413558i 0.978388 + 0.206779i \(0.0662981\pi\)
−0.978388 + 0.206779i \(0.933702\pi\)
\(30\) 0 0
\(31\) −2.91889 −0.0941576 −0.0470788 0.998891i \(-0.514991\pi\)
−0.0470788 + 0.998891i \(0.514991\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 26.3265i − 0.752185i
\(36\) 0 0
\(37\) −8.71329 −0.235494 −0.117747 0.993044i \(-0.537567\pi\)
−0.117747 + 0.993044i \(0.537567\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 48.3972i − 1.18042i −0.807250 0.590210i \(-0.799045\pi\)
0.807250 0.590210i \(-0.200955\pi\)
\(42\) 0 0
\(43\) −7.20046 −0.167453 −0.0837263 0.996489i \(-0.526682\pi\)
−0.0837263 + 0.996489i \(0.526682\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 86.6479i − 1.84357i −0.387697 0.921787i \(-0.626729\pi\)
0.387697 0.921787i \(-0.373271\pi\)
\(48\) 0 0
\(49\) −40.4974 −0.826477
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 52.9607i − 0.999259i −0.866239 0.499630i \(-0.833469\pi\)
0.866239 0.499630i \(-0.166531\pi\)
\(54\) 0 0
\(55\) 128.352 2.33367
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 7.37931i − 0.125073i −0.998043 0.0625366i \(-0.980081\pi\)
0.998043 0.0625366i \(-0.0199190\pi\)
\(60\) 0 0
\(61\) −0.539425 −0.00884304 −0.00442152 0.999990i \(-0.501407\pi\)
−0.00442152 + 0.999990i \(0.501407\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 109.169i − 1.67952i
\(66\) 0 0
\(67\) −29.5166 −0.440546 −0.220273 0.975438i \(-0.570695\pi\)
−0.220273 + 0.975438i \(0.570695\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 79.0353i − 1.11317i −0.830790 0.556586i \(-0.812111\pi\)
0.830790 0.556586i \(-0.187889\pi\)
\(72\) 0 0
\(73\) −24.9609 −0.341930 −0.170965 0.985277i \(-0.554689\pi\)
−0.170965 + 0.985277i \(0.554689\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 41.4535i 0.538357i
\(78\) 0 0
\(79\) −147.262 −1.86407 −0.932036 0.362366i \(-0.881969\pi\)
−0.932036 + 0.362366i \(0.881969\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 111.470i 1.34302i 0.740997 + 0.671508i \(0.234353\pi\)
−0.740997 + 0.671508i \(0.765647\pi\)
\(84\) 0 0
\(85\) −270.583 −3.18333
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 42.8828i 0.481830i 0.970546 + 0.240915i \(0.0774474\pi\)
−0.970546 + 0.240915i \(0.922553\pi\)
\(90\) 0 0
\(91\) 35.2581 0.387451
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.10715i 0.0432331i
\(96\) 0 0
\(97\) 59.7681 0.616166 0.308083 0.951360i \(-0.400313\pi\)
0.308083 + 0.951360i \(0.400313\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 15.5378i − 0.153840i −0.997037 0.0769199i \(-0.975491\pi\)
0.997037 0.0769199i \(-0.0245086\pi\)
\(102\) 0 0
\(103\) −121.985 −1.18432 −0.592158 0.805822i \(-0.701724\pi\)
−0.592158 + 0.805822i \(0.701724\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 134.803i 1.25984i 0.776658 + 0.629922i \(0.216913\pi\)
−0.776658 + 0.629922i \(0.783087\pi\)
\(108\) 0 0
\(109\) 56.6131 0.519386 0.259693 0.965691i \(-0.416379\pi\)
0.259693 + 0.965691i \(0.416379\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 213.979i 1.89362i 0.321797 + 0.946809i \(0.395713\pi\)
−0.321797 + 0.946809i \(0.604287\pi\)
\(114\) 0 0
\(115\) 43.2993 0.376516
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 87.3894i − 0.734365i
\(120\) 0 0
\(121\) −81.1015 −0.670260
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 284.528i − 2.27622i
\(126\) 0 0
\(127\) 37.4051 0.294528 0.147264 0.989097i \(-0.452953\pi\)
0.147264 + 0.989097i \(0.452953\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 161.569i − 1.23335i −0.787217 0.616677i \(-0.788479\pi\)
0.787217 0.616677i \(-0.211521\pi\)
\(132\) 0 0
\(133\) −1.32648 −0.00997350
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 80.5251i 0.587775i 0.955840 + 0.293887i \(0.0949490\pi\)
−0.955840 + 0.293887i \(0.905051\pi\)
\(138\) 0 0
\(139\) −66.1313 −0.475765 −0.237882 0.971294i \(-0.576453\pi\)
−0.237882 + 0.971294i \(0.576453\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 171.897i 1.20207i
\(144\) 0 0
\(145\) −108.281 −0.746764
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 161.484i − 1.08378i −0.840448 0.541891i \(-0.817708\pi\)
0.840448 0.541891i \(-0.182292\pi\)
\(150\) 0 0
\(151\) 266.584 1.76546 0.882730 0.469880i \(-0.155703\pi\)
0.882730 + 0.469880i \(0.155703\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 26.3532i − 0.170021i
\(156\) 0 0
\(157\) −252.887 −1.61075 −0.805374 0.592767i \(-0.798036\pi\)
−0.805374 + 0.592767i \(0.798036\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 13.9843i 0.0868588i
\(162\) 0 0
\(163\) −236.018 −1.44796 −0.723982 0.689819i \(-0.757690\pi\)
−0.723982 + 0.689819i \(0.757690\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 97.8196i 0.585746i 0.956151 + 0.292873i \(0.0946113\pi\)
−0.956151 + 0.292873i \(0.905389\pi\)
\(168\) 0 0
\(169\) −22.7939 −0.134875
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 150.303i − 0.868802i −0.900719 0.434401i \(-0.856960\pi\)
0.900719 0.434401i \(-0.143040\pi\)
\(174\) 0 0
\(175\) 164.791 0.941665
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 318.613i 1.77996i 0.455997 + 0.889981i \(0.349283\pi\)
−0.455997 + 0.889981i \(0.650717\pi\)
\(180\) 0 0
\(181\) 222.240 1.22784 0.613921 0.789367i \(-0.289591\pi\)
0.613921 + 0.789367i \(0.289591\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 78.6682i − 0.425233i
\(186\) 0 0
\(187\) 426.057 2.27838
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 84.3364i − 0.441552i −0.975325 0.220776i \(-0.929141\pi\)
0.975325 0.220776i \(-0.0708590\pi\)
\(192\) 0 0
\(193\) 254.017 1.31615 0.658075 0.752953i \(-0.271371\pi\)
0.658075 + 0.752953i \(0.271371\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 88.0293i 0.446849i 0.974721 + 0.223425i \(0.0717236\pi\)
−0.974721 + 0.223425i \(0.928276\pi\)
\(198\) 0 0
\(199\) −14.1244 −0.0709767 −0.0354884 0.999370i \(-0.511299\pi\)
−0.0354884 + 0.999370i \(0.511299\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 34.9712i − 0.172272i
\(204\) 0 0
\(205\) 436.955 2.13149
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 6.46708i − 0.0309430i
\(210\) 0 0
\(211\) −385.707 −1.82799 −0.913997 0.405721i \(-0.867020\pi\)
−0.913997 + 0.405721i \(0.867020\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 65.0096i − 0.302370i
\(216\) 0 0
\(217\) 8.51124 0.0392223
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 362.381i − 1.63973i
\(222\) 0 0
\(223\) −42.4422 −0.190324 −0.0951619 0.995462i \(-0.530337\pi\)
−0.0951619 + 0.995462i \(0.530337\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 135.404i − 0.596492i −0.954489 0.298246i \(-0.903598\pi\)
0.954489 0.298246i \(-0.0964016\pi\)
\(228\) 0 0
\(229\) 236.127 1.03112 0.515562 0.856852i \(-0.327583\pi\)
0.515562 + 0.856852i \(0.327583\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 388.640i 1.66798i 0.551777 + 0.833991i \(0.313950\pi\)
−0.551777 + 0.833991i \(0.686050\pi\)
\(234\) 0 0
\(235\) 782.303 3.32895
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 440.824i 1.84445i 0.386651 + 0.922226i \(0.373632\pi\)
−0.386651 + 0.922226i \(0.626368\pi\)
\(240\) 0 0
\(241\) −352.103 −1.46101 −0.730504 0.682908i \(-0.760715\pi\)
−0.730504 + 0.682908i \(0.760715\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 365.632i − 1.49238i
\(246\) 0 0
\(247\) −5.50055 −0.0222694
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 248.282i 0.989173i 0.869128 + 0.494587i \(0.164681\pi\)
−0.869128 + 0.494587i \(0.835319\pi\)
\(252\) 0 0
\(253\) −68.1787 −0.269481
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 348.936i 1.35773i 0.734265 + 0.678863i \(0.237527\pi\)
−0.734265 + 0.678863i \(0.762473\pi\)
\(258\) 0 0
\(259\) 25.4073 0.0980976
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 100.481i 0.382057i 0.981585 + 0.191028i \(0.0611822\pi\)
−0.981585 + 0.191028i \(0.938818\pi\)
\(264\) 0 0
\(265\) 478.158 1.80437
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 425.142i − 1.58045i −0.612814 0.790227i \(-0.709962\pi\)
0.612814 0.790227i \(-0.290038\pi\)
\(270\) 0 0
\(271\) −108.219 −0.399331 −0.199665 0.979864i \(-0.563986\pi\)
−0.199665 + 0.979864i \(0.563986\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 803.421i 2.92153i
\(276\) 0 0
\(277\) −322.308 −1.16357 −0.581783 0.813344i \(-0.697645\pi\)
−0.581783 + 0.813344i \(0.697645\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 222.460i 0.791674i 0.918321 + 0.395837i \(0.129545\pi\)
−0.918321 + 0.395837i \(0.870455\pi\)
\(282\) 0 0
\(283\) 335.466 1.18539 0.592697 0.805426i \(-0.298063\pi\)
0.592697 + 0.805426i \(0.298063\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 141.122i 0.491716i
\(288\) 0 0
\(289\) −609.185 −2.10791
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 351.122i − 1.19837i −0.800611 0.599184i \(-0.795492\pi\)
0.800611 0.599184i \(-0.204508\pi\)
\(294\) 0 0
\(295\) 66.6244 0.225845
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 57.9891i 0.193944i
\(300\) 0 0
\(301\) 20.9960 0.0697541
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 4.87022i − 0.0159679i
\(306\) 0 0
\(307\) −356.758 −1.16208 −0.581040 0.813875i \(-0.697354\pi\)
−0.581040 + 0.813875i \(0.697354\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 342.632i 1.10171i 0.834601 + 0.550856i \(0.185699\pi\)
−0.834601 + 0.550856i \(0.814301\pi\)
\(312\) 0 0
\(313\) −184.635 −0.589889 −0.294944 0.955514i \(-0.595301\pi\)
−0.294944 + 0.955514i \(0.595301\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 370.627i 1.16917i 0.811332 + 0.584586i \(0.198743\pi\)
−0.811332 + 0.584586i \(0.801257\pi\)
\(318\) 0 0
\(319\) 170.498 0.534477
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.6335i 0.0422089i
\(324\) 0 0
\(325\) 683.347 2.10261
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 252.659i 0.767960i
\(330\) 0 0
\(331\) 44.3212 0.133901 0.0669505 0.997756i \(-0.478673\pi\)
0.0669505 + 0.997756i \(0.478673\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 266.492i − 0.795497i
\(336\) 0 0
\(337\) −509.936 −1.51316 −0.756581 0.653900i \(-0.773132\pi\)
−0.756581 + 0.653900i \(0.773132\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 41.4956i 0.121688i
\(342\) 0 0
\(343\) 260.967 0.760838
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 151.606i 0.436905i 0.975848 + 0.218453i \(0.0701009\pi\)
−0.975848 + 0.218453i \(0.929899\pi\)
\(348\) 0 0
\(349\) −398.389 −1.14152 −0.570758 0.821119i \(-0.693350\pi\)
−0.570758 + 0.821119i \(0.693350\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 201.394i − 0.570522i −0.958450 0.285261i \(-0.907920\pi\)
0.958450 0.285261i \(-0.0920804\pi\)
\(354\) 0 0
\(355\) 713.572 2.01006
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 264.556i 0.736925i 0.929643 + 0.368463i \(0.120116\pi\)
−0.929643 + 0.368463i \(0.879884\pi\)
\(360\) 0 0
\(361\) −360.793 −0.999427
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 225.360i − 0.617425i
\(366\) 0 0
\(367\) 663.386 1.80759 0.903796 0.427964i \(-0.140769\pi\)
0.903796 + 0.427964i \(0.140769\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 154.429i 0.416252i
\(372\) 0 0
\(373\) 185.416 0.497093 0.248547 0.968620i \(-0.420047\pi\)
0.248547 + 0.968620i \(0.420047\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 145.016i − 0.384659i
\(378\) 0 0
\(379\) 445.259 1.17483 0.587413 0.809287i \(-0.300146\pi\)
0.587413 + 0.809287i \(0.300146\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 156.103i 0.407581i 0.979015 + 0.203790i \(0.0653261\pi\)
−0.979015 + 0.203790i \(0.934674\pi\)
\(384\) 0 0
\(385\) −374.264 −0.972113
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 507.883i 1.30561i 0.757526 + 0.652805i \(0.226408\pi\)
−0.757526 + 0.652805i \(0.773592\pi\)
\(390\) 0 0
\(391\) 143.730 0.367595
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 1329.56i − 3.36596i
\(396\) 0 0
\(397\) 416.146 1.04823 0.524113 0.851649i \(-0.324397\pi\)
0.524113 + 0.851649i \(0.324397\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 432.172i 1.07774i 0.842390 + 0.538868i \(0.181148\pi\)
−0.842390 + 0.538868i \(0.818852\pi\)
\(402\) 0 0
\(403\) 35.2939 0.0875779
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 123.870i 0.304349i
\(408\) 0 0
\(409\) 398.052 0.973232 0.486616 0.873616i \(-0.338231\pi\)
0.486616 + 0.873616i \(0.338231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 21.5175i 0.0521005i
\(414\) 0 0
\(415\) −1006.41 −2.42509
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 339.428i − 0.810090i −0.914297 0.405045i \(-0.867256\pi\)
0.914297 0.405045i \(-0.132744\pi\)
\(420\) 0 0
\(421\) −461.411 −1.09599 −0.547994 0.836482i \(-0.684609\pi\)
−0.547994 + 0.836482i \(0.684609\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1693.72i − 3.98522i
\(426\) 0 0
\(427\) 1.57292 0.00368366
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 390.257i − 0.905469i −0.891645 0.452734i \(-0.850449\pi\)
0.891645 0.452734i \(-0.149551\pi\)
\(432\) 0 0
\(433\) 362.207 0.836505 0.418253 0.908331i \(-0.362643\pi\)
0.418253 + 0.908331i \(0.362643\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 2.18166i − 0.00499236i
\(438\) 0 0
\(439\) 287.132 0.654058 0.327029 0.945014i \(-0.393953\pi\)
0.327029 + 0.945014i \(0.393953\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 675.698i − 1.52528i −0.646824 0.762639i \(-0.723903\pi\)
0.646824 0.762639i \(-0.276097\pi\)
\(444\) 0 0
\(445\) −387.169 −0.870042
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 369.989i 0.824030i 0.911177 + 0.412015i \(0.135175\pi\)
−0.911177 + 0.412015i \(0.864825\pi\)
\(450\) 0 0
\(451\) −688.026 −1.52556
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 318.329i 0.699623i
\(456\) 0 0
\(457\) 236.585 0.517691 0.258846 0.965919i \(-0.416658\pi\)
0.258846 + 0.965919i \(0.416658\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 578.951i − 1.25586i −0.778270 0.627930i \(-0.783902\pi\)
0.778270 0.627930i \(-0.216098\pi\)
\(462\) 0 0
\(463\) 663.374 1.43277 0.716387 0.697703i \(-0.245795\pi\)
0.716387 + 0.697703i \(0.245795\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 90.5401i 0.193876i 0.995290 + 0.0969380i \(0.0309049\pi\)
−0.995290 + 0.0969380i \(0.969095\pi\)
\(468\) 0 0
\(469\) 86.0681 0.183514
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 102.363i 0.216413i
\(474\) 0 0
\(475\) −25.7088 −0.0541238
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 658.788i − 1.37534i −0.726024 0.687670i \(-0.758634\pi\)
0.726024 0.687670i \(-0.241366\pi\)
\(480\) 0 0
\(481\) 105.357 0.219038
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 539.618i 1.11261i
\(486\) 0 0
\(487\) −324.307 −0.665928 −0.332964 0.942940i \(-0.608049\pi\)
−0.332964 + 0.942940i \(0.608049\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 403.920i 0.822647i 0.911489 + 0.411324i \(0.134933\pi\)
−0.911489 + 0.411324i \(0.865067\pi\)
\(492\) 0 0
\(493\) −359.433 −0.729072
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 230.461i 0.463704i
\(498\) 0 0
\(499\) −91.6160 −0.183599 −0.0917996 0.995777i \(-0.529262\pi\)
−0.0917996 + 0.995777i \(0.529262\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 599.040i 1.19093i 0.803380 + 0.595467i \(0.203033\pi\)
−0.803380 + 0.595467i \(0.796967\pi\)
\(504\) 0 0
\(505\) 140.284 0.277789
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 303.479i 0.596226i 0.954531 + 0.298113i \(0.0963572\pi\)
−0.954531 + 0.298113i \(0.903643\pi\)
\(510\) 0 0
\(511\) 72.7841 0.142435
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 1101.34i − 2.13853i
\(516\) 0 0
\(517\) −1231.81 −2.38261
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 333.103i 0.639353i 0.947527 + 0.319677i \(0.103574\pi\)
−0.947527 + 0.319677i \(0.896426\pi\)
\(522\) 0 0
\(523\) −565.124 −1.08054 −0.540272 0.841490i \(-0.681679\pi\)
−0.540272 + 0.841490i \(0.681679\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 87.4782i − 0.165993i
\(528\) 0 0
\(529\) −23.0000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 585.198i 1.09793i
\(534\) 0 0
\(535\) −1217.08 −2.27491
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 575.721i 1.06813i
\(540\) 0 0
\(541\) −1000.57 −1.84947 −0.924737 0.380606i \(-0.875715\pi\)
−0.924737 + 0.380606i \(0.875715\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 511.133i 0.937858i
\(546\) 0 0
\(547\) 188.857 0.345260 0.172630 0.984987i \(-0.444774\pi\)
0.172630 + 0.984987i \(0.444774\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5.45579i 0.00990162i
\(552\) 0 0
\(553\) 429.404 0.776498
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 470.641i − 0.844956i −0.906373 0.422478i \(-0.861160\pi\)
0.906373 0.422478i \(-0.138840\pi\)
\(558\) 0 0
\(559\) 87.0649 0.155751
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 250.163i − 0.444339i −0.975008 0.222169i \(-0.928686\pi\)
0.975008 0.222169i \(-0.0713138\pi\)
\(564\) 0 0
\(565\) −1931.91 −3.41932
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 331.840i 0.583199i 0.956541 + 0.291599i \(0.0941874\pi\)
−0.956541 + 0.291599i \(0.905813\pi\)
\(570\) 0 0
\(571\) 578.856 1.01376 0.506879 0.862017i \(-0.330799\pi\)
0.506879 + 0.862017i \(0.330799\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 271.033i 0.471362i
\(576\) 0 0
\(577\) −118.741 −0.205791 −0.102895 0.994692i \(-0.532811\pi\)
−0.102895 + 0.994692i \(0.532811\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 325.039i − 0.559447i
\(582\) 0 0
\(583\) −752.903 −1.29143
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 489.679i − 0.834206i −0.908859 0.417103i \(-0.863045\pi\)
0.908859 0.417103i \(-0.136955\pi\)
\(588\) 0 0
\(589\) −1.32782 −0.00225437
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 63.2884i − 0.106726i −0.998575 0.0533629i \(-0.983006\pi\)
0.998575 0.0533629i \(-0.0169940\pi\)
\(594\) 0 0
\(595\) 788.998 1.32605
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 955.571i − 1.59528i −0.603135 0.797639i \(-0.706082\pi\)
0.603135 0.797639i \(-0.293918\pi\)
\(600\) 0 0
\(601\) −498.924 −0.830157 −0.415078 0.909786i \(-0.636246\pi\)
−0.415078 + 0.909786i \(0.636246\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 732.227i − 1.21029i
\(606\) 0 0
\(607\) 651.861 1.07391 0.536953 0.843612i \(-0.319575\pi\)
0.536953 + 0.843612i \(0.319575\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1047.71i 1.71475i
\(612\) 0 0
\(613\) −441.006 −0.719423 −0.359712 0.933064i \(-0.617125\pi\)
−0.359712 + 0.933064i \(0.617125\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 1008.63i − 1.63474i −0.576115 0.817369i \(-0.695432\pi\)
0.576115 0.817369i \(-0.304568\pi\)
\(618\) 0 0
\(619\) −261.344 −0.422203 −0.211102 0.977464i \(-0.567705\pi\)
−0.211102 + 0.977464i \(0.567705\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 125.043i − 0.200711i
\(624\) 0 0
\(625\) 1156.01 1.84962
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 261.135i − 0.415159i
\(630\) 0 0
\(631\) −724.141 −1.14761 −0.573805 0.818992i \(-0.694533\pi\)
−0.573805 + 0.818992i \(0.694533\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 337.713i 0.531831i
\(636\) 0 0
\(637\) 489.677 0.768724
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 323.209i − 0.504226i −0.967698 0.252113i \(-0.918875\pi\)
0.967698 0.252113i \(-0.0811255\pi\)
\(642\) 0 0
\(643\) −743.023 −1.15556 −0.577779 0.816193i \(-0.696080\pi\)
−0.577779 + 0.816193i \(0.696080\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 120.104i − 0.185633i −0.995683 0.0928163i \(-0.970413\pi\)
0.995683 0.0928163i \(-0.0295869\pi\)
\(648\) 0 0
\(649\) −104.906 −0.161643
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 611.706i 0.936762i 0.883526 + 0.468381i \(0.155163\pi\)
−0.883526 + 0.468381i \(0.844837\pi\)
\(654\) 0 0
\(655\) 1458.73 2.22707
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 13.0872i − 0.0198592i −0.999951 0.00992960i \(-0.996839\pi\)
0.999951 0.00992960i \(-0.00316074\pi\)
\(660\) 0 0
\(661\) −185.252 −0.280261 −0.140130 0.990133i \(-0.544752\pi\)
−0.140130 + 0.990133i \(0.544752\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 11.9761i − 0.0180092i
\(666\) 0 0
\(667\) 57.5173 0.0862328
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 7.66860i 0.0114286i
\(672\) 0 0
\(673\) 600.468 0.892227 0.446113 0.894977i \(-0.352808\pi\)
0.446113 + 0.894977i \(0.352808\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 333.735i − 0.492961i −0.969148 0.246481i \(-0.920726\pi\)
0.969148 0.246481i \(-0.0792742\pi\)
\(678\) 0 0
\(679\) −174.279 −0.256670
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 814.585i − 1.19266i −0.802740 0.596329i \(-0.796625\pi\)
0.802740 0.596329i \(-0.203375\pi\)
\(684\) 0 0
\(685\) −727.023 −1.06135
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 640.379i 0.929432i
\(690\) 0 0
\(691\) −886.310 −1.28265 −0.641324 0.767270i \(-0.721615\pi\)
−0.641324 + 0.767270i \(0.721615\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 597.068i − 0.859091i
\(696\) 0 0
\(697\) 1450.45 2.08099
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 595.315i − 0.849236i −0.905373 0.424618i \(-0.860408\pi\)
0.905373 0.424618i \(-0.139592\pi\)
\(702\) 0 0
\(703\) −3.96374 −0.00563833
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 45.3071i 0.0640835i
\(708\) 0 0
\(709\) −439.914 −0.620471 −0.310236 0.950660i \(-0.600408\pi\)
−0.310236 + 0.950660i \(0.600408\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 13.9985i 0.0196332i
\(714\) 0 0
\(715\) −1551.97 −2.17059
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 433.159i − 0.602446i −0.953554 0.301223i \(-0.902605\pi\)
0.953554 0.301223i \(-0.0973949\pi\)
\(720\) 0 0
\(721\) 355.697 0.493339
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 677.787i − 0.934878i
\(726\) 0 0
\(727\) −97.5476 −0.134178 −0.0670891 0.997747i \(-0.521371\pi\)
−0.0670891 + 0.997747i \(0.521371\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 215.796i − 0.295206i
\(732\) 0 0
\(733\) 826.238 1.12720 0.563600 0.826048i \(-0.309416\pi\)
0.563600 + 0.826048i \(0.309416\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 419.615i 0.569356i
\(738\) 0 0
\(739\) −779.379 −1.05464 −0.527320 0.849667i \(-0.676803\pi\)
−0.527320 + 0.849667i \(0.676803\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1053.07i 1.41732i 0.705550 + 0.708660i \(0.250700\pi\)
−0.705550 + 0.708660i \(0.749300\pi\)
\(744\) 0 0
\(745\) 1457.96 1.95699
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 393.076i − 0.524801i
\(750\) 0 0
\(751\) −526.121 −0.700561 −0.350280 0.936645i \(-0.613914\pi\)
−0.350280 + 0.936645i \(0.613914\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2406.87i 3.18790i
\(756\) 0 0
\(757\) 877.552 1.15925 0.579625 0.814883i \(-0.303199\pi\)
0.579625 + 0.814883i \(0.303199\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 953.180i 1.25254i 0.779608 + 0.626268i \(0.215418\pi\)
−0.779608 + 0.626268i \(0.784582\pi\)
\(762\) 0 0
\(763\) −165.079 −0.216356
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 89.2275i 0.116333i
\(768\) 0 0
\(769\) 1048.88 1.36395 0.681976 0.731375i \(-0.261121\pi\)
0.681976 + 0.731375i \(0.261121\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 720.664i − 0.932295i −0.884707 0.466147i \(-0.845642\pi\)
0.884707 0.466147i \(-0.154358\pi\)
\(774\) 0 0
\(775\) 164.959 0.212850
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 22.0163i − 0.0282622i
\(780\) 0 0
\(781\) −1123.58 −1.43865
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 2283.20i − 2.90854i
\(786\) 0 0
\(787\) 293.303 0.372684 0.186342 0.982485i \(-0.440337\pi\)
0.186342 + 0.982485i \(0.440337\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 623.945i − 0.788806i
\(792\) 0 0
\(793\) 6.52250 0.00822510
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1101.43i 1.38197i 0.722870 + 0.690984i \(0.242822\pi\)
−0.722870 + 0.690984i \(0.757178\pi\)
\(798\) 0 0
\(799\) 2596.82 3.25008
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 354.850i 0.441906i
\(804\) 0 0
\(805\) −126.257 −0.156841
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 139.592i 0.172548i 0.996271 + 0.0862742i \(0.0274961\pi\)
−0.996271 + 0.0862742i \(0.972504\pi\)
\(810\) 0 0
\(811\) 172.113 0.212223 0.106111 0.994354i \(-0.466160\pi\)
0.106111 + 0.994354i \(0.466160\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 2130.90i − 2.61460i
\(816\) 0 0
\(817\) −3.27555 −0.00400924
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 470.618i − 0.573226i −0.958046 0.286613i \(-0.907471\pi\)
0.958046 0.286613i \(-0.0925293\pi\)
\(822\) 0 0
\(823\) −1501.22 −1.82409 −0.912043 0.410094i \(-0.865496\pi\)
−0.912043 + 0.410094i \(0.865496\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 665.287i − 0.804458i −0.915539 0.402229i \(-0.868236\pi\)
0.915539 0.402229i \(-0.131764\pi\)
\(828\) 0 0
\(829\) 120.995 0.145953 0.0729765 0.997334i \(-0.476750\pi\)
0.0729765 + 0.997334i \(0.476750\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1213.70i − 1.45702i
\(834\) 0 0
\(835\) −883.167 −1.05769
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 860.528i 1.02566i 0.858491 + 0.512829i \(0.171403\pi\)
−0.858491 + 0.512829i \(0.828597\pi\)
\(840\) 0 0
\(841\) 697.163 0.828970
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 205.796i − 0.243545i
\(846\) 0 0
\(847\) 236.486 0.279204
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 41.7875i 0.0491040i
\(852\) 0 0
\(853\) −280.533 −0.328878 −0.164439 0.986387i \(-0.552581\pi\)
−0.164439 + 0.986387i \(0.552581\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 527.779i 0.615845i 0.951411 + 0.307922i \(0.0996337\pi\)
−0.951411 + 0.307922i \(0.900366\pi\)
\(858\) 0 0
\(859\) 505.353 0.588304 0.294152 0.955759i \(-0.404963\pi\)
0.294152 + 0.955759i \(0.404963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1326.62i 1.53722i 0.639718 + 0.768610i \(0.279051\pi\)
−0.639718 + 0.768610i \(0.720949\pi\)
\(864\) 0 0
\(865\) 1357.01 1.56880
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2093.51i 2.40910i
\(870\) 0 0
\(871\) 356.902 0.409761
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 829.661i 0.948184i
\(876\) 0 0
\(877\) −1195.59 −1.36327 −0.681636 0.731691i \(-0.738731\pi\)
−0.681636 + 0.731691i \(0.738731\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 571.134i − 0.648280i −0.946009 0.324140i \(-0.894925\pi\)
0.946009 0.324140i \(-0.105075\pi\)
\(882\) 0 0
\(883\) −1093.85 −1.23878 −0.619392 0.785082i \(-0.712621\pi\)
−0.619392 + 0.785082i \(0.712621\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 866.982i 0.977431i 0.872443 + 0.488716i \(0.162534\pi\)
−0.872443 + 0.488716i \(0.837466\pi\)
\(888\) 0 0
\(889\) −109.070 −0.122689
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 39.4168i − 0.0441398i
\(894\) 0 0
\(895\) −2876.61 −3.21409
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 35.0067i − 0.0389396i
\(900\) 0 0
\(901\) 1587.22 1.76162
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2006.50i 2.21712i
\(906\) 0 0
\(907\) 439.525 0.484592 0.242296 0.970202i \(-0.422100\pi\)
0.242296 + 0.970202i \(0.422100\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 230.522i 0.253043i 0.991964 + 0.126521i \(0.0403812\pi\)
−0.991964 + 0.126521i \(0.959619\pi\)
\(912\) 0 0
\(913\) 1584.69 1.73570
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 471.123i 0.513766i
\(918\) 0 0
\(919\) −12.4225 −0.0135174 −0.00675872 0.999977i \(-0.502151\pi\)
−0.00675872 + 0.999977i \(0.502151\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 955.661i 1.03539i
\(924\) 0 0
\(925\) 492.426 0.532352
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 979.660i − 1.05453i −0.849700 0.527266i \(-0.823217\pi\)
0.849700 0.527266i \(-0.176783\pi\)
\(930\) 0 0
\(931\) −18.4226 −0.0197879
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3846.67i 4.11408i
\(936\) 0 0
\(937\) 1142.29 1.21909 0.609544 0.792752i \(-0.291352\pi\)
0.609544 + 0.792752i \(0.291352\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 344.000i − 0.365569i −0.983153 0.182784i \(-0.941489\pi\)
0.983153 0.182784i \(-0.0585110\pi\)
\(942\) 0 0
\(943\) −232.105 −0.246134
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1138.07i 1.20176i 0.799339 + 0.600880i \(0.205183\pi\)
−0.799339 + 0.600880i \(0.794817\pi\)
\(948\) 0 0
\(949\) 301.817 0.318036
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 348.129i 0.365298i 0.983178 + 0.182649i \(0.0584671\pi\)
−0.983178 + 0.182649i \(0.941533\pi\)
\(954\) 0 0
\(955\) 761.434 0.797313
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 234.805i − 0.244844i
\(960\) 0 0
\(961\) −952.480 −0.991134
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2293.40i 2.37658i
\(966\) 0 0
\(967\) 1574.89 1.62863 0.814317 0.580421i \(-0.197112\pi\)
0.814317 + 0.580421i \(0.197112\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1804.73i − 1.85863i −0.369284 0.929317i \(-0.620397\pi\)
0.369284 0.929317i \(-0.379603\pi\)
\(972\) 0 0
\(973\) 192.834 0.198185
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1604.50i 1.64228i 0.570730 + 0.821138i \(0.306660\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(978\) 0 0
\(979\) 609.633 0.622710
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1597.25i − 1.62488i −0.583048 0.812438i \(-0.698140\pi\)
0.583048 0.812438i \(-0.301860\pi\)
\(984\) 0 0
\(985\) −794.775 −0.806878
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 34.5322i 0.0349163i
\(990\) 0 0
\(991\) 468.044 0.472294 0.236147 0.971717i \(-0.424115\pi\)
0.236147 + 0.971717i \(0.424115\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 127.522i − 0.128163i
\(996\) 0 0
\(997\) 49.8238 0.0499737 0.0249868 0.999688i \(-0.492046\pi\)
0.0249868 + 0.999688i \(0.492046\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.3.d.a.737.16 yes 16
3.2 odd 2 inner 828.3.d.a.737.1 16
4.3 odd 2 3312.3.g.c.737.16 16
12.11 even 2 3312.3.g.c.737.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
828.3.d.a.737.1 16 3.2 odd 2 inner
828.3.d.a.737.16 yes 16 1.1 even 1 trivial
3312.3.g.c.737.1 16 12.11 even 2
3312.3.g.c.737.16 16 4.3 odd 2