Properties

Label 828.3
Level 828
Weight 3
Dimension 17302
Nonzero newspaces 16
Sturm bound 114048
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(114048\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(828))\).

Total New Old
Modular forms 38896 17678 21218
Cusp forms 37136 17302 19834
Eisenstein series 1760 376 1384

Trace form

\( 17302 q - 35 q^{2} - 6 q^{3} - 39 q^{4} - 88 q^{5} - 26 q^{6} + 2 q^{7} + 43 q^{8} - 58 q^{9} - 51 q^{10} + 72 q^{11} + 28 q^{12} - 40 q^{13} - 33 q^{14} + 90 q^{15} - 63 q^{16} + 93 q^{17} - 68 q^{18}+ \cdots - 342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(828))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
828.3.b \(\chi_{828}(505, \cdot)\) 828.3.b.a 4 1
828.3.b.b 8
828.3.b.c 8
828.3.d \(\chi_{828}(737, \cdot)\) 828.3.d.a 16 1
828.3.f \(\chi_{828}(415, \cdot)\) n/a 110 1
828.3.h \(\chi_{828}(827, \cdot)\) 828.3.h.a 96 1
828.3.j \(\chi_{828}(275, \cdot)\) n/a 568 2
828.3.l \(\chi_{828}(139, \cdot)\) n/a 528 2
828.3.n \(\chi_{828}(185, \cdot)\) 828.3.n.a 88 2
828.3.p \(\chi_{828}(229, \cdot)\) 828.3.p.a 96 2
828.3.r \(\chi_{828}(107, \cdot)\) n/a 960 10
828.3.t \(\chi_{828}(55, \cdot)\) n/a 1180 10
828.3.v \(\chi_{828}(197, \cdot)\) n/a 160 10
828.3.x \(\chi_{828}(37, \cdot)\) n/a 200 10
828.3.z \(\chi_{828}(61, \cdot)\) n/a 960 20
828.3.bb \(\chi_{828}(29, \cdot)\) n/a 960 20
828.3.bd \(\chi_{828}(31, \cdot)\) n/a 5680 20
828.3.bf \(\chi_{828}(11, \cdot)\) n/a 5680 20

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(828))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(828)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(276))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(414))\)\(^{\oplus 2}\)