Defining parameters
| Level: | \( N \) | = | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| Weight: | \( k \) | = | \( 3 \) |
| Nonzero newspaces: | \( 16 \) | ||
| Sturm bound: | \(114048\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(828))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 38896 | 17678 | 21218 |
| Cusp forms | 37136 | 17302 | 19834 |
| Eisenstein series | 1760 | 376 | 1384 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(828))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 828.3.b | \(\chi_{828}(505, \cdot)\) | 828.3.b.a | 4 | 1 |
| 828.3.b.b | 8 | |||
| 828.3.b.c | 8 | |||
| 828.3.d | \(\chi_{828}(737, \cdot)\) | 828.3.d.a | 16 | 1 |
| 828.3.f | \(\chi_{828}(415, \cdot)\) | n/a | 110 | 1 |
| 828.3.h | \(\chi_{828}(827, \cdot)\) | 828.3.h.a | 96 | 1 |
| 828.3.j | \(\chi_{828}(275, \cdot)\) | n/a | 568 | 2 |
| 828.3.l | \(\chi_{828}(139, \cdot)\) | n/a | 528 | 2 |
| 828.3.n | \(\chi_{828}(185, \cdot)\) | 828.3.n.a | 88 | 2 |
| 828.3.p | \(\chi_{828}(229, \cdot)\) | 828.3.p.a | 96 | 2 |
| 828.3.r | \(\chi_{828}(107, \cdot)\) | n/a | 960 | 10 |
| 828.3.t | \(\chi_{828}(55, \cdot)\) | n/a | 1180 | 10 |
| 828.3.v | \(\chi_{828}(197, \cdot)\) | n/a | 160 | 10 |
| 828.3.x | \(\chi_{828}(37, \cdot)\) | n/a | 200 | 10 |
| 828.3.z | \(\chi_{828}(61, \cdot)\) | n/a | 960 | 20 |
| 828.3.bb | \(\chi_{828}(29, \cdot)\) | n/a | 960 | 20 |
| 828.3.bd | \(\chi_{828}(31, \cdot)\) | n/a | 5680 | 20 |
| 828.3.bf | \(\chi_{828}(11, \cdot)\) | n/a | 5680 | 20 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(828))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(828)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(138))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(207))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(276))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(414))\)\(^{\oplus 2}\)