Properties

Label 825.4.c.r.199.3
Level $825$
Weight $4$
Character 825.199
Analytic conductor $48.677$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,4,Mod(199,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-92,0,24,0,0,-90,0,110,0,0,-110] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 83x^{8} + 2275x^{6} + 24517x^{4} + 87636x^{2} + 40000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(-3.91216i\) of defining polynomial
Character \(\chi\) \(=\) 825.199
Dual form 825.4.c.r.199.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.91216i q^{2} +3.00000i q^{3} -16.1293 q^{4} +14.7365 q^{6} -35.2335i q^{7} +39.9323i q^{8} -9.00000 q^{9} +11.0000 q^{11} -48.3879i q^{12} -26.9085i q^{13} -173.072 q^{14} +67.1195 q^{16} -125.196i q^{17} +44.2094i q^{18} +134.900 q^{19} +105.700 q^{21} -54.0337i q^{22} -79.5933i q^{23} -119.797 q^{24} -132.179 q^{26} -27.0000i q^{27} +568.290i q^{28} +259.535 q^{29} +177.293 q^{31} -10.2431i q^{32} +33.0000i q^{33} -614.980 q^{34} +145.164 q^{36} +32.7865i q^{37} -662.648i q^{38} +80.7254 q^{39} -329.261 q^{41} -519.217i q^{42} -134.125i q^{43} -177.422 q^{44} -390.975 q^{46} -419.191i q^{47} +201.359i q^{48} -898.397 q^{49} +375.587 q^{51} +434.015i q^{52} +483.902i q^{53} -132.628 q^{54} +1406.95 q^{56} +404.699i q^{57} -1274.88i q^{58} +136.948 q^{59} -623.843 q^{61} -870.890i q^{62} +317.101i q^{63} +486.640 q^{64} +162.101 q^{66} -541.799i q^{67} +2019.31i q^{68} +238.780 q^{69} -823.349 q^{71} -359.391i q^{72} -29.0696i q^{73} +161.052 q^{74} -2175.83 q^{76} -387.568i q^{77} -396.536i q^{78} -124.175 q^{79} +81.0000 q^{81} +1617.38i q^{82} +435.640i q^{83} -1704.87 q^{84} -658.841 q^{86} +778.604i q^{87} +439.256i q^{88} +281.086 q^{89} -948.079 q^{91} +1283.78i q^{92} +531.878i q^{93} -2059.13 q^{94} +30.7294 q^{96} +40.7134i q^{97} +4413.07i q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 92 q^{4} + 24 q^{6} - 90 q^{9} + 110 q^{11} - 110 q^{14} + 1268 q^{16} + 674 q^{19} - 228 q^{21} - 432 q^{24} + 718 q^{26} + 306 q^{29} + 526 q^{31} - 1034 q^{34} + 828 q^{36} - 258 q^{39} - 176 q^{41}+ \cdots - 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.91216i − 1.73671i −0.495943 0.868355i \(-0.665178\pi\)
0.495943 0.868355i \(-0.334822\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −16.1293 −2.01616
\(5\) 0 0
\(6\) 14.7365 1.00269
\(7\) − 35.2335i − 1.90243i −0.308532 0.951214i \(-0.599838\pi\)
0.308532 0.951214i \(-0.400162\pi\)
\(8\) 39.9323i 1.76478i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) − 48.3879i − 1.16403i
\(13\) − 26.9085i − 0.574082i −0.957918 0.287041i \(-0.907328\pi\)
0.957918 0.287041i \(-0.0926716\pi\)
\(14\) −173.072 −3.30397
\(15\) 0 0
\(16\) 67.1195 1.04874
\(17\) − 125.196i − 1.78614i −0.449918 0.893070i \(-0.648547\pi\)
0.449918 0.893070i \(-0.351453\pi\)
\(18\) 44.2094i 0.578903i
\(19\) 134.900 1.62885 0.814423 0.580272i \(-0.197054\pi\)
0.814423 + 0.580272i \(0.197054\pi\)
\(20\) 0 0
\(21\) 105.700 1.09837
\(22\) − 54.0337i − 0.523638i
\(23\) − 79.5933i − 0.721580i −0.932647 0.360790i \(-0.882507\pi\)
0.932647 0.360790i \(-0.117493\pi\)
\(24\) −119.797 −1.01889
\(25\) 0 0
\(26\) −132.179 −0.997014
\(27\) − 27.0000i − 0.192450i
\(28\) 568.290i 3.83560i
\(29\) 259.535 1.66188 0.830938 0.556365i \(-0.187804\pi\)
0.830938 + 0.556365i \(0.187804\pi\)
\(30\) 0 0
\(31\) 177.293 1.02718 0.513592 0.858034i \(-0.328314\pi\)
0.513592 + 0.858034i \(0.328314\pi\)
\(32\) − 10.2431i − 0.0565858i
\(33\) 33.0000i 0.174078i
\(34\) −614.980 −3.10201
\(35\) 0 0
\(36\) 145.164 0.672054
\(37\) 32.7865i 0.145677i 0.997344 + 0.0728387i \(0.0232058\pi\)
−0.997344 + 0.0728387i \(0.976794\pi\)
\(38\) − 662.648i − 2.82883i
\(39\) 80.7254 0.331447
\(40\) 0 0
\(41\) −329.261 −1.25419 −0.627096 0.778942i \(-0.715757\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(42\) − 519.217i − 1.90755i
\(43\) − 134.125i − 0.475670i −0.971306 0.237835i \(-0.923562\pi\)
0.971306 0.237835i \(-0.0764377\pi\)
\(44\) −177.422 −0.607895
\(45\) 0 0
\(46\) −390.975 −1.25318
\(47\) − 419.191i − 1.30096i −0.759522 0.650481i \(-0.774567\pi\)
0.759522 0.650481i \(-0.225433\pi\)
\(48\) 201.359i 0.605492i
\(49\) −898.397 −2.61923
\(50\) 0 0
\(51\) 375.587 1.03123
\(52\) 434.015i 1.15744i
\(53\) 483.902i 1.25413i 0.778966 + 0.627066i \(0.215744\pi\)
−0.778966 + 0.627066i \(0.784256\pi\)
\(54\) −132.628 −0.334230
\(55\) 0 0
\(56\) 1406.95 3.35736
\(57\) 404.699i 0.940415i
\(58\) − 1274.88i − 2.88620i
\(59\) 136.948 0.302187 0.151094 0.988519i \(-0.451720\pi\)
0.151094 + 0.988519i \(0.451720\pi\)
\(60\) 0 0
\(61\) −623.843 −1.30942 −0.654712 0.755878i \(-0.727210\pi\)
−0.654712 + 0.755878i \(0.727210\pi\)
\(62\) − 870.890i − 1.78392i
\(63\) 317.101i 0.634143i
\(64\) 486.640 0.950470
\(65\) 0 0
\(66\) 162.101 0.302322
\(67\) − 541.799i − 0.987929i −0.869482 0.493965i \(-0.835547\pi\)
0.869482 0.493965i \(-0.164453\pi\)
\(68\) 2019.31i 3.60114i
\(69\) 238.780 0.416604
\(70\) 0 0
\(71\) −823.349 −1.37625 −0.688124 0.725594i \(-0.741565\pi\)
−0.688124 + 0.725594i \(0.741565\pi\)
\(72\) − 359.391i − 0.588259i
\(73\) − 29.0696i − 0.0466074i −0.999728 0.0233037i \(-0.992582\pi\)
0.999728 0.0233037i \(-0.00741847\pi\)
\(74\) 161.052 0.252999
\(75\) 0 0
\(76\) −2175.83 −3.28402
\(77\) − 387.568i − 0.573604i
\(78\) − 396.536i − 0.575626i
\(79\) −124.175 −0.176845 −0.0884225 0.996083i \(-0.528183\pi\)
−0.0884225 + 0.996083i \(0.528183\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1617.38i 2.17817i
\(83\) 435.640i 0.576117i 0.957613 + 0.288059i \(0.0930098\pi\)
−0.957613 + 0.288059i \(0.906990\pi\)
\(84\) −1704.87 −2.21448
\(85\) 0 0
\(86\) −658.841 −0.826101
\(87\) 778.604i 0.959484i
\(88\) 439.256i 0.532100i
\(89\) 281.086 0.334775 0.167388 0.985891i \(-0.446467\pi\)
0.167388 + 0.985891i \(0.446467\pi\)
\(90\) 0 0
\(91\) −948.079 −1.09215
\(92\) 1283.78i 1.45482i
\(93\) 531.878i 0.593045i
\(94\) −2059.13 −2.25939
\(95\) 0 0
\(96\) 30.7294 0.0326698
\(97\) 40.7134i 0.0426167i 0.999773 + 0.0213084i \(0.00678318\pi\)
−0.999773 + 0.0213084i \(0.993217\pi\)
\(98\) 4413.07i 4.54885i
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) 261.609 0.257733 0.128867 0.991662i \(-0.458866\pi\)
0.128867 + 0.991662i \(0.458866\pi\)
\(102\) − 1844.94i − 1.79094i
\(103\) 1131.24i 1.08218i 0.840964 + 0.541092i \(0.181989\pi\)
−0.840964 + 0.541092i \(0.818011\pi\)
\(104\) 1074.52 1.01313
\(105\) 0 0
\(106\) 2377.00 2.17806
\(107\) − 66.9927i − 0.0605274i −0.999542 0.0302637i \(-0.990365\pi\)
0.999542 0.0302637i \(-0.00963470\pi\)
\(108\) 435.491i 0.388010i
\(109\) 459.733 0.403985 0.201993 0.979387i \(-0.435258\pi\)
0.201993 + 0.979387i \(0.435258\pi\)
\(110\) 0 0
\(111\) −98.3595 −0.0841069
\(112\) − 2364.85i − 1.99516i
\(113\) 815.607i 0.678990i 0.940608 + 0.339495i \(0.110256\pi\)
−0.940608 + 0.339495i \(0.889744\pi\)
\(114\) 1987.94 1.63323
\(115\) 0 0
\(116\) −4186.11 −3.35061
\(117\) 242.176i 0.191361i
\(118\) − 672.708i − 0.524812i
\(119\) −4411.07 −3.39800
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 3064.41i 2.27409i
\(123\) − 987.782i − 0.724108i
\(124\) −2859.61 −2.07097
\(125\) 0 0
\(126\) 1557.65 1.10132
\(127\) 1764.07i 1.23257i 0.787524 + 0.616284i \(0.211362\pi\)
−0.787524 + 0.616284i \(0.788638\pi\)
\(128\) − 2472.40i − 1.70728i
\(129\) 402.374 0.274628
\(130\) 0 0
\(131\) −452.913 −0.302070 −0.151035 0.988528i \(-0.548261\pi\)
−0.151035 + 0.988528i \(0.548261\pi\)
\(132\) − 532.266i − 0.350968i
\(133\) − 4752.98i − 3.09876i
\(134\) −2661.40 −1.71575
\(135\) 0 0
\(136\) 4999.35 3.15214
\(137\) 412.254i 0.257089i 0.991704 + 0.128545i \(0.0410306\pi\)
−0.991704 + 0.128545i \(0.958969\pi\)
\(138\) − 1172.92i − 0.723521i
\(139\) 97.1910 0.0593067 0.0296534 0.999560i \(-0.490560\pi\)
0.0296534 + 0.999560i \(0.490560\pi\)
\(140\) 0 0
\(141\) 1257.57 0.751111
\(142\) 4044.42i 2.39014i
\(143\) − 295.993i − 0.173092i
\(144\) −604.076 −0.349581
\(145\) 0 0
\(146\) −142.794 −0.0809435
\(147\) − 2695.19i − 1.51221i
\(148\) − 528.823i − 0.293709i
\(149\) −621.210 −0.341554 −0.170777 0.985310i \(-0.554628\pi\)
−0.170777 + 0.985310i \(0.554628\pi\)
\(150\) 0 0
\(151\) 3084.29 1.66222 0.831111 0.556106i \(-0.187705\pi\)
0.831111 + 0.556106i \(0.187705\pi\)
\(152\) 5386.85i 2.87455i
\(153\) 1126.76i 0.595380i
\(154\) −1903.80 −0.996183
\(155\) 0 0
\(156\) −1302.04 −0.668249
\(157\) − 74.0945i − 0.0376649i −0.999823 0.0188324i \(-0.994005\pi\)
0.999823 0.0188324i \(-0.00599490\pi\)
\(158\) 609.966i 0.307128i
\(159\) −1451.70 −0.724073
\(160\) 0 0
\(161\) −2804.35 −1.37275
\(162\) − 397.885i − 0.192968i
\(163\) − 3093.36i − 1.48645i −0.669043 0.743224i \(-0.733296\pi\)
0.669043 0.743224i \(-0.266704\pi\)
\(164\) 5310.74 2.52865
\(165\) 0 0
\(166\) 2139.93 1.00055
\(167\) 3125.34i 1.44818i 0.689704 + 0.724091i \(0.257741\pi\)
−0.689704 + 0.724091i \(0.742259\pi\)
\(168\) 4220.86i 1.93837i
\(169\) 1472.93 0.670430
\(170\) 0 0
\(171\) −1214.10 −0.542949
\(172\) 2163.33i 0.959027i
\(173\) 1967.48i 0.864650i 0.901718 + 0.432325i \(0.142307\pi\)
−0.901718 + 0.432325i \(0.857693\pi\)
\(174\) 3824.63 1.66635
\(175\) 0 0
\(176\) 738.315 0.316208
\(177\) 410.843i 0.174468i
\(178\) − 1380.74i − 0.581408i
\(179\) 480.759 0.200746 0.100373 0.994950i \(-0.467996\pi\)
0.100373 + 0.994950i \(0.467996\pi\)
\(180\) 0 0
\(181\) −2903.38 −1.19230 −0.596151 0.802872i \(-0.703304\pi\)
−0.596151 + 0.802872i \(0.703304\pi\)
\(182\) 4657.11i 1.89675i
\(183\) − 1871.53i − 0.755997i
\(184\) 3178.34 1.27343
\(185\) 0 0
\(186\) 2612.67 1.02995
\(187\) − 1377.15i − 0.538541i
\(188\) 6761.25i 2.62295i
\(189\) −951.303 −0.366122
\(190\) 0 0
\(191\) 1292.54 0.489659 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(192\) 1459.92i 0.548754i
\(193\) − 1959.13i − 0.730679i −0.930874 0.365340i \(-0.880953\pi\)
0.930874 0.365340i \(-0.119047\pi\)
\(194\) 199.991 0.0740129
\(195\) 0 0
\(196\) 14490.5 5.28079
\(197\) − 2572.74i − 0.930458i −0.885190 0.465229i \(-0.845972\pi\)
0.885190 0.465229i \(-0.154028\pi\)
\(198\) 486.304i 0.174546i
\(199\) 5316.19 1.89374 0.946871 0.321613i \(-0.104225\pi\)
0.946871 + 0.321613i \(0.104225\pi\)
\(200\) 0 0
\(201\) 1625.40 0.570381
\(202\) − 1285.06i − 0.447608i
\(203\) − 9144.31i − 3.16160i
\(204\) −6057.94 −2.07912
\(205\) 0 0
\(206\) 5556.85 1.87944
\(207\) 716.339i 0.240527i
\(208\) − 1806.08i − 0.602065i
\(209\) 1483.89 0.491116
\(210\) 0 0
\(211\) 397.505 0.129694 0.0648468 0.997895i \(-0.479344\pi\)
0.0648468 + 0.997895i \(0.479344\pi\)
\(212\) − 7804.99i − 2.52853i
\(213\) − 2470.05i − 0.794577i
\(214\) −329.079 −0.105118
\(215\) 0 0
\(216\) 1078.17 0.339631
\(217\) − 6246.64i − 1.95415i
\(218\) − 2258.28i − 0.701605i
\(219\) 87.2088 0.0269088
\(220\) 0 0
\(221\) −3368.82 −1.02539
\(222\) 483.157i 0.146069i
\(223\) − 5295.04i − 1.59005i −0.606573 0.795027i \(-0.707456\pi\)
0.606573 0.795027i \(-0.292544\pi\)
\(224\) −360.901 −0.107650
\(225\) 0 0
\(226\) 4006.39 1.17921
\(227\) 1936.60i 0.566240i 0.959084 + 0.283120i \(0.0913695\pi\)
−0.959084 + 0.283120i \(0.908630\pi\)
\(228\) − 6527.50i − 1.89603i
\(229\) −6379.34 −1.84087 −0.920433 0.390899i \(-0.872164\pi\)
−0.920433 + 0.390899i \(0.872164\pi\)
\(230\) 0 0
\(231\) 1162.70 0.331170
\(232\) 10363.8i 2.93284i
\(233\) 2992.48i 0.841391i 0.907202 + 0.420696i \(0.138214\pi\)
−0.907202 + 0.420696i \(0.861786\pi\)
\(234\) 1189.61 0.332338
\(235\) 0 0
\(236\) −2208.87 −0.609258
\(237\) − 372.524i − 0.102101i
\(238\) 21667.9i 5.90134i
\(239\) −2929.63 −0.792895 −0.396447 0.918057i \(-0.629757\pi\)
−0.396447 + 0.918057i \(0.629757\pi\)
\(240\) 0 0
\(241\) 1972.74 0.527283 0.263641 0.964621i \(-0.415076\pi\)
0.263641 + 0.964621i \(0.415076\pi\)
\(242\) − 594.371i − 0.157883i
\(243\) 243.000i 0.0641500i
\(244\) 10062.1 2.64001
\(245\) 0 0
\(246\) −4852.14 −1.25757
\(247\) − 3629.94i − 0.935092i
\(248\) 7079.71i 1.81275i
\(249\) −1306.92 −0.332621
\(250\) 0 0
\(251\) 5653.16 1.42161 0.710806 0.703389i \(-0.248331\pi\)
0.710806 + 0.703389i \(0.248331\pi\)
\(252\) − 5114.61i − 1.27853i
\(253\) − 875.526i − 0.217565i
\(254\) 8665.40 2.14061
\(255\) 0 0
\(256\) −8251.69 −2.01457
\(257\) 4607.50i 1.11832i 0.829060 + 0.559160i \(0.188876\pi\)
−0.829060 + 0.559160i \(0.811124\pi\)
\(258\) − 1976.52i − 0.476949i
\(259\) 1155.18 0.277141
\(260\) 0 0
\(261\) −2335.81 −0.553959
\(262\) 2224.78i 0.524609i
\(263\) 2208.31i 0.517757i 0.965910 + 0.258878i \(0.0833529\pi\)
−0.965910 + 0.258878i \(0.916647\pi\)
\(264\) −1317.77 −0.307208
\(265\) 0 0
\(266\) −23347.4 −5.38165
\(267\) 843.257i 0.193283i
\(268\) 8738.83i 1.99182i
\(269\) −2804.20 −0.635594 −0.317797 0.948159i \(-0.602943\pi\)
−0.317797 + 0.948159i \(0.602943\pi\)
\(270\) 0 0
\(271\) 103.286 0.0231519 0.0115759 0.999933i \(-0.496315\pi\)
0.0115759 + 0.999933i \(0.496315\pi\)
\(272\) − 8403.06i − 1.87320i
\(273\) − 2844.24i − 0.630553i
\(274\) 2025.06 0.446490
\(275\) 0 0
\(276\) −3851.35 −0.839942
\(277\) 1692.10i 0.367034i 0.983017 + 0.183517i \(0.0587482\pi\)
−0.983017 + 0.183517i \(0.941252\pi\)
\(278\) − 477.418i − 0.102999i
\(279\) −1595.64 −0.342395
\(280\) 0 0
\(281\) −912.903 −0.193805 −0.0969025 0.995294i \(-0.530894\pi\)
−0.0969025 + 0.995294i \(0.530894\pi\)
\(282\) − 6177.39i − 1.30446i
\(283\) − 7244.39i − 1.52168i −0.648942 0.760838i \(-0.724788\pi\)
0.648942 0.760838i \(-0.275212\pi\)
\(284\) 13280.0 2.77474
\(285\) 0 0
\(286\) −1453.97 −0.300611
\(287\) 11601.0i 2.38601i
\(288\) 92.1882i 0.0188619i
\(289\) −10760.9 −2.19029
\(290\) 0 0
\(291\) −122.140 −0.0246048
\(292\) 468.872i 0.0939680i
\(293\) 1621.05i 0.323218i 0.986855 + 0.161609i \(0.0516683\pi\)
−0.986855 + 0.161609i \(0.948332\pi\)
\(294\) −13239.2 −2.62628
\(295\) 0 0
\(296\) −1309.24 −0.257088
\(297\) − 297.000i − 0.0580259i
\(298\) 3051.48i 0.593180i
\(299\) −2141.73 −0.414246
\(300\) 0 0
\(301\) −4725.67 −0.904928
\(302\) − 15150.5i − 2.88680i
\(303\) 784.827i 0.148802i
\(304\) 9054.39 1.70824
\(305\) 0 0
\(306\) 5534.82 1.03400
\(307\) 6476.38i 1.20399i 0.798498 + 0.601997i \(0.205628\pi\)
−0.798498 + 0.601997i \(0.794372\pi\)
\(308\) 6251.20i 1.15648i
\(309\) −3393.73 −0.624799
\(310\) 0 0
\(311\) −6046.93 −1.10254 −0.551270 0.834327i \(-0.685857\pi\)
−0.551270 + 0.834327i \(0.685857\pi\)
\(312\) 3223.55i 0.584929i
\(313\) − 372.777i − 0.0673181i −0.999433 0.0336591i \(-0.989284\pi\)
0.999433 0.0336591i \(-0.0107160\pi\)
\(314\) −363.964 −0.0654129
\(315\) 0 0
\(316\) 2002.85 0.356548
\(317\) − 1621.21i − 0.287244i −0.989633 0.143622i \(-0.954125\pi\)
0.989633 0.143622i \(-0.0458749\pi\)
\(318\) 7131.00i 1.25751i
\(319\) 2854.88 0.501074
\(320\) 0 0
\(321\) 200.978 0.0349455
\(322\) 13775.4i 2.38408i
\(323\) − 16888.8i − 2.90935i
\(324\) −1306.47 −0.224018
\(325\) 0 0
\(326\) −15195.1 −2.58153
\(327\) 1379.20i 0.233241i
\(328\) − 13148.1i − 2.21337i
\(329\) −14769.5 −2.47499
\(330\) 0 0
\(331\) −7393.98 −1.22782 −0.613912 0.789374i \(-0.710405\pi\)
−0.613912 + 0.789374i \(0.710405\pi\)
\(332\) − 7026.57i − 1.16154i
\(333\) − 295.078i − 0.0485591i
\(334\) 15352.2 2.51507
\(335\) 0 0
\(336\) 7094.56 1.15190
\(337\) − 8244.56i − 1.33267i −0.745653 0.666335i \(-0.767862\pi\)
0.745653 0.666335i \(-0.232138\pi\)
\(338\) − 7235.28i − 1.16434i
\(339\) −2446.82 −0.392015
\(340\) 0 0
\(341\) 1950.22 0.309708
\(342\) 5963.83i 0.942944i
\(343\) 19568.5i 3.08047i
\(344\) 5355.91 0.839451
\(345\) 0 0
\(346\) 9664.55 1.50165
\(347\) − 448.062i − 0.0693177i −0.999399 0.0346589i \(-0.988966\pi\)
0.999399 0.0346589i \(-0.0110345\pi\)
\(348\) − 12558.3i − 1.93447i
\(349\) 9302.21 1.42675 0.713375 0.700782i \(-0.247166\pi\)
0.713375 + 0.700782i \(0.247166\pi\)
\(350\) 0 0
\(351\) −726.529 −0.110482
\(352\) − 112.674i − 0.0170613i
\(353\) 5968.07i 0.899854i 0.893065 + 0.449927i \(0.148550\pi\)
−0.893065 + 0.449927i \(0.851450\pi\)
\(354\) 2018.12 0.303000
\(355\) 0 0
\(356\) −4533.71 −0.674961
\(357\) − 13233.2i − 1.96184i
\(358\) − 2361.56i − 0.348638i
\(359\) −11159.5 −1.64061 −0.820304 0.571928i \(-0.806196\pi\)
−0.820304 + 0.571928i \(0.806196\pi\)
\(360\) 0 0
\(361\) 11338.9 1.65314
\(362\) 14261.9i 2.07068i
\(363\) 363.000i 0.0524864i
\(364\) 15291.8 2.20195
\(365\) 0 0
\(366\) −9193.24 −1.31295
\(367\) − 6527.44i − 0.928419i −0.885725 0.464210i \(-0.846338\pi\)
0.885725 0.464210i \(-0.153662\pi\)
\(368\) − 5342.26i − 0.756752i
\(369\) 2963.35 0.418064
\(370\) 0 0
\(371\) 17049.5 2.38590
\(372\) − 8578.82i − 1.19567i
\(373\) − 3994.42i − 0.554486i −0.960800 0.277243i \(-0.910579\pi\)
0.960800 0.277243i \(-0.0894208\pi\)
\(374\) −6764.78 −0.935290
\(375\) 0 0
\(376\) 16739.3 2.29591
\(377\) − 6983.69i − 0.954053i
\(378\) 4672.95i 0.635848i
\(379\) 7654.69 1.03745 0.518727 0.854940i \(-0.326406\pi\)
0.518727 + 0.854940i \(0.326406\pi\)
\(380\) 0 0
\(381\) −5292.21 −0.711623
\(382\) − 6349.16i − 0.850395i
\(383\) 804.633i 0.107349i 0.998558 + 0.0536747i \(0.0170934\pi\)
−0.998558 + 0.0536747i \(0.982907\pi\)
\(384\) 7417.20 0.985696
\(385\) 0 0
\(386\) −9623.54 −1.26898
\(387\) 1207.12i 0.158557i
\(388\) − 656.678i − 0.0859222i
\(389\) 7381.51 0.962101 0.481051 0.876693i \(-0.340255\pi\)
0.481051 + 0.876693i \(0.340255\pi\)
\(390\) 0 0
\(391\) −9964.72 −1.28884
\(392\) − 35875.1i − 4.62236i
\(393\) − 1358.74i − 0.174400i
\(394\) −12637.7 −1.61593
\(395\) 0 0
\(396\) 1596.80 0.202632
\(397\) − 9024.46i − 1.14087i −0.821343 0.570434i \(-0.806775\pi\)
0.821343 0.570434i \(-0.193225\pi\)
\(398\) − 26114.0i − 3.28888i
\(399\) 14258.9 1.78907
\(400\) 0 0
\(401\) 13125.8 1.63459 0.817294 0.576220i \(-0.195473\pi\)
0.817294 + 0.576220i \(0.195473\pi\)
\(402\) − 7984.20i − 0.990587i
\(403\) − 4770.68i − 0.589689i
\(404\) −4219.57 −0.519632
\(405\) 0 0
\(406\) −44918.3 −5.49078
\(407\) 360.651i 0.0439234i
\(408\) 14998.0i 1.81989i
\(409\) −852.781 −0.103099 −0.0515493 0.998670i \(-0.516416\pi\)
−0.0515493 + 0.998670i \(0.516416\pi\)
\(410\) 0 0
\(411\) −1236.76 −0.148431
\(412\) − 18246.2i − 2.18185i
\(413\) − 4825.14i − 0.574890i
\(414\) 3518.77 0.417725
\(415\) 0 0
\(416\) −275.627 −0.0324849
\(417\) 291.573i 0.0342408i
\(418\) − 7289.12i − 0.852925i
\(419\) −2245.97 −0.261868 −0.130934 0.991391i \(-0.541798\pi\)
−0.130934 + 0.991391i \(0.541798\pi\)
\(420\) 0 0
\(421\) 13811.3 1.59887 0.799433 0.600755i \(-0.205133\pi\)
0.799433 + 0.600755i \(0.205133\pi\)
\(422\) − 1952.61i − 0.225240i
\(423\) 3772.72i 0.433654i
\(424\) −19323.3 −2.21326
\(425\) 0 0
\(426\) −12133.3 −1.37995
\(427\) 21980.1i 2.49109i
\(428\) 1080.54i 0.122033i
\(429\) 887.980 0.0999349
\(430\) 0 0
\(431\) 13390.9 1.49656 0.748279 0.663384i \(-0.230880\pi\)
0.748279 + 0.663384i \(0.230880\pi\)
\(432\) − 1812.23i − 0.201831i
\(433\) 5783.14i 0.641848i 0.947105 + 0.320924i \(0.103993\pi\)
−0.947105 + 0.320924i \(0.896007\pi\)
\(434\) −30684.5 −3.39378
\(435\) 0 0
\(436\) −7415.16 −0.814499
\(437\) − 10737.1i − 1.17534i
\(438\) − 428.383i − 0.0467328i
\(439\) 2811.36 0.305647 0.152823 0.988254i \(-0.451163\pi\)
0.152823 + 0.988254i \(0.451163\pi\)
\(440\) 0 0
\(441\) 8085.57 0.873077
\(442\) 16548.2i 1.78081i
\(443\) 13468.2i 1.44445i 0.691656 + 0.722227i \(0.256881\pi\)
−0.691656 + 0.722227i \(0.743119\pi\)
\(444\) 1586.47 0.169573
\(445\) 0 0
\(446\) −26010.1 −2.76146
\(447\) − 1863.63i − 0.197196i
\(448\) − 17146.0i − 1.80820i
\(449\) 2672.15 0.280861 0.140431 0.990091i \(-0.455151\pi\)
0.140431 + 0.990091i \(0.455151\pi\)
\(450\) 0 0
\(451\) −3621.87 −0.378153
\(452\) − 13155.2i − 1.36895i
\(453\) 9252.86i 0.959685i
\(454\) 9512.88 0.983395
\(455\) 0 0
\(456\) −16160.6 −1.65962
\(457\) − 11334.8i − 1.16021i −0.814541 0.580106i \(-0.803011\pi\)
0.814541 0.580106i \(-0.196989\pi\)
\(458\) 31336.3i 3.19705i
\(459\) −3380.28 −0.343743
\(460\) 0 0
\(461\) −15225.8 −1.53826 −0.769130 0.639092i \(-0.779310\pi\)
−0.769130 + 0.639092i \(0.779310\pi\)
\(462\) − 5711.39i − 0.575147i
\(463\) − 3312.04i − 0.332448i −0.986088 0.166224i \(-0.946842\pi\)
0.986088 0.166224i \(-0.0531575\pi\)
\(464\) 17419.9 1.74288
\(465\) 0 0
\(466\) 14699.6 1.46125
\(467\) − 2521.58i − 0.249861i −0.992166 0.124930i \(-0.960129\pi\)
0.992166 0.124930i \(-0.0398708\pi\)
\(468\) − 3906.13i − 0.385814i
\(469\) −19089.5 −1.87946
\(470\) 0 0
\(471\) 222.283 0.0217458
\(472\) 5468.63i 0.533293i
\(473\) − 1475.37i − 0.143420i
\(474\) −1829.90 −0.177321
\(475\) 0 0
\(476\) 71147.4 6.85092
\(477\) − 4355.11i − 0.418044i
\(478\) 14390.8i 1.37703i
\(479\) 18533.3 1.76786 0.883931 0.467617i \(-0.154887\pi\)
0.883931 + 0.467617i \(0.154887\pi\)
\(480\) 0 0
\(481\) 882.235 0.0836308
\(482\) − 9690.39i − 0.915737i
\(483\) − 8413.04i − 0.792560i
\(484\) −1951.64 −0.183287
\(485\) 0 0
\(486\) 1193.65 0.111410
\(487\) 881.844i 0.0820538i 0.999158 + 0.0410269i \(0.0130629\pi\)
−0.999158 + 0.0410269i \(0.986937\pi\)
\(488\) − 24911.5i − 2.31084i
\(489\) 9280.09 0.858201
\(490\) 0 0
\(491\) 11624.6 1.06846 0.534229 0.845340i \(-0.320602\pi\)
0.534229 + 0.845340i \(0.320602\pi\)
\(492\) 15932.2i 1.45992i
\(493\) − 32492.6i − 2.96834i
\(494\) −17830.8 −1.62398
\(495\) 0 0
\(496\) 11899.8 1.07725
\(497\) 29009.4i 2.61821i
\(498\) 6419.80i 0.577667i
\(499\) −10331.4 −0.926850 −0.463425 0.886136i \(-0.653380\pi\)
−0.463425 + 0.886136i \(0.653380\pi\)
\(500\) 0 0
\(501\) −9376.03 −0.836108
\(502\) − 27769.2i − 2.46893i
\(503\) 5079.34i 0.450252i 0.974330 + 0.225126i \(0.0722794\pi\)
−0.974330 + 0.225126i \(0.927721\pi\)
\(504\) −12662.6 −1.11912
\(505\) 0 0
\(506\) −4300.72 −0.377847
\(507\) 4418.80i 0.387073i
\(508\) − 28453.2i − 2.48505i
\(509\) 8113.34 0.706517 0.353259 0.935526i \(-0.385074\pi\)
0.353259 + 0.935526i \(0.385074\pi\)
\(510\) 0 0
\(511\) −1024.22 −0.0886672
\(512\) 20754.4i 1.79145i
\(513\) − 3642.29i − 0.313472i
\(514\) 22632.8 1.94220
\(515\) 0 0
\(516\) −6490.00 −0.553695
\(517\) − 4611.10i − 0.392255i
\(518\) − 5674.43i − 0.481313i
\(519\) −5902.43 −0.499206
\(520\) 0 0
\(521\) −14935.1 −1.25589 −0.627945 0.778258i \(-0.716104\pi\)
−0.627945 + 0.778258i \(0.716104\pi\)
\(522\) 11473.9i 0.962065i
\(523\) − 13732.8i − 1.14817i −0.818796 0.574085i \(-0.805358\pi\)
0.818796 0.574085i \(-0.194642\pi\)
\(524\) 7305.17 0.609022
\(525\) 0 0
\(526\) 10847.5 0.899193
\(527\) − 22196.3i − 1.83470i
\(528\) 2214.94i 0.182563i
\(529\) 5831.91 0.479322
\(530\) 0 0
\(531\) −1232.53 −0.100729
\(532\) 76662.1i 6.24760i
\(533\) 8859.90i 0.720009i
\(534\) 4142.21 0.335676
\(535\) 0 0
\(536\) 21635.3 1.74347
\(537\) 1442.28i 0.115901i
\(538\) 13774.7i 1.10384i
\(539\) −9882.36 −0.789728
\(540\) 0 0
\(541\) −11621.5 −0.923563 −0.461781 0.886994i \(-0.652790\pi\)
−0.461781 + 0.886994i \(0.652790\pi\)
\(542\) − 507.356i − 0.0402081i
\(543\) − 8710.15i − 0.688376i
\(544\) −1282.39 −0.101070
\(545\) 0 0
\(546\) −13971.3 −1.09509
\(547\) 10009.3i 0.782387i 0.920308 + 0.391194i \(0.127938\pi\)
−0.920308 + 0.391194i \(0.872062\pi\)
\(548\) − 6649.36i − 0.518333i
\(549\) 5614.59 0.436475
\(550\) 0 0
\(551\) 35011.1 2.70694
\(552\) 9535.03i 0.735214i
\(553\) 4375.11i 0.336435i
\(554\) 8311.86 0.637431
\(555\) 0 0
\(556\) −1567.62 −0.119572
\(557\) 10887.5i 0.828218i 0.910227 + 0.414109i \(0.135907\pi\)
−0.910227 + 0.414109i \(0.864093\pi\)
\(558\) 7838.01i 0.594641i
\(559\) −3609.09 −0.273074
\(560\) 0 0
\(561\) 4131.45 0.310927
\(562\) 4484.32i 0.336583i
\(563\) 5715.30i 0.427835i 0.976852 + 0.213918i \(0.0686225\pi\)
−0.976852 + 0.213918i \(0.931378\pi\)
\(564\) −20283.7 −1.51436
\(565\) 0 0
\(566\) −35585.6 −2.64271
\(567\) − 2853.91i − 0.211381i
\(568\) − 32878.2i − 2.42877i
\(569\) 8049.22 0.593042 0.296521 0.955026i \(-0.404173\pi\)
0.296521 + 0.955026i \(0.404173\pi\)
\(570\) 0 0
\(571\) −879.157 −0.0644336 −0.0322168 0.999481i \(-0.510257\pi\)
−0.0322168 + 0.999481i \(0.510257\pi\)
\(572\) 4774.16i 0.348982i
\(573\) 3877.62i 0.282705i
\(574\) 56985.9 4.14381
\(575\) 0 0
\(576\) −4379.76 −0.316823
\(577\) 6362.10i 0.459026i 0.973306 + 0.229513i \(0.0737133\pi\)
−0.973306 + 0.229513i \(0.926287\pi\)
\(578\) 52859.3i 3.80390i
\(579\) 5877.38 0.421858
\(580\) 0 0
\(581\) 15349.1 1.09602
\(582\) 599.972i 0.0427314i
\(583\) 5322.92i 0.378135i
\(584\) 1160.82 0.0822516
\(585\) 0 0
\(586\) 7962.86 0.561336
\(587\) − 14637.2i − 1.02921i −0.857429 0.514603i \(-0.827939\pi\)
0.857429 0.514603i \(-0.172061\pi\)
\(588\) 43471.5i 3.04887i
\(589\) 23916.7 1.67313
\(590\) 0 0
\(591\) 7718.22 0.537200
\(592\) 2200.61i 0.152778i
\(593\) 13800.7i 0.955696i 0.878442 + 0.477848i \(0.158583\pi\)
−0.878442 + 0.477848i \(0.841417\pi\)
\(594\) −1458.91 −0.100774
\(595\) 0 0
\(596\) 10019.7 0.688628
\(597\) 15948.6i 1.09335i
\(598\) 10520.5i 0.719426i
\(599\) −21401.7 −1.45985 −0.729923 0.683529i \(-0.760444\pi\)
−0.729923 + 0.683529i \(0.760444\pi\)
\(600\) 0 0
\(601\) −3688.78 −0.250363 −0.125182 0.992134i \(-0.539951\pi\)
−0.125182 + 0.992134i \(0.539951\pi\)
\(602\) 23213.2i 1.57160i
\(603\) 4876.19i 0.329310i
\(604\) −49747.3 −3.35131
\(605\) 0 0
\(606\) 3855.19 0.258427
\(607\) 5086.89i 0.340149i 0.985431 + 0.170075i \(0.0544008\pi\)
−0.985431 + 0.170075i \(0.945599\pi\)
\(608\) − 1381.79i − 0.0921696i
\(609\) 27432.9 1.82535
\(610\) 0 0
\(611\) −11279.8 −0.746860
\(612\) − 18173.8i − 1.20038i
\(613\) 111.568i 0.00735106i 0.999993 + 0.00367553i \(0.00116996\pi\)
−0.999993 + 0.00367553i \(0.998830\pi\)
\(614\) 31813.0 2.09099
\(615\) 0 0
\(616\) 15476.5 1.01228
\(617\) − 19134.1i − 1.24848i −0.781234 0.624238i \(-0.785410\pi\)
0.781234 0.624238i \(-0.214590\pi\)
\(618\) 16670.6i 1.08509i
\(619\) −23743.6 −1.54174 −0.770870 0.636992i \(-0.780178\pi\)
−0.770870 + 0.636992i \(0.780178\pi\)
\(620\) 0 0
\(621\) −2149.02 −0.138868
\(622\) 29703.5i 1.91479i
\(623\) − 9903.62i − 0.636886i
\(624\) 5418.25 0.347602
\(625\) 0 0
\(626\) −1831.14 −0.116912
\(627\) 4451.68i 0.283546i
\(628\) 1195.09i 0.0759384i
\(629\) 4104.72 0.260200
\(630\) 0 0
\(631\) 2758.25 0.174016 0.0870081 0.996208i \(-0.472269\pi\)
0.0870081 + 0.996208i \(0.472269\pi\)
\(632\) − 4958.59i − 0.312092i
\(633\) 1192.51i 0.0748787i
\(634\) −7963.64 −0.498859
\(635\) 0 0
\(636\) 23415.0 1.45985
\(637\) 24174.5i 1.50366i
\(638\) − 14023.6i − 0.870221i
\(639\) 7410.14 0.458749
\(640\) 0 0
\(641\) −754.409 −0.0464857 −0.0232429 0.999730i \(-0.507399\pi\)
−0.0232429 + 0.999730i \(0.507399\pi\)
\(642\) − 987.236i − 0.0606902i
\(643\) 14511.8i 0.890029i 0.895523 + 0.445014i \(0.146801\pi\)
−0.895523 + 0.445014i \(0.853199\pi\)
\(644\) 45232.1 2.76769
\(645\) 0 0
\(646\) −82960.5 −5.05269
\(647\) 20611.1i 1.25241i 0.779660 + 0.626204i \(0.215392\pi\)
−0.779660 + 0.626204i \(0.784608\pi\)
\(648\) 3234.52i 0.196086i
\(649\) 1506.42 0.0911129
\(650\) 0 0
\(651\) 18739.9 1.12823
\(652\) 49893.7i 2.99692i
\(653\) − 16724.6i − 1.00227i −0.865368 0.501137i \(-0.832915\pi\)
0.865368 0.501137i \(-0.167085\pi\)
\(654\) 6774.84 0.405072
\(655\) 0 0
\(656\) −22099.8 −1.31532
\(657\) 261.626i 0.0155358i
\(658\) 72550.3i 4.29834i
\(659\) −17369.2 −1.02672 −0.513359 0.858174i \(-0.671599\pi\)
−0.513359 + 0.858174i \(0.671599\pi\)
\(660\) 0 0
\(661\) 26491.3 1.55884 0.779419 0.626503i \(-0.215514\pi\)
0.779419 + 0.626503i \(0.215514\pi\)
\(662\) 36320.4i 2.13237i
\(663\) − 10106.5i − 0.592010i
\(664\) −17396.1 −1.01672
\(665\) 0 0
\(666\) −1449.47 −0.0843331
\(667\) − 20657.2i − 1.19918i
\(668\) − 50409.6i − 2.91977i
\(669\) 15885.1 0.918019
\(670\) 0 0
\(671\) −6862.27 −0.394806
\(672\) − 1082.70i − 0.0621520i
\(673\) − 12136.5i − 0.695139i −0.937654 0.347569i \(-0.887007\pi\)
0.937654 0.347569i \(-0.112993\pi\)
\(674\) −40498.6 −2.31446
\(675\) 0 0
\(676\) −23757.4 −1.35169
\(677\) − 15583.9i − 0.884691i −0.896845 0.442346i \(-0.854146\pi\)
0.896845 0.442346i \(-0.145854\pi\)
\(678\) 12019.2i 0.680816i
\(679\) 1434.47 0.0810752
\(680\) 0 0
\(681\) −5809.80 −0.326919
\(682\) − 9579.79i − 0.537873i
\(683\) 10388.8i 0.582016i 0.956721 + 0.291008i \(0.0939906\pi\)
−0.956721 + 0.291008i \(0.906009\pi\)
\(684\) 19582.5 1.09467
\(685\) 0 0
\(686\) 96123.8 5.34989
\(687\) − 19138.0i − 1.06282i
\(688\) − 9002.38i − 0.498855i
\(689\) 13021.1 0.719975
\(690\) 0 0
\(691\) −773.591 −0.0425887 −0.0212943 0.999773i \(-0.506779\pi\)
−0.0212943 + 0.999773i \(0.506779\pi\)
\(692\) − 31734.0i − 1.74327i
\(693\) 3488.11i 0.191201i
\(694\) −2200.95 −0.120385
\(695\) 0 0
\(696\) −31091.5 −1.69327
\(697\) 41222.0i 2.24016i
\(698\) − 45693.9i − 2.47785i
\(699\) −8977.45 −0.485777
\(700\) 0 0
\(701\) 13704.5 0.738391 0.369196 0.929352i \(-0.379633\pi\)
0.369196 + 0.929352i \(0.379633\pi\)
\(702\) 3568.82i 0.191875i
\(703\) 4422.88i 0.237286i
\(704\) 5353.04 0.286577
\(705\) 0 0
\(706\) 29316.1 1.56278
\(707\) − 9217.39i − 0.490319i
\(708\) − 6626.60i − 0.351755i
\(709\) −25131.5 −1.33122 −0.665608 0.746302i \(-0.731828\pi\)
−0.665608 + 0.746302i \(0.731828\pi\)
\(710\) 0 0
\(711\) 1117.57 0.0589483
\(712\) 11224.4i 0.590804i
\(713\) − 14111.3i − 0.741196i
\(714\) −65003.6 −3.40714
\(715\) 0 0
\(716\) −7754.29 −0.404737
\(717\) − 8788.88i − 0.457778i
\(718\) 54817.4i 2.84926i
\(719\) −25944.0 −1.34568 −0.672842 0.739786i \(-0.734926\pi\)
−0.672842 + 0.739786i \(0.734926\pi\)
\(720\) 0 0
\(721\) 39857.7 2.05878
\(722\) − 55698.4i − 2.87102i
\(723\) 5918.21i 0.304427i
\(724\) 46829.5 2.40387
\(725\) 0 0
\(726\) 1783.11 0.0911536
\(727\) − 32366.9i − 1.65120i −0.564255 0.825601i \(-0.690836\pi\)
0.564255 0.825601i \(-0.309164\pi\)
\(728\) − 37859.0i − 1.92740i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −16791.8 −0.849613
\(732\) 30186.4i 1.52421i
\(733\) − 962.782i − 0.0485145i −0.999706 0.0242573i \(-0.992278\pi\)
0.999706 0.0242573i \(-0.00772209\pi\)
\(734\) −32063.8 −1.61239
\(735\) 0 0
\(736\) −815.284 −0.0408312
\(737\) − 5959.79i − 0.297872i
\(738\) − 14556.4i − 0.726056i
\(739\) 25242.1 1.25649 0.628244 0.778016i \(-0.283774\pi\)
0.628244 + 0.778016i \(0.283774\pi\)
\(740\) 0 0
\(741\) 10889.8 0.539875
\(742\) − 83750.0i − 4.14361i
\(743\) 24365.5i 1.20307i 0.798846 + 0.601535i \(0.205444\pi\)
−0.798846 + 0.601535i \(0.794556\pi\)
\(744\) −21239.1 −1.04659
\(745\) 0 0
\(746\) −19621.2 −0.962982
\(747\) − 3920.76i − 0.192039i
\(748\) 22212.5i 1.08579i
\(749\) −2360.38 −0.115149
\(750\) 0 0
\(751\) −25453.0 −1.23674 −0.618370 0.785887i \(-0.712207\pi\)
−0.618370 + 0.785887i \(0.712207\pi\)
\(752\) − 28135.9i − 1.36438i
\(753\) 16959.5i 0.820768i
\(754\) −34305.0 −1.65691
\(755\) 0 0
\(756\) 15343.8 0.738162
\(757\) − 21934.8i − 1.05315i −0.850129 0.526575i \(-0.823476\pi\)
0.850129 0.526575i \(-0.176524\pi\)
\(758\) − 37601.0i − 1.80176i
\(759\) 2626.58 0.125611
\(760\) 0 0
\(761\) 8162.88 0.388836 0.194418 0.980919i \(-0.437718\pi\)
0.194418 + 0.980919i \(0.437718\pi\)
\(762\) 25996.2i 1.23588i
\(763\) − 16198.0i − 0.768553i
\(764\) −20847.7 −0.987231
\(765\) 0 0
\(766\) 3952.48 0.186435
\(767\) − 3685.05i − 0.173480i
\(768\) − 24755.1i − 1.16311i
\(769\) 35471.5 1.66337 0.831687 0.555244i \(-0.187375\pi\)
0.831687 + 0.555244i \(0.187375\pi\)
\(770\) 0 0
\(771\) −13822.5 −0.645662
\(772\) 31599.3i 1.47317i
\(773\) − 2119.31i − 0.0986109i −0.998784 0.0493055i \(-0.984299\pi\)
0.998784 0.0493055i \(-0.0157008\pi\)
\(774\) 5929.57 0.275367
\(775\) 0 0
\(776\) −1625.78 −0.0752090
\(777\) 3465.54i 0.160007i
\(778\) − 36259.1i − 1.67089i
\(779\) −44417.1 −2.04289
\(780\) 0 0
\(781\) −9056.84 −0.414954
\(782\) 48948.3i 2.23835i
\(783\) − 7007.44i − 0.319828i
\(784\) −60300.0 −2.74690
\(785\) 0 0
\(786\) −6674.34 −0.302883
\(787\) 21787.8i 0.986851i 0.869788 + 0.493425i \(0.164255\pi\)
−0.869788 + 0.493425i \(0.835745\pi\)
\(788\) 41496.5i 1.87595i
\(789\) −6624.92 −0.298927
\(790\) 0 0
\(791\) 28736.6 1.29173
\(792\) − 3953.30i − 0.177367i
\(793\) 16786.7i 0.751717i
\(794\) −44329.6 −1.98136
\(795\) 0 0
\(796\) −85746.3 −3.81809
\(797\) − 16775.1i − 0.745552i −0.927921 0.372776i \(-0.878406\pi\)
0.927921 0.372776i \(-0.121594\pi\)
\(798\) − 70042.1i − 3.10710i
\(799\) −52480.8 −2.32370
\(800\) 0 0
\(801\) −2529.77 −0.111592
\(802\) − 64475.9i − 2.83881i
\(803\) − 319.766i − 0.0140527i
\(804\) −26216.5 −1.14998
\(805\) 0 0
\(806\) −23434.3 −1.02412
\(807\) − 8412.59i − 0.366961i
\(808\) 10446.7i 0.454842i
\(809\) −42770.0 −1.85873 −0.929366 0.369159i \(-0.879646\pi\)
−0.929366 + 0.369159i \(0.879646\pi\)
\(810\) 0 0
\(811\) 22532.5 0.975614 0.487807 0.872951i \(-0.337797\pi\)
0.487807 + 0.872951i \(0.337797\pi\)
\(812\) 147491.i 6.37429i
\(813\) 309.857i 0.0133667i
\(814\) 1771.58 0.0762822
\(815\) 0 0
\(816\) 25209.2 1.08149
\(817\) − 18093.3i − 0.774793i
\(818\) 4188.99i 0.179052i
\(819\) 8532.71 0.364050
\(820\) 0 0
\(821\) 34394.6 1.46210 0.731048 0.682326i \(-0.239032\pi\)
0.731048 + 0.682326i \(0.239032\pi\)
\(822\) 6075.17i 0.257781i
\(823\) 3038.76i 0.128705i 0.997927 + 0.0643526i \(0.0204982\pi\)
−0.997927 + 0.0643526i \(0.979502\pi\)
\(824\) −45173.2 −1.90981
\(825\) 0 0
\(826\) −23701.8 −0.998416
\(827\) 2767.63i 0.116372i 0.998306 + 0.0581861i \(0.0185317\pi\)
−0.998306 + 0.0581861i \(0.981468\pi\)
\(828\) − 11554.0i − 0.484940i
\(829\) 16593.5 0.695196 0.347598 0.937644i \(-0.386997\pi\)
0.347598 + 0.937644i \(0.386997\pi\)
\(830\) 0 0
\(831\) −5076.30 −0.211907
\(832\) − 13094.8i − 0.545648i
\(833\) 112475.i 4.67831i
\(834\) 1432.25 0.0594663
\(835\) 0 0
\(836\) −23934.2 −0.990168
\(837\) − 4786.91i − 0.197682i
\(838\) 11032.5i 0.454789i
\(839\) 11891.4 0.489315 0.244657 0.969610i \(-0.421325\pi\)
0.244657 + 0.969610i \(0.421325\pi\)
\(840\) 0 0
\(841\) 42969.3 1.76183
\(842\) − 67843.4i − 2.77677i
\(843\) − 2738.71i − 0.111893i
\(844\) −6411.47 −0.261483
\(845\) 0 0
\(846\) 18532.2 0.753132
\(847\) − 4263.25i − 0.172948i
\(848\) 32479.2i 1.31526i
\(849\) 21733.2 0.878540
\(850\) 0 0
\(851\) 2609.58 0.105118
\(852\) 39840.1i 1.60199i
\(853\) − 44431.4i − 1.78347i −0.452556 0.891736i \(-0.649488\pi\)
0.452556 0.891736i \(-0.350512\pi\)
\(854\) 107970. 4.32629
\(855\) 0 0
\(856\) 2675.17 0.106817
\(857\) 4728.48i 0.188473i 0.995550 + 0.0942367i \(0.0300411\pi\)
−0.995550 + 0.0942367i \(0.969959\pi\)
\(858\) − 4361.90i − 0.173558i
\(859\) 12199.4 0.484560 0.242280 0.970206i \(-0.422105\pi\)
0.242280 + 0.970206i \(0.422105\pi\)
\(860\) 0 0
\(861\) −34803.0 −1.37756
\(862\) − 65778.1i − 2.59909i
\(863\) − 10519.8i − 0.414947i −0.978241 0.207474i \(-0.933476\pi\)
0.978241 0.207474i \(-0.0665241\pi\)
\(864\) −276.565 −0.0108899
\(865\) 0 0
\(866\) 28407.7 1.11470
\(867\) − 32282.7i − 1.26457i
\(868\) 100754.i 3.93987i
\(869\) −1365.92 −0.0533208
\(870\) 0 0
\(871\) −14579.0 −0.567153
\(872\) 18358.2i 0.712944i
\(873\) − 366.421i − 0.0142056i
\(874\) −52742.3 −2.04123
\(875\) 0 0
\(876\) −1406.62 −0.0542525
\(877\) − 6620.91i − 0.254928i −0.991843 0.127464i \(-0.959316\pi\)
0.991843 0.127464i \(-0.0406838\pi\)
\(878\) − 13809.8i − 0.530819i
\(879\) −4863.16 −0.186610
\(880\) 0 0
\(881\) 23166.2 0.885913 0.442957 0.896543i \(-0.353930\pi\)
0.442957 + 0.896543i \(0.353930\pi\)
\(882\) − 39717.6i − 1.51628i
\(883\) 24131.3i 0.919686i 0.888000 + 0.459843i \(0.152094\pi\)
−0.888000 + 0.459843i \(0.847906\pi\)
\(884\) 54336.7 2.06735
\(885\) 0 0
\(886\) 66157.9 2.50860
\(887\) − 35611.7i − 1.34806i −0.738706 0.674028i \(-0.764563\pi\)
0.738706 0.674028i \(-0.235437\pi\)
\(888\) − 3927.72i − 0.148430i
\(889\) 62154.3 2.34487
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) 85405.2i 3.20581i
\(893\) − 56548.6i − 2.11907i
\(894\) −9154.45 −0.342473
\(895\) 0 0
\(896\) −87111.2 −3.24797
\(897\) − 6425.20i − 0.239165i
\(898\) − 13126.0i − 0.487774i
\(899\) 46013.6 1.70705
\(900\) 0 0
\(901\) 60582.3 2.24005
\(902\) 17791.2i 0.656742i
\(903\) − 14177.0i − 0.522460i
\(904\) −32569.1 −1.19826
\(905\) 0 0
\(906\) 45451.5 1.66669
\(907\) − 841.317i − 0.0307999i −0.999881 0.0153999i \(-0.995098\pi\)
0.999881 0.0153999i \(-0.00490214\pi\)
\(908\) − 31235.9i − 1.14163i
\(909\) −2354.48 −0.0859111
\(910\) 0 0
\(911\) −47484.6 −1.72693 −0.863466 0.504406i \(-0.831711\pi\)
−0.863466 + 0.504406i \(0.831711\pi\)
\(912\) 27163.2i 0.986253i
\(913\) 4792.04i 0.173706i
\(914\) −55678.1 −2.01495
\(915\) 0 0
\(916\) 102894. 3.71148
\(917\) 15957.7i 0.574667i
\(918\) 16604.5i 0.596981i
\(919\) −19432.0 −0.697500 −0.348750 0.937216i \(-0.613394\pi\)
−0.348750 + 0.937216i \(0.613394\pi\)
\(920\) 0 0
\(921\) −19429.1 −0.695127
\(922\) 74791.7i 2.67151i
\(923\) 22155.1i 0.790079i
\(924\) −18753.6 −0.667692
\(925\) 0 0
\(926\) −16269.3 −0.577366
\(927\) − 10181.2i − 0.360728i
\(928\) − 2658.45i − 0.0940386i
\(929\) −18727.8 −0.661399 −0.330699 0.943736i \(-0.607285\pi\)
−0.330699 + 0.943736i \(0.607285\pi\)
\(930\) 0 0
\(931\) −121193. −4.26633
\(932\) − 48266.6i − 1.69638i
\(933\) − 18140.8i − 0.636552i
\(934\) −12386.4 −0.433936
\(935\) 0 0
\(936\) −9670.66 −0.337709
\(937\) − 54002.9i − 1.88282i −0.337271 0.941408i \(-0.609504\pi\)
0.337271 0.941408i \(-0.390496\pi\)
\(938\) 93770.4i 3.26408i
\(939\) 1118.33 0.0388661
\(940\) 0 0
\(941\) 6293.49 0.218025 0.109013 0.994040i \(-0.465231\pi\)
0.109013 + 0.994040i \(0.465231\pi\)
\(942\) − 1091.89i − 0.0377662i
\(943\) 26206.9i 0.905000i
\(944\) 9191.86 0.316917
\(945\) 0 0
\(946\) −7247.25 −0.249079
\(947\) 50524.8i 1.73372i 0.498548 + 0.866862i \(0.333867\pi\)
−0.498548 + 0.866862i \(0.666133\pi\)
\(948\) 6008.55i 0.205853i
\(949\) −782.219 −0.0267565
\(950\) 0 0
\(951\) 4863.63 0.165840
\(952\) − 176144.i − 5.99671i
\(953\) 10331.6i 0.351180i 0.984463 + 0.175590i \(0.0561833\pi\)
−0.984463 + 0.175590i \(0.943817\pi\)
\(954\) −21393.0 −0.726021
\(955\) 0 0
\(956\) 47252.8 1.59860
\(957\) 8564.65i 0.289295i
\(958\) − 91038.3i − 3.07026i
\(959\) 14525.1 0.489094
\(960\) 0 0
\(961\) 1641.75 0.0551088
\(962\) − 4333.67i − 0.145242i
\(963\) 602.934i 0.0201758i
\(964\) −31818.8 −1.06309
\(965\) 0 0
\(966\) −41326.2 −1.37645
\(967\) − 36951.3i − 1.22883i −0.788985 0.614413i \(-0.789393\pi\)
0.788985 0.614413i \(-0.210607\pi\)
\(968\) 4831.81i 0.160434i
\(969\) 50666.4 1.67971
\(970\) 0 0
\(971\) 45936.7 1.51821 0.759104 0.650969i \(-0.225637\pi\)
0.759104 + 0.650969i \(0.225637\pi\)
\(972\) − 3919.42i − 0.129337i
\(973\) − 3424.38i − 0.112827i
\(974\) 4331.76 0.142504
\(975\) 0 0
\(976\) −41872.0 −1.37325
\(977\) 26083.4i 0.854126i 0.904222 + 0.427063i \(0.140452\pi\)
−0.904222 + 0.427063i \(0.859548\pi\)
\(978\) − 45585.2i − 1.49045i
\(979\) 3091.94 0.100939
\(980\) 0 0
\(981\) −4137.59 −0.134662
\(982\) − 57102.0i − 1.85560i
\(983\) 47213.0i 1.53190i 0.642898 + 0.765952i \(0.277732\pi\)
−0.642898 + 0.765952i \(0.722268\pi\)
\(984\) 39444.4 1.27789
\(985\) 0 0
\(986\) −159609. −5.15515
\(987\) − 44308.6i − 1.42894i
\(988\) 58548.4i 1.88530i
\(989\) −10675.4 −0.343234
\(990\) 0 0
\(991\) 15853.2 0.508168 0.254084 0.967182i \(-0.418226\pi\)
0.254084 + 0.967182i \(0.418226\pi\)
\(992\) − 1816.03i − 0.0581241i
\(993\) − 22181.9i − 0.708885i
\(994\) 142499. 4.54707
\(995\) 0 0
\(996\) 21079.7 0.670618
\(997\) 14205.9i 0.451259i 0.974213 + 0.225630i \(0.0724439\pi\)
−0.974213 + 0.225630i \(0.927556\pi\)
\(998\) 50749.6i 1.60967i
\(999\) 885.235 0.0280356
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.c.r.199.3 10
5.2 odd 4 825.4.a.z.1.4 yes 5
5.3 odd 4 825.4.a.w.1.2 5
5.4 even 2 inner 825.4.c.r.199.8 10
15.2 even 4 2475.4.a.bf.1.2 5
15.8 even 4 2475.4.a.bm.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.w.1.2 5 5.3 odd 4
825.4.a.z.1.4 yes 5 5.2 odd 4
825.4.c.r.199.3 10 1.1 even 1 trivial
825.4.c.r.199.8 10 5.4 even 2 inner
2475.4.a.bf.1.2 5 15.2 even 4
2475.4.a.bm.1.4 5 15.8 even 4