Properties

Label 8208.2.a.bx.1.3
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,1,0,-1,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.88980.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.10163\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.10163 q^{5} -1.10163 q^{7} -5.34485 q^{11} +4.98967 q^{13} +2.00000 q^{17} -1.00000 q^{19} +2.59840 q^{23} -3.78641 q^{25} +4.43124 q^{29} -8.58807 q^{31} -1.21359 q^{35} -2.18802 q^{37} +5.15683 q^{41} +2.59840 q^{43} -2.74645 q^{47} -5.78641 q^{49} -9.43615 q^{53} -5.88804 q^{55} +3.88804 q^{59} +2.30489 q^{61} +5.49677 q^{65} +5.87771 q^{67} -9.70003 q^{71} -8.71527 q^{73} +5.88804 q^{77} -3.07606 q^{79} +12.2226 q^{83} +2.20326 q^{85} +15.2176 q^{89} -5.49677 q^{91} -1.10163 q^{95} -6.80166 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{5} - q^{7} - 3 q^{11} - 3 q^{13} + 8 q^{17} - 4 q^{19} + q^{25} - 3 q^{29} - q^{31} - 21 q^{35} - 3 q^{37} + 8 q^{41} - 3 q^{47} - 7 q^{49} + 7 q^{53} - 4 q^{55} - 4 q^{59} - q^{61} + 15 q^{65}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.10163 0.492664 0.246332 0.969186i \(-0.420775\pi\)
0.246332 + 0.969186i \(0.420775\pi\)
\(6\) 0 0
\(7\) −1.10163 −0.416377 −0.208188 0.978089i \(-0.566757\pi\)
−0.208188 + 0.978089i \(0.566757\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.34485 −1.61153 −0.805766 0.592234i \(-0.798246\pi\)
−0.805766 + 0.592234i \(0.798246\pi\)
\(12\) 0 0
\(13\) 4.98967 1.38389 0.691943 0.721952i \(-0.256755\pi\)
0.691943 + 0.721952i \(0.256755\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.59840 0.541803 0.270902 0.962607i \(-0.412678\pi\)
0.270902 + 0.962607i \(0.412678\pi\)
\(24\) 0 0
\(25\) −3.78641 −0.757283
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.43124 0.822860 0.411430 0.911441i \(-0.365030\pi\)
0.411430 + 0.911441i \(0.365030\pi\)
\(30\) 0 0
\(31\) −8.58807 −1.54246 −0.771231 0.636555i \(-0.780359\pi\)
−0.771231 + 0.636555i \(0.780359\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.21359 −0.205134
\(36\) 0 0
\(37\) −2.18802 −0.359708 −0.179854 0.983693i \(-0.557562\pi\)
−0.179854 + 0.983693i \(0.557562\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.15683 0.805362 0.402681 0.915340i \(-0.368078\pi\)
0.402681 + 0.915340i \(0.368078\pi\)
\(42\) 0 0
\(43\) 2.59840 0.396252 0.198126 0.980177i \(-0.436514\pi\)
0.198126 + 0.980177i \(0.436514\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.74645 −0.400611 −0.200306 0.979733i \(-0.564193\pi\)
−0.200306 + 0.979733i \(0.564193\pi\)
\(48\) 0 0
\(49\) −5.78641 −0.826630
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.43615 −1.29615 −0.648077 0.761574i \(-0.724427\pi\)
−0.648077 + 0.761574i \(0.724427\pi\)
\(54\) 0 0
\(55\) −5.88804 −0.793943
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.88804 0.506180 0.253090 0.967443i \(-0.418553\pi\)
0.253090 + 0.967443i \(0.418553\pi\)
\(60\) 0 0
\(61\) 2.30489 0.295111 0.147555 0.989054i \(-0.452860\pi\)
0.147555 + 0.989054i \(0.452860\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.49677 0.681790
\(66\) 0 0
\(67\) 5.87771 0.718077 0.359039 0.933323i \(-0.383105\pi\)
0.359039 + 0.933323i \(0.383105\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.70003 −1.15118 −0.575591 0.817738i \(-0.695228\pi\)
−0.575591 + 0.817738i \(0.695228\pi\)
\(72\) 0 0
\(73\) −8.71527 −1.02005 −0.510023 0.860161i \(-0.670363\pi\)
−0.510023 + 0.860161i \(0.670363\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.88804 0.671005
\(78\) 0 0
\(79\) −3.07606 −0.346084 −0.173042 0.984914i \(-0.555360\pi\)
−0.173042 + 0.984914i \(0.555360\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.2226 1.34160 0.670800 0.741638i \(-0.265951\pi\)
0.670800 + 0.741638i \(0.265951\pi\)
\(84\) 0 0
\(85\) 2.20326 0.238977
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2176 1.61307 0.806534 0.591188i \(-0.201341\pi\)
0.806534 + 0.591188i \(0.201341\pi\)
\(90\) 0 0
\(91\) −5.49677 −0.576218
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.10163 −0.113025
\(96\) 0 0
\(97\) −6.80166 −0.690604 −0.345302 0.938492i \(-0.612223\pi\)
−0.345302 + 0.938492i \(0.612223\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.5674 −1.35001 −0.675004 0.737814i \(-0.735858\pi\)
−0.675004 + 0.737814i \(0.735858\pi\)
\(102\) 0 0
\(103\) 10.8930 1.07331 0.536657 0.843800i \(-0.319687\pi\)
0.536657 + 0.843800i \(0.319687\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.8880 −1.14926 −0.574630 0.818413i \(-0.694854\pi\)
−0.574630 + 0.818413i \(0.694854\pi\)
\(108\) 0 0
\(109\) −17.7913 −1.70410 −0.852050 0.523460i \(-0.824641\pi\)
−0.852050 + 0.523460i \(0.824641\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.55844 0.240677 0.120339 0.992733i \(-0.461602\pi\)
0.120339 + 0.992733i \(0.461602\pi\)
\(114\) 0 0
\(115\) 2.86247 0.266927
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.20326 −0.201972
\(120\) 0 0
\(121\) 17.5674 1.59704
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.67937 −0.865749
\(126\) 0 0
\(127\) 15.1761 1.34666 0.673332 0.739340i \(-0.264862\pi\)
0.673332 + 0.739340i \(0.264862\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.47120 −0.740132 −0.370066 0.929005i \(-0.620665\pi\)
−0.370066 + 0.929005i \(0.620665\pi\)
\(132\) 0 0
\(133\) 1.10163 0.0955234
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.36957 0.800496 0.400248 0.916407i \(-0.368924\pi\)
0.400248 + 0.916407i \(0.368924\pi\)
\(138\) 0 0
\(139\) −1.59348 −0.135157 −0.0675787 0.997714i \(-0.521527\pi\)
−0.0675787 + 0.997714i \(0.521527\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −26.6690 −2.23018
\(144\) 0 0
\(145\) 4.88158 0.405393
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.410382 −0.0336198 −0.0168099 0.999859i \(-0.505351\pi\)
−0.0168099 + 0.999859i \(0.505351\pi\)
\(150\) 0 0
\(151\) −18.5865 −1.51255 −0.756275 0.654254i \(-0.772983\pi\)
−0.756275 + 0.654254i \(0.772983\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.46087 −0.759915
\(156\) 0 0
\(157\) 5.87771 0.469093 0.234546 0.972105i \(-0.424640\pi\)
0.234546 + 0.972105i \(0.424640\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.86247 −0.225594
\(162\) 0 0
\(163\) −7.40160 −0.579738 −0.289869 0.957066i \(-0.593612\pi\)
−0.289869 + 0.957066i \(0.593612\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.78641 0.215619 0.107810 0.994172i \(-0.465616\pi\)
0.107810 + 0.994172i \(0.465616\pi\)
\(168\) 0 0
\(169\) 11.8968 0.915140
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.83284 −0.139348 −0.0696740 0.997570i \(-0.522196\pi\)
−0.0696740 + 0.997570i \(0.522196\pi\)
\(174\) 0 0
\(175\) 4.17122 0.315315
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −14.9744 −1.11924 −0.559621 0.828749i \(-0.689053\pi\)
−0.559621 + 0.828749i \(0.689053\pi\)
\(180\) 0 0
\(181\) −8.39127 −0.623718 −0.311859 0.950128i \(-0.600952\pi\)
−0.311859 + 0.950128i \(0.600952\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.41038 −0.177215
\(186\) 0 0
\(187\) −10.6897 −0.781708
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.2585 −1.03171 −0.515853 0.856677i \(-0.672525\pi\)
−0.515853 + 0.856677i \(0.672525\pi\)
\(192\) 0 0
\(193\) −23.6755 −1.70420 −0.852100 0.523379i \(-0.824671\pi\)
−0.852100 + 0.523379i \(0.824671\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.1761 1.65123 0.825616 0.564233i \(-0.190828\pi\)
0.825616 + 0.564233i \(0.190828\pi\)
\(198\) 0 0
\(199\) −18.2625 −1.29460 −0.647298 0.762237i \(-0.724101\pi\)
−0.647298 + 0.762237i \(0.724101\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.88158 −0.342620
\(204\) 0 0
\(205\) 5.68092 0.396773
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.34485 0.369711
\(210\) 0 0
\(211\) −1.56791 −0.107939 −0.0539697 0.998543i \(-0.517187\pi\)
−0.0539697 + 0.998543i \(0.517187\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.86247 0.195219
\(216\) 0 0
\(217\) 9.46087 0.642246
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.97934 0.671283
\(222\) 0 0
\(223\) 5.20712 0.348695 0.174347 0.984684i \(-0.444218\pi\)
0.174347 + 0.984684i \(0.444218\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.486440 0.0322861 0.0161431 0.999870i \(-0.494861\pi\)
0.0161431 + 0.999870i \(0.494861\pi\)
\(228\) 0 0
\(229\) −22.5066 −1.48728 −0.743639 0.668581i \(-0.766902\pi\)
−0.743639 + 0.668581i \(0.766902\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.8738 1.23647 0.618233 0.785995i \(-0.287849\pi\)
0.618233 + 0.785995i \(0.287849\pi\)
\(234\) 0 0
\(235\) −3.02557 −0.197367
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.8122 0.764066 0.382033 0.924149i \(-0.375224\pi\)
0.382033 + 0.924149i \(0.375224\pi\)
\(240\) 0 0
\(241\) −16.7810 −1.08096 −0.540480 0.841357i \(-0.681757\pi\)
−0.540480 + 0.841357i \(0.681757\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.37448 −0.407251
\(246\) 0 0
\(247\) −4.98967 −0.317485
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.27777 0.270010 0.135005 0.990845i \(-0.456895\pi\)
0.135005 + 0.990845i \(0.456895\pi\)
\(252\) 0 0
\(253\) −13.8880 −0.873134
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.28860 −0.392272 −0.196136 0.980577i \(-0.562839\pi\)
−0.196136 + 0.980577i \(0.562839\pi\)
\(258\) 0 0
\(259\) 2.41038 0.149774
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.2443 −1.06333 −0.531664 0.846956i \(-0.678433\pi\)
−0.531664 + 0.846956i \(0.678433\pi\)
\(264\) 0 0
\(265\) −10.3951 −0.638568
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.99509 0.182614 0.0913068 0.995823i \(-0.470896\pi\)
0.0913068 + 0.995823i \(0.470896\pi\)
\(270\) 0 0
\(271\) −12.1218 −0.736346 −0.368173 0.929757i \(-0.620017\pi\)
−0.368173 + 0.929757i \(0.620017\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.2378 1.22039
\(276\) 0 0
\(277\) 15.5930 0.936892 0.468446 0.883492i \(-0.344814\pi\)
0.468446 + 0.883492i \(0.344814\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.4011 −1.33634 −0.668169 0.744010i \(-0.732922\pi\)
−0.668169 + 0.744010i \(0.732922\pi\)
\(282\) 0 0
\(283\) −16.2832 −0.967935 −0.483967 0.875086i \(-0.660805\pi\)
−0.483967 + 0.875086i \(0.660805\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.68092 −0.335334
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.09045 −0.531070 −0.265535 0.964101i \(-0.585549\pi\)
−0.265535 + 0.964101i \(0.585549\pi\)
\(294\) 0 0
\(295\) 4.28318 0.249376
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.9651 0.749794
\(300\) 0 0
\(301\) −2.86247 −0.164990
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.53913 0.145390
\(306\) 0 0
\(307\) −26.6033 −1.51833 −0.759166 0.650898i \(-0.774393\pi\)
−0.759166 + 0.650898i \(0.774393\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 19.7307 1.11883 0.559413 0.828889i \(-0.311027\pi\)
0.559413 + 0.828889i \(0.311027\pi\)
\(312\) 0 0
\(313\) −16.5979 −0.938169 −0.469084 0.883153i \(-0.655416\pi\)
−0.469084 + 0.883153i \(0.655416\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.2946 0.578200 0.289100 0.957299i \(-0.406644\pi\)
0.289100 + 0.957299i \(0.406644\pi\)
\(318\) 0 0
\(319\) −23.6843 −1.32607
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −18.8930 −1.04799
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.02557 0.166805
\(330\) 0 0
\(331\) 7.19293 0.395359 0.197680 0.980267i \(-0.436659\pi\)
0.197680 + 0.980267i \(0.436659\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.47506 0.353770
\(336\) 0 0
\(337\) −33.7234 −1.83703 −0.918515 0.395386i \(-0.870611\pi\)
−0.918515 + 0.395386i \(0.870611\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 45.9019 2.48573
\(342\) 0 0
\(343\) 14.0859 0.760566
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −29.7332 −1.59616 −0.798081 0.602550i \(-0.794152\pi\)
−0.798081 + 0.602550i \(0.794152\pi\)
\(348\) 0 0
\(349\) 8.42667 0.451070 0.225535 0.974235i \(-0.427587\pi\)
0.225535 + 0.974235i \(0.427587\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.1826 0.754864 0.377432 0.926037i \(-0.376807\pi\)
0.377432 + 0.926037i \(0.376807\pi\)
\(354\) 0 0
\(355\) −10.6858 −0.567145
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −29.0848 −1.53504 −0.767519 0.641026i \(-0.778509\pi\)
−0.767519 + 0.641026i \(0.778509\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.60100 −0.502539
\(366\) 0 0
\(367\) 26.4924 1.38289 0.691446 0.722428i \(-0.256974\pi\)
0.691446 + 0.722428i \(0.256974\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.3951 0.539689
\(372\) 0 0
\(373\) −20.7299 −1.07335 −0.536676 0.843789i \(-0.680320\pi\)
−0.536676 + 0.843789i \(0.680320\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.1104 1.13874
\(378\) 0 0
\(379\) −23.2755 −1.19558 −0.597790 0.801653i \(-0.703954\pi\)
−0.597790 + 0.801653i \(0.703954\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 29.3186 1.49811 0.749055 0.662508i \(-0.230508\pi\)
0.749055 + 0.662508i \(0.230508\pi\)
\(384\) 0 0
\(385\) 6.48644 0.330580
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.6533 1.30067 0.650337 0.759646i \(-0.274628\pi\)
0.650337 + 0.759646i \(0.274628\pi\)
\(390\) 0 0
\(391\) 5.19679 0.262813
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.38868 −0.170503
\(396\) 0 0
\(397\) 2.85214 0.143145 0.0715725 0.997435i \(-0.477198\pi\)
0.0715725 + 0.997435i \(0.477198\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.73593 −0.286439 −0.143219 0.989691i \(-0.545745\pi\)
−0.143219 + 0.989691i \(0.545745\pi\)
\(402\) 0 0
\(403\) −42.8516 −2.13459
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11.6946 0.579680
\(408\) 0 0
\(409\) 3.83690 0.189722 0.0948612 0.995491i \(-0.469759\pi\)
0.0948612 + 0.995491i \(0.469759\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.28318 −0.210762
\(414\) 0 0
\(415\) 13.4647 0.660958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.3802 0.995640 0.497820 0.867280i \(-0.334134\pi\)
0.497820 + 0.867280i \(0.334134\pi\)
\(420\) 0 0
\(421\) 4.75979 0.231978 0.115989 0.993250i \(-0.462996\pi\)
0.115989 + 0.993250i \(0.462996\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.57283 −0.367336
\(426\) 0 0
\(427\) −2.53913 −0.122877
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.19138 0.346397 0.173198 0.984887i \(-0.444590\pi\)
0.173198 + 0.984887i \(0.444590\pi\)
\(432\) 0 0
\(433\) 3.03540 0.145872 0.0729360 0.997337i \(-0.476763\pi\)
0.0729360 + 0.997337i \(0.476763\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.59840 −0.124298
\(438\) 0 0
\(439\) 38.1516 1.82088 0.910439 0.413644i \(-0.135744\pi\)
0.910439 + 0.413644i \(0.135744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.02577 −0.333804 −0.166902 0.985973i \(-0.553376\pi\)
−0.166902 + 0.985973i \(0.553376\pi\)
\(444\) 0 0
\(445\) 16.7642 0.794700
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.3394 1.29023 0.645114 0.764086i \(-0.276810\pi\)
0.645114 + 0.764086i \(0.276810\pi\)
\(450\) 0 0
\(451\) −27.5625 −1.29787
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.05540 −0.283882
\(456\) 0 0
\(457\) 32.7332 1.53120 0.765598 0.643320i \(-0.222443\pi\)
0.765598 + 0.643320i \(0.222443\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.6489 −0.728841 −0.364421 0.931234i \(-0.618733\pi\)
−0.364421 + 0.931234i \(0.618733\pi\)
\(462\) 0 0
\(463\) −5.80657 −0.269854 −0.134927 0.990856i \(-0.543080\pi\)
−0.134927 + 0.990856i \(0.543080\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.4954 1.17979 0.589894 0.807481i \(-0.299170\pi\)
0.589894 + 0.807481i \(0.299170\pi\)
\(468\) 0 0
\(469\) −6.47506 −0.298991
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.8880 −0.638573
\(474\) 0 0
\(475\) 3.78641 0.173733
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.8643 −1.54730 −0.773649 0.633614i \(-0.781571\pi\)
−0.773649 + 0.633614i \(0.781571\pi\)
\(480\) 0 0
\(481\) −10.9175 −0.497794
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.49290 −0.340235
\(486\) 0 0
\(487\) −15.6745 −0.710277 −0.355139 0.934814i \(-0.615566\pi\)
−0.355139 + 0.934814i \(0.615566\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −22.9634 −1.03632 −0.518162 0.855283i \(-0.673384\pi\)
−0.518162 + 0.855283i \(0.673384\pi\)
\(492\) 0 0
\(493\) 8.86247 0.399146
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.6858 0.479325
\(498\) 0 0
\(499\) −20.7202 −0.927563 −0.463781 0.885950i \(-0.653508\pi\)
−0.463781 + 0.885950i \(0.653508\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 33.1003 1.47587 0.737934 0.674873i \(-0.235801\pi\)
0.737934 + 0.674873i \(0.235801\pi\)
\(504\) 0 0
\(505\) −14.9463 −0.665100
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.9802 −0.929931 −0.464965 0.885329i \(-0.653933\pi\)
−0.464965 + 0.885329i \(0.653933\pi\)
\(510\) 0 0
\(511\) 9.60100 0.424723
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.0000 0.528783
\(516\) 0 0
\(517\) 14.6794 0.645598
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.5609 −0.637927 −0.318963 0.947767i \(-0.603335\pi\)
−0.318963 + 0.947767i \(0.603335\pi\)
\(522\) 0 0
\(523\) −11.1880 −0.489218 −0.244609 0.969622i \(-0.578660\pi\)
−0.244609 + 0.969622i \(0.578660\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.1761 −0.748204
\(528\) 0 0
\(529\) −16.2483 −0.706449
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.7309 1.11453
\(534\) 0 0
\(535\) −13.0962 −0.566199
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.9275 1.33214
\(540\) 0 0
\(541\) −25.9272 −1.11470 −0.557348 0.830279i \(-0.688181\pi\)
−0.557348 + 0.830279i \(0.688181\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.5994 −0.839548
\(546\) 0 0
\(547\) 28.4490 1.21639 0.608195 0.793787i \(-0.291894\pi\)
0.608195 + 0.793787i \(0.291894\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.43124 −0.188777
\(552\) 0 0
\(553\) 3.38868 0.144101
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.84076 0.416967 0.208483 0.978026i \(-0.433147\pi\)
0.208483 + 0.978026i \(0.433147\pi\)
\(558\) 0 0
\(559\) 12.9651 0.548367
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.8738 1.04831 0.524154 0.851624i \(-0.324382\pi\)
0.524154 + 0.851624i \(0.324382\pi\)
\(564\) 0 0
\(565\) 2.81845 0.118573
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −46.3903 −1.94478 −0.972391 0.233359i \(-0.925028\pi\)
−0.972391 + 0.233359i \(0.925028\pi\)
\(570\) 0 0
\(571\) −3.04452 −0.127409 −0.0637046 0.997969i \(-0.520292\pi\)
−0.0637046 + 0.997969i \(0.520292\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −9.83861 −0.410298
\(576\) 0 0
\(577\) 24.8684 1.03529 0.517643 0.855597i \(-0.326809\pi\)
0.517643 + 0.855597i \(0.326809\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.4647 −0.558611
\(582\) 0 0
\(583\) 50.4348 2.08880
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.02171 0.124719 0.0623596 0.998054i \(-0.480137\pi\)
0.0623596 + 0.998054i \(0.480137\pi\)
\(588\) 0 0
\(589\) 8.58807 0.353865
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.2370 0.789967 0.394983 0.918688i \(-0.370750\pi\)
0.394983 + 0.918688i \(0.370750\pi\)
\(594\) 0 0
\(595\) −2.42717 −0.0995044
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.2087 0.662268 0.331134 0.943584i \(-0.392569\pi\)
0.331134 + 0.943584i \(0.392569\pi\)
\(600\) 0 0
\(601\) 5.49445 0.224123 0.112062 0.993701i \(-0.464255\pi\)
0.112062 + 0.993701i \(0.464255\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.3528 0.786802
\(606\) 0 0
\(607\) −6.47766 −0.262920 −0.131460 0.991321i \(-0.541967\pi\)
−0.131460 + 0.991321i \(0.541967\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.7039 −0.554400
\(612\) 0 0
\(613\) 12.6690 0.511698 0.255849 0.966717i \(-0.417645\pi\)
0.255849 + 0.966717i \(0.417645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.6912 −0.671964 −0.335982 0.941868i \(-0.609068\pi\)
−0.335982 + 0.941868i \(0.609068\pi\)
\(618\) 0 0
\(619\) −35.2354 −1.41623 −0.708115 0.706097i \(-0.750454\pi\)
−0.708115 + 0.706097i \(0.750454\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.7642 −0.671644
\(624\) 0 0
\(625\) 8.26899 0.330760
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.37603 −0.174484
\(630\) 0 0
\(631\) −34.8555 −1.38758 −0.693788 0.720179i \(-0.744059\pi\)
−0.693788 + 0.720179i \(0.744059\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.7185 0.663453
\(636\) 0 0
\(637\) −28.8723 −1.14396
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −47.0628 −1.85887 −0.929435 0.368986i \(-0.879705\pi\)
−0.929435 + 0.368986i \(0.879705\pi\)
\(642\) 0 0
\(643\) −29.8979 −1.17906 −0.589528 0.807748i \(-0.700686\pi\)
−0.589528 + 0.807748i \(0.700686\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.84703 −0.269185 −0.134592 0.990901i \(-0.542972\pi\)
−0.134592 + 0.990901i \(0.542972\pi\)
\(648\) 0 0
\(649\) −20.7810 −0.815726
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.82336 −0.306152 −0.153076 0.988214i \(-0.548918\pi\)
−0.153076 + 0.988214i \(0.548918\pi\)
\(654\) 0 0
\(655\) −9.33212 −0.364636
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.4978 0.642664 0.321332 0.946967i \(-0.395870\pi\)
0.321332 + 0.946967i \(0.395870\pi\)
\(660\) 0 0
\(661\) 33.7593 1.31308 0.656542 0.754289i \(-0.272018\pi\)
0.656542 + 0.754289i \(0.272018\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.21359 0.0470609
\(666\) 0 0
\(667\) 11.5141 0.445828
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −12.3193 −0.475580
\(672\) 0 0
\(673\) −36.2517 −1.39740 −0.698700 0.715415i \(-0.746238\pi\)
−0.698700 + 0.715415i \(0.746238\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.34570 0.167019 0.0835095 0.996507i \(-0.473387\pi\)
0.0835095 + 0.996507i \(0.473387\pi\)
\(678\) 0 0
\(679\) 7.49290 0.287551
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −41.6533 −1.59382 −0.796910 0.604099i \(-0.793533\pi\)
−0.796910 + 0.604099i \(0.793533\pi\)
\(684\) 0 0
\(685\) 10.3218 0.394375
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −47.0833 −1.79373
\(690\) 0 0
\(691\) 0.598397 0.0227641 0.0113821 0.999935i \(-0.496377\pi\)
0.0113821 + 0.999935i \(0.496377\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.75543 −0.0665872
\(696\) 0 0
\(697\) 10.3137 0.390658
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −36.9773 −1.39661 −0.698307 0.715799i \(-0.746063\pi\)
−0.698307 + 0.715799i \(0.746063\pi\)
\(702\) 0 0
\(703\) 2.18802 0.0825226
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 14.9463 0.562112
\(708\) 0 0
\(709\) 13.7456 0.516227 0.258113 0.966115i \(-0.416899\pi\)
0.258113 + 0.966115i \(0.416899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.3152 −0.835711
\(714\) 0 0
\(715\) −29.3794 −1.09873
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.6154 −0.843412 −0.421706 0.906733i \(-0.638568\pi\)
−0.421706 + 0.906733i \(0.638568\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16.7785 −0.623137
\(726\) 0 0
\(727\) 24.9995 0.927180 0.463590 0.886050i \(-0.346561\pi\)
0.463590 + 0.886050i \(0.346561\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.19679 0.192210
\(732\) 0 0
\(733\) −42.1707 −1.55761 −0.778806 0.627265i \(-0.784174\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.4155 −1.15720
\(738\) 0 0
\(739\) 34.4436 1.26703 0.633514 0.773731i \(-0.281612\pi\)
0.633514 + 0.773731i \(0.281612\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 41.9527 1.53910 0.769548 0.638589i \(-0.220482\pi\)
0.769548 + 0.638589i \(0.220482\pi\)
\(744\) 0 0
\(745\) −0.452089 −0.0165633
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.0962 0.478525
\(750\) 0 0
\(751\) 52.2083 1.90511 0.952554 0.304371i \(-0.0984462\pi\)
0.952554 + 0.304371i \(0.0984462\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.4755 −0.745178
\(756\) 0 0
\(757\) −16.1929 −0.588542 −0.294271 0.955722i \(-0.595077\pi\)
−0.294271 + 0.955722i \(0.595077\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.4529 1.24892 0.624458 0.781059i \(-0.285320\pi\)
0.624458 + 0.781059i \(0.285320\pi\)
\(762\) 0 0
\(763\) 19.5994 0.709548
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 19.4001 0.700495
\(768\) 0 0
\(769\) 37.6251 1.35680 0.678398 0.734694i \(-0.262674\pi\)
0.678398 + 0.734694i \(0.262674\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.1976 0.510654 0.255327 0.966855i \(-0.417817\pi\)
0.255327 + 0.966855i \(0.417817\pi\)
\(774\) 0 0
\(775\) 32.5180 1.16808
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.15683 −0.184763
\(780\) 0 0
\(781\) 51.8452 1.85517
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.47506 0.231105
\(786\) 0 0
\(787\) −4.15493 −0.148107 −0.0740536 0.997254i \(-0.523594\pi\)
−0.0740536 + 0.997254i \(0.523594\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.81845 −0.100212
\(792\) 0 0
\(793\) 11.5006 0.408399
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.4856 −0.761059 −0.380529 0.924769i \(-0.624258\pi\)
−0.380529 + 0.924769i \(0.624258\pi\)
\(798\) 0 0
\(799\) −5.49290 −0.194325
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 46.5818 1.64384
\(804\) 0 0
\(805\) −3.15338 −0.111142
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.3711 −0.540420 −0.270210 0.962801i \(-0.587093\pi\)
−0.270210 + 0.962801i \(0.587093\pi\)
\(810\) 0 0
\(811\) −37.2229 −1.30707 −0.653537 0.756895i \(-0.726715\pi\)
−0.653537 + 0.756895i \(0.726715\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.15382 −0.285616
\(816\) 0 0
\(817\) −2.59840 −0.0909064
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.3164 −1.47685 −0.738426 0.674335i \(-0.764431\pi\)
−0.738426 + 0.674335i \(0.764431\pi\)
\(822\) 0 0
\(823\) 18.6082 0.648642 0.324321 0.945947i \(-0.394864\pi\)
0.324321 + 0.945947i \(0.394864\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 42.8501 1.49004 0.745022 0.667040i \(-0.232439\pi\)
0.745022 + 0.667040i \(0.232439\pi\)
\(828\) 0 0
\(829\) −57.1310 −1.98424 −0.992120 0.125290i \(-0.960014\pi\)
−0.992120 + 0.125290i \(0.960014\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.5728 −0.400975
\(834\) 0 0
\(835\) 3.06959 0.106228
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 46.0614 1.59021 0.795107 0.606469i \(-0.207414\pi\)
0.795107 + 0.606469i \(0.207414\pi\)
\(840\) 0 0
\(841\) −9.36415 −0.322902
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.1059 0.450856
\(846\) 0 0
\(847\) −19.3528 −0.664969
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.68533 −0.194891
\(852\) 0 0
\(853\) −22.5886 −0.773420 −0.386710 0.922201i \(-0.626388\pi\)
−0.386710 + 0.922201i \(0.626388\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.3307 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(858\) 0 0
\(859\) 41.2246 1.40656 0.703282 0.710911i \(-0.251717\pi\)
0.703282 + 0.710911i \(0.251717\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.1692 −1.06101 −0.530506 0.847681i \(-0.677998\pi\)
−0.530506 + 0.847681i \(0.677998\pi\)
\(864\) 0 0
\(865\) −2.01911 −0.0686517
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.4411 0.557725
\(870\) 0 0
\(871\) 29.3279 0.993737
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.6631 0.360478
\(876\) 0 0
\(877\) −36.7908 −1.24234 −0.621169 0.783677i \(-0.713342\pi\)
−0.621169 + 0.783677i \(0.713342\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.5783 1.03021 0.515104 0.857127i \(-0.327753\pi\)
0.515104 + 0.857127i \(0.327753\pi\)
\(882\) 0 0
\(883\) −18.2641 −0.614635 −0.307318 0.951607i \(-0.599431\pi\)
−0.307318 + 0.951607i \(0.599431\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 38.8746 1.30528 0.652641 0.757667i \(-0.273661\pi\)
0.652641 + 0.757667i \(0.273661\pi\)
\(888\) 0 0
\(889\) −16.7185 −0.560720
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.74645 0.0919065
\(894\) 0 0
\(895\) −16.4963 −0.551409
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −38.0558 −1.26923
\(900\) 0 0
\(901\) −18.8723 −0.628727
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.24407 −0.307283
\(906\) 0 0
\(907\) −12.7962 −0.424892 −0.212446 0.977173i \(-0.568143\pi\)
−0.212446 + 0.977173i \(0.568143\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.4059 0.510419 0.255209 0.966886i \(-0.417856\pi\)
0.255209 + 0.966886i \(0.417856\pi\)
\(912\) 0 0
\(913\) −65.3278 −2.16203
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.33212 0.308174
\(918\) 0 0
\(919\) −2.18415 −0.0720485 −0.0360242 0.999351i \(-0.511469\pi\)
−0.0360242 + 0.999351i \(0.511469\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −48.3999 −1.59310
\(924\) 0 0
\(925\) 8.28473 0.272400
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.05435 0.231446 0.115723 0.993282i \(-0.463082\pi\)
0.115723 + 0.993282i \(0.463082\pi\)
\(930\) 0 0
\(931\) 5.78641 0.189642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.7761 −0.385119
\(936\) 0 0
\(937\) 50.8511 1.66123 0.830617 0.556844i \(-0.187988\pi\)
0.830617 + 0.556844i \(0.187988\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.3375 −1.28237 −0.641183 0.767388i \(-0.721556\pi\)
−0.641183 + 0.767388i \(0.721556\pi\)
\(942\) 0 0
\(943\) 13.3995 0.436348
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.3105 −0.887472 −0.443736 0.896158i \(-0.646347\pi\)
−0.443736 + 0.896158i \(0.646347\pi\)
\(948\) 0 0
\(949\) −43.4863 −1.41163
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.9432 −0.646025 −0.323013 0.946395i \(-0.604696\pi\)
−0.323013 + 0.946395i \(0.604696\pi\)
\(954\) 0 0
\(955\) −15.7075 −0.508284
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.3218 −0.333308
\(960\) 0 0
\(961\) 42.7549 1.37919
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26.0816 −0.839597
\(966\) 0 0
\(967\) 6.20481 0.199533 0.0997666 0.995011i \(-0.468190\pi\)
0.0997666 + 0.995011i \(0.468190\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −47.4072 −1.52137 −0.760684 0.649122i \(-0.775136\pi\)
−0.760684 + 0.649122i \(0.775136\pi\)
\(972\) 0 0
\(973\) 1.75543 0.0562764
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.3502 1.61084 0.805422 0.592702i \(-0.201939\pi\)
0.805422 + 0.592702i \(0.201939\pi\)
\(978\) 0 0
\(979\) −81.3360 −2.59951
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.9245 0.571703 0.285851 0.958274i \(-0.407724\pi\)
0.285851 + 0.958274i \(0.407724\pi\)
\(984\) 0 0
\(985\) 25.5315 0.813502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.75167 0.214691
\(990\) 0 0
\(991\) 4.66092 0.148059 0.0740295 0.997256i \(-0.476414\pi\)
0.0740295 + 0.997256i \(0.476414\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.1185 −0.637800
\(996\) 0 0
\(997\) 2.63816 0.0835514 0.0417757 0.999127i \(-0.486699\pi\)
0.0417757 + 0.999127i \(0.486699\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bx.1.3 4
3.2 odd 2 8208.2.a.bs.1.2 4
4.3 odd 2 4104.2.a.l.1.3 yes 4
12.11 even 2 4104.2.a.k.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.k.1.2 4 12.11 even 2
4104.2.a.l.1.3 yes 4 4.3 odd 2
8208.2.a.bs.1.2 4 3.2 odd 2
8208.2.a.bx.1.3 4 1.1 even 1 trivial