Properties

Label 4104.2.a.l.1.3
Level $4104$
Weight $2$
Character 4104.1
Self dual yes
Analytic conductor $32.771$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4104,2,Mod(1,4104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4104.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4104 = 2^{3} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,1,0,1,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.7706049895\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.88980.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 10x^{2} + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.10163\) of defining polynomial
Character \(\chi\) \(=\) 4104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.10163 q^{5} +1.10163 q^{7} +5.34485 q^{11} +4.98967 q^{13} +2.00000 q^{17} +1.00000 q^{19} -2.59840 q^{23} -3.78641 q^{25} +4.43124 q^{29} +8.58807 q^{31} +1.21359 q^{35} -2.18802 q^{37} +5.15683 q^{41} -2.59840 q^{43} +2.74645 q^{47} -5.78641 q^{49} -9.43615 q^{53} +5.88804 q^{55} -3.88804 q^{59} +2.30489 q^{61} +5.49677 q^{65} -5.87771 q^{67} +9.70003 q^{71} -8.71527 q^{73} +5.88804 q^{77} +3.07606 q^{79} -12.2226 q^{83} +2.20326 q^{85} +15.2176 q^{89} +5.49677 q^{91} +1.10163 q^{95} -6.80166 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{5} + q^{7} + 3 q^{11} - 3 q^{13} + 8 q^{17} + 4 q^{19} + q^{25} - 3 q^{29} + q^{31} + 21 q^{35} - 3 q^{37} + 8 q^{41} + 3 q^{47} - 7 q^{49} + 7 q^{53} + 4 q^{55} + 4 q^{59} - q^{61} + 15 q^{65}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.10163 0.492664 0.246332 0.969186i \(-0.420775\pi\)
0.246332 + 0.969186i \(0.420775\pi\)
\(6\) 0 0
\(7\) 1.10163 0.416377 0.208188 0.978089i \(-0.433243\pi\)
0.208188 + 0.978089i \(0.433243\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.34485 1.61153 0.805766 0.592234i \(-0.201754\pi\)
0.805766 + 0.592234i \(0.201754\pi\)
\(12\) 0 0
\(13\) 4.98967 1.38389 0.691943 0.721952i \(-0.256755\pi\)
0.691943 + 0.721952i \(0.256755\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.59840 −0.541803 −0.270902 0.962607i \(-0.587322\pi\)
−0.270902 + 0.962607i \(0.587322\pi\)
\(24\) 0 0
\(25\) −3.78641 −0.757283
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.43124 0.822860 0.411430 0.911441i \(-0.365030\pi\)
0.411430 + 0.911441i \(0.365030\pi\)
\(30\) 0 0
\(31\) 8.58807 1.54246 0.771231 0.636555i \(-0.219641\pi\)
0.771231 + 0.636555i \(0.219641\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.21359 0.205134
\(36\) 0 0
\(37\) −2.18802 −0.359708 −0.179854 0.983693i \(-0.557562\pi\)
−0.179854 + 0.983693i \(0.557562\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.15683 0.805362 0.402681 0.915340i \(-0.368078\pi\)
0.402681 + 0.915340i \(0.368078\pi\)
\(42\) 0 0
\(43\) −2.59840 −0.396252 −0.198126 0.980177i \(-0.563486\pi\)
−0.198126 + 0.980177i \(0.563486\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.74645 0.400611 0.200306 0.979733i \(-0.435807\pi\)
0.200306 + 0.979733i \(0.435807\pi\)
\(48\) 0 0
\(49\) −5.78641 −0.826630
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.43615 −1.29615 −0.648077 0.761574i \(-0.724427\pi\)
−0.648077 + 0.761574i \(0.724427\pi\)
\(54\) 0 0
\(55\) 5.88804 0.793943
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.88804 −0.506180 −0.253090 0.967443i \(-0.581447\pi\)
−0.253090 + 0.967443i \(0.581447\pi\)
\(60\) 0 0
\(61\) 2.30489 0.295111 0.147555 0.989054i \(-0.452860\pi\)
0.147555 + 0.989054i \(0.452860\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.49677 0.681790
\(66\) 0 0
\(67\) −5.87771 −0.718077 −0.359039 0.933323i \(-0.616895\pi\)
−0.359039 + 0.933323i \(0.616895\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.70003 1.15118 0.575591 0.817738i \(-0.304772\pi\)
0.575591 + 0.817738i \(0.304772\pi\)
\(72\) 0 0
\(73\) −8.71527 −1.02005 −0.510023 0.860161i \(-0.670363\pi\)
−0.510023 + 0.860161i \(0.670363\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.88804 0.671005
\(78\) 0 0
\(79\) 3.07606 0.346084 0.173042 0.984914i \(-0.444640\pi\)
0.173042 + 0.984914i \(0.444640\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −12.2226 −1.34160 −0.670800 0.741638i \(-0.734049\pi\)
−0.670800 + 0.741638i \(0.734049\pi\)
\(84\) 0 0
\(85\) 2.20326 0.238977
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.2176 1.61307 0.806534 0.591188i \(-0.201341\pi\)
0.806534 + 0.591188i \(0.201341\pi\)
\(90\) 0 0
\(91\) 5.49677 0.576218
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.10163 0.113025
\(96\) 0 0
\(97\) −6.80166 −0.690604 −0.345302 0.938492i \(-0.612223\pi\)
−0.345302 + 0.938492i \(0.612223\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.5674 −1.35001 −0.675004 0.737814i \(-0.735858\pi\)
−0.675004 + 0.737814i \(0.735858\pi\)
\(102\) 0 0
\(103\) −10.8930 −1.07331 −0.536657 0.843800i \(-0.680313\pi\)
−0.536657 + 0.843800i \(0.680313\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.8880 1.14926 0.574630 0.818413i \(-0.305146\pi\)
0.574630 + 0.818413i \(0.305146\pi\)
\(108\) 0 0
\(109\) −17.7913 −1.70410 −0.852050 0.523460i \(-0.824641\pi\)
−0.852050 + 0.523460i \(0.824641\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.55844 0.240677 0.120339 0.992733i \(-0.461602\pi\)
0.120339 + 0.992733i \(0.461602\pi\)
\(114\) 0 0
\(115\) −2.86247 −0.266927
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.20326 0.201972
\(120\) 0 0
\(121\) 17.5674 1.59704
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.67937 −0.865749
\(126\) 0 0
\(127\) −15.1761 −1.34666 −0.673332 0.739340i \(-0.735138\pi\)
−0.673332 + 0.739340i \(0.735138\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.47120 0.740132 0.370066 0.929005i \(-0.379335\pi\)
0.370066 + 0.929005i \(0.379335\pi\)
\(132\) 0 0
\(133\) 1.10163 0.0955234
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.36957 0.800496 0.400248 0.916407i \(-0.368924\pi\)
0.400248 + 0.916407i \(0.368924\pi\)
\(138\) 0 0
\(139\) 1.59348 0.135157 0.0675787 0.997714i \(-0.478473\pi\)
0.0675787 + 0.997714i \(0.478473\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 26.6690 2.23018
\(144\) 0 0
\(145\) 4.88158 0.405393
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.410382 −0.0336198 −0.0168099 0.999859i \(-0.505351\pi\)
−0.0168099 + 0.999859i \(0.505351\pi\)
\(150\) 0 0
\(151\) 18.5865 1.51255 0.756275 0.654254i \(-0.227017\pi\)
0.756275 + 0.654254i \(0.227017\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.46087 0.759915
\(156\) 0 0
\(157\) 5.87771 0.469093 0.234546 0.972105i \(-0.424640\pi\)
0.234546 + 0.972105i \(0.424640\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.86247 −0.225594
\(162\) 0 0
\(163\) 7.40160 0.579738 0.289869 0.957066i \(-0.406388\pi\)
0.289869 + 0.957066i \(0.406388\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.78641 −0.215619 −0.107810 0.994172i \(-0.534384\pi\)
−0.107810 + 0.994172i \(0.534384\pi\)
\(168\) 0 0
\(169\) 11.8968 0.915140
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.83284 −0.139348 −0.0696740 0.997570i \(-0.522196\pi\)
−0.0696740 + 0.997570i \(0.522196\pi\)
\(174\) 0 0
\(175\) −4.17122 −0.315315
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.9744 1.11924 0.559621 0.828749i \(-0.310947\pi\)
0.559621 + 0.828749i \(0.310947\pi\)
\(180\) 0 0
\(181\) −8.39127 −0.623718 −0.311859 0.950128i \(-0.600952\pi\)
−0.311859 + 0.950128i \(0.600952\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.41038 −0.177215
\(186\) 0 0
\(187\) 10.6897 0.781708
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.2585 1.03171 0.515853 0.856677i \(-0.327475\pi\)
0.515853 + 0.856677i \(0.327475\pi\)
\(192\) 0 0
\(193\) −23.6755 −1.70420 −0.852100 0.523379i \(-0.824671\pi\)
−0.852100 + 0.523379i \(0.824671\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.1761 1.65123 0.825616 0.564233i \(-0.190828\pi\)
0.825616 + 0.564233i \(0.190828\pi\)
\(198\) 0 0
\(199\) 18.2625 1.29460 0.647298 0.762237i \(-0.275899\pi\)
0.647298 + 0.762237i \(0.275899\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.88158 0.342620
\(204\) 0 0
\(205\) 5.68092 0.396773
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.34485 0.369711
\(210\) 0 0
\(211\) 1.56791 0.107939 0.0539697 0.998543i \(-0.482813\pi\)
0.0539697 + 0.998543i \(0.482813\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.86247 −0.195219
\(216\) 0 0
\(217\) 9.46087 0.642246
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.97934 0.671283
\(222\) 0 0
\(223\) −5.20712 −0.348695 −0.174347 0.984684i \(-0.555782\pi\)
−0.174347 + 0.984684i \(0.555782\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.486440 −0.0322861 −0.0161431 0.999870i \(-0.505139\pi\)
−0.0161431 + 0.999870i \(0.505139\pi\)
\(228\) 0 0
\(229\) −22.5066 −1.48728 −0.743639 0.668581i \(-0.766902\pi\)
−0.743639 + 0.668581i \(0.766902\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.8738 1.23647 0.618233 0.785995i \(-0.287849\pi\)
0.618233 + 0.785995i \(0.287849\pi\)
\(234\) 0 0
\(235\) 3.02557 0.197367
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −11.8122 −0.764066 −0.382033 0.924149i \(-0.624776\pi\)
−0.382033 + 0.924149i \(0.624776\pi\)
\(240\) 0 0
\(241\) −16.7810 −1.08096 −0.540480 0.841357i \(-0.681757\pi\)
−0.540480 + 0.841357i \(0.681757\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.37448 −0.407251
\(246\) 0 0
\(247\) 4.98967 0.317485
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.27777 −0.270010 −0.135005 0.990845i \(-0.543105\pi\)
−0.135005 + 0.990845i \(0.543105\pi\)
\(252\) 0 0
\(253\) −13.8880 −0.873134
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.28860 −0.392272 −0.196136 0.980577i \(-0.562839\pi\)
−0.196136 + 0.980577i \(0.562839\pi\)
\(258\) 0 0
\(259\) −2.41038 −0.149774
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.2443 1.06333 0.531664 0.846956i \(-0.321567\pi\)
0.531664 + 0.846956i \(0.321567\pi\)
\(264\) 0 0
\(265\) −10.3951 −0.638568
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.99509 0.182614 0.0913068 0.995823i \(-0.470896\pi\)
0.0913068 + 0.995823i \(0.470896\pi\)
\(270\) 0 0
\(271\) 12.1218 0.736346 0.368173 0.929757i \(-0.379983\pi\)
0.368173 + 0.929757i \(0.379983\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −20.2378 −1.22039
\(276\) 0 0
\(277\) 15.5930 0.936892 0.468446 0.883492i \(-0.344814\pi\)
0.468446 + 0.883492i \(0.344814\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.4011 −1.33634 −0.668169 0.744010i \(-0.732922\pi\)
−0.668169 + 0.744010i \(0.732922\pi\)
\(282\) 0 0
\(283\) 16.2832 0.967935 0.483967 0.875086i \(-0.339195\pi\)
0.483967 + 0.875086i \(0.339195\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.68092 0.335334
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.09045 −0.531070 −0.265535 0.964101i \(-0.585549\pi\)
−0.265535 + 0.964101i \(0.585549\pi\)
\(294\) 0 0
\(295\) −4.28318 −0.249376
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.9651 −0.749794
\(300\) 0 0
\(301\) −2.86247 −0.164990
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.53913 0.145390
\(306\) 0 0
\(307\) 26.6033 1.51833 0.759166 0.650898i \(-0.225607\pi\)
0.759166 + 0.650898i \(0.225607\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −19.7307 −1.11883 −0.559413 0.828889i \(-0.688973\pi\)
−0.559413 + 0.828889i \(0.688973\pi\)
\(312\) 0 0
\(313\) −16.5979 −0.938169 −0.469084 0.883153i \(-0.655416\pi\)
−0.469084 + 0.883153i \(0.655416\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.2946 0.578200 0.289100 0.957299i \(-0.406644\pi\)
0.289100 + 0.957299i \(0.406644\pi\)
\(318\) 0 0
\(319\) 23.6843 1.32607
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 0 0
\(325\) −18.8930 −1.04799
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.02557 0.166805
\(330\) 0 0
\(331\) −7.19293 −0.395359 −0.197680 0.980267i \(-0.563341\pi\)
−0.197680 + 0.980267i \(0.563341\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.47506 −0.353770
\(336\) 0 0
\(337\) −33.7234 −1.83703 −0.918515 0.395386i \(-0.870611\pi\)
−0.918515 + 0.395386i \(0.870611\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 45.9019 2.48573
\(342\) 0 0
\(343\) −14.0859 −0.760566
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.7332 1.59616 0.798081 0.602550i \(-0.205848\pi\)
0.798081 + 0.602550i \(0.205848\pi\)
\(348\) 0 0
\(349\) 8.42667 0.451070 0.225535 0.974235i \(-0.427587\pi\)
0.225535 + 0.974235i \(0.427587\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.1826 0.754864 0.377432 0.926037i \(-0.376807\pi\)
0.377432 + 0.926037i \(0.376807\pi\)
\(354\) 0 0
\(355\) 10.6858 0.567145
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.0848 1.53504 0.767519 0.641026i \(-0.221491\pi\)
0.767519 + 0.641026i \(0.221491\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.60100 −0.502539
\(366\) 0 0
\(367\) −26.4924 −1.38289 −0.691446 0.722428i \(-0.743026\pi\)
−0.691446 + 0.722428i \(0.743026\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −10.3951 −0.539689
\(372\) 0 0
\(373\) −20.7299 −1.07335 −0.536676 0.843789i \(-0.680320\pi\)
−0.536676 + 0.843789i \(0.680320\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22.1104 1.13874
\(378\) 0 0
\(379\) 23.2755 1.19558 0.597790 0.801653i \(-0.296046\pi\)
0.597790 + 0.801653i \(0.296046\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −29.3186 −1.49811 −0.749055 0.662508i \(-0.769492\pi\)
−0.749055 + 0.662508i \(0.769492\pi\)
\(384\) 0 0
\(385\) 6.48644 0.330580
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.6533 1.30067 0.650337 0.759646i \(-0.274628\pi\)
0.650337 + 0.759646i \(0.274628\pi\)
\(390\) 0 0
\(391\) −5.19679 −0.262813
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.38868 0.170503
\(396\) 0 0
\(397\) 2.85214 0.143145 0.0715725 0.997435i \(-0.477198\pi\)
0.0715725 + 0.997435i \(0.477198\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.73593 −0.286439 −0.143219 0.989691i \(-0.545745\pi\)
−0.143219 + 0.989691i \(0.545745\pi\)
\(402\) 0 0
\(403\) 42.8516 2.13459
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.6946 −0.579680
\(408\) 0 0
\(409\) 3.83690 0.189722 0.0948612 0.995491i \(-0.469759\pi\)
0.0948612 + 0.995491i \(0.469759\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.28318 −0.210762
\(414\) 0 0
\(415\) −13.4647 −0.660958
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.3802 −0.995640 −0.497820 0.867280i \(-0.665866\pi\)
−0.497820 + 0.867280i \(0.665866\pi\)
\(420\) 0 0
\(421\) 4.75979 0.231978 0.115989 0.993250i \(-0.462996\pi\)
0.115989 + 0.993250i \(0.462996\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.57283 −0.367336
\(426\) 0 0
\(427\) 2.53913 0.122877
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.19138 −0.346397 −0.173198 0.984887i \(-0.555410\pi\)
−0.173198 + 0.984887i \(0.555410\pi\)
\(432\) 0 0
\(433\) 3.03540 0.145872 0.0729360 0.997337i \(-0.476763\pi\)
0.0729360 + 0.997337i \(0.476763\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.59840 −0.124298
\(438\) 0 0
\(439\) −38.1516 −1.82088 −0.910439 0.413644i \(-0.864256\pi\)
−0.910439 + 0.413644i \(0.864256\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.02577 0.333804 0.166902 0.985973i \(-0.446624\pi\)
0.166902 + 0.985973i \(0.446624\pi\)
\(444\) 0 0
\(445\) 16.7642 0.794700
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.3394 1.29023 0.645114 0.764086i \(-0.276810\pi\)
0.645114 + 0.764086i \(0.276810\pi\)
\(450\) 0 0
\(451\) 27.5625 1.29787
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.05540 0.283882
\(456\) 0 0
\(457\) 32.7332 1.53120 0.765598 0.643320i \(-0.222443\pi\)
0.765598 + 0.643320i \(0.222443\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.6489 −0.728841 −0.364421 0.931234i \(-0.618733\pi\)
−0.364421 + 0.931234i \(0.618733\pi\)
\(462\) 0 0
\(463\) 5.80657 0.269854 0.134927 0.990856i \(-0.456920\pi\)
0.134927 + 0.990856i \(0.456920\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −25.4954 −1.17979 −0.589894 0.807481i \(-0.700830\pi\)
−0.589894 + 0.807481i \(0.700830\pi\)
\(468\) 0 0
\(469\) −6.47506 −0.298991
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.8880 −0.638573
\(474\) 0 0
\(475\) −3.78641 −0.173733
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 33.8643 1.54730 0.773649 0.633614i \(-0.218429\pi\)
0.773649 + 0.633614i \(0.218429\pi\)
\(480\) 0 0
\(481\) −10.9175 −0.497794
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.49290 −0.340235
\(486\) 0 0
\(487\) 15.6745 0.710277 0.355139 0.934814i \(-0.384434\pi\)
0.355139 + 0.934814i \(0.384434\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.9634 1.03632 0.518162 0.855283i \(-0.326616\pi\)
0.518162 + 0.855283i \(0.326616\pi\)
\(492\) 0 0
\(493\) 8.86247 0.399146
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.6858 0.479325
\(498\) 0 0
\(499\) 20.7202 0.927563 0.463781 0.885950i \(-0.346492\pi\)
0.463781 + 0.885950i \(0.346492\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −33.1003 −1.47587 −0.737934 0.674873i \(-0.764199\pi\)
−0.737934 + 0.674873i \(0.764199\pi\)
\(504\) 0 0
\(505\) −14.9463 −0.665100
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.9802 −0.929931 −0.464965 0.885329i \(-0.653933\pi\)
−0.464965 + 0.885329i \(0.653933\pi\)
\(510\) 0 0
\(511\) −9.60100 −0.424723
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) 14.6794 0.645598
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −14.5609 −0.637927 −0.318963 0.947767i \(-0.603335\pi\)
−0.318963 + 0.947767i \(0.603335\pi\)
\(522\) 0 0
\(523\) 11.1880 0.489218 0.244609 0.969622i \(-0.421340\pi\)
0.244609 + 0.969622i \(0.421340\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.1761 0.748204
\(528\) 0 0
\(529\) −16.2483 −0.706449
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 25.7309 1.11453
\(534\) 0 0
\(535\) 13.0962 0.566199
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −30.9275 −1.33214
\(540\) 0 0
\(541\) −25.9272 −1.11470 −0.557348 0.830279i \(-0.688181\pi\)
−0.557348 + 0.830279i \(0.688181\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −19.5994 −0.839548
\(546\) 0 0
\(547\) −28.4490 −1.21639 −0.608195 0.793787i \(-0.708106\pi\)
−0.608195 + 0.793787i \(0.708106\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.43124 0.188777
\(552\) 0 0
\(553\) 3.38868 0.144101
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.84076 0.416967 0.208483 0.978026i \(-0.433147\pi\)
0.208483 + 0.978026i \(0.433147\pi\)
\(558\) 0 0
\(559\) −12.9651 −0.548367
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.8738 −1.04831 −0.524154 0.851624i \(-0.675618\pi\)
−0.524154 + 0.851624i \(0.675618\pi\)
\(564\) 0 0
\(565\) 2.81845 0.118573
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −46.3903 −1.94478 −0.972391 0.233359i \(-0.925028\pi\)
−0.972391 + 0.233359i \(0.925028\pi\)
\(570\) 0 0
\(571\) 3.04452 0.127409 0.0637046 0.997969i \(-0.479708\pi\)
0.0637046 + 0.997969i \(0.479708\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 9.83861 0.410298
\(576\) 0 0
\(577\) 24.8684 1.03529 0.517643 0.855597i \(-0.326809\pi\)
0.517643 + 0.855597i \(0.326809\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.4647 −0.558611
\(582\) 0 0
\(583\) −50.4348 −2.08880
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.02171 −0.124719 −0.0623596 0.998054i \(-0.519863\pi\)
−0.0623596 + 0.998054i \(0.519863\pi\)
\(588\) 0 0
\(589\) 8.58807 0.353865
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 19.2370 0.789967 0.394983 0.918688i \(-0.370750\pi\)
0.394983 + 0.918688i \(0.370750\pi\)
\(594\) 0 0
\(595\) 2.42717 0.0995044
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.2087 −0.662268 −0.331134 0.943584i \(-0.607431\pi\)
−0.331134 + 0.943584i \(0.607431\pi\)
\(600\) 0 0
\(601\) 5.49445 0.224123 0.112062 0.993701i \(-0.464255\pi\)
0.112062 + 0.993701i \(0.464255\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.3528 0.786802
\(606\) 0 0
\(607\) 6.47766 0.262920 0.131460 0.991321i \(-0.458033\pi\)
0.131460 + 0.991321i \(0.458033\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.7039 0.554400
\(612\) 0 0
\(613\) 12.6690 0.511698 0.255849 0.966717i \(-0.417645\pi\)
0.255849 + 0.966717i \(0.417645\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −16.6912 −0.671964 −0.335982 0.941868i \(-0.609068\pi\)
−0.335982 + 0.941868i \(0.609068\pi\)
\(618\) 0 0
\(619\) 35.2354 1.41623 0.708115 0.706097i \(-0.249546\pi\)
0.708115 + 0.706097i \(0.249546\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.7642 0.671644
\(624\) 0 0
\(625\) 8.26899 0.330760
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.37603 −0.174484
\(630\) 0 0
\(631\) 34.8555 1.38758 0.693788 0.720179i \(-0.255941\pi\)
0.693788 + 0.720179i \(0.255941\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.7185 −0.663453
\(636\) 0 0
\(637\) −28.8723 −1.14396
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −47.0628 −1.85887 −0.929435 0.368986i \(-0.879705\pi\)
−0.929435 + 0.368986i \(0.879705\pi\)
\(642\) 0 0
\(643\) 29.8979 1.17906 0.589528 0.807748i \(-0.299314\pi\)
0.589528 + 0.807748i \(0.299314\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.84703 0.269185 0.134592 0.990901i \(-0.457028\pi\)
0.134592 + 0.990901i \(0.457028\pi\)
\(648\) 0 0
\(649\) −20.7810 −0.815726
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.82336 −0.306152 −0.153076 0.988214i \(-0.548918\pi\)
−0.153076 + 0.988214i \(0.548918\pi\)
\(654\) 0 0
\(655\) 9.33212 0.364636
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.4978 −0.642664 −0.321332 0.946967i \(-0.604130\pi\)
−0.321332 + 0.946967i \(0.604130\pi\)
\(660\) 0 0
\(661\) 33.7593 1.31308 0.656542 0.754289i \(-0.272018\pi\)
0.656542 + 0.754289i \(0.272018\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.21359 0.0470609
\(666\) 0 0
\(667\) −11.5141 −0.445828
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.3193 0.475580
\(672\) 0 0
\(673\) −36.2517 −1.39740 −0.698700 0.715415i \(-0.746238\pi\)
−0.698700 + 0.715415i \(0.746238\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.34570 0.167019 0.0835095 0.996507i \(-0.473387\pi\)
0.0835095 + 0.996507i \(0.473387\pi\)
\(678\) 0 0
\(679\) −7.49290 −0.287551
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 41.6533 1.59382 0.796910 0.604099i \(-0.206467\pi\)
0.796910 + 0.604099i \(0.206467\pi\)
\(684\) 0 0
\(685\) 10.3218 0.394375
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −47.0833 −1.79373
\(690\) 0 0
\(691\) −0.598397 −0.0227641 −0.0113821 0.999935i \(-0.503623\pi\)
−0.0113821 + 0.999935i \(0.503623\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.75543 0.0665872
\(696\) 0 0
\(697\) 10.3137 0.390658
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −36.9773 −1.39661 −0.698307 0.715799i \(-0.746063\pi\)
−0.698307 + 0.715799i \(0.746063\pi\)
\(702\) 0 0
\(703\) −2.18802 −0.0825226
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.9463 −0.562112
\(708\) 0 0
\(709\) 13.7456 0.516227 0.258113 0.966115i \(-0.416899\pi\)
0.258113 + 0.966115i \(0.416899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.3152 −0.835711
\(714\) 0 0
\(715\) 29.3794 1.09873
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.6154 0.843412 0.421706 0.906733i \(-0.361432\pi\)
0.421706 + 0.906733i \(0.361432\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −16.7785 −0.623137
\(726\) 0 0
\(727\) −24.9995 −0.927180 −0.463590 0.886050i \(-0.653439\pi\)
−0.463590 + 0.886050i \(0.653439\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.19679 −0.192210
\(732\) 0 0
\(733\) −42.1707 −1.55761 −0.778806 0.627265i \(-0.784174\pi\)
−0.778806 + 0.627265i \(0.784174\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.4155 −1.15720
\(738\) 0 0
\(739\) −34.4436 −1.26703 −0.633514 0.773731i \(-0.718388\pi\)
−0.633514 + 0.773731i \(0.718388\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −41.9527 −1.53910 −0.769548 0.638589i \(-0.779518\pi\)
−0.769548 + 0.638589i \(0.779518\pi\)
\(744\) 0 0
\(745\) −0.452089 −0.0165633
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.0962 0.478525
\(750\) 0 0
\(751\) −52.2083 −1.90511 −0.952554 0.304371i \(-0.901554\pi\)
−0.952554 + 0.304371i \(0.901554\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 20.4755 0.745178
\(756\) 0 0
\(757\) −16.1929 −0.588542 −0.294271 0.955722i \(-0.595077\pi\)
−0.294271 + 0.955722i \(0.595077\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.4529 1.24892 0.624458 0.781059i \(-0.285320\pi\)
0.624458 + 0.781059i \(0.285320\pi\)
\(762\) 0 0
\(763\) −19.5994 −0.709548
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −19.4001 −0.700495
\(768\) 0 0
\(769\) 37.6251 1.35680 0.678398 0.734694i \(-0.262674\pi\)
0.678398 + 0.734694i \(0.262674\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.1976 0.510654 0.255327 0.966855i \(-0.417817\pi\)
0.255327 + 0.966855i \(0.417817\pi\)
\(774\) 0 0
\(775\) −32.5180 −1.16808
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.15683 0.184763
\(780\) 0 0
\(781\) 51.8452 1.85517
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 6.47506 0.231105
\(786\) 0 0
\(787\) 4.15493 0.148107 0.0740536 0.997254i \(-0.476406\pi\)
0.0740536 + 0.997254i \(0.476406\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.81845 0.100212
\(792\) 0 0
\(793\) 11.5006 0.408399
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.4856 −0.761059 −0.380529 0.924769i \(-0.624258\pi\)
−0.380529 + 0.924769i \(0.624258\pi\)
\(798\) 0 0
\(799\) 5.49290 0.194325
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −46.5818 −1.64384
\(804\) 0 0
\(805\) −3.15338 −0.111142
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −15.3711 −0.540420 −0.270210 0.962801i \(-0.587093\pi\)
−0.270210 + 0.962801i \(0.587093\pi\)
\(810\) 0 0
\(811\) 37.2229 1.30707 0.653537 0.756895i \(-0.273285\pi\)
0.653537 + 0.756895i \(0.273285\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.15382 0.285616
\(816\) 0 0
\(817\) −2.59840 −0.0909064
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −42.3164 −1.47685 −0.738426 0.674335i \(-0.764431\pi\)
−0.738426 + 0.674335i \(0.764431\pi\)
\(822\) 0 0
\(823\) −18.6082 −0.648642 −0.324321 0.945947i \(-0.605136\pi\)
−0.324321 + 0.945947i \(0.605136\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.8501 −1.49004 −0.745022 0.667040i \(-0.767561\pi\)
−0.745022 + 0.667040i \(0.767561\pi\)
\(828\) 0 0
\(829\) −57.1310 −1.98424 −0.992120 0.125290i \(-0.960014\pi\)
−0.992120 + 0.125290i \(0.960014\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.5728 −0.400975
\(834\) 0 0
\(835\) −3.06959 −0.106228
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −46.0614 −1.59021 −0.795107 0.606469i \(-0.792586\pi\)
−0.795107 + 0.606469i \(0.792586\pi\)
\(840\) 0 0
\(841\) −9.36415 −0.322902
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.1059 0.450856
\(846\) 0 0
\(847\) 19.3528 0.664969
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.68533 0.194891
\(852\) 0 0
\(853\) −22.5886 −0.773420 −0.386710 0.922201i \(-0.626388\pi\)
−0.386710 + 0.922201i \(0.626388\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.3307 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(858\) 0 0
\(859\) −41.2246 −1.40656 −0.703282 0.710911i \(-0.748283\pi\)
−0.703282 + 0.710911i \(0.748283\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.1692 1.06101 0.530506 0.847681i \(-0.322002\pi\)
0.530506 + 0.847681i \(0.322002\pi\)
\(864\) 0 0
\(865\) −2.01911 −0.0686517
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.4411 0.557725
\(870\) 0 0
\(871\) −29.3279 −0.993737
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.6631 −0.360478
\(876\) 0 0
\(877\) −36.7908 −1.24234 −0.621169 0.783677i \(-0.713342\pi\)
−0.621169 + 0.783677i \(0.713342\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.5783 1.03021 0.515104 0.857127i \(-0.327753\pi\)
0.515104 + 0.857127i \(0.327753\pi\)
\(882\) 0 0
\(883\) 18.2641 0.614635 0.307318 0.951607i \(-0.400569\pi\)
0.307318 + 0.951607i \(0.400569\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −38.8746 −1.30528 −0.652641 0.757667i \(-0.726339\pi\)
−0.652641 + 0.757667i \(0.726339\pi\)
\(888\) 0 0
\(889\) −16.7185 −0.560720
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.74645 0.0919065
\(894\) 0 0
\(895\) 16.4963 0.551409
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 38.0558 1.26923
\(900\) 0 0
\(901\) −18.8723 −0.628727
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.24407 −0.307283
\(906\) 0 0
\(907\) 12.7962 0.424892 0.212446 0.977173i \(-0.431857\pi\)
0.212446 + 0.977173i \(0.431857\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15.4059 −0.510419 −0.255209 0.966886i \(-0.582144\pi\)
−0.255209 + 0.966886i \(0.582144\pi\)
\(912\) 0 0
\(913\) −65.3278 −2.16203
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.33212 0.308174
\(918\) 0 0
\(919\) 2.18415 0.0720485 0.0360242 0.999351i \(-0.488531\pi\)
0.0360242 + 0.999351i \(0.488531\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 48.3999 1.59310
\(924\) 0 0
\(925\) 8.28473 0.272400
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.05435 0.231446 0.115723 0.993282i \(-0.463082\pi\)
0.115723 + 0.993282i \(0.463082\pi\)
\(930\) 0 0
\(931\) −5.78641 −0.189642
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 11.7761 0.385119
\(936\) 0 0
\(937\) 50.8511 1.66123 0.830617 0.556844i \(-0.187988\pi\)
0.830617 + 0.556844i \(0.187988\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.3375 −1.28237 −0.641183 0.767388i \(-0.721556\pi\)
−0.641183 + 0.767388i \(0.721556\pi\)
\(942\) 0 0
\(943\) −13.3995 −0.436348
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.3105 0.887472 0.443736 0.896158i \(-0.353653\pi\)
0.443736 + 0.896158i \(0.353653\pi\)
\(948\) 0 0
\(949\) −43.4863 −1.41163
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −19.9432 −0.646025 −0.323013 0.946395i \(-0.604696\pi\)
−0.323013 + 0.946395i \(0.604696\pi\)
\(954\) 0 0
\(955\) 15.7075 0.508284
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.3218 0.333308
\(960\) 0 0
\(961\) 42.7549 1.37919
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −26.0816 −0.839597
\(966\) 0 0
\(967\) −6.20481 −0.199533 −0.0997666 0.995011i \(-0.531810\pi\)
−0.0997666 + 0.995011i \(0.531810\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 47.4072 1.52137 0.760684 0.649122i \(-0.224864\pi\)
0.760684 + 0.649122i \(0.224864\pi\)
\(972\) 0 0
\(973\) 1.75543 0.0562764
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.3502 1.61084 0.805422 0.592702i \(-0.201939\pi\)
0.805422 + 0.592702i \(0.201939\pi\)
\(978\) 0 0
\(979\) 81.3360 2.59951
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −17.9245 −0.571703 −0.285851 0.958274i \(-0.592276\pi\)
−0.285851 + 0.958274i \(0.592276\pi\)
\(984\) 0 0
\(985\) 25.5315 0.813502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.75167 0.214691
\(990\) 0 0
\(991\) −4.66092 −0.148059 −0.0740295 0.997256i \(-0.523586\pi\)
−0.0740295 + 0.997256i \(0.523586\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.1185 0.637800
\(996\) 0 0
\(997\) 2.63816 0.0835514 0.0417757 0.999127i \(-0.486699\pi\)
0.0417757 + 0.999127i \(0.486699\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4104.2.a.l.1.3 yes 4
3.2 odd 2 4104.2.a.k.1.2 4
4.3 odd 2 8208.2.a.bx.1.3 4
12.11 even 2 8208.2.a.bs.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4104.2.a.k.1.2 4 3.2 odd 2
4104.2.a.l.1.3 yes 4 1.1 even 1 trivial
8208.2.a.bs.1.2 4 12.11 even 2
8208.2.a.bx.1.3 4 4.3 odd 2