Properties

Label 820.2.y.a.413.9
Level $820$
Weight $2$
Character 820.413
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 413.9
Character \(\chi\) \(=\) 820.413
Dual form 820.2.y.a.137.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.629944 + 0.260931i) q^{3} +(-1.47443 + 1.68109i) q^{5} +(1.11716 + 2.69706i) q^{7} +(-1.79258 + 1.79258i) q^{9} +(-4.93128 - 2.04260i) q^{11} +(3.82604 - 1.58480i) q^{13} +(0.490161 - 1.44372i) q^{15} +(-5.47789 - 2.26902i) q^{17} +(2.03983 - 0.844926i) q^{19} +(-1.40750 - 1.40750i) q^{21} +(-1.25809 + 1.25809i) q^{23} +(-0.652104 - 4.95729i) q^{25} +(1.44428 - 3.48680i) q^{27} +(2.14163 + 0.887091i) q^{29} -4.47182i q^{31} +3.63941 q^{33} +(-6.18117 - 2.09859i) q^{35} +(5.22748 - 5.22748i) q^{37} +(-1.99667 + 1.99667i) q^{39} +(-5.92303 + 2.43263i) q^{41} -8.17602 q^{43} +(-0.370445 - 5.65650i) q^{45} +(-9.28679 - 3.84671i) q^{47} +(-1.07634 + 1.07634i) q^{49} +4.04282 q^{51} +(3.57694 + 8.63550i) q^{53} +(10.7046 - 5.27823i) q^{55} +(-1.06451 + 1.06451i) q^{57} +6.46953i q^{59} +(-7.01064 + 7.01064i) q^{61} +(-6.83728 - 2.83209i) q^{63} +(-2.97705 + 8.76857i) q^{65} +(-6.41247 - 2.65613i) q^{67} +(0.464251 - 1.12080i) q^{69} +(2.83148 - 6.83579i) q^{71} -9.24517 q^{73} +(1.70430 + 2.95266i) q^{75} -15.5819i q^{77} +(-4.47929 + 10.8140i) q^{79} -5.03191i q^{81} +(-3.73755 - 3.73755i) q^{83} +(11.8912 - 5.86330i) q^{85} -1.58058 q^{87} +(-2.29242 - 0.949551i) q^{89} +(8.54858 + 8.54858i) q^{91} +(1.16684 + 2.81700i) q^{93} +(-1.58720 + 4.67492i) q^{95} +(1.24039 - 2.99457i) q^{97} +(12.5012 - 5.17817i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.629944 + 0.260931i −0.363699 + 0.150649i −0.557046 0.830481i \(-0.688065\pi\)
0.193348 + 0.981130i \(0.438065\pi\)
\(4\) 0 0
\(5\) −1.47443 + 1.68109i −0.659386 + 0.751805i
\(6\) 0 0
\(7\) 1.11716 + 2.69706i 0.422246 + 1.01939i 0.981683 + 0.190520i \(0.0610174\pi\)
−0.559437 + 0.828873i \(0.688983\pi\)
\(8\) 0 0
\(9\) −1.79258 + 1.79258i −0.597525 + 0.597525i
\(10\) 0 0
\(11\) −4.93128 2.04260i −1.48684 0.615868i −0.516211 0.856462i \(-0.672658\pi\)
−0.970626 + 0.240594i \(0.922658\pi\)
\(12\) 0 0
\(13\) 3.82604 1.58480i 1.06115 0.439543i 0.217291 0.976107i \(-0.430278\pi\)
0.843860 + 0.536563i \(0.180278\pi\)
\(14\) 0 0
\(15\) 0.490161 1.44372i 0.126559 0.372766i
\(16\) 0 0
\(17\) −5.47789 2.26902i −1.32858 0.550317i −0.398332 0.917241i \(-0.630411\pi\)
−0.930251 + 0.366924i \(0.880411\pi\)
\(18\) 0 0
\(19\) 2.03983 0.844926i 0.467969 0.193839i −0.136222 0.990678i \(-0.543496\pi\)
0.604192 + 0.796839i \(0.293496\pi\)
\(20\) 0 0
\(21\) −1.40750 1.40750i −0.307141 0.307141i
\(22\) 0 0
\(23\) −1.25809 + 1.25809i −0.262330 + 0.262330i −0.826000 0.563670i \(-0.809389\pi\)
0.563670 + 0.826000i \(0.309389\pi\)
\(24\) 0 0
\(25\) −0.652104 4.95729i −0.130421 0.991459i
\(26\) 0 0
\(27\) 1.44428 3.48680i 0.277951 0.671034i
\(28\) 0 0
\(29\) 2.14163 + 0.887091i 0.397690 + 0.164729i 0.572560 0.819863i \(-0.305950\pi\)
−0.174870 + 0.984592i \(0.555950\pi\)
\(30\) 0 0
\(31\) 4.47182i 0.803162i −0.915823 0.401581i \(-0.868461\pi\)
0.915823 0.401581i \(-0.131539\pi\)
\(32\) 0 0
\(33\) 3.63941 0.633540
\(34\) 0 0
\(35\) −6.18117 2.09859i −1.04481 0.354726i
\(36\) 0 0
\(37\) 5.22748 5.22748i 0.859393 0.859393i −0.131874 0.991267i \(-0.542099\pi\)
0.991267 + 0.131874i \(0.0420993\pi\)
\(38\) 0 0
\(39\) −1.99667 + 1.99667i −0.319723 + 0.319723i
\(40\) 0 0
\(41\) −5.92303 + 2.43263i −0.925022 + 0.379913i
\(42\) 0 0
\(43\) −8.17602 −1.24683 −0.623415 0.781891i \(-0.714255\pi\)
−0.623415 + 0.781891i \(0.714255\pi\)
\(44\) 0 0
\(45\) −0.370445 5.65650i −0.0552227 0.843222i
\(46\) 0 0
\(47\) −9.28679 3.84671i −1.35462 0.561101i −0.417043 0.908887i \(-0.636934\pi\)
−0.937574 + 0.347786i \(0.886934\pi\)
\(48\) 0 0
\(49\) −1.07634 + 1.07634i −0.153763 + 0.153763i
\(50\) 0 0
\(51\) 4.04282 0.566109
\(52\) 0 0
\(53\) 3.57694 + 8.63550i 0.491330 + 1.18618i 0.954043 + 0.299669i \(0.0968761\pi\)
−0.462713 + 0.886508i \(0.653124\pi\)
\(54\) 0 0
\(55\) 10.7046 5.27823i 1.44341 0.711716i
\(56\) 0 0
\(57\) −1.06451 + 1.06451i −0.140998 + 0.140998i
\(58\) 0 0
\(59\) 6.46953i 0.842261i 0.907000 + 0.421131i \(0.138367\pi\)
−0.907000 + 0.421131i \(0.861633\pi\)
\(60\) 0 0
\(61\) −7.01064 + 7.01064i −0.897620 + 0.897620i −0.995225 0.0976052i \(-0.968882\pi\)
0.0976052 + 0.995225i \(0.468882\pi\)
\(62\) 0 0
\(63\) −6.83728 2.83209i −0.861416 0.356810i
\(64\) 0 0
\(65\) −2.97705 + 8.76857i −0.369257 + 1.08761i
\(66\) 0 0
\(67\) −6.41247 2.65613i −0.783408 0.324498i −0.0451181 0.998982i \(-0.514366\pi\)
−0.738290 + 0.674483i \(0.764366\pi\)
\(68\) 0 0
\(69\) 0.464251 1.12080i 0.0558892 0.134929i
\(70\) 0 0
\(71\) 2.83148 6.83579i 0.336035 0.811259i −0.662054 0.749456i \(-0.730315\pi\)
0.998088 0.0618030i \(-0.0196851\pi\)
\(72\) 0 0
\(73\) −9.24517 −1.08207 −0.541033 0.841002i \(-0.681966\pi\)
−0.541033 + 0.841002i \(0.681966\pi\)
\(74\) 0 0
\(75\) 1.70430 + 2.95266i 0.196796 + 0.340944i
\(76\) 0 0
\(77\) 15.5819i 1.77572i
\(78\) 0 0
\(79\) −4.47929 + 10.8140i −0.503959 + 1.21666i 0.443352 + 0.896348i \(0.353789\pi\)
−0.947310 + 0.320317i \(0.896211\pi\)
\(80\) 0 0
\(81\) 5.03191i 0.559101i
\(82\) 0 0
\(83\) −3.73755 3.73755i −0.410250 0.410250i 0.471576 0.881825i \(-0.343685\pi\)
−0.881825 + 0.471576i \(0.843685\pi\)
\(84\) 0 0
\(85\) 11.8912 5.86330i 1.28978 0.635964i
\(86\) 0 0
\(87\) −1.58058 −0.169456
\(88\) 0 0
\(89\) −2.29242 0.949551i −0.242996 0.100652i 0.257862 0.966182i \(-0.416982\pi\)
−0.500858 + 0.865530i \(0.666982\pi\)
\(90\) 0 0
\(91\) 8.54858 + 8.54858i 0.896135 + 0.896135i
\(92\) 0 0
\(93\) 1.16684 + 2.81700i 0.120995 + 0.292109i
\(94\) 0 0
\(95\) −1.58720 + 4.67492i −0.162843 + 0.479636i
\(96\) 0 0
\(97\) 1.24039 2.99457i 0.125943 0.304053i −0.848314 0.529493i \(-0.822382\pi\)
0.974257 + 0.225440i \(0.0723821\pi\)
\(98\) 0 0
\(99\) 12.5012 5.17817i 1.25642 0.520426i
\(100\) 0 0
\(101\) 7.55108 + 18.2299i 0.751361 + 1.81395i 0.551617 + 0.834098i \(0.314011\pi\)
0.199744 + 0.979848i \(0.435989\pi\)
\(102\) 0 0
\(103\) 7.52744i 0.741701i −0.928693 0.370850i \(-0.879066\pi\)
0.928693 0.370850i \(-0.120934\pi\)
\(104\) 0 0
\(105\) 4.44138 0.290866i 0.433434 0.0283856i
\(106\) 0 0
\(107\) −10.5225 10.5225i −1.01725 1.01725i −0.999849 0.0173986i \(-0.994462\pi\)
−0.0173986 0.999849i \(-0.505538\pi\)
\(108\) 0 0
\(109\) 3.85967 + 9.31806i 0.369689 + 0.892508i 0.993801 + 0.111173i \(0.0354608\pi\)
−0.624112 + 0.781335i \(0.714539\pi\)
\(110\) 0 0
\(111\) −1.92901 + 4.65704i −0.183093 + 0.442027i
\(112\) 0 0
\(113\) 1.42119 1.42119i 0.133694 0.133694i −0.637093 0.770787i \(-0.719863\pi\)
0.770787 + 0.637093i \(0.219863\pi\)
\(114\) 0 0
\(115\) −0.259991 3.96992i −0.0242442 0.370197i
\(116\) 0 0
\(117\) −4.01759 + 9.69933i −0.371427 + 0.896703i
\(118\) 0 0
\(119\) 17.3090i 1.58672i
\(120\) 0 0
\(121\) 12.3671 + 12.3671i 1.12428 + 1.12428i
\(122\) 0 0
\(123\) 3.09643 3.07793i 0.279196 0.277527i
\(124\) 0 0
\(125\) 9.29512 + 6.21295i 0.831381 + 0.555703i
\(126\) 0 0
\(127\) −1.73499 1.73499i −0.153955 0.153955i 0.625927 0.779882i \(-0.284721\pi\)
−0.779882 + 0.625927i \(0.784721\pi\)
\(128\) 0 0
\(129\) 5.15044 2.13338i 0.453471 0.187834i
\(130\) 0 0
\(131\) 9.88634 + 9.88634i 0.863774 + 0.863774i 0.991774 0.128000i \(-0.0408558\pi\)
−0.128000 + 0.991774i \(0.540856\pi\)
\(132\) 0 0
\(133\) 4.55763 + 4.55763i 0.395197 + 0.395197i
\(134\) 0 0
\(135\) 3.73212 + 7.56900i 0.321209 + 0.651436i
\(136\) 0 0
\(137\) 14.3318 + 5.93641i 1.22444 + 0.507182i 0.898820 0.438317i \(-0.144425\pi\)
0.325625 + 0.945499i \(0.394425\pi\)
\(138\) 0 0
\(139\) 8.41617i 0.713850i 0.934133 + 0.356925i \(0.116175\pi\)
−0.934133 + 0.356925i \(0.883825\pi\)
\(140\) 0 0
\(141\) 6.85389 0.577202
\(142\) 0 0
\(143\) −22.1044 −1.84846
\(144\) 0 0
\(145\) −4.64896 + 2.29231i −0.386075 + 0.190366i
\(146\) 0 0
\(147\) 0.397184 0.958887i 0.0327592 0.0790877i
\(148\) 0 0
\(149\) 16.1318 6.68202i 1.32157 0.547413i 0.393332 0.919397i \(-0.371322\pi\)
0.928239 + 0.371984i \(0.121322\pi\)
\(150\) 0 0
\(151\) −21.5502 8.92638i −1.75373 0.726419i −0.997387 0.0722425i \(-0.976984\pi\)
−0.756342 0.654176i \(-0.773016\pi\)
\(152\) 0 0
\(153\) 13.8869 5.75215i 1.12269 0.465034i
\(154\) 0 0
\(155\) 7.51751 + 6.59339i 0.603821 + 0.529594i
\(156\) 0 0
\(157\) −3.41389 + 1.41408i −0.272458 + 0.112856i −0.514729 0.857353i \(-0.672108\pi\)
0.242271 + 0.970209i \(0.422108\pi\)
\(158\) 0 0
\(159\) −4.50655 4.50655i −0.357392 0.357392i
\(160\) 0 0
\(161\) −4.79863 1.98766i −0.378185 0.156649i
\(162\) 0 0
\(163\) −12.9746 + 12.9746i −1.01625 + 1.01625i −0.0163799 + 0.999866i \(0.505214\pi\)
−0.999866 + 0.0163799i \(0.994786\pi\)
\(164\) 0 0
\(165\) −5.36606 + 6.11816i −0.417747 + 0.476298i
\(166\) 0 0
\(167\) −1.42392 3.43766i −0.110187 0.266014i 0.859162 0.511704i \(-0.170985\pi\)
−0.969348 + 0.245690i \(0.920985\pi\)
\(168\) 0 0
\(169\) 2.93458 2.93458i 0.225737 0.225737i
\(170\) 0 0
\(171\) −2.14196 + 5.17114i −0.163800 + 0.395447i
\(172\) 0 0
\(173\) 3.52458i 0.267969i −0.990983 0.133985i \(-0.957223\pi\)
0.990983 0.133985i \(-0.0427773\pi\)
\(174\) 0 0
\(175\) 12.6416 7.29685i 0.955616 0.551590i
\(176\) 0 0
\(177\) −1.68810 4.07545i −0.126886 0.306329i
\(178\) 0 0
\(179\) −8.23706 19.8860i −0.615666 1.48635i −0.856690 0.515831i \(-0.827483\pi\)
0.241024 0.970519i \(-0.422517\pi\)
\(180\) 0 0
\(181\) −0.120741 0.291494i −0.00897458 0.0216665i 0.919329 0.393490i \(-0.128733\pi\)
−0.928303 + 0.371824i \(0.878733\pi\)
\(182\) 0 0
\(183\) 2.58702 6.24561i 0.191238 0.461689i
\(184\) 0 0
\(185\) 1.08029 + 16.4954i 0.0794242 + 1.21277i
\(186\) 0 0
\(187\) 22.3783 + 22.3783i 1.63646 + 1.63646i
\(188\) 0 0
\(189\) 11.0176 0.801411
\(190\) 0 0
\(191\) −11.7909 + 4.88396i −0.853161 + 0.353391i −0.766029 0.642806i \(-0.777770\pi\)
−0.0871322 + 0.996197i \(0.527770\pi\)
\(192\) 0 0
\(193\) −20.2143 + 8.37304i −1.45506 + 0.602705i −0.963396 0.268082i \(-0.913610\pi\)
−0.491661 + 0.870787i \(0.663610\pi\)
\(194\) 0 0
\(195\) −0.412621 6.30052i −0.0295484 0.451189i
\(196\) 0 0
\(197\) 1.77134i 0.126203i 0.998007 + 0.0631013i \(0.0200991\pi\)
−0.998007 + 0.0631013i \(0.979901\pi\)
\(198\) 0 0
\(199\) −1.97801 4.77533i −0.140217 0.338514i 0.838134 0.545464i \(-0.183646\pi\)
−0.978352 + 0.206950i \(0.933646\pi\)
\(200\) 0 0
\(201\) 4.73257 0.333810
\(202\) 0 0
\(203\) 6.76712i 0.474959i
\(204\) 0 0
\(205\) 4.64364 13.5439i 0.324326 0.945945i
\(206\) 0 0
\(207\) 4.51044i 0.313497i
\(208\) 0 0
\(209\) −11.7848 −0.815173
\(210\) 0 0
\(211\) 3.60618 + 8.70609i 0.248260 + 0.599352i 0.998056 0.0623163i \(-0.0198488\pi\)
−0.749797 + 0.661668i \(0.769849\pi\)
\(212\) 0 0
\(213\) 5.04499i 0.345677i
\(214\) 0 0
\(215\) 12.0550 13.7446i 0.822142 0.937373i
\(216\) 0 0
\(217\) 12.0608 4.99573i 0.818738 0.339132i
\(218\) 0 0
\(219\) 5.82394 2.41236i 0.393546 0.163012i
\(220\) 0 0
\(221\) −24.5545 −1.65172
\(222\) 0 0
\(223\) 7.51336 + 7.51336i 0.503132 + 0.503132i 0.912410 0.409278i \(-0.134219\pi\)
−0.409278 + 0.912410i \(0.634219\pi\)
\(224\) 0 0
\(225\) 10.0553 + 7.71738i 0.670351 + 0.514492i
\(226\) 0 0
\(227\) 2.26373 5.46513i 0.150249 0.362733i −0.830778 0.556604i \(-0.812104\pi\)
0.981027 + 0.193871i \(0.0621042\pi\)
\(228\) 0 0
\(229\) 8.50510 + 20.5331i 0.562033 + 1.35687i 0.908138 + 0.418671i \(0.137504\pi\)
−0.346105 + 0.938196i \(0.612496\pi\)
\(230\) 0 0
\(231\) 4.06580 + 9.81571i 0.267510 + 0.645826i
\(232\) 0 0
\(233\) 7.55544 + 18.2405i 0.494973 + 1.19497i 0.952160 + 0.305601i \(0.0988573\pi\)
−0.457186 + 0.889371i \(0.651143\pi\)
\(234\) 0 0
\(235\) 20.1594 9.94018i 1.31505 0.648426i
\(236\) 0 0
\(237\) 7.98097i 0.518420i
\(238\) 0 0
\(239\) −2.45895 + 5.93643i −0.159056 + 0.383996i −0.983237 0.182331i \(-0.941636\pi\)
0.824181 + 0.566326i \(0.191636\pi\)
\(240\) 0 0
\(241\) 11.8098 11.8098i 0.760736 0.760736i −0.215720 0.976455i \(-0.569210\pi\)
0.976455 + 0.215720i \(0.0692097\pi\)
\(242\) 0 0
\(243\) 5.64582 + 13.6302i 0.362179 + 0.874378i
\(244\) 0 0
\(245\) −0.222432 3.39642i −0.0142106 0.216989i
\(246\) 0 0
\(247\) 6.46543 6.46543i 0.411386 0.411386i
\(248\) 0 0
\(249\) 3.32969 + 1.37920i 0.211011 + 0.0874035i
\(250\) 0 0
\(251\) 10.9614 + 10.9614i 0.691876 + 0.691876i 0.962644 0.270769i \(-0.0872779\pi\)
−0.270769 + 0.962644i \(0.587278\pi\)
\(252\) 0 0
\(253\) 8.77376 3.63421i 0.551602 0.228481i
\(254\) 0 0
\(255\) −5.96087 + 6.79634i −0.373284 + 0.425603i
\(256\) 0 0
\(257\) 5.60896 2.32331i 0.349878 0.144924i −0.200822 0.979628i \(-0.564361\pi\)
0.550699 + 0.834704i \(0.314361\pi\)
\(258\) 0 0
\(259\) 19.9388 + 8.25891i 1.23893 + 0.513184i
\(260\) 0 0
\(261\) −5.42921 + 2.24885i −0.336060 + 0.139200i
\(262\) 0 0
\(263\) 1.59517 3.85107i 0.0983621 0.237467i −0.867037 0.498244i \(-0.833979\pi\)
0.965399 + 0.260776i \(0.0839785\pi\)
\(264\) 0 0
\(265\) −19.7910 6.71930i −1.21575 0.412763i
\(266\) 0 0
\(267\) 1.69186 0.103540
\(268\) 0 0
\(269\) −27.5212 −1.67800 −0.838998 0.544135i \(-0.816858\pi\)
−0.838998 + 0.544135i \(0.816858\pi\)
\(270\) 0 0
\(271\) 9.95672i 0.604828i −0.953177 0.302414i \(-0.902208\pi\)
0.953177 0.302414i \(-0.0977924\pi\)
\(272\) 0 0
\(273\) −7.61572 3.15454i −0.460925 0.190921i
\(274\) 0 0
\(275\) −6.91007 + 25.7778i −0.416693 + 1.55446i
\(276\) 0 0
\(277\) −14.1069 14.1069i −0.847602 0.847602i 0.142231 0.989833i \(-0.454572\pi\)
−0.989833 + 0.142231i \(0.954572\pi\)
\(278\) 0 0
\(279\) 8.01607 + 8.01607i 0.479910 + 0.479910i
\(280\) 0 0
\(281\) −0.0587371 + 0.0243297i −0.00350396 + 0.00145139i −0.384435 0.923152i \(-0.625604\pi\)
0.380931 + 0.924604i \(0.375604\pi\)
\(282\) 0 0
\(283\) −6.07128 6.07128i −0.360900 0.360900i 0.503244 0.864144i \(-0.332140\pi\)
−0.864144 + 0.503244i \(0.832140\pi\)
\(284\) 0 0
\(285\) −0.219987 3.35909i −0.0130309 0.198975i
\(286\) 0 0
\(287\) −13.1779 13.2571i −0.777868 0.782544i
\(288\) 0 0
\(289\) 12.8380 + 12.8380i 0.755178 + 0.755178i
\(290\) 0 0
\(291\) 2.21007i 0.129557i
\(292\) 0 0
\(293\) −9.96804 + 24.0650i −0.582339 + 1.40589i 0.308348 + 0.951274i \(0.400224\pi\)
−0.890687 + 0.454617i \(0.849776\pi\)
\(294\) 0 0
\(295\) −10.8758 9.53888i −0.633216 0.555375i
\(296\) 0 0
\(297\) −14.2443 + 14.2443i −0.826537 + 0.826537i
\(298\) 0 0
\(299\) −2.81968 + 6.80731i −0.163066 + 0.393677i
\(300\) 0 0
\(301\) −9.13391 22.0512i −0.526470 1.27101i
\(302\) 0 0
\(303\) −9.51353 9.51353i −0.546538 0.546538i
\(304\) 0 0
\(305\) −1.44878 22.1222i −0.0829571 1.26671i
\(306\) 0 0
\(307\) 6.03298i 0.344321i −0.985069 0.172160i \(-0.944925\pi\)
0.985069 0.172160i \(-0.0550747\pi\)
\(308\) 0 0
\(309\) 1.96415 + 4.74187i 0.111736 + 0.269755i
\(310\) 0 0
\(311\) −15.7187 + 6.51088i −0.891323 + 0.369198i −0.780878 0.624684i \(-0.785228\pi\)
−0.110445 + 0.993882i \(0.535228\pi\)
\(312\) 0 0
\(313\) 10.1010 24.3859i 0.570941 1.37837i −0.329814 0.944046i \(-0.606986\pi\)
0.900755 0.434328i \(-0.143014\pi\)
\(314\) 0 0
\(315\) 14.8421 7.31833i 0.836257 0.412341i
\(316\) 0 0
\(317\) −8.38833 20.2512i −0.471136 1.13742i −0.963662 0.267125i \(-0.913926\pi\)
0.492526 0.870298i \(-0.336074\pi\)
\(318\) 0 0
\(319\) −8.74899 8.74899i −0.489849 0.489849i
\(320\) 0 0
\(321\) 9.37423 + 3.88293i 0.523218 + 0.216724i
\(322\) 0 0
\(323\) −13.0911 −0.728409
\(324\) 0 0
\(325\) −10.3513 17.9333i −0.574185 0.994762i
\(326\) 0 0
\(327\) −4.86275 4.86275i −0.268911 0.268911i
\(328\) 0 0
\(329\) 29.3444i 1.61781i
\(330\) 0 0
\(331\) −5.39319 + 13.0203i −0.296436 + 0.715661i 0.703551 + 0.710645i \(0.251597\pi\)
−0.999987 + 0.00501596i \(0.998403\pi\)
\(332\) 0 0
\(333\) 18.7413i 1.02702i
\(334\) 0 0
\(335\) 13.9199 6.86364i 0.760528 0.375000i
\(336\) 0 0
\(337\) −6.94993 −0.378587 −0.189293 0.981921i \(-0.560620\pi\)
−0.189293 + 0.981921i \(0.560620\pi\)
\(338\) 0 0
\(339\) −0.524438 + 1.26611i −0.0284836 + 0.0687654i
\(340\) 0 0
\(341\) −9.13414 + 22.0518i −0.494642 + 1.19417i
\(342\) 0 0
\(343\) 14.7740 + 6.11960i 0.797722 + 0.330427i
\(344\) 0 0
\(345\) 1.19966 + 2.43299i 0.0645874 + 0.130988i
\(346\) 0 0
\(347\) −2.89541 1.19932i −0.155434 0.0643828i 0.303610 0.952796i \(-0.401808\pi\)
−0.459044 + 0.888414i \(0.651808\pi\)
\(348\) 0 0
\(349\) 5.52723 5.52723i 0.295866 0.295866i −0.543526 0.839392i \(-0.682911\pi\)
0.839392 + 0.543526i \(0.182911\pi\)
\(350\) 0 0
\(351\) 15.6295i 0.834240i
\(352\) 0 0
\(353\) 4.68350 4.68350i 0.249278 0.249278i −0.571396 0.820674i \(-0.693598\pi\)
0.820674 + 0.571396i \(0.193598\pi\)
\(354\) 0 0
\(355\) 7.31674 + 14.8389i 0.388332 + 0.787565i
\(356\) 0 0
\(357\) 4.51648 + 10.9037i 0.239037 + 0.577087i
\(358\) 0 0
\(359\) −4.29520 −0.226692 −0.113346 0.993556i \(-0.536157\pi\)
−0.113346 + 0.993556i \(0.536157\pi\)
\(360\) 0 0
\(361\) −9.98802 + 9.98802i −0.525685 + 0.525685i
\(362\) 0 0
\(363\) −11.0176 4.56362i −0.578272 0.239528i
\(364\) 0 0
\(365\) 13.6314 15.5419i 0.713498 0.813502i
\(366\) 0 0
\(367\) −13.7090 −0.715603 −0.357801 0.933798i \(-0.616473\pi\)
−0.357801 + 0.933798i \(0.616473\pi\)
\(368\) 0 0
\(369\) 6.25681 14.9782i 0.325717 0.779732i
\(370\) 0 0
\(371\) −19.2944 + 19.2944i −1.00172 + 1.00172i
\(372\) 0 0
\(373\) −1.15360 + 1.15360i −0.0597312 + 0.0597312i −0.736341 0.676610i \(-0.763448\pi\)
0.676610 + 0.736341i \(0.263448\pi\)
\(374\) 0 0
\(375\) −7.47656 1.48842i −0.386088 0.0768617i
\(376\) 0 0
\(377\) 9.59980 0.494415
\(378\) 0 0
\(379\) 23.5487i 1.20961i 0.796372 + 0.604807i \(0.206750\pi\)
−0.796372 + 0.604807i \(0.793250\pi\)
\(380\) 0 0
\(381\) 1.54566 + 0.640233i 0.0791865 + 0.0328001i
\(382\) 0 0
\(383\) 8.29010 20.0141i 0.423604 1.02267i −0.557671 0.830062i \(-0.688305\pi\)
0.981275 0.192610i \(-0.0616951\pi\)
\(384\) 0 0
\(385\) 26.1945 + 22.9744i 1.33499 + 1.17088i
\(386\) 0 0
\(387\) 14.6561 14.6561i 0.745013 0.745013i
\(388\) 0 0
\(389\) −0.972002 0.972002i −0.0492824 0.0492824i 0.682036 0.731319i \(-0.261095\pi\)
−0.731319 + 0.682036i \(0.761095\pi\)
\(390\) 0 0
\(391\) 9.74630 4.03705i 0.492891 0.204162i
\(392\) 0 0
\(393\) −8.80751 3.64819i −0.444280 0.184027i
\(394\) 0 0
\(395\) −11.5748 23.4745i −0.582391 1.18113i
\(396\) 0 0
\(397\) −12.9242 + 5.35339i −0.648649 + 0.268679i −0.682653 0.730743i \(-0.739174\pi\)
0.0340045 + 0.999422i \(0.489174\pi\)
\(398\) 0 0
\(399\) −4.06028 1.68182i −0.203268 0.0841965i
\(400\) 0 0
\(401\) 14.0094 14.0094i 0.699594 0.699594i −0.264729 0.964323i \(-0.585283\pi\)
0.964323 + 0.264729i \(0.0852825\pi\)
\(402\) 0 0
\(403\) −7.08692 17.1093i −0.353025 0.852277i
\(404\) 0 0
\(405\) 8.45908 + 7.41921i 0.420335 + 0.368663i
\(406\) 0 0
\(407\) −36.4558 + 15.1005i −1.80705 + 0.748504i
\(408\) 0 0
\(409\) 6.87677 0.340034 0.170017 0.985441i \(-0.445618\pi\)
0.170017 + 0.985441i \(0.445618\pi\)
\(410\) 0 0
\(411\) −10.5772 −0.521735
\(412\) 0 0
\(413\) −17.4487 + 7.22750i −0.858595 + 0.355642i
\(414\) 0 0
\(415\) 11.7939 0.772384i 0.578940 0.0379148i
\(416\) 0 0
\(417\) −2.19604 5.30172i −0.107541 0.259626i
\(418\) 0 0
\(419\) 4.67681 4.67681i 0.228477 0.228477i −0.583579 0.812056i \(-0.698348\pi\)
0.812056 + 0.583579i \(0.198348\pi\)
\(420\) 0 0
\(421\) −25.3445 10.4980i −1.23522 0.511643i −0.332999 0.942927i \(-0.608061\pi\)
−0.902216 + 0.431284i \(0.858061\pi\)
\(422\) 0 0
\(423\) 23.5428 9.75175i 1.14469 0.474146i
\(424\) 0 0
\(425\) −7.67603 + 28.6351i −0.372342 + 1.38901i
\(426\) 0 0
\(427\) −26.7401 11.0761i −1.29404 0.536011i
\(428\) 0 0
\(429\) 13.9245 5.76772i 0.672282 0.278468i
\(430\) 0 0
\(431\) 6.84272 + 6.84272i 0.329602 + 0.329602i 0.852435 0.522833i \(-0.175125\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(432\) 0 0
\(433\) 9.21154 9.21154i 0.442679 0.442679i −0.450233 0.892911i \(-0.648659\pi\)
0.892911 + 0.450233i \(0.148659\pi\)
\(434\) 0 0
\(435\) 2.33045 2.65709i 0.111737 0.127398i
\(436\) 0 0
\(437\) −1.50330 + 3.62928i −0.0719124 + 0.173612i
\(438\) 0 0
\(439\) −15.2992 6.33714i −0.730192 0.302455i −0.0135610 0.999908i \(-0.504317\pi\)
−0.716631 + 0.697453i \(0.754317\pi\)
\(440\) 0 0
\(441\) 3.85885i 0.183755i
\(442\) 0 0
\(443\) −12.7927 −0.607798 −0.303899 0.952704i \(-0.598289\pi\)
−0.303899 + 0.952704i \(0.598289\pi\)
\(444\) 0 0
\(445\) 4.97629 2.45371i 0.235899 0.116317i
\(446\) 0 0
\(447\) −8.41860 + 8.41860i −0.398186 + 0.398186i
\(448\) 0 0
\(449\) −22.0850 + 22.0850i −1.04226 + 1.04226i −0.0431881 + 0.999067i \(0.513751\pi\)
−0.999067 + 0.0431881i \(0.986249\pi\)
\(450\) 0 0
\(451\) 34.1770 + 0.102428i 1.60933 + 0.00482313i
\(452\) 0 0
\(453\) 15.9046 0.747263
\(454\) 0 0
\(455\) −26.9752 + 1.76661i −1.26462 + 0.0828199i
\(456\) 0 0
\(457\) −36.9239 15.2944i −1.72723 0.715440i −0.999565 0.0295035i \(-0.990607\pi\)
−0.727661 0.685937i \(-0.759393\pi\)
\(458\) 0 0
\(459\) −15.8232 + 15.8232i −0.738563 + 0.738563i
\(460\) 0 0
\(461\) −8.44773 −0.393450 −0.196725 0.980459i \(-0.563031\pi\)
−0.196725 + 0.980459i \(0.563031\pi\)
\(462\) 0 0
\(463\) 1.10490 + 2.66747i 0.0513491 + 0.123968i 0.947472 0.319837i \(-0.103628\pi\)
−0.896123 + 0.443805i \(0.853628\pi\)
\(464\) 0 0
\(465\) −6.45604 2.19191i −0.299392 0.101647i
\(466\) 0 0
\(467\) 26.1310 26.1310i 1.20920 1.20920i 0.237912 0.971287i \(-0.423537\pi\)
0.971287 0.237912i \(-0.0764630\pi\)
\(468\) 0 0
\(469\) 20.2621i 0.935619i
\(470\) 0 0
\(471\) 1.78158 1.78158i 0.0820910 0.0820910i
\(472\) 0 0
\(473\) 40.3182 + 16.7003i 1.85383 + 0.767883i
\(474\) 0 0
\(475\) −5.51873 9.56106i −0.253217 0.438692i
\(476\) 0 0
\(477\) −21.8917 9.06785i −1.00235 0.415188i
\(478\) 0 0
\(479\) −13.9507 + 33.6799i −0.637423 + 1.53887i 0.192679 + 0.981262i \(0.438283\pi\)
−0.830101 + 0.557613i \(0.811717\pi\)
\(480\) 0 0
\(481\) 11.7160 28.2850i 0.534206 1.28969i
\(482\) 0 0
\(483\) 3.54151 0.161144
\(484\) 0 0
\(485\) 3.20526 + 6.50050i 0.145543 + 0.295172i
\(486\) 0 0
\(487\) 44.0001i 1.99383i 0.0784700 + 0.996916i \(0.474997\pi\)
−0.0784700 + 0.996916i \(0.525003\pi\)
\(488\) 0 0
\(489\) 4.78778 11.5587i 0.216511 0.522703i
\(490\) 0 0
\(491\) 41.6965i 1.88173i −0.338775 0.940867i \(-0.610012\pi\)
0.338775 0.940867i \(-0.389988\pi\)
\(492\) 0 0
\(493\) −9.71878 9.71878i −0.437712 0.437712i
\(494\) 0 0
\(495\) −9.72722 + 28.6505i −0.437206 + 1.28774i
\(496\) 0 0
\(497\) 21.5998 0.968882
\(498\) 0 0
\(499\) −20.2670 8.39486i −0.907275 0.375806i −0.120262 0.992742i \(-0.538373\pi\)
−0.787013 + 0.616937i \(0.788373\pi\)
\(500\) 0 0
\(501\) 1.79399 + 1.79399i 0.0801493 + 0.0801493i
\(502\) 0 0
\(503\) 12.1919 + 29.4338i 0.543609 + 1.31239i 0.922160 + 0.386808i \(0.126423\pi\)
−0.378551 + 0.925581i \(0.623577\pi\)
\(504\) 0 0
\(505\) −41.7796 14.1848i −1.85917 0.631213i
\(506\) 0 0
\(507\) −1.08290 + 2.61435i −0.0480932 + 0.116107i
\(508\) 0 0
\(509\) 18.0169 7.46284i 0.798585 0.330785i 0.0541954 0.998530i \(-0.482741\pi\)
0.744390 + 0.667746i \(0.232741\pi\)
\(510\) 0 0
\(511\) −10.3283 24.9348i −0.456898 1.10305i
\(512\) 0 0
\(513\) 8.33278i 0.367901i
\(514\) 0 0
\(515\) 12.6543 + 11.0987i 0.557614 + 0.489067i
\(516\) 0 0
\(517\) 37.9384 + 37.9384i 1.66853 + 1.66853i
\(518\) 0 0
\(519\) 0.919675 + 2.22029i 0.0403693 + 0.0974600i
\(520\) 0 0
\(521\) 7.17995 17.3339i 0.314559 0.759413i −0.684965 0.728576i \(-0.740183\pi\)
0.999524 0.0308375i \(-0.00981744\pi\)
\(522\) 0 0
\(523\) 4.72022 4.72022i 0.206401 0.206401i −0.596335 0.802736i \(-0.703377\pi\)
0.802736 + 0.596335i \(0.203377\pi\)
\(524\) 0 0
\(525\) −6.05954 + 7.89520i −0.264460 + 0.344575i
\(526\) 0 0
\(527\) −10.1466 + 24.4961i −0.441994 + 1.06707i
\(528\) 0 0
\(529\) 19.8344i 0.862366i
\(530\) 0 0
\(531\) −11.5971 11.5971i −0.503272 0.503272i
\(532\) 0 0
\(533\) −18.8065 + 18.6941i −0.814601 + 0.809732i
\(534\) 0 0
\(535\) 33.2039 2.17453i 1.43553 0.0940130i
\(536\) 0 0
\(537\) 10.3778 + 10.3778i 0.447834 + 0.447834i
\(538\) 0 0
\(539\) 7.50628 3.10920i 0.323319 0.133923i
\(540\) 0 0
\(541\) 24.0987 + 24.0987i 1.03608 + 1.03608i 0.999324 + 0.0367594i \(0.0117035\pi\)
0.0367594 + 0.999324i \(0.488296\pi\)
\(542\) 0 0
\(543\) 0.152120 + 0.152120i 0.00652808 + 0.00652808i
\(544\) 0 0
\(545\) −21.3553 7.25040i −0.914759 0.310573i
\(546\) 0 0
\(547\) 26.6712 + 11.0476i 1.14038 + 0.472361i 0.871297 0.490756i \(-0.163279\pi\)
0.269083 + 0.963117i \(0.413279\pi\)
\(548\) 0 0
\(549\) 25.1342i 1.07270i
\(550\) 0 0
\(551\) 5.11808 0.218038
\(552\) 0 0
\(553\) −34.1700 −1.45305
\(554\) 0 0
\(555\) −4.98469 10.1093i −0.211588 0.429116i
\(556\) 0 0
\(557\) 7.94258 19.1751i 0.336538 0.812475i −0.661505 0.749941i \(-0.730082\pi\)
0.998043 0.0625339i \(-0.0199181\pi\)
\(558\) 0 0
\(559\) −31.2817 + 12.9573i −1.32308 + 0.548036i
\(560\) 0 0
\(561\) −19.9363 8.25788i −0.841711 0.348648i
\(562\) 0 0
\(563\) −4.10473 + 1.70024i −0.172994 + 0.0716564i −0.467499 0.883993i \(-0.654845\pi\)
0.294506 + 0.955650i \(0.404845\pi\)
\(564\) 0 0
\(565\) 0.293697 + 4.48460i 0.0123559 + 0.188668i
\(566\) 0 0
\(567\) 13.5714 5.62144i 0.569944 0.236078i
\(568\) 0 0
\(569\) −28.6633 28.6633i −1.20163 1.20163i −0.973671 0.227958i \(-0.926795\pi\)
−0.227958 0.973671i \(-0.573205\pi\)
\(570\) 0 0
\(571\) 28.2335 + 11.6947i 1.18154 + 0.489408i 0.884990 0.465610i \(-0.154165\pi\)
0.296546 + 0.955019i \(0.404165\pi\)
\(572\) 0 0
\(573\) 6.15325 6.15325i 0.257056 0.257056i
\(574\) 0 0
\(575\) 7.05712 + 5.41631i 0.294302 + 0.225876i
\(576\) 0 0
\(577\) 2.22221 + 5.36488i 0.0925116 + 0.223343i 0.963362 0.268206i \(-0.0864309\pi\)
−0.870850 + 0.491549i \(0.836431\pi\)
\(578\) 0 0
\(579\) 10.5491 10.5491i 0.438406 0.438406i
\(580\) 0 0
\(581\) 5.90496 14.2558i 0.244979 0.591432i
\(582\) 0 0
\(583\) 49.8903i 2.06625i
\(584\) 0 0
\(585\) −10.3817 21.0549i −0.429232 0.870513i
\(586\) 0 0
\(587\) 11.2391 + 27.1336i 0.463888 + 1.11993i 0.966788 + 0.255580i \(0.0822666\pi\)
−0.502900 + 0.864345i \(0.667733\pi\)
\(588\) 0 0
\(589\) −3.77835 9.12175i −0.155684 0.375855i
\(590\) 0 0
\(591\) −0.462198 1.11584i −0.0190123 0.0458997i
\(592\) 0 0
\(593\) 2.21417 5.34547i 0.0909250 0.219512i −0.871874 0.489730i \(-0.837096\pi\)
0.962799 + 0.270217i \(0.0870955\pi\)
\(594\) 0 0
\(595\) 29.0980 + 25.5210i 1.19290 + 1.04626i
\(596\) 0 0
\(597\) 2.49207 + 2.49207i 0.101994 + 0.101994i
\(598\) 0 0
\(599\) −16.0048 −0.653939 −0.326969 0.945035i \(-0.606027\pi\)
−0.326969 + 0.945035i \(0.606027\pi\)
\(600\) 0 0
\(601\) −40.7546 + 16.8811i −1.66242 + 0.688595i −0.998258 0.0589970i \(-0.981210\pi\)
−0.664158 + 0.747592i \(0.731210\pi\)
\(602\) 0 0
\(603\) 16.2562 6.73352i 0.662002 0.274210i
\(604\) 0 0
\(605\) −39.0246 + 2.55573i −1.58658 + 0.103905i
\(606\) 0 0
\(607\) 27.0326i 1.09722i −0.836078 0.548611i \(-0.815157\pi\)
0.836078 0.548611i \(-0.184843\pi\)
\(608\) 0 0
\(609\) −1.76575 4.26291i −0.0715520 0.172742i
\(610\) 0 0
\(611\) −41.6278 −1.68408
\(612\) 0 0
\(613\) 10.6802i 0.431369i −0.976463 0.215684i \(-0.930802\pi\)
0.976463 0.215684i \(-0.0691982\pi\)
\(614\) 0 0
\(615\) 0.608786 + 9.74356i 0.0245486 + 0.392898i
\(616\) 0 0
\(617\) 4.58652i 0.184647i −0.995729 0.0923233i \(-0.970571\pi\)
0.995729 0.0923233i \(-0.0294293\pi\)
\(618\) 0 0
\(619\) 33.3987 1.34241 0.671203 0.741274i \(-0.265778\pi\)
0.671203 + 0.741274i \(0.265778\pi\)
\(620\) 0 0
\(621\) 2.56967 + 6.20373i 0.103117 + 0.248947i
\(622\) 0 0
\(623\) 7.24359i 0.290208i
\(624\) 0 0
\(625\) −24.1495 + 6.46534i −0.965981 + 0.258614i
\(626\) 0 0
\(627\) 7.42378 3.07503i 0.296477 0.122805i
\(628\) 0 0
\(629\) −40.4968 + 16.7743i −1.61471 + 0.668836i
\(630\) 0 0
\(631\) 36.4236 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(632\) 0 0
\(633\) −4.54339 4.54339i −0.180583 0.180583i
\(634\) 0 0
\(635\) 5.47479 0.358544i 0.217260 0.0142284i
\(636\) 0 0
\(637\) −2.41234 + 5.82391i −0.0955805 + 0.230752i
\(638\) 0 0
\(639\) 7.17804 + 17.3293i 0.283959 + 0.685537i
\(640\) 0 0
\(641\) 6.38735 + 15.4204i 0.252285 + 0.609071i 0.998388 0.0567605i \(-0.0180772\pi\)
−0.746103 + 0.665831i \(0.768077\pi\)
\(642\) 0 0
\(643\) −1.70053 4.10545i −0.0670624 0.161903i 0.886795 0.462163i \(-0.152927\pi\)
−0.953857 + 0.300260i \(0.902927\pi\)
\(644\) 0 0
\(645\) −4.00757 + 11.8038i −0.157798 + 0.464776i
\(646\) 0 0
\(647\) 13.5335i 0.532057i 0.963965 + 0.266029i \(0.0857116\pi\)
−0.963965 + 0.266029i \(0.914288\pi\)
\(648\) 0 0
\(649\) 13.2147 31.9031i 0.518722 1.25230i
\(650\) 0 0
\(651\) −6.29406 + 6.29406i −0.246684 + 0.246684i
\(652\) 0 0
\(653\) −4.56532 11.0217i −0.178655 0.431311i 0.809030 0.587767i \(-0.199993\pi\)
−0.987685 + 0.156456i \(0.949993\pi\)
\(654\) 0 0
\(655\) −31.1965 + 2.04306i −1.21895 + 0.0798291i
\(656\) 0 0
\(657\) 16.5727 16.5727i 0.646561 0.646561i
\(658\) 0 0
\(659\) 39.9509 + 16.5482i 1.55627 + 0.644626i 0.984435 0.175746i \(-0.0562339\pi\)
0.571830 + 0.820372i \(0.306234\pi\)
\(660\) 0 0
\(661\) 18.5260 + 18.5260i 0.720576 + 0.720576i 0.968723 0.248146i \(-0.0798214\pi\)
−0.248146 + 0.968723i \(0.579821\pi\)
\(662\) 0 0
\(663\) 15.4680 6.40705i 0.600727 0.248829i
\(664\) 0 0
\(665\) −14.3817 + 0.941858i −0.557698 + 0.0365237i
\(666\) 0 0
\(667\) −3.81040 + 1.57832i −0.147539 + 0.0611127i
\(668\) 0 0
\(669\) −6.69347 2.77253i −0.258784 0.107192i
\(670\) 0 0
\(671\) 48.8913 20.2515i 1.88743 0.781799i
\(672\) 0 0
\(673\) −13.1423 + 31.7282i −0.506597 + 1.22303i 0.439234 + 0.898373i \(0.355250\pi\)
−0.945831 + 0.324660i \(0.894750\pi\)
\(674\) 0 0
\(675\) −18.2269 4.88596i −0.701553 0.188061i
\(676\) 0 0
\(677\) 26.2051 1.00714 0.503571 0.863954i \(-0.332019\pi\)
0.503571 + 0.863954i \(0.332019\pi\)
\(678\) 0 0
\(679\) 9.46226 0.363128
\(680\) 0 0
\(681\) 4.03340i 0.154560i
\(682\) 0 0
\(683\) −36.2588 15.0189i −1.38740 0.574681i −0.440953 0.897530i \(-0.645360\pi\)
−0.946451 + 0.322849i \(0.895360\pi\)
\(684\) 0 0
\(685\) −31.1108 + 15.3401i −1.18868 + 0.586115i
\(686\) 0 0
\(687\) −10.7155 10.7155i −0.408821 0.408821i
\(688\) 0 0
\(689\) 27.3710 + 27.3710i 1.04275 + 1.04275i
\(690\) 0 0
\(691\) 36.5236 15.1286i 1.38942 0.575518i 0.442439 0.896799i \(-0.354113\pi\)
0.946984 + 0.321281i \(0.104113\pi\)
\(692\) 0 0
\(693\) 27.9317 + 27.9317i 1.06104 + 1.06104i
\(694\) 0 0
\(695\) −14.1483 12.4091i −0.536676 0.470703i
\(696\) 0 0
\(697\) 37.9654 + 0.113781i 1.43804 + 0.00430977i
\(698\) 0 0
\(699\) −9.51902 9.51902i −0.360042 0.360042i
\(700\) 0 0
\(701\) 30.1161i 1.13747i −0.822520 0.568736i \(-0.807433\pi\)
0.822520 0.568736i \(-0.192567\pi\)
\(702\) 0 0
\(703\) 6.24635 15.0800i 0.235585 0.568754i
\(704\) 0 0
\(705\) −10.1056 + 11.5220i −0.380599 + 0.433943i
\(706\) 0 0
\(707\) −40.7315 + 40.7315i −1.53186 + 1.53186i
\(708\) 0 0
\(709\) −2.39229 + 5.77550i −0.0898443 + 0.216903i −0.962414 0.271586i \(-0.912452\pi\)
0.872570 + 0.488489i \(0.162452\pi\)
\(710\) 0 0
\(711\) −11.3554 27.4143i −0.425860 1.02812i
\(712\) 0 0
\(713\) 5.62594 + 5.62594i 0.210693 + 0.210693i
\(714\) 0 0
\(715\) 32.5914 37.1593i 1.21885 1.38968i
\(716\) 0 0
\(717\) 4.38124i 0.163620i
\(718\) 0 0
\(719\) 4.60753 + 11.1236i 0.171832 + 0.414839i 0.986211 0.165495i \(-0.0529221\pi\)
−0.814379 + 0.580334i \(0.802922\pi\)
\(720\) 0 0
\(721\) 20.3020 8.40935i 0.756084 0.313180i
\(722\) 0 0
\(723\) −4.35797 + 10.5211i −0.162074 + 0.391282i
\(724\) 0 0
\(725\) 3.00101 11.1952i 0.111455 0.415778i
\(726\) 0 0
\(727\) 0.243814 + 0.588620i 0.00904257 + 0.0218307i 0.928336 0.371741i \(-0.121239\pi\)
−0.919294 + 0.393572i \(0.871239\pi\)
\(728\) 0 0
\(729\) 3.56119 + 3.56119i 0.131896 + 0.131896i
\(730\) 0 0
\(731\) 44.7873 + 18.5515i 1.65652 + 0.686152i
\(732\) 0 0
\(733\) 41.4163 1.52975 0.764874 0.644180i \(-0.222801\pi\)
0.764874 + 0.644180i \(0.222801\pi\)
\(734\) 0 0
\(735\) 1.02635 + 2.08151i 0.0378576 + 0.0767778i
\(736\) 0 0
\(737\) 26.1963 + 26.1963i 0.964952 + 0.964952i
\(738\) 0 0
\(739\) 2.43305i 0.0895012i 0.998998 + 0.0447506i \(0.0142493\pi\)
−0.998998 + 0.0447506i \(0.985751\pi\)
\(740\) 0 0
\(741\) −2.38583 + 5.75990i −0.0876456 + 0.211595i
\(742\) 0 0
\(743\) 12.4645i 0.457278i −0.973511 0.228639i \(-0.926572\pi\)
0.973511 0.228639i \(-0.0734276\pi\)
\(744\) 0 0
\(745\) −12.5522 + 36.9712i −0.459878 + 1.35452i
\(746\) 0 0
\(747\) 13.3997 0.490269
\(748\) 0 0
\(749\) 16.6245 40.1351i 0.607446 1.46650i
\(750\) 0 0
\(751\) −3.05534 + 7.37623i −0.111491 + 0.269163i −0.969770 0.244020i \(-0.921534\pi\)
0.858279 + 0.513183i \(0.171534\pi\)
\(752\) 0 0
\(753\) −9.76522 4.04489i −0.355864 0.147404i
\(754\) 0 0
\(755\) 46.7803 23.0664i 1.70251 0.839472i
\(756\) 0 0
\(757\) 3.83740 + 1.58950i 0.139473 + 0.0577715i 0.451328 0.892358i \(-0.350950\pi\)
−0.311855 + 0.950130i \(0.600950\pi\)
\(758\) 0 0
\(759\) −4.57870 + 4.57870i −0.166196 + 0.166196i
\(760\) 0 0
\(761\) 36.3882i 1.31907i 0.751673 + 0.659536i \(0.229247\pi\)
−0.751673 + 0.659536i \(0.770753\pi\)
\(762\) 0 0
\(763\) −20.8195 + 20.8195i −0.753717 + 0.753717i
\(764\) 0 0
\(765\) −10.8054 + 31.8263i −0.390672 + 1.15068i
\(766\) 0 0
\(767\) 10.2529 + 24.7527i 0.370210 + 0.893767i
\(768\) 0 0
\(769\) 28.0948 1.01313 0.506563 0.862203i \(-0.330916\pi\)
0.506563 + 0.862203i \(0.330916\pi\)
\(770\) 0 0
\(771\) −2.92711 + 2.92711i −0.105417 + 0.105417i
\(772\) 0 0
\(773\) −5.00353 2.07253i −0.179964 0.0745437i 0.290882 0.956759i \(-0.406051\pi\)
−0.470846 + 0.882215i \(0.656051\pi\)
\(774\) 0 0
\(775\) −22.1681 + 2.91609i −0.796302 + 0.104749i
\(776\) 0 0
\(777\) −14.7153 −0.527909
\(778\) 0 0
\(779\) −10.0266 + 9.96667i −0.359240 + 0.357093i
\(780\) 0 0
\(781\) −27.9256 + 27.9256i −0.999257 + 0.999257i
\(782\) 0 0
\(783\) 6.18621 6.18621i 0.221077 0.221077i
\(784\) 0 0
\(785\) 2.65636 7.82401i 0.0948095 0.279251i
\(786\) 0 0
\(787\) 39.6517 1.41343 0.706715 0.707498i \(-0.250176\pi\)
0.706715 + 0.707498i \(0.250176\pi\)
\(788\) 0 0
\(789\) 2.84219i 0.101185i
\(790\) 0 0
\(791\) 5.42074 + 2.24534i 0.192739 + 0.0798352i
\(792\) 0 0
\(793\) −15.7125 + 37.9334i −0.557968 + 1.34705i
\(794\) 0 0
\(795\) 14.2205 0.931301i 0.504349 0.0330298i
\(796\) 0 0
\(797\) 26.3466 26.3466i 0.933243 0.933243i −0.0646643 0.997907i \(-0.520598\pi\)
0.997907 + 0.0646643i \(0.0205977\pi\)
\(798\) 0 0
\(799\) 42.1438 + 42.1438i 1.49094 + 1.49094i
\(800\) 0 0
\(801\) 5.81147 2.40719i 0.205338 0.0850539i
\(802\) 0 0
\(803\) 45.5905 + 18.8842i 1.60885 + 0.666409i
\(804\) 0 0
\(805\) 10.4167 5.13624i 0.367139 0.181029i
\(806\) 0 0
\(807\) 17.3368 7.18114i 0.610284 0.252788i
\(808\) 0 0
\(809\) −34.1675 14.1526i −1.20127 0.497581i −0.309858 0.950783i \(-0.600282\pi\)
−0.891408 + 0.453202i \(0.850282\pi\)
\(810\) 0 0
\(811\) −8.39412 + 8.39412i −0.294757 + 0.294757i −0.838956 0.544199i \(-0.816834\pi\)
0.544199 + 0.838956i \(0.316834\pi\)
\(812\) 0 0
\(813\) 2.59802 + 6.27218i 0.0911166 + 0.219975i
\(814\) 0 0
\(815\) −2.68126 40.9414i −0.0939204 1.43412i
\(816\) 0 0
\(817\) −16.6777 + 6.90812i −0.583478 + 0.241685i
\(818\) 0 0
\(819\) −30.6480 −1.07093
\(820\) 0 0
\(821\) −13.7255 −0.479025 −0.239512 0.970893i \(-0.576988\pi\)
−0.239512 + 0.970893i \(0.576988\pi\)
\(822\) 0 0
\(823\) −35.2678 + 14.6084i −1.22936 + 0.509216i −0.900373 0.435119i \(-0.856706\pi\)
−0.328984 + 0.944335i \(0.606706\pi\)
\(824\) 0 0
\(825\) −2.37327 18.0416i −0.0826268 0.628129i
\(826\) 0 0
\(827\) 12.3562 + 29.8305i 0.429668 + 1.03731i 0.979393 + 0.201964i \(0.0647324\pi\)
−0.549725 + 0.835345i \(0.685268\pi\)
\(828\) 0 0
\(829\) −2.87754 + 2.87754i −0.0999411 + 0.0999411i −0.755309 0.655368i \(-0.772513\pi\)
0.655368 + 0.755309i \(0.272513\pi\)
\(830\) 0 0
\(831\) 12.5675 + 5.20563i 0.435962 + 0.180581i
\(832\) 0 0
\(833\) 8.33832 3.45385i 0.288906 0.119669i
\(834\) 0 0
\(835\) 7.87847 + 2.67485i 0.272646 + 0.0925669i
\(836\) 0 0
\(837\) −15.5923 6.45855i −0.538949 0.223240i
\(838\) 0 0
\(839\) −38.8371 + 16.0868i −1.34080 + 0.555379i −0.933718 0.358010i \(-0.883455\pi\)
−0.407087 + 0.913389i \(0.633455\pi\)
\(840\) 0 0
\(841\) −16.7065 16.7065i −0.576085 0.576085i
\(842\) 0 0
\(843\) 0.0306527 0.0306527i 0.00105574 0.00105574i
\(844\) 0 0
\(845\) 0.606447 + 9.26013i 0.0208624 + 0.318558i
\(846\) 0 0
\(847\) −19.5388 + 47.1709i −0.671361 + 1.62081i
\(848\) 0 0
\(849\) 5.40876 + 2.24038i 0.185628 + 0.0768897i
\(850\) 0 0
\(851\) 13.1533i 0.450888i
\(852\) 0 0
\(853\) 48.3911 1.65688 0.828439 0.560079i \(-0.189229\pi\)
0.828439 + 0.560079i \(0.189229\pi\)
\(854\) 0 0
\(855\) −5.53497 11.2253i −0.189292 0.383898i
\(856\) 0 0
\(857\) 23.9140 23.9140i 0.816887 0.816887i −0.168769 0.985656i \(-0.553979\pi\)
0.985656 + 0.168769i \(0.0539792\pi\)
\(858\) 0 0
\(859\) 1.66780 1.66780i 0.0569047 0.0569047i −0.678082 0.734986i \(-0.737188\pi\)
0.734986 + 0.678082i \(0.237188\pi\)
\(860\) 0 0
\(861\) 11.7606 + 4.91273i 0.400799 + 0.167425i
\(862\) 0 0
\(863\) 3.14104 0.106922 0.0534612 0.998570i \(-0.482975\pi\)
0.0534612 + 0.998570i \(0.482975\pi\)
\(864\) 0 0
\(865\) 5.92513 + 5.19676i 0.201461 + 0.176695i
\(866\) 0 0
\(867\) −11.4371 4.73740i −0.388424 0.160890i
\(868\) 0 0
\(869\) 44.1772 44.1772i 1.49861 1.49861i
\(870\) 0 0
\(871\) −28.7438 −0.973946
\(872\) 0 0
\(873\) 3.14450 + 7.59150i 0.106425 + 0.256933i
\(874\) 0 0
\(875\) −6.37256 + 32.0104i −0.215432 + 1.08215i
\(876\) 0 0
\(877\) 9.94805 9.94805i 0.335922 0.335922i −0.518908 0.854830i \(-0.673661\pi\)
0.854830 + 0.518908i \(0.173661\pi\)
\(878\) 0 0
\(879\) 17.7606i 0.599049i
\(880\) 0 0
\(881\) −13.2174 + 13.2174i −0.445304 + 0.445304i −0.893790 0.448486i \(-0.851963\pi\)
0.448486 + 0.893790i \(0.351963\pi\)
\(882\) 0 0
\(883\) 5.89830 + 2.44316i 0.198494 + 0.0822188i 0.479716 0.877424i \(-0.340740\pi\)
−0.281222 + 0.959643i \(0.590740\pi\)
\(884\) 0 0
\(885\) 9.34017 + 3.17111i 0.313966 + 0.106596i
\(886\) 0 0
\(887\) −20.7028 8.57540i −0.695133 0.287934i 0.00700379 0.999975i \(-0.497771\pi\)
−0.702137 + 0.712042i \(0.747771\pi\)
\(888\) 0 0
\(889\) 2.74111 6.61763i 0.0919339 0.221948i
\(890\) 0 0
\(891\) −10.2782 + 24.8137i −0.344332 + 0.831292i
\(892\) 0 0
\(893\) −22.1937 −0.742683
\(894\) 0 0
\(895\) 45.5751 + 15.4734i 1.52341 + 0.517217i
\(896\) 0 0
\(897\) 5.02397i 0.167745i
\(898\) 0 0
\(899\) 3.96691 9.57697i 0.132304 0.319410i
\(900\) 0 0
\(901\) 55.4204i 1.84632i
\(902\) 0 0
\(903\) 11.5077 + 11.5077i 0.382953 + 0.382953i
\(904\) 0 0
\(905\) 0.668050 + 0.226812i 0.0222067 + 0.00753948i
\(906\) 0 0
\(907\) 9.87759 0.327980 0.163990 0.986462i \(-0.447564\pi\)
0.163990 + 0.986462i \(0.447564\pi\)
\(908\) 0 0
\(909\) −46.2144 19.1426i −1.53284 0.634921i
\(910\) 0 0
\(911\) 10.6968 + 10.6968i 0.354402 + 0.354402i 0.861744 0.507343i \(-0.169372\pi\)
−0.507343 + 0.861744i \(0.669372\pi\)
\(912\) 0 0
\(913\) 10.7966 + 26.0652i 0.357314 + 0.862633i
\(914\) 0 0
\(915\) 6.68503 + 13.5577i 0.221000 + 0.448204i
\(916\) 0 0
\(917\) −15.6194 + 37.7087i −0.515800 + 1.24525i
\(918\) 0 0
\(919\) −5.08272 + 2.10533i −0.167663 + 0.0694484i −0.464936 0.885344i \(-0.653923\pi\)
0.297273 + 0.954792i \(0.403923\pi\)
\(920\) 0 0
\(921\) 1.57420 + 3.80044i 0.0518715 + 0.125229i
\(922\) 0 0
\(923\) 30.6413i 1.00857i
\(924\) 0 0
\(925\) −29.3230 22.5053i −0.964135 0.739970i
\(926\) 0 0
\(927\) 13.4935 + 13.4935i 0.443185 + 0.443185i
\(928\) 0 0
\(929\) 13.1045 + 31.6370i 0.429943 + 1.03798i 0.979305 + 0.202390i \(0.0648710\pi\)
−0.549362 + 0.835585i \(0.685129\pi\)
\(930\) 0 0
\(931\) −1.28613 + 3.10499i −0.0421511 + 0.101762i
\(932\) 0 0
\(933\) 8.20298 8.20298i 0.268554 0.268554i
\(934\) 0 0
\(935\) −70.6151 + 4.62459i −2.30936 + 0.151240i
\(936\) 0 0
\(937\) −15.3699 + 37.1063i −0.502113 + 1.21221i 0.446217 + 0.894925i \(0.352771\pi\)
−0.948331 + 0.317284i \(0.897229\pi\)
\(938\) 0 0
\(939\) 17.9974i 0.587324i
\(940\) 0 0
\(941\) −29.6241 29.6241i −0.965718 0.965718i 0.0337133 0.999432i \(-0.489267\pi\)
−0.999432 + 0.0337133i \(0.989267\pi\)
\(942\) 0 0
\(943\) 4.39124 10.5122i 0.142998 0.342323i
\(944\) 0 0
\(945\) −16.2447 + 18.5215i −0.528439 + 0.602505i
\(946\) 0 0
\(947\) −24.9593 24.9593i −0.811069 0.811069i 0.173725 0.984794i \(-0.444420\pi\)
−0.984794 + 0.173725i \(0.944420\pi\)
\(948\) 0 0
\(949\) −35.3724 + 14.6517i −1.14824 + 0.475615i
\(950\) 0 0
\(951\) 10.5684 + 10.5684i 0.342703 + 0.342703i
\(952\) 0 0
\(953\) −20.0819 20.0819i −0.650516 0.650516i 0.302601 0.953117i \(-0.402145\pi\)
−0.953117 + 0.302601i \(0.902145\pi\)
\(954\) 0 0
\(955\) 9.17455 27.0226i 0.296881 0.874432i
\(956\) 0 0
\(957\) 7.79426 + 3.22849i 0.251953 + 0.104362i
\(958\) 0 0
\(959\) 45.2855i 1.46235i
\(960\) 0 0
\(961\) 11.0029 0.354931
\(962\) 0 0
\(963\) 37.7247 1.21566
\(964\) 0 0
\(965\) 15.7288 46.3275i 0.506328 1.49133i
\(966\) 0 0
\(967\) 9.00105 21.7305i 0.289454 0.698804i −0.710534 0.703663i \(-0.751547\pi\)
0.999988 + 0.00485856i \(0.00154654\pi\)
\(968\) 0 0
\(969\) 8.24668 3.41588i 0.264921 0.109734i
\(970\) 0 0
\(971\) −43.0140 17.8170i −1.38038 0.571774i −0.435800 0.900044i \(-0.643534\pi\)
−0.944584 + 0.328270i \(0.893534\pi\)
\(972\) 0 0
\(973\) −22.6989 + 9.40220i −0.727694 + 0.301421i
\(974\) 0 0
\(975\) 11.2001 + 8.59603i 0.358690 + 0.275293i
\(976\) 0 0
\(977\) 31.3775 12.9970i 1.00385 0.415810i 0.180645 0.983548i \(-0.442181\pi\)
0.823209 + 0.567738i \(0.192181\pi\)
\(978\) 0 0
\(979\) 9.36500 + 9.36500i 0.299307 + 0.299307i
\(980\) 0 0
\(981\) −23.6221 9.78458i −0.754195 0.312398i
\(982\) 0 0
\(983\) 7.65639 7.65639i 0.244201 0.244201i −0.574385 0.818586i \(-0.694759\pi\)
0.818586 + 0.574385i \(0.194759\pi\)
\(984\) 0 0
\(985\) −2.97777 2.61171i −0.0948797 0.0832161i
\(986\) 0 0
\(987\) 7.65688 + 18.4854i 0.243721 + 0.588395i
\(988\) 0 0
\(989\) 10.2862 10.2862i 0.327081 0.327081i
\(990\) 0 0
\(991\) 9.54859 23.0523i 0.303321 0.732282i −0.696570 0.717489i \(-0.745291\pi\)
0.999891 0.0147925i \(-0.00470878\pi\)
\(992\) 0 0
\(993\) 9.60932i 0.304943i
\(994\) 0 0
\(995\) 10.9442 + 3.71570i 0.346954 + 0.117795i
\(996\) 0 0
\(997\) 9.19795 + 22.2058i 0.291302 + 0.703265i 0.999997 0.00224932i \(-0.000715982\pi\)
−0.708696 + 0.705514i \(0.750716\pi\)
\(998\) 0 0
\(999\) −10.6772 25.7771i −0.337812 0.815551i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.413.9 yes 84
5.2 odd 4 820.2.x.a.577.13 84
41.14 odd 8 820.2.x.a.793.13 yes 84
205.137 even 8 inner 820.2.y.a.137.9 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.13 84 5.2 odd 4
820.2.x.a.793.13 yes 84 41.14 odd 8
820.2.y.a.137.9 yes 84 205.137 even 8 inner
820.2.y.a.413.9 yes 84 1.1 even 1 trivial