Properties

Label 820.2.y.a.413.15
Level $820$
Weight $2$
Character 820.413
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 413.15
Character \(\chi\) \(=\) 820.413
Dual form 820.2.y.a.137.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03876 - 0.430268i) q^{3} +(-2.16617 + 0.554719i) q^{5} +(-0.831762 - 2.00805i) q^{7} +(-1.22743 + 1.22743i) q^{9} +(2.50692 + 1.03840i) q^{11} +(-5.26176 + 2.17949i) q^{13} +(-2.01145 + 1.50825i) q^{15} +(-5.37817 - 2.22771i) q^{17} +(1.89850 - 0.786385i) q^{19} +(-1.72800 - 1.72800i) q^{21} +(-3.33290 + 3.33290i) q^{23} +(4.38457 - 2.40323i) q^{25} +(-2.03768 + 4.91941i) q^{27} +(-3.07658 - 1.27436i) q^{29} +0.621917i q^{31} +3.05088 q^{33} +(2.91564 + 3.88838i) q^{35} +(-5.98810 + 5.98810i) q^{37} +(-4.52794 + 4.52794i) q^{39} +(-6.40010 - 0.196764i) q^{41} +1.18311 q^{43} +(1.97794 - 3.33970i) q^{45} +(-2.97225 - 1.23115i) q^{47} +(1.60931 - 1.60931i) q^{49} -6.54513 q^{51} +(3.00715 + 7.25990i) q^{53} +(-6.00644 - 0.858714i) q^{55} +(1.63373 - 1.63373i) q^{57} -8.81470i q^{59} +(1.18680 - 1.18680i) q^{61} +(3.48567 + 1.44381i) q^{63} +(10.1889 - 7.63995i) q^{65} +(-4.71010 - 1.95099i) q^{67} +(-2.02804 + 4.89613i) q^{69} +(-3.30477 + 7.97843i) q^{71} +7.49459 q^{73} +(3.52048 - 4.38292i) q^{75} -5.89773i q^{77} +(2.70912 - 6.54039i) q^{79} +0.779283i q^{81} +(-3.55448 - 3.55448i) q^{83} +(12.8858 + 1.84222i) q^{85} -3.74415 q^{87} +(5.23829 + 2.16977i) q^{89} +(8.75307 + 8.75307i) q^{91} +(0.267591 + 0.646022i) q^{93} +(-3.67625 + 2.75658i) q^{95} +(-0.940462 + 2.27048i) q^{97} +(-4.35164 + 1.80251i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03876 0.430268i 0.599728 0.248415i −0.0621016 0.998070i \(-0.519780\pi\)
0.661829 + 0.749654i \(0.269780\pi\)
\(4\) 0 0
\(5\) −2.16617 + 0.554719i −0.968740 + 0.248078i
\(6\) 0 0
\(7\) −0.831762 2.00805i −0.314377 0.758972i −0.999532 0.0305756i \(-0.990266\pi\)
0.685156 0.728396i \(-0.259734\pi\)
\(8\) 0 0
\(9\) −1.22743 + 1.22743i −0.409143 + 0.409143i
\(10\) 0 0
\(11\) 2.50692 + 1.03840i 0.755866 + 0.313090i 0.727132 0.686497i \(-0.240853\pi\)
0.0287333 + 0.999587i \(0.490853\pi\)
\(12\) 0 0
\(13\) −5.26176 + 2.17949i −1.45935 + 0.604483i −0.964402 0.264439i \(-0.914813\pi\)
−0.494949 + 0.868922i \(0.664813\pi\)
\(14\) 0 0
\(15\) −2.01145 + 1.50825i −0.519354 + 0.389429i
\(16\) 0 0
\(17\) −5.37817 2.22771i −1.30440 0.540299i −0.381153 0.924512i \(-0.624473\pi\)
−0.923244 + 0.384213i \(0.874473\pi\)
\(18\) 0 0
\(19\) 1.89850 0.786385i 0.435546 0.180409i −0.154127 0.988051i \(-0.549257\pi\)
0.589673 + 0.807642i \(0.299257\pi\)
\(20\) 0 0
\(21\) −1.72800 1.72800i −0.377081 0.377081i
\(22\) 0 0
\(23\) −3.33290 + 3.33290i −0.694959 + 0.694959i −0.963319 0.268360i \(-0.913518\pi\)
0.268360 + 0.963319i \(0.413518\pi\)
\(24\) 0 0
\(25\) 4.38457 2.40323i 0.876915 0.480646i
\(26\) 0 0
\(27\) −2.03768 + 4.91941i −0.392153 + 0.946740i
\(28\) 0 0
\(29\) −3.07658 1.27436i −0.571307 0.236643i 0.0782784 0.996932i \(-0.475058\pi\)
−0.649586 + 0.760288i \(0.725058\pi\)
\(30\) 0 0
\(31\) 0.621917i 0.111700i 0.998439 + 0.0558498i \(0.0177868\pi\)
−0.998439 + 0.0558498i \(0.982213\pi\)
\(32\) 0 0
\(33\) 3.05088 0.531090
\(34\) 0 0
\(35\) 2.91564 + 3.88838i 0.492833 + 0.657257i
\(36\) 0 0
\(37\) −5.98810 + 5.98810i −0.984438 + 0.984438i −0.999881 0.0154426i \(-0.995084\pi\)
0.0154426 + 0.999881i \(0.495084\pi\)
\(38\) 0 0
\(39\) −4.52794 + 4.52794i −0.725051 + 0.725051i
\(40\) 0 0
\(41\) −6.40010 0.196764i −0.999528 0.0307294i
\(42\) 0 0
\(43\) 1.18311 0.180422 0.0902110 0.995923i \(-0.471246\pi\)
0.0902110 + 0.995923i \(0.471246\pi\)
\(44\) 0 0
\(45\) 1.97794 3.33970i 0.294854 0.497853i
\(46\) 0 0
\(47\) −2.97225 1.23115i −0.433548 0.179581i 0.155226 0.987879i \(-0.450389\pi\)
−0.588774 + 0.808298i \(0.700389\pi\)
\(48\) 0 0
\(49\) 1.60931 1.60931i 0.229901 0.229901i
\(50\) 0 0
\(51\) −6.54513 −0.916502
\(52\) 0 0
\(53\) 3.00715 + 7.25990i 0.413064 + 0.997224i 0.984310 + 0.176445i \(0.0564599\pi\)
−0.571247 + 0.820778i \(0.693540\pi\)
\(54\) 0 0
\(55\) −6.00644 0.858714i −0.809908 0.115789i
\(56\) 0 0
\(57\) 1.63373 1.63373i 0.216393 0.216393i
\(58\) 0 0
\(59\) 8.81470i 1.14758i −0.819004 0.573788i \(-0.805473\pi\)
0.819004 0.573788i \(-0.194527\pi\)
\(60\) 0 0
\(61\) 1.18680 1.18680i 0.151954 0.151954i −0.627036 0.778990i \(-0.715732\pi\)
0.778990 + 0.627036i \(0.215732\pi\)
\(62\) 0 0
\(63\) 3.48567 + 1.44381i 0.439154 + 0.181903i
\(64\) 0 0
\(65\) 10.1889 7.63995i 1.26377 0.947620i
\(66\) 0 0
\(67\) −4.71010 1.95099i −0.575430 0.238351i 0.0759385 0.997113i \(-0.475805\pi\)
−0.651368 + 0.758762i \(0.725805\pi\)
\(68\) 0 0
\(69\) −2.02804 + 4.89613i −0.244148 + 0.589424i
\(70\) 0 0
\(71\) −3.30477 + 7.97843i −0.392204 + 0.946865i 0.597255 + 0.802052i \(0.296258\pi\)
−0.989459 + 0.144813i \(0.953742\pi\)
\(72\) 0 0
\(73\) 7.49459 0.877176 0.438588 0.898688i \(-0.355479\pi\)
0.438588 + 0.898688i \(0.355479\pi\)
\(74\) 0 0
\(75\) 3.52048 4.38292i 0.406510 0.506096i
\(76\) 0 0
\(77\) 5.89773i 0.672109i
\(78\) 0 0
\(79\) 2.70912 6.54039i 0.304799 0.735851i −0.695058 0.718954i \(-0.744621\pi\)
0.999857 0.0168971i \(-0.00537876\pi\)
\(80\) 0 0
\(81\) 0.779283i 0.0865870i
\(82\) 0 0
\(83\) −3.55448 3.55448i −0.390154 0.390154i 0.484588 0.874742i \(-0.338970\pi\)
−0.874742 + 0.484588i \(0.838970\pi\)
\(84\) 0 0
\(85\) 12.8858 + 1.84222i 1.39766 + 0.199817i
\(86\) 0 0
\(87\) −3.74415 −0.401415
\(88\) 0 0
\(89\) 5.23829 + 2.16977i 0.555258 + 0.229995i 0.642625 0.766181i \(-0.277845\pi\)
−0.0873672 + 0.996176i \(0.527845\pi\)
\(90\) 0 0
\(91\) 8.75307 + 8.75307i 0.917571 + 0.917571i
\(92\) 0 0
\(93\) 0.267591 + 0.646022i 0.0277479 + 0.0669894i
\(94\) 0 0
\(95\) −3.67625 + 2.75658i −0.377175 + 0.282819i
\(96\) 0 0
\(97\) −0.940462 + 2.27048i −0.0954895 + 0.230532i −0.964406 0.264427i \(-0.914817\pi\)
0.868916 + 0.494959i \(0.164817\pi\)
\(98\) 0 0
\(99\) −4.35164 + 1.80251i −0.437356 + 0.181159i
\(100\) 0 0
\(101\) −1.19361 2.88164i −0.118769 0.286734i 0.853303 0.521415i \(-0.174596\pi\)
−0.972073 + 0.234681i \(0.924596\pi\)
\(102\) 0 0
\(103\) 12.0325i 1.18559i −0.805352 0.592797i \(-0.798024\pi\)
0.805352 0.592797i \(-0.201976\pi\)
\(104\) 0 0
\(105\) 4.70170 + 2.78459i 0.458839 + 0.271748i
\(106\) 0 0
\(107\) 8.01953 + 8.01953i 0.775277 + 0.775277i 0.979024 0.203746i \(-0.0653118\pi\)
−0.203746 + 0.979024i \(0.565312\pi\)
\(108\) 0 0
\(109\) 1.36093 + 3.28558i 0.130353 + 0.314701i 0.975558 0.219742i \(-0.0705215\pi\)
−0.845205 + 0.534443i \(0.820521\pi\)
\(110\) 0 0
\(111\) −3.64371 + 8.79669i −0.345845 + 0.834945i
\(112\) 0 0
\(113\) −8.29575 + 8.29575i −0.780398 + 0.780398i −0.979898 0.199500i \(-0.936068\pi\)
0.199500 + 0.979898i \(0.436068\pi\)
\(114\) 0 0
\(115\) 5.37081 9.06846i 0.500830 0.845638i
\(116\) 0 0
\(117\) 3.78327 9.13363i 0.349764 0.844404i
\(118\) 0 0
\(119\) 12.6526i 1.15986i
\(120\) 0 0
\(121\) −2.57179 2.57179i −0.233799 0.233799i
\(122\) 0 0
\(123\) −6.73282 + 2.54937i −0.607078 + 0.229869i
\(124\) 0 0
\(125\) −8.16461 + 7.63801i −0.730264 + 0.683165i
\(126\) 0 0
\(127\) −10.3049 10.3049i −0.914413 0.914413i 0.0822030 0.996616i \(-0.473804\pi\)
−0.996616 + 0.0822030i \(0.973804\pi\)
\(128\) 0 0
\(129\) 1.22896 0.509053i 0.108204 0.0448196i
\(130\) 0 0
\(131\) 10.3813 + 10.3813i 0.907018 + 0.907018i 0.996031 0.0890122i \(-0.0283710\pi\)
−0.0890122 + 0.996031i \(0.528371\pi\)
\(132\) 0 0
\(133\) −3.15820 3.15820i −0.273851 0.273851i
\(134\) 0 0
\(135\) 1.68508 11.7866i 0.145028 1.01443i
\(136\) 0 0
\(137\) −13.2489 5.48788i −1.13193 0.468861i −0.263495 0.964661i \(-0.584875\pi\)
−0.868437 + 0.495799i \(0.834875\pi\)
\(138\) 0 0
\(139\) 20.4283i 1.73270i −0.499434 0.866352i \(-0.666459\pi\)
0.499434 0.866352i \(-0.333541\pi\)
\(140\) 0 0
\(141\) −3.61718 −0.304622
\(142\) 0 0
\(143\) −15.4540 −1.29233
\(144\) 0 0
\(145\) 7.37132 + 1.05384i 0.612154 + 0.0875170i
\(146\) 0 0
\(147\) 0.979248 2.36411i 0.0807670 0.194989i
\(148\) 0 0
\(149\) 11.1470 4.61725i 0.913200 0.378260i 0.123919 0.992292i \(-0.460454\pi\)
0.789281 + 0.614032i \(0.210454\pi\)
\(150\) 0 0
\(151\) 11.3515 + 4.70196i 0.923775 + 0.382640i 0.793314 0.608813i \(-0.208354\pi\)
0.130461 + 0.991453i \(0.458354\pi\)
\(152\) 0 0
\(153\) 9.33568 3.86697i 0.754745 0.312626i
\(154\) 0 0
\(155\) −0.344990 1.34718i −0.0277102 0.108208i
\(156\) 0 0
\(157\) 14.0446 5.81748i 1.12088 0.464285i 0.256211 0.966621i \(-0.417526\pi\)
0.864673 + 0.502335i \(0.167526\pi\)
\(158\) 0 0
\(159\) 6.24741 + 6.24741i 0.495451 + 0.495451i
\(160\) 0 0
\(161\) 9.46483 + 3.92046i 0.745933 + 0.308975i
\(162\) 0 0
\(163\) −8.96554 + 8.96554i −0.702235 + 0.702235i −0.964890 0.262654i \(-0.915402\pi\)
0.262654 + 0.964890i \(0.415402\pi\)
\(164\) 0 0
\(165\) −6.60872 + 1.69238i −0.514488 + 0.131752i
\(166\) 0 0
\(167\) 3.96088 + 9.56242i 0.306502 + 0.739962i 0.999813 + 0.0193234i \(0.00615123\pi\)
−0.693311 + 0.720638i \(0.743849\pi\)
\(168\) 0 0
\(169\) 13.7436 13.7436i 1.05720 1.05720i
\(170\) 0 0
\(171\) −1.36504 + 3.29551i −0.104388 + 0.252014i
\(172\) 0 0
\(173\) 12.6879i 0.964647i 0.875993 + 0.482323i \(0.160207\pi\)
−0.875993 + 0.482323i \(0.839793\pi\)
\(174\) 0 0
\(175\) −8.47273 6.80553i −0.640478 0.514450i
\(176\) 0 0
\(177\) −3.79269 9.15635i −0.285076 0.688234i
\(178\) 0 0
\(179\) −1.39329 3.36369i −0.104139 0.251414i 0.863218 0.504832i \(-0.168445\pi\)
−0.967357 + 0.253417i \(0.918445\pi\)
\(180\) 0 0
\(181\) −1.90455 4.59800i −0.141564 0.341767i 0.837156 0.546964i \(-0.184216\pi\)
−0.978721 + 0.205197i \(0.934216\pi\)
\(182\) 0 0
\(183\) 0.722156 1.74344i 0.0533833 0.128879i
\(184\) 0 0
\(185\) 9.64953 16.2930i 0.709447 1.19788i
\(186\) 0 0
\(187\) −11.1694 11.1694i −0.816787 0.816787i
\(188\) 0 0
\(189\) 11.5733 0.841833
\(190\) 0 0
\(191\) −25.1815 + 10.4305i −1.82207 + 0.754725i −0.847441 + 0.530889i \(0.821858\pi\)
−0.974627 + 0.223836i \(0.928142\pi\)
\(192\) 0 0
\(193\) 12.4676 5.16424i 0.897436 0.371730i 0.114202 0.993458i \(-0.463569\pi\)
0.783234 + 0.621728i \(0.213569\pi\)
\(194\) 0 0
\(195\) 7.29654 12.3200i 0.522516 0.882255i
\(196\) 0 0
\(197\) 4.11316i 0.293050i −0.989207 0.146525i \(-0.953191\pi\)
0.989207 0.146525i \(-0.0468089\pi\)
\(198\) 0 0
\(199\) 5.74541 + 13.8706i 0.407281 + 0.983263i 0.985850 + 0.167630i \(0.0536113\pi\)
−0.578569 + 0.815633i \(0.696389\pi\)
\(200\) 0 0
\(201\) −5.73210 −0.404311
\(202\) 0 0
\(203\) 7.23791i 0.508001i
\(204\) 0 0
\(205\) 13.9728 3.12404i 0.975906 0.218192i
\(206\) 0 0
\(207\) 8.18182i 0.568676i
\(208\) 0 0
\(209\) 5.57598 0.385698
\(210\) 0 0
\(211\) 5.40225 + 13.0422i 0.371906 + 0.897861i 0.993427 + 0.114464i \(0.0365149\pi\)
−0.621521 + 0.783397i \(0.713485\pi\)
\(212\) 0 0
\(213\) 9.70960i 0.665291i
\(214\) 0 0
\(215\) −2.56281 + 0.656292i −0.174782 + 0.0447587i
\(216\) 0 0
\(217\) 1.24884 0.517287i 0.0847769 0.0351158i
\(218\) 0 0
\(219\) 7.78508 3.22469i 0.526067 0.217904i
\(220\) 0 0
\(221\) 33.1539 2.23017
\(222\) 0 0
\(223\) −6.45521 6.45521i −0.432273 0.432273i 0.457128 0.889401i \(-0.348878\pi\)
−0.889401 + 0.457128i \(0.848878\pi\)
\(224\) 0 0
\(225\) −2.43196 + 8.33156i −0.162131 + 0.555437i
\(226\) 0 0
\(227\) 4.34434 10.4882i 0.288344 0.696125i −0.711635 0.702549i \(-0.752045\pi\)
0.999979 + 0.00642463i \(0.00204504\pi\)
\(228\) 0 0
\(229\) −7.40283 17.8720i −0.489192 1.18102i −0.955127 0.296196i \(-0.904282\pi\)
0.465935 0.884819i \(-0.345718\pi\)
\(230\) 0 0
\(231\) −2.53761 6.12632i −0.166962 0.403083i
\(232\) 0 0
\(233\) 6.10950 + 14.7496i 0.400246 + 0.966281i 0.987606 + 0.156954i \(0.0501675\pi\)
−0.587359 + 0.809326i \(0.699832\pi\)
\(234\) 0 0
\(235\) 7.12135 + 1.01811i 0.464545 + 0.0664140i
\(236\) 0 0
\(237\) 7.95953i 0.517027i
\(238\) 0 0
\(239\) −9.91259 + 23.9311i −0.641192 + 1.54797i 0.183881 + 0.982948i \(0.441134\pi\)
−0.825073 + 0.565026i \(0.808866\pi\)
\(240\) 0 0
\(241\) −6.89778 + 6.89778i −0.444325 + 0.444325i −0.893463 0.449137i \(-0.851731\pi\)
0.449137 + 0.893463i \(0.351731\pi\)
\(242\) 0 0
\(243\) −5.77775 13.9487i −0.370643 0.894812i
\(244\) 0 0
\(245\) −2.59331 + 4.37874i −0.165681 + 0.279747i
\(246\) 0 0
\(247\) −8.27554 + 8.27554i −0.526560 + 0.526560i
\(248\) 0 0
\(249\) −5.22162 2.16287i −0.330907 0.137066i
\(250\) 0 0
\(251\) 11.0694 + 11.0694i 0.698695 + 0.698695i 0.964129 0.265434i \(-0.0855153\pi\)
−0.265434 + 0.964129i \(0.585515\pi\)
\(252\) 0 0
\(253\) −11.8162 + 4.89444i −0.742880 + 0.307711i
\(254\) 0 0
\(255\) 14.1779 3.63071i 0.887852 0.227364i
\(256\) 0 0
\(257\) 18.4730 7.65178i 1.15232 0.477305i 0.277007 0.960868i \(-0.410658\pi\)
0.875310 + 0.483563i \(0.160658\pi\)
\(258\) 0 0
\(259\) 17.0051 + 7.04374i 1.05665 + 0.437677i
\(260\) 0 0
\(261\) 5.34049 2.21210i 0.330568 0.136926i
\(262\) 0 0
\(263\) −6.92505 + 16.7186i −0.427017 + 1.03091i 0.553212 + 0.833041i \(0.313402\pi\)
−0.980228 + 0.197869i \(0.936598\pi\)
\(264\) 0 0
\(265\) −10.5412 14.0580i −0.647541 0.863578i
\(266\) 0 0
\(267\) 6.37491 0.390138
\(268\) 0 0
\(269\) 1.77062 0.107957 0.0539784 0.998542i \(-0.482810\pi\)
0.0539784 + 0.998542i \(0.482810\pi\)
\(270\) 0 0
\(271\) 30.8588i 1.87454i −0.348603 0.937270i \(-0.613344\pi\)
0.348603 0.937270i \(-0.386656\pi\)
\(272\) 0 0
\(273\) 12.8585 + 5.32617i 0.778232 + 0.322354i
\(274\) 0 0
\(275\) 13.4873 1.47177i 0.813315 0.0887510i
\(276\) 0 0
\(277\) 6.82061 + 6.82061i 0.409811 + 0.409811i 0.881673 0.471862i \(-0.156418\pi\)
−0.471862 + 0.881673i \(0.656418\pi\)
\(278\) 0 0
\(279\) −0.763360 0.763360i −0.0457012 0.0457012i
\(280\) 0 0
\(281\) 0.132254 0.0547814i 0.00788961 0.00326798i −0.378735 0.925505i \(-0.623641\pi\)
0.386625 + 0.922237i \(0.373641\pi\)
\(282\) 0 0
\(283\) −0.213132 0.213132i −0.0126694 0.0126694i 0.700744 0.713413i \(-0.252852\pi\)
−0.713413 + 0.700744i \(0.752852\pi\)
\(284\) 0 0
\(285\) −2.63267 + 4.44519i −0.155946 + 0.263311i
\(286\) 0 0
\(287\) 4.92825 + 13.0154i 0.290905 + 0.768274i
\(288\) 0 0
\(289\) 11.9412 + 11.9412i 0.702422 + 0.702422i
\(290\) 0 0
\(291\) 2.76313i 0.161977i
\(292\) 0 0
\(293\) 9.69488 23.4055i 0.566381 1.36737i −0.338204 0.941073i \(-0.609819\pi\)
0.904585 0.426292i \(-0.140181\pi\)
\(294\) 0 0
\(295\) 4.88969 + 19.0941i 0.284689 + 1.11170i
\(296\) 0 0
\(297\) −10.2166 + 10.2166i −0.592829 + 0.592829i
\(298\) 0 0
\(299\) 10.2729 24.8010i 0.594098 1.43428i
\(300\) 0 0
\(301\) −0.984063 2.37574i −0.0567204 0.136935i
\(302\) 0 0
\(303\) −2.47976 2.47976i −0.142458 0.142458i
\(304\) 0 0
\(305\) −1.91246 + 3.22914i −0.109507 + 0.184900i
\(306\) 0 0
\(307\) 17.2768i 0.986040i 0.870018 + 0.493020i \(0.164107\pi\)
−0.870018 + 0.493020i \(0.835893\pi\)
\(308\) 0 0
\(309\) −5.17718 12.4988i −0.294520 0.711034i
\(310\) 0 0
\(311\) −9.32071 + 3.86076i −0.528529 + 0.218924i −0.630959 0.775816i \(-0.717338\pi\)
0.102430 + 0.994740i \(0.467338\pi\)
\(312\) 0 0
\(313\) −2.57322 + 6.21231i −0.145447 + 0.351140i −0.979767 0.200140i \(-0.935860\pi\)
0.834320 + 0.551280i \(0.185860\pi\)
\(314\) 0 0
\(315\) −8.35147 1.19397i −0.470552 0.0672727i
\(316\) 0 0
\(317\) −13.3110 32.1356i −0.747621 1.80492i −0.571602 0.820531i \(-0.693678\pi\)
−0.176020 0.984387i \(-0.556322\pi\)
\(318\) 0 0
\(319\) −6.38946 6.38946i −0.357741 0.357741i
\(320\) 0 0
\(321\) 11.7809 + 4.87981i 0.657546 + 0.272365i
\(322\) 0 0
\(323\) −11.9623 −0.665600
\(324\) 0 0
\(325\) −17.8328 + 22.2014i −0.989184 + 1.23151i
\(326\) 0 0
\(327\) 2.82736 + 2.82736i 0.156353 + 0.156353i
\(328\) 0 0
\(329\) 6.99246i 0.385507i
\(330\) 0 0
\(331\) −5.20365 + 12.5627i −0.286018 + 0.690509i −0.999953 0.00970317i \(-0.996911\pi\)
0.713935 + 0.700212i \(0.246911\pi\)
\(332\) 0 0
\(333\) 14.7000i 0.805553i
\(334\) 0 0
\(335\) 11.2851 + 1.61338i 0.616572 + 0.0881485i
\(336\) 0 0
\(337\) −34.6505 −1.88753 −0.943766 0.330614i \(-0.892744\pi\)
−0.943766 + 0.330614i \(0.892744\pi\)
\(338\) 0 0
\(339\) −5.04789 + 12.1867i −0.274164 + 0.661889i
\(340\) 0 0
\(341\) −0.645800 + 1.55910i −0.0349720 + 0.0844299i
\(342\) 0 0
\(343\) −18.6265 7.71534i −1.00574 0.416589i
\(344\) 0 0
\(345\) 1.67711 11.7308i 0.0902923 0.631567i
\(346\) 0 0
\(347\) −11.9483 4.94914i −0.641418 0.265684i 0.0381777 0.999271i \(-0.487845\pi\)
−0.679596 + 0.733587i \(0.737845\pi\)
\(348\) 0 0
\(349\) −19.4416 + 19.4416i −1.04069 + 1.04069i −0.0415505 + 0.999136i \(0.513230\pi\)
−0.999136 + 0.0415505i \(0.986770\pi\)
\(350\) 0 0
\(351\) 30.3259i 1.61868i
\(352\) 0 0
\(353\) −11.7595 + 11.7595i −0.625894 + 0.625894i −0.947032 0.321138i \(-0.895935\pi\)
0.321138 + 0.947032i \(0.395935\pi\)
\(354\) 0 0
\(355\) 2.73291 19.1158i 0.145048 1.01456i
\(356\) 0 0
\(357\) 5.44399 + 13.1430i 0.288127 + 0.695599i
\(358\) 0 0
\(359\) −23.6992 −1.25080 −0.625398 0.780306i \(-0.715063\pi\)
−0.625398 + 0.780306i \(0.715063\pi\)
\(360\) 0 0
\(361\) −10.4491 + 10.4491i −0.549954 + 0.549954i
\(362\) 0 0
\(363\) −3.77803 1.56491i −0.198295 0.0821365i
\(364\) 0 0
\(365\) −16.2346 + 4.15740i −0.849755 + 0.217608i
\(366\) 0 0
\(367\) −33.0947 −1.72753 −0.863764 0.503896i \(-0.831899\pi\)
−0.863764 + 0.503896i \(0.831899\pi\)
\(368\) 0 0
\(369\) 8.09719 7.61416i 0.421523 0.396378i
\(370\) 0 0
\(371\) 12.0770 12.0770i 0.627007 0.627007i
\(372\) 0 0
\(373\) 2.30216 2.30216i 0.119201 0.119201i −0.644990 0.764191i \(-0.723138\pi\)
0.764191 + 0.644990i \(0.223138\pi\)
\(374\) 0 0
\(375\) −5.19467 + 11.4470i −0.268251 + 0.591122i
\(376\) 0 0
\(377\) 18.9657 0.976785
\(378\) 0 0
\(379\) 11.6146i 0.596603i 0.954472 + 0.298302i \(0.0964201\pi\)
−0.954472 + 0.298302i \(0.903580\pi\)
\(380\) 0 0
\(381\) −15.1382 6.27044i −0.775553 0.321245i
\(382\) 0 0
\(383\) 5.85484 14.1348i 0.299168 0.722256i −0.700792 0.713365i \(-0.747170\pi\)
0.999960 0.00889041i \(-0.00282994\pi\)
\(384\) 0 0
\(385\) 3.27159 + 12.7755i 0.166735 + 0.651099i
\(386\) 0 0
\(387\) −1.45218 + 1.45218i −0.0738185 + 0.0738185i
\(388\) 0 0
\(389\) −3.48627 3.48627i −0.176761 0.176761i 0.613181 0.789942i \(-0.289889\pi\)
−0.789942 + 0.613181i \(0.789889\pi\)
\(390\) 0 0
\(391\) 25.3497 10.5002i 1.28199 0.531017i
\(392\) 0 0
\(393\) 15.2504 + 6.31693i 0.769282 + 0.318647i
\(394\) 0 0
\(395\) −2.24032 + 15.6704i −0.112723 + 0.788462i
\(396\) 0 0
\(397\) 1.20155 0.497697i 0.0603039 0.0249787i −0.352328 0.935877i \(-0.614610\pi\)
0.412632 + 0.910898i \(0.364610\pi\)
\(398\) 0 0
\(399\) −4.63948 1.92174i −0.232265 0.0962072i
\(400\) 0 0
\(401\) −19.2845 + 19.2845i −0.963020 + 0.963020i −0.999340 0.0363204i \(-0.988436\pi\)
0.0363204 + 0.999340i \(0.488436\pi\)
\(402\) 0 0
\(403\) −1.35547 3.27238i −0.0675205 0.163009i
\(404\) 0 0
\(405\) −0.432283 1.68806i −0.0214803 0.0838803i
\(406\) 0 0
\(407\) −21.2298 + 8.79366i −1.05232 + 0.435885i
\(408\) 0 0
\(409\) −26.8639 −1.32833 −0.664166 0.747585i \(-0.731213\pi\)
−0.664166 + 0.747585i \(0.731213\pi\)
\(410\) 0 0
\(411\) −16.1237 −0.795323
\(412\) 0 0
\(413\) −17.7004 + 7.33174i −0.870979 + 0.360771i
\(414\) 0 0
\(415\) 9.67133 + 5.72786i 0.474747 + 0.281169i
\(416\) 0 0
\(417\) −8.78964 21.2201i −0.430430 1.03915i
\(418\) 0 0
\(419\) −11.5058 + 11.5058i −0.562096 + 0.562096i −0.929903 0.367806i \(-0.880109\pi\)
0.367806 + 0.929903i \(0.380109\pi\)
\(420\) 0 0
\(421\) 9.81749 + 4.06654i 0.478475 + 0.198191i 0.608868 0.793272i \(-0.291624\pi\)
−0.130393 + 0.991462i \(0.541624\pi\)
\(422\) 0 0
\(423\) 5.15938 2.13709i 0.250858 0.103909i
\(424\) 0 0
\(425\) −28.9347 + 3.15742i −1.40354 + 0.153158i
\(426\) 0 0
\(427\) −3.37028 1.39602i −0.163099 0.0675580i
\(428\) 0 0
\(429\) −16.0530 + 6.64938i −0.775047 + 0.321035i
\(430\) 0 0
\(431\) 24.4412 + 24.4412i 1.17729 + 1.17729i 0.980432 + 0.196859i \(0.0630740\pi\)
0.196859 + 0.980432i \(0.436926\pi\)
\(432\) 0 0
\(433\) −14.8364 + 14.8364i −0.712990 + 0.712990i −0.967160 0.254170i \(-0.918198\pi\)
0.254170 + 0.967160i \(0.418198\pi\)
\(434\) 0 0
\(435\) 8.11046 2.07695i 0.388867 0.0995822i
\(436\) 0 0
\(437\) −3.70658 + 8.94847i −0.177310 + 0.428063i
\(438\) 0 0
\(439\) 38.4633 + 15.9320i 1.83575 + 0.760394i 0.961429 + 0.275053i \(0.0886954\pi\)
0.874325 + 0.485341i \(0.161305\pi\)
\(440\) 0 0
\(441\) 3.95062i 0.188125i
\(442\) 0 0
\(443\) −6.02751 −0.286376 −0.143188 0.989696i \(-0.545735\pi\)
−0.143188 + 0.989696i \(0.545735\pi\)
\(444\) 0 0
\(445\) −12.5506 1.79431i −0.594957 0.0850584i
\(446\) 0 0
\(447\) 9.59242 9.59242i 0.453706 0.453706i
\(448\) 0 0
\(449\) 8.30143 8.30143i 0.391769 0.391769i −0.483549 0.875317i \(-0.660652\pi\)
0.875317 + 0.483549i \(0.160652\pi\)
\(450\) 0 0
\(451\) −15.8402 7.13915i −0.745888 0.336169i
\(452\) 0 0
\(453\) 13.8146 0.649067
\(454\) 0 0
\(455\) −23.8161 14.1051i −1.11652 0.661259i
\(456\) 0 0
\(457\) 27.2373 + 11.2820i 1.27411 + 0.527752i 0.914210 0.405241i \(-0.132812\pi\)
0.359895 + 0.932993i \(0.382812\pi\)
\(458\) 0 0
\(459\) 21.9180 21.9180i 1.02305 1.02305i
\(460\) 0 0
\(461\) −20.5490 −0.957062 −0.478531 0.878071i \(-0.658831\pi\)
−0.478531 + 0.878071i \(0.658831\pi\)
\(462\) 0 0
\(463\) 7.25850 + 17.5236i 0.337331 + 0.814389i 0.997970 + 0.0636854i \(0.0202854\pi\)
−0.660639 + 0.750704i \(0.729715\pi\)
\(464\) 0 0
\(465\) −0.938009 1.25096i −0.0434991 0.0580117i
\(466\) 0 0
\(467\) −14.9200 + 14.9200i −0.690416 + 0.690416i −0.962323 0.271908i \(-0.912345\pi\)
0.271908 + 0.962323i \(0.412345\pi\)
\(468\) 0 0
\(469\) 11.0809i 0.511667i
\(470\) 0 0
\(471\) 12.0859 12.0859i 0.556890 0.556890i
\(472\) 0 0
\(473\) 2.96596 + 1.22854i 0.136375 + 0.0564883i
\(474\) 0 0
\(475\) 6.43425 8.01050i 0.295224 0.367547i
\(476\) 0 0
\(477\) −12.6021 5.21995i −0.577010 0.239005i
\(478\) 0 0
\(479\) −14.3985 + 34.7611i −0.657885 + 1.58828i 0.143179 + 0.989697i \(0.454268\pi\)
−0.801064 + 0.598578i \(0.795732\pi\)
\(480\) 0 0
\(481\) 18.4570 44.5590i 0.841565 2.03172i
\(482\) 0 0
\(483\) 11.5185 0.524111
\(484\) 0 0
\(485\) 0.777722 5.43993i 0.0353145 0.247014i
\(486\) 0 0
\(487\) 37.8251i 1.71402i −0.515299 0.857011i \(-0.672319\pi\)
0.515299 0.857011i \(-0.327681\pi\)
\(488\) 0 0
\(489\) −5.45545 + 13.1706i −0.246704 + 0.595596i
\(490\) 0 0
\(491\) 8.37581i 0.377995i 0.981978 + 0.188997i \(0.0605238\pi\)
−0.981978 + 0.188997i \(0.939476\pi\)
\(492\) 0 0
\(493\) 13.7075 + 13.7075i 0.617354 + 0.617354i
\(494\) 0 0
\(495\) 8.42650 6.31847i 0.378743 0.283994i
\(496\) 0 0
\(497\) 18.7699 0.841944
\(498\) 0 0
\(499\) 33.6886 + 13.9543i 1.50811 + 0.624679i 0.975167 0.221472i \(-0.0710862\pi\)
0.532942 + 0.846151i \(0.321086\pi\)
\(500\) 0 0
\(501\) 8.22881 + 8.22881i 0.367636 + 0.367636i
\(502\) 0 0
\(503\) −4.86280 11.7398i −0.216821 0.523453i 0.777621 0.628733i \(-0.216426\pi\)
−0.994443 + 0.105280i \(0.966426\pi\)
\(504\) 0 0
\(505\) 4.18407 + 5.58000i 0.186189 + 0.248307i
\(506\) 0 0
\(507\) 8.36285 20.1897i 0.371407 0.896656i
\(508\) 0 0
\(509\) −28.7402 + 11.9046i −1.27389 + 0.527661i −0.914144 0.405390i \(-0.867136\pi\)
−0.359743 + 0.933052i \(0.617136\pi\)
\(510\) 0 0
\(511\) −6.23372 15.0495i −0.275764 0.665752i
\(512\) 0 0
\(513\) 10.9419i 0.483097i
\(514\) 0 0
\(515\) 6.67464 + 26.0643i 0.294120 + 1.14853i
\(516\) 0 0
\(517\) −6.17279 6.17279i −0.271479 0.271479i
\(518\) 0 0
\(519\) 5.45922 + 13.1797i 0.239633 + 0.578526i
\(520\) 0 0
\(521\) −13.0518 + 31.5099i −0.571811 + 1.38047i 0.328201 + 0.944608i \(0.393558\pi\)
−0.900012 + 0.435866i \(0.856442\pi\)
\(522\) 0 0
\(523\) 10.0376 10.0376i 0.438912 0.438912i −0.452734 0.891646i \(-0.649551\pi\)
0.891646 + 0.452734i \(0.149551\pi\)
\(524\) 0 0
\(525\) −11.7293 3.42376i −0.511910 0.149425i
\(526\) 0 0
\(527\) 1.38545 3.34478i 0.0603512 0.145701i
\(528\) 0 0
\(529\) 0.783497i 0.0340651i
\(530\) 0 0
\(531\) 10.8194 + 10.8194i 0.469524 + 0.469524i
\(532\) 0 0
\(533\) 34.1047 12.9137i 1.47724 0.559353i
\(534\) 0 0
\(535\) −21.8202 12.9231i −0.943372 0.558713i
\(536\) 0 0
\(537\) −2.89458 2.89458i −0.124910 0.124910i
\(538\) 0 0
\(539\) 5.70551 2.36330i 0.245754 0.101795i
\(540\) 0 0
\(541\) −23.6898 23.6898i −1.01850 1.01850i −0.999826 0.0186788i \(-0.994054\pi\)
−0.0186788 0.999826i \(-0.505946\pi\)
\(542\) 0 0
\(543\) −3.95674 3.95674i −0.169800 0.169800i
\(544\) 0 0
\(545\) −4.77058 6.36218i −0.204349 0.272526i
\(546\) 0 0
\(547\) 7.79536 + 3.22894i 0.333306 + 0.138060i 0.543059 0.839695i \(-0.317266\pi\)
−0.209753 + 0.977754i \(0.567266\pi\)
\(548\) 0 0
\(549\) 2.91342i 0.124342i
\(550\) 0 0
\(551\) −6.84304 −0.291523
\(552\) 0 0
\(553\) −15.3868 −0.654312
\(554\) 0 0
\(555\) 3.01319 21.0763i 0.127903 0.894641i
\(556\) 0 0
\(557\) −4.97936 + 12.0212i −0.210982 + 0.509356i −0.993575 0.113178i \(-0.963897\pi\)
0.782592 + 0.622534i \(0.213897\pi\)
\(558\) 0 0
\(559\) −6.22523 + 2.57857i −0.263299 + 0.109062i
\(560\) 0 0
\(561\) −16.4081 6.79647i −0.692752 0.286947i
\(562\) 0 0
\(563\) 2.10267 0.870954i 0.0886170 0.0367063i −0.337935 0.941170i \(-0.609728\pi\)
0.426552 + 0.904463i \(0.359728\pi\)
\(564\) 0 0
\(565\) 13.3682 22.5718i 0.562403 0.949603i
\(566\) 0 0
\(567\) 1.56484 0.648178i 0.0657171 0.0272209i
\(568\) 0 0
\(569\) −31.4978 31.4978i −1.32046 1.32046i −0.913405 0.407052i \(-0.866557\pi\)
−0.407052 0.913405i \(-0.633443\pi\)
\(570\) 0 0
\(571\) −11.1776 4.62991i −0.467768 0.193756i 0.136334 0.990663i \(-0.456468\pi\)
−0.604102 + 0.796907i \(0.706468\pi\)
\(572\) 0 0
\(573\) −21.6696 + 21.6696i −0.905260 + 0.905260i
\(574\) 0 0
\(575\) −6.60362 + 22.6231i −0.275390 + 0.943449i
\(576\) 0 0
\(577\) 14.2781 + 34.4704i 0.594405 + 1.43502i 0.879209 + 0.476436i \(0.158071\pi\)
−0.284804 + 0.958586i \(0.591929\pi\)
\(578\) 0 0
\(579\) 10.7288 10.7288i 0.445874 0.445874i
\(580\) 0 0
\(581\) −4.18109 + 10.0940i −0.173461 + 0.418772i
\(582\) 0 0
\(583\) 21.3226i 0.883093i
\(584\) 0 0
\(585\) −3.12861 + 21.8836i −0.129352 + 0.904777i
\(586\) 0 0
\(587\) −2.69862 6.51505i −0.111384 0.268905i 0.858352 0.513062i \(-0.171489\pi\)
−0.969736 + 0.244157i \(0.921489\pi\)
\(588\) 0 0
\(589\) 0.489066 + 1.18071i 0.0201516 + 0.0486503i
\(590\) 0 0
\(591\) −1.76976 4.27258i −0.0727982 0.175750i
\(592\) 0 0
\(593\) 10.0274 24.2082i 0.411774 0.994111i −0.572887 0.819634i \(-0.694177\pi\)
0.984661 0.174477i \(-0.0558234\pi\)
\(594\) 0 0
\(595\) −7.01862 27.4076i −0.287735 1.12360i
\(596\) 0 0
\(597\) 11.9362 + 11.9362i 0.488516 + 0.488516i
\(598\) 0 0
\(599\) −35.9384 −1.46840 −0.734201 0.678932i \(-0.762443\pi\)
−0.734201 + 0.678932i \(0.762443\pi\)
\(600\) 0 0
\(601\) −22.1706 + 9.18338i −0.904360 + 0.374598i −0.785895 0.618360i \(-0.787797\pi\)
−0.118465 + 0.992958i \(0.537797\pi\)
\(602\) 0 0
\(603\) 8.17601 3.38662i 0.332953 0.137914i
\(604\) 0 0
\(605\) 6.99755 + 4.14431i 0.284491 + 0.168490i
\(606\) 0 0
\(607\) 40.7307i 1.65321i 0.562785 + 0.826603i \(0.309730\pi\)
−0.562785 + 0.826603i \(0.690270\pi\)
\(608\) 0 0
\(609\) 3.11424 + 7.51844i 0.126195 + 0.304663i
\(610\) 0 0
\(611\) 18.3226 0.741252
\(612\) 0 0
\(613\) 25.8321i 1.04335i −0.853145 0.521674i \(-0.825308\pi\)
0.853145 0.521674i \(-0.174692\pi\)
\(614\) 0 0
\(615\) 13.1702 9.25719i 0.531076 0.373286i
\(616\) 0 0
\(617\) 0.825032i 0.0332145i −0.999862 0.0166073i \(-0.994713\pi\)
0.999862 0.0166073i \(-0.00528650\pi\)
\(618\) 0 0
\(619\) 21.3405 0.857746 0.428873 0.903365i \(-0.358911\pi\)
0.428873 + 0.903365i \(0.358911\pi\)
\(620\) 0 0
\(621\) −9.60450 23.1873i −0.385415 0.930475i
\(622\) 0 0
\(623\) 12.3235i 0.493730i
\(624\) 0 0
\(625\) 13.4490 21.0743i 0.537958 0.842971i
\(626\) 0 0
\(627\) 5.79210 2.39917i 0.231314 0.0958134i
\(628\) 0 0
\(629\) 45.5448 18.8653i 1.81599 0.752207i
\(630\) 0 0
\(631\) 16.6854 0.664235 0.332118 0.943238i \(-0.392237\pi\)
0.332118 + 0.943238i \(0.392237\pi\)
\(632\) 0 0
\(633\) 11.2233 + 11.2233i 0.446085 + 0.446085i
\(634\) 0 0
\(635\) 28.0385 + 16.6058i 1.11267 + 0.658982i
\(636\) 0 0
\(637\) −4.96031 + 11.9753i −0.196535 + 0.474477i
\(638\) 0 0
\(639\) −5.73659 13.8493i −0.226936 0.547872i
\(640\) 0 0
\(641\) −0.711342 1.71733i −0.0280963 0.0678305i 0.909209 0.416341i \(-0.136688\pi\)
−0.937305 + 0.348510i \(0.886688\pi\)
\(642\) 0 0
\(643\) −8.85532 21.3786i −0.349220 0.843091i −0.996713 0.0810194i \(-0.974182\pi\)
0.647493 0.762072i \(-0.275818\pi\)
\(644\) 0 0
\(645\) −2.37976 + 1.78442i −0.0937029 + 0.0702616i
\(646\) 0 0
\(647\) 25.1848i 0.990119i 0.868859 + 0.495059i \(0.164854\pi\)
−0.868859 + 0.495059i \(0.835146\pi\)
\(648\) 0 0
\(649\) 9.15320 22.0978i 0.359295 0.867414i
\(650\) 0 0
\(651\) 1.07467 1.07467i 0.0421198 0.0421198i
\(652\) 0 0
\(653\) 12.7870 + 30.8705i 0.500393 + 1.20805i 0.949270 + 0.314461i \(0.101824\pi\)
−0.448878 + 0.893593i \(0.648176\pi\)
\(654\) 0 0
\(655\) −28.2464 16.7289i −1.10368 0.653654i
\(656\) 0 0
\(657\) −9.19909 + 9.19909i −0.358891 + 0.358891i
\(658\) 0 0
\(659\) −14.4922 6.00286i −0.564535 0.233838i 0.0821174 0.996623i \(-0.473832\pi\)
−0.646653 + 0.762784i \(0.723832\pi\)
\(660\) 0 0
\(661\) 8.01755 + 8.01755i 0.311847 + 0.311847i 0.845625 0.533778i \(-0.179228\pi\)
−0.533778 + 0.845625i \(0.679228\pi\)
\(662\) 0 0
\(663\) 34.4389 14.2651i 1.33750 0.554010i
\(664\) 0 0
\(665\) 8.59311 + 5.08928i 0.333227 + 0.197354i
\(666\) 0 0
\(667\) 14.5013 6.00663i 0.561492 0.232578i
\(668\) 0 0
\(669\) −9.48288 3.92794i −0.366629 0.151863i
\(670\) 0 0
\(671\) 4.20758 1.74284i 0.162432 0.0672815i
\(672\) 0 0
\(673\) 16.3745 39.5315i 0.631190 1.52383i −0.206938 0.978354i \(-0.566350\pi\)
0.838128 0.545473i \(-0.183650\pi\)
\(674\) 0 0
\(675\) 2.88809 + 26.4665i 0.111163 + 1.01870i
\(676\) 0 0
\(677\) 41.2364 1.58484 0.792422 0.609973i \(-0.208820\pi\)
0.792422 + 0.609973i \(0.208820\pi\)
\(678\) 0 0
\(679\) 5.34147 0.204987
\(680\) 0 0
\(681\) 12.7639i 0.489115i
\(682\) 0 0
\(683\) 3.32742 + 1.37826i 0.127320 + 0.0527377i 0.445434 0.895315i \(-0.353049\pi\)
−0.318114 + 0.948053i \(0.603049\pi\)
\(684\) 0 0
\(685\) 31.7436 + 4.53825i 1.21286 + 0.173397i
\(686\) 0 0
\(687\) −15.3795 15.3795i −0.586765 0.586765i
\(688\) 0 0
\(689\) −31.6458 31.6458i −1.20561 1.20561i
\(690\) 0 0
\(691\) −9.26807 + 3.83896i −0.352574 + 0.146041i −0.551939 0.833884i \(-0.686112\pi\)
0.199365 + 0.979925i \(0.436112\pi\)
\(692\) 0 0
\(693\) 7.23906 + 7.23906i 0.274989 + 0.274989i
\(694\) 0 0
\(695\) 11.3320 + 44.2511i 0.429846 + 1.67854i
\(696\) 0 0
\(697\) 33.9825 + 15.3158i 1.28718 + 0.580127i
\(698\) 0 0
\(699\) 12.6926 + 12.6926i 0.480078 + 0.480078i
\(700\) 0 0
\(701\) 10.1320i 0.382682i 0.981524 + 0.191341i \(0.0612837\pi\)
−0.981524 + 0.191341i \(0.938716\pi\)
\(702\) 0 0
\(703\) −6.65947 + 16.0774i −0.251167 + 0.606370i
\(704\) 0 0
\(705\) 7.83542 2.00652i 0.295099 0.0755699i
\(706\) 0 0
\(707\) −4.79368 + 4.79368i −0.180285 + 0.180285i
\(708\) 0 0
\(709\) 14.0966 34.0322i 0.529409 1.27811i −0.402501 0.915419i \(-0.631859\pi\)
0.931911 0.362688i \(-0.118141\pi\)
\(710\) 0 0
\(711\) 4.70262 + 11.3531i 0.176362 + 0.425775i
\(712\) 0 0
\(713\) −2.07279 2.07279i −0.0776267 0.0776267i
\(714\) 0 0
\(715\) 33.4760 8.57265i 1.25193 0.320599i
\(716\) 0 0
\(717\) 29.1237i 1.08765i
\(718\) 0 0
\(719\) −12.9679 31.3072i −0.483620 1.16756i −0.957878 0.287177i \(-0.907283\pi\)
0.474257 0.880386i \(-0.342717\pi\)
\(720\) 0 0
\(721\) −24.1618 + 10.0081i −0.899832 + 0.372723i
\(722\) 0 0
\(723\) −4.19724 + 10.1330i −0.156097 + 0.376851i
\(724\) 0 0
\(725\) −16.5521 + 1.80621i −0.614730 + 0.0670808i
\(726\) 0 0
\(727\) −1.57524 3.80296i −0.0584223 0.141044i 0.891973 0.452089i \(-0.149321\pi\)
−0.950395 + 0.311045i \(0.899321\pi\)
\(728\) 0 0
\(729\) −13.6565 13.6565i −0.505796 0.505796i
\(730\) 0 0
\(731\) −6.36294 2.63562i −0.235342 0.0974818i
\(732\) 0 0
\(733\) −43.8232 −1.61865 −0.809324 0.587363i \(-0.800166\pi\)
−0.809324 + 0.587363i \(0.800166\pi\)
\(734\) 0 0
\(735\) −0.809797 + 5.66428i −0.0298698 + 0.208930i
\(736\) 0 0
\(737\) −9.78194 9.78194i −0.360322 0.360322i
\(738\) 0 0
\(739\) 27.0236i 0.994078i −0.867728 0.497039i \(-0.834421\pi\)
0.867728 0.497039i \(-0.165579\pi\)
\(740\) 0 0
\(741\) −5.03559 + 12.1570i −0.184987 + 0.446599i
\(742\) 0 0
\(743\) 23.6339i 0.867042i −0.901143 0.433521i \(-0.857271\pi\)
0.901143 0.433521i \(-0.142729\pi\)
\(744\) 0 0
\(745\) −21.5851 + 16.1852i −0.790815 + 0.592980i
\(746\) 0 0
\(747\) 8.72574 0.319258
\(748\) 0 0
\(749\) 9.43329 22.7740i 0.344685 0.832143i
\(750\) 0 0
\(751\) −2.31970 + 5.60026i −0.0846472 + 0.204356i −0.960535 0.278158i \(-0.910276\pi\)
0.875888 + 0.482514i \(0.160276\pi\)
\(752\) 0 0
\(753\) 16.2613 + 6.73564i 0.592593 + 0.245460i
\(754\) 0 0
\(755\) −27.1976 3.88832i −0.989822 0.141511i
\(756\) 0 0
\(757\) 19.6311 + 8.13149i 0.713506 + 0.295544i 0.709755 0.704449i \(-0.248806\pi\)
0.00375148 + 0.999993i \(0.498806\pi\)
\(758\) 0 0
\(759\) −10.1683 + 10.1683i −0.369086 + 0.369086i
\(760\) 0 0
\(761\) 26.4750i 0.959717i −0.877346 0.479859i \(-0.840688\pi\)
0.877346 0.479859i \(-0.159312\pi\)
\(762\) 0 0
\(763\) 5.46564 5.46564i 0.197869 0.197869i
\(764\) 0 0
\(765\) −18.0776 + 13.5552i −0.653596 + 0.490089i
\(766\) 0 0
\(767\) 19.2116 + 46.3809i 0.693691 + 1.67472i
\(768\) 0 0
\(769\) −24.2999 −0.876276 −0.438138 0.898908i \(-0.644362\pi\)
−0.438138 + 0.898908i \(0.644362\pi\)
\(770\) 0 0
\(771\) 15.8967 15.8967i 0.572506 0.572506i
\(772\) 0 0
\(773\) 4.68354 + 1.93999i 0.168455 + 0.0697765i 0.465317 0.885144i \(-0.345940\pi\)
−0.296862 + 0.954920i \(0.595940\pi\)
\(774\) 0 0
\(775\) 1.49461 + 2.72684i 0.0536880 + 0.0979511i
\(776\) 0 0
\(777\) 20.6949 0.742425
\(778\) 0 0
\(779\) −12.3053 + 4.65938i −0.440884 + 0.166940i
\(780\) 0 0
\(781\) −16.5696 + 16.5696i −0.592908 + 0.592908i
\(782\) 0 0
\(783\) 12.5382 12.5382i 0.448079 0.448079i
\(784\) 0 0
\(785\) −27.1960 + 20.3925i −0.970666 + 0.727839i
\(786\) 0 0
\(787\) 45.1170 1.60825 0.804123 0.594462i \(-0.202635\pi\)
0.804123 + 0.594462i \(0.202635\pi\)
\(788\) 0 0
\(789\) 20.3462i 0.724343i
\(790\) 0 0
\(791\) 23.5584 + 9.75820i 0.837639 + 0.346962i
\(792\) 0 0
\(793\) −3.65803 + 8.83127i −0.129901 + 0.313608i
\(794\) 0 0
\(795\) −16.9985 10.0674i −0.602874 0.357053i
\(796\) 0 0
\(797\) 12.0953 12.0953i 0.428438 0.428438i −0.459658 0.888096i \(-0.652028\pi\)
0.888096 + 0.459658i \(0.152028\pi\)
\(798\) 0 0
\(799\) 13.2426 + 13.2426i 0.468491 + 0.468491i
\(800\) 0 0
\(801\) −9.09288 + 3.76639i −0.321281 + 0.133079i
\(802\) 0 0
\(803\) 18.7884 + 7.78240i 0.663027 + 0.274635i
\(804\) 0 0
\(805\) −22.6772 3.24205i −0.799265 0.114267i
\(806\) 0 0
\(807\) 1.83925 0.761843i 0.0647447 0.0268181i
\(808\) 0 0
\(809\) −2.84269 1.17748i −0.0999436 0.0413980i 0.332151 0.943226i \(-0.392225\pi\)
−0.432095 + 0.901828i \(0.642225\pi\)
\(810\) 0 0
\(811\) 29.1811 29.1811i 1.02469 1.02469i 0.0250005 0.999687i \(-0.492041\pi\)
0.999687 0.0250005i \(-0.00795872\pi\)
\(812\) 0 0
\(813\) −13.2776 32.0549i −0.465665 1.12421i
\(814\) 0 0
\(815\) 14.4475 24.3942i 0.506074 0.854493i
\(816\) 0 0
\(817\) 2.24613 0.930377i 0.0785821 0.0325498i
\(818\) 0 0
\(819\) −21.4876 −0.750837
\(820\) 0 0
\(821\) 41.6708 1.45432 0.727160 0.686468i \(-0.240840\pi\)
0.727160 + 0.686468i \(0.240840\pi\)
\(822\) 0 0
\(823\) 16.2209 6.71893i 0.565426 0.234207i −0.0816128 0.996664i \(-0.526007\pi\)
0.647039 + 0.762457i \(0.276007\pi\)
\(824\) 0 0
\(825\) 13.3768 7.33197i 0.465721 0.255266i
\(826\) 0 0
\(827\) 0.143818 + 0.347207i 0.00500103 + 0.0120736i 0.926360 0.376638i \(-0.122920\pi\)
−0.921359 + 0.388712i \(0.872920\pi\)
\(828\) 0 0
\(829\) 18.8898 18.8898i 0.656069 0.656069i −0.298378 0.954448i \(-0.596446\pi\)
0.954448 + 0.298378i \(0.0964457\pi\)
\(830\) 0 0
\(831\) 10.0197 + 4.15028i 0.347578 + 0.143972i
\(832\) 0 0
\(833\) −12.2402 + 5.07005i −0.424097 + 0.175667i
\(834\) 0 0
\(835\) −13.8844 18.5166i −0.480489 0.640794i
\(836\) 0 0
\(837\) −3.05946 1.26727i −0.105751 0.0438033i
\(838\) 0 0
\(839\) 38.4240 15.9158i 1.32654 0.549473i 0.396877 0.917872i \(-0.370094\pi\)
0.929668 + 0.368399i \(0.120094\pi\)
\(840\) 0 0
\(841\) −12.6647 12.6647i −0.436715 0.436715i
\(842\) 0 0
\(843\) 0.113809 0.113809i 0.00391980 0.00391980i
\(844\) 0 0
\(845\) −22.1471 + 37.3948i −0.761883 + 1.28642i
\(846\) 0 0
\(847\) −3.02517 + 7.30340i −0.103946 + 0.250948i
\(848\) 0 0
\(849\) −0.313096 0.129689i −0.0107454 0.00445091i
\(850\) 0 0
\(851\) 39.9156i 1.36829i
\(852\) 0 0
\(853\) 2.04008 0.0698510 0.0349255 0.999390i \(-0.488881\pi\)
0.0349255 + 0.999390i \(0.488881\pi\)
\(854\) 0 0
\(855\) 1.12883 7.89585i 0.0386053 0.270032i
\(856\) 0 0
\(857\) 9.53949 9.53949i 0.325863 0.325863i −0.525148 0.851011i \(-0.675990\pi\)
0.851011 + 0.525148i \(0.175990\pi\)
\(858\) 0 0
\(859\) −21.3343 + 21.3343i −0.727917 + 0.727917i −0.970204 0.242288i \(-0.922102\pi\)
0.242288 + 0.970204i \(0.422102\pi\)
\(860\) 0 0
\(861\) 10.7194 + 11.3994i 0.365315 + 0.388490i
\(862\) 0 0
\(863\) 12.4016 0.422156 0.211078 0.977469i \(-0.432303\pi\)
0.211078 + 0.977469i \(0.432303\pi\)
\(864\) 0 0
\(865\) −7.03825 27.4842i −0.239308 0.934492i
\(866\) 0 0
\(867\) 17.5419 + 7.26609i 0.595754 + 0.246770i
\(868\) 0 0
\(869\) 13.5831 13.5831i 0.460775 0.460775i
\(870\) 0 0
\(871\) 29.0356 0.983833
\(872\) 0 0
\(873\) −1.63250 3.94120i −0.0552518 0.133390i
\(874\) 0 0
\(875\) 22.1285 + 10.0419i 0.748081 + 0.339479i
\(876\) 0 0
\(877\) 19.3682 19.3682i 0.654017 0.654017i −0.299941 0.953958i \(-0.596967\pi\)
0.953958 + 0.299941i \(0.0969670\pi\)
\(878\) 0 0
\(879\) 28.4841i 0.960745i
\(880\) 0 0
\(881\) 2.14389 2.14389i 0.0722294 0.0722294i −0.670069 0.742299i \(-0.733736\pi\)
0.742299 + 0.670069i \(0.233736\pi\)
\(882\) 0 0
\(883\) −25.2865 10.4740i −0.850959 0.352479i −0.0857942 0.996313i \(-0.527343\pi\)
−0.765165 + 0.643834i \(0.777343\pi\)
\(884\) 0 0
\(885\) 13.2948 + 17.7303i 0.446900 + 0.595999i
\(886\) 0 0
\(887\) −3.00057 1.24288i −0.100749 0.0417317i 0.331739 0.943371i \(-0.392365\pi\)
−0.432489 + 0.901639i \(0.642365\pi\)
\(888\) 0 0
\(889\) −12.1216 + 29.2640i −0.406544 + 0.981483i
\(890\) 0 0
\(891\) −0.809209 + 1.95360i −0.0271095 + 0.0654481i
\(892\) 0 0
\(893\) −6.61098 −0.221228
\(894\) 0 0
\(895\) 4.88400 + 6.51344i 0.163254 + 0.217720i
\(896\) 0 0
\(897\) 30.1824i 1.00776i
\(898\) 0 0
\(899\) 0.792549 1.91338i 0.0264330 0.0638149i
\(900\) 0 0
\(901\) 45.7440i 1.52395i
\(902\) 0 0
\(903\) −2.04441 2.04441i −0.0680337 0.0680337i
\(904\) 0 0
\(905\) 6.67618 + 8.90355i 0.221924 + 0.295964i
\(906\) 0 0
\(907\) 36.3930 1.20841 0.604205 0.796829i \(-0.293491\pi\)
0.604205 + 0.796829i \(0.293491\pi\)
\(908\) 0 0
\(909\) 5.00209 + 2.07193i 0.165909 + 0.0687217i
\(910\) 0 0
\(911\) −32.8215 32.8215i −1.08743 1.08743i −0.995793 0.0916328i \(-0.970791\pi\)
−0.0916328 0.995793i \(-0.529209\pi\)
\(912\) 0 0
\(913\) −5.21982 12.6018i −0.172751 0.417058i
\(914\) 0 0
\(915\) −0.597192 + 4.17717i −0.0197426 + 0.138093i
\(916\) 0 0
\(917\) 12.2114 29.4810i 0.403256 0.973547i
\(918\) 0 0
\(919\) −34.1045 + 14.1265i −1.12500 + 0.465992i −0.866080 0.499906i \(-0.833368\pi\)
−0.258924 + 0.965898i \(0.583368\pi\)
\(920\) 0 0
\(921\) 7.43366 + 17.9464i 0.244948 + 0.591356i
\(922\) 0 0
\(923\) 49.1833i 1.61889i
\(924\) 0 0
\(925\) −11.8645 + 40.6461i −0.390102 + 1.33643i
\(926\) 0 0
\(927\) 14.7690 + 14.7690i 0.485078 + 0.485078i
\(928\) 0 0
\(929\) 13.1581 + 31.7665i 0.431704 + 1.04222i 0.978738 + 0.205115i \(0.0657567\pi\)
−0.547034 + 0.837110i \(0.684243\pi\)
\(930\) 0 0
\(931\) 1.78973 4.32080i 0.0586562 0.141609i
\(932\) 0 0
\(933\) −8.02081 + 8.02081i −0.262590 + 0.262590i
\(934\) 0 0
\(935\) 30.3907 + 17.9989i 0.993881 + 0.588627i
\(936\) 0 0
\(937\) −15.2024 + 36.7017i −0.496639 + 1.19899i 0.454643 + 0.890674i \(0.349767\pi\)
−0.951283 + 0.308320i \(0.900233\pi\)
\(938\) 0 0
\(939\) 7.56027i 0.246720i
\(940\) 0 0
\(941\) −1.59990 1.59990i −0.0521552 0.0521552i 0.680548 0.732703i \(-0.261742\pi\)
−0.732703 + 0.680548i \(0.761742\pi\)
\(942\) 0 0
\(943\) 21.9867 20.6751i 0.715986 0.673275i
\(944\) 0 0
\(945\) −25.0697 + 6.41993i −0.815517 + 0.208840i
\(946\) 0 0
\(947\) −19.3581 19.3581i −0.629055 0.629055i 0.318775 0.947830i \(-0.396728\pi\)
−0.947830 + 0.318775i \(0.896728\pi\)
\(948\) 0 0
\(949\) −39.4348 + 16.3344i −1.28011 + 0.530238i
\(950\) 0 0
\(951\) −27.6539 27.6539i −0.896739 0.896739i
\(952\) 0 0
\(953\) 6.30344 + 6.30344i 0.204189 + 0.204189i 0.801792 0.597603i \(-0.203880\pi\)
−0.597603 + 0.801792i \(0.703880\pi\)
\(954\) 0 0
\(955\) 48.7613 36.5629i 1.57788 1.18315i
\(956\) 0 0
\(957\) −9.38629 3.88793i −0.303416 0.125679i
\(958\) 0 0
\(959\) 31.1691i 1.00650i
\(960\) 0 0
\(961\) 30.6132 0.987523
\(962\) 0 0
\(963\) −19.6868 −0.634399
\(964\) 0 0
\(965\) −24.1422 + 18.1026i −0.777164 + 0.582744i
\(966\) 0 0
\(967\) −23.2040 + 56.0195i −0.746191 + 1.80147i −0.167587 + 0.985857i \(0.553597\pi\)
−0.578605 + 0.815608i \(0.696403\pi\)
\(968\) 0 0
\(969\) −12.4259 + 5.14699i −0.399179 + 0.165345i
\(970\) 0 0
\(971\) −13.8350 5.73065i −0.443987 0.183905i 0.149478 0.988765i \(-0.452241\pi\)
−0.593465 + 0.804860i \(0.702241\pi\)
\(972\) 0 0
\(973\) −41.0210 + 16.9915i −1.31507 + 0.544722i
\(974\) 0 0
\(975\) −8.97139 + 30.7348i −0.287315 + 0.984300i
\(976\) 0 0
\(977\) 16.1182 6.67639i 0.515668 0.213597i −0.109645 0.993971i \(-0.534971\pi\)
0.625313 + 0.780374i \(0.284971\pi\)
\(978\) 0 0
\(979\) 10.8789 + 10.8789i 0.347691 + 0.347691i
\(980\) 0 0
\(981\) −5.70326 2.36237i −0.182091 0.0754246i
\(982\) 0 0
\(983\) 25.4730 25.4730i 0.812464 0.812464i −0.172539 0.985003i \(-0.555197\pi\)
0.985003 + 0.172539i \(0.0551971\pi\)
\(984\) 0 0
\(985\) 2.28165 + 8.90979i 0.0726993 + 0.283889i
\(986\) 0 0
\(987\) 3.00863 + 7.26348i 0.0957659 + 0.231199i
\(988\) 0 0
\(989\) −3.94318 + 3.94318i −0.125386 + 0.125386i
\(990\) 0 0
\(991\) −3.86199 + 9.32368i −0.122680 + 0.296176i −0.973274 0.229647i \(-0.926243\pi\)
0.850594 + 0.525824i \(0.176243\pi\)
\(992\) 0 0
\(993\) 15.2886i 0.485169i
\(994\) 0 0
\(995\) −20.1398 26.8590i −0.638475 0.851489i
\(996\) 0 0
\(997\) 8.94394 + 21.5926i 0.283257 + 0.683844i 0.999908 0.0135890i \(-0.00432565\pi\)
−0.716650 + 0.697433i \(0.754326\pi\)
\(998\) 0 0
\(999\) −17.2560 41.6598i −0.545957 1.31806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.413.15 yes 84
5.2 odd 4 820.2.x.a.577.7 84
41.14 odd 8 820.2.x.a.793.7 yes 84
205.137 even 8 inner 820.2.y.a.137.15 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.7 84 5.2 odd 4
820.2.x.a.793.7 yes 84 41.14 odd 8
820.2.y.a.137.15 yes 84 205.137 even 8 inner
820.2.y.a.413.15 yes 84 1.1 even 1 trivial