Properties

Label 820.2.y.a.137.8
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.8
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764781 - 0.316783i) q^{3} +(-0.0345804 + 2.23580i) q^{5} +(0.341602 - 0.824700i) q^{7} +(-1.63678 - 1.63678i) q^{9} +(-0.433349 + 0.179499i) q^{11} +(3.16640 + 1.31157i) q^{13} +(0.734709 - 1.69894i) q^{15} +(-1.33369 + 0.552431i) q^{17} +(5.73531 + 2.37564i) q^{19} +(-0.522501 + 0.522501i) q^{21} +(4.43764 + 4.43764i) q^{23} +(-4.99761 - 0.154630i) q^{25} +(1.68362 + 4.06463i) q^{27} +(-4.61805 + 1.91286i) q^{29} +8.60190i q^{31} +0.388279 q^{33} +(1.83205 + 0.792272i) q^{35} +(-6.94637 - 6.94637i) q^{37} +(-2.00612 - 2.00612i) q^{39} +(3.40548 + 5.42242i) q^{41} +6.44371 q^{43} +(3.71612 - 3.60292i) q^{45} +(-9.27541 + 3.84200i) q^{47} +(4.38631 + 4.38631i) q^{49} +1.19498 q^{51} +(0.0511732 - 0.123543i) q^{53} +(-0.386339 - 0.975089i) q^{55} +(-3.63369 - 3.63369i) q^{57} +11.4143i q^{59} +(6.16451 + 6.16451i) q^{61} +(-1.90898 + 0.790726i) q^{63} +(-3.04190 + 7.03409i) q^{65} +(7.02036 - 2.90793i) q^{67} +(-1.98805 - 4.79958i) q^{69} +(-3.37473 - 8.14731i) q^{71} +7.31507 q^{73} +(3.77309 + 1.70141i) q^{75} +0.418700i q^{77} +(1.58861 + 3.83524i) q^{79} +3.30239i q^{81} +(2.28375 - 2.28375i) q^{83} +(-1.18901 - 3.00096i) q^{85} +4.13776 q^{87} +(6.68004 - 2.76696i) q^{89} +(2.16330 - 2.16330i) q^{91} +(2.72493 - 6.57857i) q^{93} +(-5.50979 + 12.7408i) q^{95} +(-3.39000 - 8.18418i) q^{97} +(1.00310 + 0.415497i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.764781 0.316783i −0.441546 0.182894i 0.150823 0.988561i \(-0.451808\pi\)
−0.592370 + 0.805666i \(0.701808\pi\)
\(4\) 0 0
\(5\) −0.0345804 + 2.23580i −0.0154648 + 0.999880i
\(6\) 0 0
\(7\) 0.341602 0.824700i 0.129113 0.311707i −0.846082 0.533053i \(-0.821045\pi\)
0.975195 + 0.221345i \(0.0710448\pi\)
\(8\) 0 0
\(9\) −1.63678 1.63678i −0.545594 0.545594i
\(10\) 0 0
\(11\) −0.433349 + 0.179499i −0.130660 + 0.0541210i −0.447055 0.894506i \(-0.647527\pi\)
0.316396 + 0.948627i \(0.397527\pi\)
\(12\) 0 0
\(13\) 3.16640 + 1.31157i 0.878202 + 0.363763i 0.775799 0.630980i \(-0.217347\pi\)
0.102403 + 0.994743i \(0.467347\pi\)
\(14\) 0 0
\(15\) 0.734709 1.69894i 0.189701 0.438665i
\(16\) 0 0
\(17\) −1.33369 + 0.552431i −0.323467 + 0.133984i −0.538507 0.842621i \(-0.681012\pi\)
0.215041 + 0.976605i \(0.431012\pi\)
\(18\) 0 0
\(19\) 5.73531 + 2.37564i 1.31577 + 0.545009i 0.926562 0.376141i \(-0.122749\pi\)
0.389207 + 0.921150i \(0.372749\pi\)
\(20\) 0 0
\(21\) −0.522501 + 0.522501i −0.114019 + 0.114019i
\(22\) 0 0
\(23\) 4.43764 + 4.43764i 0.925311 + 0.925311i 0.997398 0.0720873i \(-0.0229660\pi\)
−0.0720873 + 0.997398i \(0.522966\pi\)
\(24\) 0 0
\(25\) −4.99761 0.154630i −0.999522 0.0309260i
\(26\) 0 0
\(27\) 1.68362 + 4.06463i 0.324013 + 0.782238i
\(28\) 0 0
\(29\) −4.61805 + 1.91286i −0.857551 + 0.355209i −0.767749 0.640750i \(-0.778623\pi\)
−0.0898019 + 0.995960i \(0.528623\pi\)
\(30\) 0 0
\(31\) 8.60190i 1.54495i 0.635047 + 0.772473i \(0.280981\pi\)
−0.635047 + 0.772473i \(0.719019\pi\)
\(32\) 0 0
\(33\) 0.388279 0.0675907
\(34\) 0 0
\(35\) 1.83205 + 0.792272i 0.309673 + 0.133918i
\(36\) 0 0
\(37\) −6.94637 6.94637i −1.14198 1.14198i −0.988088 0.153889i \(-0.950820\pi\)
−0.153889 0.988088i \(-0.549180\pi\)
\(38\) 0 0
\(39\) −2.00612 2.00612i −0.321237 0.321237i
\(40\) 0 0
\(41\) 3.40548 + 5.42242i 0.531847 + 0.846840i
\(42\) 0 0
\(43\) 6.44371 0.982656 0.491328 0.870975i \(-0.336512\pi\)
0.491328 + 0.870975i \(0.336512\pi\)
\(44\) 0 0
\(45\) 3.71612 3.60292i 0.553966 0.537091i
\(46\) 0 0
\(47\) −9.27541 + 3.84200i −1.35296 + 0.560413i −0.937114 0.349023i \(-0.886513\pi\)
−0.415843 + 0.909436i \(0.636513\pi\)
\(48\) 0 0
\(49\) 4.38631 + 4.38631i 0.626616 + 0.626616i
\(50\) 0 0
\(51\) 1.19498 0.167331
\(52\) 0 0
\(53\) 0.0511732 0.123543i 0.00702919 0.0169700i −0.920326 0.391152i \(-0.872077\pi\)
0.927355 + 0.374182i \(0.122077\pi\)
\(54\) 0 0
\(55\) −0.386339 0.975089i −0.0520939 0.131481i
\(56\) 0 0
\(57\) −3.63369 3.63369i −0.481294 0.481294i
\(58\) 0 0
\(59\) 11.4143i 1.48602i 0.669280 + 0.743010i \(0.266603\pi\)
−0.669280 + 0.743010i \(0.733397\pi\)
\(60\) 0 0
\(61\) 6.16451 + 6.16451i 0.789285 + 0.789285i 0.981377 0.192092i \(-0.0615273\pi\)
−0.192092 + 0.981377i \(0.561527\pi\)
\(62\) 0 0
\(63\) −1.90898 + 0.790726i −0.240509 + 0.0996221i
\(64\) 0 0
\(65\) −3.04190 + 7.03409i −0.377301 + 0.872472i
\(66\) 0 0
\(67\) 7.02036 2.90793i 0.857674 0.355260i 0.0898763 0.995953i \(-0.471353\pi\)
0.767797 + 0.640693i \(0.221353\pi\)
\(68\) 0 0
\(69\) −1.98805 4.79958i −0.239333 0.577802i
\(70\) 0 0
\(71\) −3.37473 8.14731i −0.400506 0.966907i −0.987543 0.157347i \(-0.949706\pi\)
0.587037 0.809560i \(-0.300294\pi\)
\(72\) 0 0
\(73\) 7.31507 0.856164 0.428082 0.903740i \(-0.359189\pi\)
0.428082 + 0.903740i \(0.359189\pi\)
\(74\) 0 0
\(75\) 3.77309 + 1.70141i 0.435679 + 0.196462i
\(76\) 0 0
\(77\) 0.418700i 0.0477153i
\(78\) 0 0
\(79\) 1.58861 + 3.83524i 0.178732 + 0.431498i 0.987701 0.156354i \(-0.0499739\pi\)
−0.808969 + 0.587852i \(0.799974\pi\)
\(80\) 0 0
\(81\) 3.30239i 0.366932i
\(82\) 0 0
\(83\) 2.28375 2.28375i 0.250674 0.250674i −0.570573 0.821247i \(-0.693279\pi\)
0.821247 + 0.570573i \(0.193279\pi\)
\(84\) 0 0
\(85\) −1.18901 3.00096i −0.128966 0.325500i
\(86\) 0 0
\(87\) 4.13776 0.443614
\(88\) 0 0
\(89\) 6.68004 2.76696i 0.708083 0.293298i 0.000571890 1.00000i \(-0.499818\pi\)
0.707511 + 0.706702i \(0.249818\pi\)
\(90\) 0 0
\(91\) 2.16330 2.16330i 0.226775 0.226775i
\(92\) 0 0
\(93\) 2.72493 6.57857i 0.282562 0.682166i
\(94\) 0 0
\(95\) −5.50979 + 12.7408i −0.565292 + 1.30718i
\(96\) 0 0
\(97\) −3.39000 8.18418i −0.344202 0.830978i −0.997281 0.0736881i \(-0.976523\pi\)
0.653079 0.757290i \(-0.273477\pi\)
\(98\) 0 0
\(99\) 1.00310 + 0.415497i 0.100815 + 0.0417590i
\(100\) 0 0
\(101\) 2.05242 4.95497i 0.204223 0.493038i −0.788271 0.615328i \(-0.789024\pi\)
0.992494 + 0.122290i \(0.0390237\pi\)
\(102\) 0 0
\(103\) 4.63637i 0.456835i 0.973563 + 0.228418i \(0.0733552\pi\)
−0.973563 + 0.228418i \(0.926645\pi\)
\(104\) 0 0
\(105\) −1.15014 1.18628i −0.112242 0.115769i
\(106\) 0 0
\(107\) 11.2573 11.2573i 1.08828 1.08828i 0.0925796 0.995705i \(-0.470489\pi\)
0.995705 0.0925796i \(-0.0295113\pi\)
\(108\) 0 0
\(109\) −1.54948 + 3.74077i −0.148413 + 0.358301i −0.980550 0.196269i \(-0.937117\pi\)
0.832137 + 0.554570i \(0.187117\pi\)
\(110\) 0 0
\(111\) 3.11196 + 7.51294i 0.295374 + 0.713097i
\(112\) 0 0
\(113\) −14.5082 14.5082i −1.36482 1.36482i −0.867659 0.497160i \(-0.834376\pi\)
−0.497160 0.867659i \(-0.665624\pi\)
\(114\) 0 0
\(115\) −10.0751 + 9.76821i −0.939510 + 0.910891i
\(116\) 0 0
\(117\) −3.03596 7.32946i −0.280675 0.677609i
\(118\) 0 0
\(119\) 1.28860i 0.118126i
\(120\) 0 0
\(121\) −7.62260 + 7.62260i −0.692964 + 0.692964i
\(122\) 0 0
\(123\) −0.886719 5.22576i −0.0799528 0.471191i
\(124\) 0 0
\(125\) 0.518541 11.1683i 0.0463797 0.998924i
\(126\) 0 0
\(127\) 10.9116 10.9116i 0.968245 0.968245i −0.0312656 0.999511i \(-0.509954\pi\)
0.999511 + 0.0312656i \(0.00995378\pi\)
\(128\) 0 0
\(129\) −4.92802 2.04125i −0.433888 0.179722i
\(130\) 0 0
\(131\) −4.16707 + 4.16707i −0.364079 + 0.364079i −0.865312 0.501233i \(-0.832880\pi\)
0.501233 + 0.865312i \(0.332880\pi\)
\(132\) 0 0
\(133\) 3.91838 3.91838i 0.339767 0.339767i
\(134\) 0 0
\(135\) −9.14591 + 3.62369i −0.787155 + 0.311877i
\(136\) 0 0
\(137\) 2.12144 0.878728i 0.181247 0.0750748i −0.290215 0.956962i \(-0.593727\pi\)
0.471461 + 0.881887i \(0.343727\pi\)
\(138\) 0 0
\(139\) 4.21477i 0.357492i −0.983895 0.178746i \(-0.942796\pi\)
0.983895 0.178746i \(-0.0572041\pi\)
\(140\) 0 0
\(141\) 8.31073 0.699890
\(142\) 0 0
\(143\) −1.60758 −0.134433
\(144\) 0 0
\(145\) −4.11708 10.3912i −0.341905 0.862942i
\(146\) 0 0
\(147\) −1.96506 4.74407i −0.162075 0.391284i
\(148\) 0 0
\(149\) −15.9072 6.58899i −1.30317 0.539791i −0.380287 0.924868i \(-0.624175\pi\)
−0.922884 + 0.385077i \(0.874175\pi\)
\(150\) 0 0
\(151\) −5.82490 + 2.41275i −0.474024 + 0.196347i −0.606888 0.794787i \(-0.707582\pi\)
0.132865 + 0.991134i \(0.457582\pi\)
\(152\) 0 0
\(153\) 3.08717 + 1.27875i 0.249583 + 0.103380i
\(154\) 0 0
\(155\) −19.2321 0.297457i −1.54476 0.0238924i
\(156\) 0 0
\(157\) −19.1756 7.94281i −1.53038 0.633905i −0.550744 0.834674i \(-0.685656\pi\)
−0.979639 + 0.200769i \(0.935656\pi\)
\(158\) 0 0
\(159\) −0.0782726 + 0.0782726i −0.00620742 + 0.00620742i
\(160\) 0 0
\(161\) 5.17562 2.14381i 0.407896 0.168956i
\(162\) 0 0
\(163\) −7.19041 7.19041i −0.563196 0.563196i 0.367018 0.930214i \(-0.380379\pi\)
−0.930214 + 0.367018i \(0.880379\pi\)
\(164\) 0 0
\(165\) −0.0134269 + 0.868114i −0.00104528 + 0.0675826i
\(166\) 0 0
\(167\) −5.51128 + 13.3054i −0.426476 + 1.02960i 0.553921 + 0.832569i \(0.313131\pi\)
−0.980397 + 0.197034i \(0.936869\pi\)
\(168\) 0 0
\(169\) −0.886483 0.886483i −0.0681910 0.0681910i
\(170\) 0 0
\(171\) −5.49904 13.2759i −0.420522 1.01523i
\(172\) 0 0
\(173\) 16.6299i 1.26435i 0.774827 + 0.632173i \(0.217837\pi\)
−0.774827 + 0.632173i \(0.782163\pi\)
\(174\) 0 0
\(175\) −1.83471 + 4.06870i −0.138691 + 0.307565i
\(176\) 0 0
\(177\) 3.61586 8.72947i 0.271785 0.656147i
\(178\) 0 0
\(179\) −7.01029 + 16.9243i −0.523974 + 1.26499i 0.411442 + 0.911436i \(0.365025\pi\)
−0.935416 + 0.353549i \(0.884975\pi\)
\(180\) 0 0
\(181\) 6.33147 15.2855i 0.470614 1.13616i −0.493278 0.869872i \(-0.664201\pi\)
0.963892 0.266292i \(-0.0857986\pi\)
\(182\) 0 0
\(183\) −2.76169 6.66731i −0.204150 0.492861i
\(184\) 0 0
\(185\) 15.7709 15.2905i 1.15950 1.12418i
\(186\) 0 0
\(187\) 0.478791 0.478791i 0.0350127 0.0350127i
\(188\) 0 0
\(189\) 3.92722 0.285663
\(190\) 0 0
\(191\) 22.9531 + 9.50748i 1.66083 + 0.687937i 0.998140 0.0609600i \(-0.0194162\pi\)
0.662686 + 0.748897i \(0.269416\pi\)
\(192\) 0 0
\(193\) 16.8542 + 6.98126i 1.21320 + 0.502522i 0.895240 0.445584i \(-0.147004\pi\)
0.317955 + 0.948106i \(0.397004\pi\)
\(194\) 0 0
\(195\) 4.55466 4.41592i 0.326166 0.316230i
\(196\) 0 0
\(197\) 1.39832i 0.0996262i 0.998759 + 0.0498131i \(0.0158626\pi\)
−0.998759 + 0.0498131i \(0.984137\pi\)
\(198\) 0 0
\(199\) −4.28295 + 10.3400i −0.303610 + 0.732980i 0.696274 + 0.717776i \(0.254840\pi\)
−0.999884 + 0.0152040i \(0.995160\pi\)
\(200\) 0 0
\(201\) −6.29022 −0.443678
\(202\) 0 0
\(203\) 4.46194i 0.313167i
\(204\) 0 0
\(205\) −12.2412 + 7.42647i −0.854964 + 0.518687i
\(206\) 0 0
\(207\) 14.5269i 1.00969i
\(208\) 0 0
\(209\) −2.91181 −0.201414
\(210\) 0 0
\(211\) 11.0586 26.6978i 0.761305 1.83795i 0.285598 0.958349i \(-0.407808\pi\)
0.475707 0.879604i \(-0.342192\pi\)
\(212\) 0 0
\(213\) 7.29996i 0.500185i
\(214\) 0 0
\(215\) −0.222826 + 14.4068i −0.0151966 + 0.982538i
\(216\) 0 0
\(217\) 7.09398 + 2.93842i 0.481571 + 0.199473i
\(218\) 0 0
\(219\) −5.59442 2.31729i −0.378036 0.156588i
\(220\) 0 0
\(221\) −4.94754 −0.332808
\(222\) 0 0
\(223\) 1.42061 1.42061i 0.0951311 0.0951311i −0.657940 0.753071i \(-0.728572\pi\)
0.753071 + 0.657940i \(0.228572\pi\)
\(224\) 0 0
\(225\) 7.92690 + 8.43309i 0.528460 + 0.562206i
\(226\) 0 0
\(227\) −6.44654 15.5633i −0.427872 1.03297i −0.979961 0.199189i \(-0.936169\pi\)
0.552090 0.833785i \(-0.313831\pi\)
\(228\) 0 0
\(229\) 9.73706 23.5073i 0.643443 1.55341i −0.178562 0.983929i \(-0.557145\pi\)
0.822005 0.569480i \(-0.192855\pi\)
\(230\) 0 0
\(231\) 0.132637 0.320214i 0.00872686 0.0210685i
\(232\) 0 0
\(233\) 1.87329 4.52252i 0.122723 0.296280i −0.850564 0.525872i \(-0.823739\pi\)
0.973287 + 0.229592i \(0.0737391\pi\)
\(234\) 0 0
\(235\) −8.26920 20.8708i −0.539423 1.36146i
\(236\) 0 0
\(237\) 3.43636i 0.223216i
\(238\) 0 0
\(239\) 1.14603 + 2.76675i 0.0741303 + 0.178966i 0.956601 0.291401i \(-0.0941214\pi\)
−0.882471 + 0.470367i \(0.844121\pi\)
\(240\) 0 0
\(241\) −5.75408 5.75408i −0.370653 0.370653i 0.497062 0.867715i \(-0.334412\pi\)
−0.867715 + 0.497062i \(0.834412\pi\)
\(242\) 0 0
\(243\) 6.09701 14.7195i 0.391123 0.944255i
\(244\) 0 0
\(245\) −9.95859 + 9.65523i −0.636231 + 0.616850i
\(246\) 0 0
\(247\) 15.0445 + 15.0445i 0.957257 + 0.957257i
\(248\) 0 0
\(249\) −2.47002 + 1.02311i −0.156531 + 0.0648373i
\(250\) 0 0
\(251\) −5.39957 + 5.39957i −0.340818 + 0.340818i −0.856675 0.515857i \(-0.827474\pi\)
0.515857 + 0.856675i \(0.327474\pi\)
\(252\) 0 0
\(253\) −2.71960 1.12649i −0.170980 0.0708220i
\(254\) 0 0
\(255\) −0.0413229 + 2.67173i −0.00258774 + 0.167311i
\(256\) 0 0
\(257\) 10.2260 + 4.23574i 0.637879 + 0.264218i 0.678096 0.734973i \(-0.262805\pi\)
−0.0402177 + 0.999191i \(0.512805\pi\)
\(258\) 0 0
\(259\) −8.10157 + 3.35578i −0.503407 + 0.208518i
\(260\) 0 0
\(261\) 10.6897 + 4.42781i 0.661675 + 0.274075i
\(262\) 0 0
\(263\) 2.20866 + 5.33218i 0.136192 + 0.328796i 0.977231 0.212178i \(-0.0680556\pi\)
−0.841039 + 0.540974i \(0.818056\pi\)
\(264\) 0 0
\(265\) 0.274448 + 0.118685i 0.0168592 + 0.00729078i
\(266\) 0 0
\(267\) −5.98529 −0.366294
\(268\) 0 0
\(269\) −25.4521 −1.55184 −0.775920 0.630831i \(-0.782714\pi\)
−0.775920 + 0.630831i \(0.782714\pi\)
\(270\) 0 0
\(271\) 3.61010i 0.219298i −0.993970 0.109649i \(-0.965027\pi\)
0.993970 0.109649i \(-0.0349727\pi\)
\(272\) 0 0
\(273\) −2.33974 + 0.969154i −0.141608 + 0.0586558i
\(274\) 0 0
\(275\) 2.19346 0.830057i 0.132271 0.0500543i
\(276\) 0 0
\(277\) 4.16054 4.16054i 0.249983 0.249983i −0.570981 0.820963i \(-0.693437\pi\)
0.820963 + 0.570981i \(0.193437\pi\)
\(278\) 0 0
\(279\) 14.0794 14.0794i 0.842914 0.842914i
\(280\) 0 0
\(281\) 18.3928 + 7.61856i 1.09722 + 0.454485i 0.856520 0.516113i \(-0.172622\pi\)
0.240704 + 0.970599i \(0.422622\pi\)
\(282\) 0 0
\(283\) 16.3296 16.3296i 0.970695 0.970695i −0.0288872 0.999583i \(-0.509196\pi\)
0.999583 + 0.0288872i \(0.00919637\pi\)
\(284\) 0 0
\(285\) 8.24986 7.99855i 0.488679 0.473793i
\(286\) 0 0
\(287\) 5.63519 0.956192i 0.332635 0.0564422i
\(288\) 0 0
\(289\) −10.5473 + 10.5473i −0.620428 + 0.620428i
\(290\) 0 0
\(291\) 7.33300i 0.429868i
\(292\) 0 0
\(293\) 10.8198 + 26.1214i 0.632102 + 1.52603i 0.836976 + 0.547240i \(0.184321\pi\)
−0.204874 + 0.978788i \(0.565679\pi\)
\(294\) 0 0
\(295\) −25.5202 0.394713i −1.48584 0.0229811i
\(296\) 0 0
\(297\) −1.45919 1.45919i −0.0846709 0.0846709i
\(298\) 0 0
\(299\) 8.23109 + 19.8716i 0.476016 + 1.14920i
\(300\) 0 0
\(301\) 2.20118 5.31412i 0.126874 0.306301i
\(302\) 0 0
\(303\) −3.13930 + 3.13930i −0.180348 + 0.180348i
\(304\) 0 0
\(305\) −13.9958 + 13.5694i −0.801396 + 0.776984i
\(306\) 0 0
\(307\) 5.82119i 0.332233i 0.986106 + 0.166116i \(0.0531227\pi\)
−0.986106 + 0.166116i \(0.946877\pi\)
\(308\) 0 0
\(309\) 1.46872 3.54581i 0.0835527 0.201714i
\(310\) 0 0
\(311\) 9.34834 + 3.87221i 0.530096 + 0.219573i 0.631645 0.775258i \(-0.282380\pi\)
−0.101550 + 0.994830i \(0.532380\pi\)
\(312\) 0 0
\(313\) −2.98401 7.20403i −0.168666 0.407196i 0.816834 0.576873i \(-0.195727\pi\)
−0.985500 + 0.169678i \(0.945727\pi\)
\(314\) 0 0
\(315\) −1.70189 4.29544i −0.0958907 0.242021i
\(316\) 0 0
\(317\) 7.05665 17.0363i 0.396341 0.956852i −0.592185 0.805802i \(-0.701735\pi\)
0.988526 0.151050i \(-0.0482654\pi\)
\(318\) 0 0
\(319\) 1.65787 1.65787i 0.0928230 0.0928230i
\(320\) 0 0
\(321\) −12.1755 + 5.04325i −0.679569 + 0.281487i
\(322\) 0 0
\(323\) −8.96148 −0.498630
\(324\) 0 0
\(325\) −15.6216 7.04432i −0.866533 0.390749i
\(326\) 0 0
\(327\) 2.37002 2.37002i 0.131062 0.131062i
\(328\) 0 0
\(329\) 8.96186i 0.494083i
\(330\) 0 0
\(331\) 10.4803 + 25.3017i 0.576049 + 1.39071i 0.896332 + 0.443383i \(0.146222\pi\)
−0.320283 + 0.947322i \(0.603778\pi\)
\(332\) 0 0
\(333\) 22.7394i 1.24611i
\(334\) 0 0
\(335\) 6.25878 + 15.7967i 0.341954 + 0.863065i
\(336\) 0 0
\(337\) −31.9584 −1.74089 −0.870443 0.492269i \(-0.836168\pi\)
−0.870443 + 0.492269i \(0.836168\pi\)
\(338\) 0 0
\(339\) 6.49966 + 15.6916i 0.353013 + 0.852249i
\(340\) 0 0
\(341\) −1.54403 3.72762i −0.0836140 0.201862i
\(342\) 0 0
\(343\) 10.8887 4.51023i 0.587932 0.243529i
\(344\) 0 0
\(345\) 10.7997 4.27892i 0.581434 0.230369i
\(346\) 0 0
\(347\) 2.73966 1.13480i 0.147073 0.0609195i −0.307933 0.951408i \(-0.599637\pi\)
0.455006 + 0.890489i \(0.349637\pi\)
\(348\) 0 0
\(349\) 11.5391 + 11.5391i 0.617674 + 0.617674i 0.944934 0.327261i \(-0.106125\pi\)
−0.327261 + 0.944934i \(0.606125\pi\)
\(350\) 0 0
\(351\) 15.0784i 0.804827i
\(352\) 0 0
\(353\) −8.56102 8.56102i −0.455657 0.455657i 0.441570 0.897227i \(-0.354422\pi\)
−0.897227 + 0.441570i \(0.854422\pi\)
\(354\) 0 0
\(355\) 18.3325 7.26347i 0.972986 0.385505i
\(356\) 0 0
\(357\) 0.408207 0.985499i 0.0216046 0.0521581i
\(358\) 0 0
\(359\) 14.5415 0.767469 0.383734 0.923444i \(-0.374638\pi\)
0.383734 + 0.923444i \(0.374638\pi\)
\(360\) 0 0
\(361\) 13.8150 + 13.8150i 0.727107 + 0.727107i
\(362\) 0 0
\(363\) 8.24433 3.41491i 0.432715 0.179236i
\(364\) 0 0
\(365\) −0.252958 + 16.3550i −0.0132404 + 0.856062i
\(366\) 0 0
\(367\) −10.9128 −0.569644 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(368\) 0 0
\(369\) 3.30129 14.4494i 0.171858 0.752204i
\(370\) 0 0
\(371\) −0.0844051 0.0844051i −0.00438209 0.00438209i
\(372\) 0 0
\(373\) −18.4183 18.4183i −0.953663 0.953663i 0.0453099 0.998973i \(-0.485572\pi\)
−0.998973 + 0.0453099i \(0.985572\pi\)
\(374\) 0 0
\(375\) −3.93450 + 8.37704i −0.203176 + 0.432589i
\(376\) 0 0
\(377\) −17.1315 −0.882316
\(378\) 0 0
\(379\) 17.7328i 0.910873i −0.890268 0.455436i \(-0.849483\pi\)
0.890268 0.455436i \(-0.150517\pi\)
\(380\) 0 0
\(381\) −11.8016 + 4.88836i −0.604612 + 0.250438i
\(382\) 0 0
\(383\) −2.37377 5.73080i −0.121294 0.292830i 0.851557 0.524262i \(-0.175659\pi\)
−0.972851 + 0.231432i \(0.925659\pi\)
\(384\) 0 0
\(385\) −0.936129 0.0144788i −0.0477096 0.000737909i
\(386\) 0 0
\(387\) −10.5469 10.5469i −0.536131 0.536131i
\(388\) 0 0
\(389\) −1.09009 + 1.09009i −0.0552695 + 0.0552695i −0.734201 0.678932i \(-0.762443\pi\)
0.678932 + 0.734201i \(0.262443\pi\)
\(390\) 0 0
\(391\) −8.36991 3.46693i −0.423284 0.175330i
\(392\) 0 0
\(393\) 4.50695 1.86684i 0.227346 0.0941697i
\(394\) 0 0
\(395\) −8.62976 + 3.41919i −0.434211 + 0.172038i
\(396\) 0 0
\(397\) 1.85870 + 0.769899i 0.0932855 + 0.0386401i 0.428838 0.903381i \(-0.358923\pi\)
−0.335553 + 0.942021i \(0.608923\pi\)
\(398\) 0 0
\(399\) −4.23798 + 1.75543i −0.212164 + 0.0878813i
\(400\) 0 0
\(401\) 5.65205 + 5.65205i 0.282250 + 0.282250i 0.834006 0.551756i \(-0.186042\pi\)
−0.551756 + 0.834006i \(0.686042\pi\)
\(402\) 0 0
\(403\) −11.2820 + 27.2371i −0.561995 + 1.35678i
\(404\) 0 0
\(405\) −7.38348 0.114198i −0.366888 0.00567455i
\(406\) 0 0
\(407\) 4.25707 + 1.76334i 0.211015 + 0.0874053i
\(408\) 0 0
\(409\) 0.0148021 0.000731915 0.000365957 1.00000i \(-0.499884\pi\)
0.000365957 1.00000i \(0.499884\pi\)
\(410\) 0 0
\(411\) −1.90080 −0.0937596
\(412\) 0 0
\(413\) 9.41340 + 3.89916i 0.463203 + 0.191865i
\(414\) 0 0
\(415\) 5.02703 + 5.18498i 0.246767 + 0.254521i
\(416\) 0 0
\(417\) −1.33517 + 3.22338i −0.0653834 + 0.157849i
\(418\) 0 0
\(419\) −18.0750 18.0750i −0.883019 0.883019i 0.110821 0.993840i \(-0.464652\pi\)
−0.993840 + 0.110821i \(0.964652\pi\)
\(420\) 0 0
\(421\) −26.8822 + 11.1350i −1.31016 + 0.542686i −0.924931 0.380135i \(-0.875878\pi\)
−0.385229 + 0.922821i \(0.625878\pi\)
\(422\) 0 0
\(423\) 21.4703 + 8.89330i 1.04392 + 0.432407i
\(424\) 0 0
\(425\) 6.75067 2.55461i 0.327456 0.123917i
\(426\) 0 0
\(427\) 7.18967 2.97806i 0.347933 0.144118i
\(428\) 0 0
\(429\) 1.22945 + 0.509254i 0.0593583 + 0.0245870i
\(430\) 0 0
\(431\) −13.6102 + 13.6102i −0.655580 + 0.655580i −0.954331 0.298751i \(-0.903430\pi\)
0.298751 + 0.954331i \(0.403430\pi\)
\(432\) 0 0
\(433\) 23.7840 + 23.7840i 1.14299 + 1.14299i 0.987901 + 0.155084i \(0.0495647\pi\)
0.155084 + 0.987901i \(0.450435\pi\)
\(434\) 0 0
\(435\) −0.143086 + 9.25121i −0.00686043 + 0.443561i
\(436\) 0 0
\(437\) 14.9090 + 35.9934i 0.713193 + 1.72180i
\(438\) 0 0
\(439\) 33.9593 14.0664i 1.62079 0.671352i 0.626633 0.779315i \(-0.284433\pi\)
0.994155 + 0.107963i \(0.0344327\pi\)
\(440\) 0 0
\(441\) 14.3589i 0.683756i
\(442\) 0 0
\(443\) −11.4590 −0.544436 −0.272218 0.962236i \(-0.587757\pi\)
−0.272218 + 0.962236i \(0.587757\pi\)
\(444\) 0 0
\(445\) 5.95538 + 15.0309i 0.282312 + 0.712534i
\(446\) 0 0
\(447\) 10.0783 + 10.0783i 0.476686 + 0.476686i
\(448\) 0 0
\(449\) −17.0096 17.0096i −0.802730 0.802730i 0.180791 0.983522i \(-0.442134\pi\)
−0.983522 + 0.180791i \(0.942134\pi\)
\(450\) 0 0
\(451\) −2.44908 1.73852i −0.115323 0.0818637i
\(452\) 0 0
\(453\) 5.21909 0.245214
\(454\) 0 0
\(455\) 4.76190 + 4.91151i 0.223241 + 0.230255i
\(456\) 0 0
\(457\) 7.44816 3.08513i 0.348410 0.144316i −0.201614 0.979465i \(-0.564619\pi\)
0.550024 + 0.835149i \(0.314619\pi\)
\(458\) 0 0
\(459\) −4.49085 4.49085i −0.209615 0.209615i
\(460\) 0 0
\(461\) 41.3965 1.92803 0.964014 0.265850i \(-0.0856527\pi\)
0.964014 + 0.265850i \(0.0856527\pi\)
\(462\) 0 0
\(463\) 8.70088 21.0058i 0.404364 0.976221i −0.582230 0.813024i \(-0.697820\pi\)
0.986594 0.163197i \(-0.0521805\pi\)
\(464\) 0 0
\(465\) 14.6141 + 6.31989i 0.677714 + 0.293078i
\(466\) 0 0
\(467\) −7.90749 7.90749i −0.365915 0.365915i 0.500070 0.865985i \(-0.333308\pi\)
−0.865985 + 0.500070i \(0.833308\pi\)
\(468\) 0 0
\(469\) 6.78304i 0.313212i
\(470\) 0 0
\(471\) 12.1490 + 12.1490i 0.559797 + 0.559797i
\(472\) 0 0
\(473\) −2.79237 + 1.15664i −0.128393 + 0.0531823i
\(474\) 0 0
\(475\) −28.2955 12.7594i −1.29828 0.585440i
\(476\) 0 0
\(477\) −0.285973 + 0.118454i −0.0130938 + 0.00542362i
\(478\) 0 0
\(479\) 2.52395 + 6.09336i 0.115322 + 0.278413i 0.970993 0.239108i \(-0.0768550\pi\)
−0.855671 + 0.517521i \(0.826855\pi\)
\(480\) 0 0
\(481\) −12.8844 31.1057i −0.587478 1.41830i
\(482\) 0 0
\(483\) −4.63734 −0.211006
\(484\) 0 0
\(485\) 18.4154 7.29635i 0.836202 0.331310i
\(486\) 0 0
\(487\) 22.7355i 1.03025i 0.857116 + 0.515123i \(0.172254\pi\)
−0.857116 + 0.515123i \(0.827746\pi\)
\(488\) 0 0
\(489\) 3.22129 + 7.77688i 0.145672 + 0.351683i
\(490\) 0 0
\(491\) 8.56472i 0.386521i 0.981148 + 0.193260i \(0.0619062\pi\)
−0.981148 + 0.193260i \(0.938094\pi\)
\(492\) 0 0
\(493\) 5.10232 5.10232i 0.229797 0.229797i
\(494\) 0 0
\(495\) −0.963656 + 2.22836i −0.0433131 + 0.100157i
\(496\) 0 0
\(497\) −7.87189 −0.353103
\(498\) 0 0
\(499\) −14.7117 + 6.09380i −0.658587 + 0.272796i −0.686844 0.726805i \(-0.741004\pi\)
0.0282566 + 0.999601i \(0.491004\pi\)
\(500\) 0 0
\(501\) 8.42985 8.42985i 0.376618 0.376618i
\(502\) 0 0
\(503\) 3.96798 9.57954i 0.176923 0.427131i −0.810395 0.585884i \(-0.800747\pi\)
0.987318 + 0.158753i \(0.0507474\pi\)
\(504\) 0 0
\(505\) 11.0074 + 4.76014i 0.489821 + 0.211823i
\(506\) 0 0
\(507\) 0.397143 + 0.958788i 0.0176377 + 0.0425813i
\(508\) 0 0
\(509\) 2.59641 + 1.07547i 0.115084 + 0.0476693i 0.439482 0.898251i \(-0.355162\pi\)
−0.324399 + 0.945920i \(0.605162\pi\)
\(510\) 0 0
\(511\) 2.49884 6.03273i 0.110542 0.266872i
\(512\) 0 0
\(513\) 27.3116i 1.20583i
\(514\) 0 0
\(515\) −10.3660 0.160328i −0.456781 0.00706489i
\(516\) 0 0
\(517\) 3.32985 3.32985i 0.146447 0.146447i
\(518\) 0 0
\(519\) 5.26805 12.7182i 0.231242 0.558267i
\(520\) 0 0
\(521\) 6.05087 + 14.6081i 0.265093 + 0.639992i 0.999239 0.0389997i \(-0.0124171\pi\)
−0.734146 + 0.678992i \(0.762417\pi\)
\(522\) 0 0
\(523\) −0.206851 0.206851i −0.00904498 0.00904498i 0.702570 0.711615i \(-0.252036\pi\)
−0.711615 + 0.702570i \(0.752036\pi\)
\(524\) 0 0
\(525\) 2.69205 2.53046i 0.117491 0.110438i
\(526\) 0 0
\(527\) −4.75196 11.4722i −0.206999 0.499739i
\(528\) 0 0
\(529\) 16.3852i 0.712401i
\(530\) 0 0
\(531\) 18.6828 18.6828i 0.810764 0.810764i
\(532\) 0 0
\(533\) 3.67126 + 21.6361i 0.159020 + 0.937164i
\(534\) 0 0
\(535\) 24.7798 + 25.5584i 1.07132 + 1.10498i
\(536\) 0 0
\(537\) 10.7227 10.7227i 0.462718 0.462718i
\(538\) 0 0
\(539\) −2.68814 1.11346i −0.115786 0.0479603i
\(540\) 0 0
\(541\) −15.3594 + 15.3594i −0.660354 + 0.660354i −0.955463 0.295110i \(-0.904644\pi\)
0.295110 + 0.955463i \(0.404644\pi\)
\(542\) 0 0
\(543\) −9.68437 + 9.68437i −0.415596 + 0.415596i
\(544\) 0 0
\(545\) −8.31003 3.59368i −0.355963 0.153936i
\(546\) 0 0
\(547\) 22.2919 9.23362i 0.953135 0.394801i 0.148726 0.988878i \(-0.452483\pi\)
0.804408 + 0.594077i \(0.202483\pi\)
\(548\) 0 0
\(549\) 20.1799i 0.861258i
\(550\) 0 0
\(551\) −31.0302 −1.32193
\(552\) 0 0
\(553\) 3.70559 0.157578
\(554\) 0 0
\(555\) −16.9051 + 6.69793i −0.717580 + 0.284311i
\(556\) 0 0
\(557\) 8.57718 + 20.7071i 0.363427 + 0.877389i 0.994794 + 0.101906i \(0.0324940\pi\)
−0.631368 + 0.775484i \(0.717506\pi\)
\(558\) 0 0
\(559\) 20.4034 + 8.45136i 0.862971 + 0.357454i
\(560\) 0 0
\(561\) −0.517843 + 0.214498i −0.0218633 + 0.00905609i
\(562\) 0 0
\(563\) −26.1805 10.8443i −1.10338 0.457034i −0.244725 0.969593i \(-0.578698\pi\)
−0.858652 + 0.512559i \(0.828698\pi\)
\(564\) 0 0
\(565\) 32.9392 31.9358i 1.38576 1.34355i
\(566\) 0 0
\(567\) 2.72348 + 1.12810i 0.114375 + 0.0473758i
\(568\) 0 0
\(569\) −2.16560 + 2.16560i −0.0907865 + 0.0907865i −0.751042 0.660255i \(-0.770448\pi\)
0.660255 + 0.751042i \(0.270448\pi\)
\(570\) 0 0
\(571\) 9.70092 4.01825i 0.405971 0.168159i −0.170347 0.985384i \(-0.554489\pi\)
0.576318 + 0.817225i \(0.304489\pi\)
\(572\) 0 0
\(573\) −14.5423 14.5423i −0.607512 0.607512i
\(574\) 0 0
\(575\) −21.4914 22.8638i −0.896252 0.953485i
\(576\) 0 0
\(577\) −10.5705 + 25.5194i −0.440056 + 1.06239i 0.535873 + 0.844299i \(0.319983\pi\)
−0.975929 + 0.218090i \(0.930017\pi\)
\(578\) 0 0
\(579\) −10.6783 10.6783i −0.443773 0.443773i
\(580\) 0 0
\(581\) −1.10327 2.66354i −0.0457715 0.110502i
\(582\) 0 0
\(583\) 0.0627228i 0.00259771i
\(584\) 0 0
\(585\) 16.4922 6.53435i 0.681869 0.270162i
\(586\) 0 0
\(587\) −5.76278 + 13.9126i −0.237855 + 0.574233i −0.997061 0.0766179i \(-0.975588\pi\)
0.759205 + 0.650851i \(0.225588\pi\)
\(588\) 0 0
\(589\) −20.4350 + 49.3345i −0.842011 + 2.03279i
\(590\) 0 0
\(591\) 0.442964 1.06941i 0.0182211 0.0439896i
\(592\) 0 0
\(593\) −0.116221 0.280582i −0.00477262 0.0115221i 0.921475 0.388437i \(-0.126985\pi\)
−0.926248 + 0.376915i \(0.876985\pi\)
\(594\) 0 0
\(595\) −2.88106 0.0445605i −0.118112 0.00182680i
\(596\) 0 0
\(597\) 6.55103 6.55103i 0.268116 0.268116i
\(598\) 0 0
\(599\) −1.70225 −0.0695522 −0.0347761 0.999395i \(-0.511072\pi\)
−0.0347761 + 0.999395i \(0.511072\pi\)
\(600\) 0 0
\(601\) 10.5361 + 4.36420i 0.429777 + 0.178019i 0.587076 0.809532i \(-0.300279\pi\)
−0.157300 + 0.987551i \(0.550279\pi\)
\(602\) 0 0
\(603\) −16.2504 6.73115i −0.661769 0.274114i
\(604\) 0 0
\(605\) −16.7790 17.3062i −0.682164 0.703598i
\(606\) 0 0
\(607\) 10.5284i 0.427334i −0.976907 0.213667i \(-0.931459\pi\)
0.976907 0.213667i \(-0.0685407\pi\)
\(608\) 0 0
\(609\) 1.41347 3.41241i 0.0572765 0.138278i
\(610\) 0 0
\(611\) −34.4087 −1.39203
\(612\) 0 0
\(613\) 0.432786i 0.0174801i 0.999962 + 0.00874003i \(0.00278207\pi\)
−0.999962 + 0.00874003i \(0.997218\pi\)
\(614\) 0 0
\(615\) 11.7144 1.80182i 0.472371 0.0726563i
\(616\) 0 0
\(617\) 27.5809i 1.11036i 0.831729 + 0.555182i \(0.187351\pi\)
−0.831729 + 0.555182i \(0.812649\pi\)
\(618\) 0 0
\(619\) 23.1816 0.931746 0.465873 0.884852i \(-0.345740\pi\)
0.465873 + 0.884852i \(0.345740\pi\)
\(620\) 0 0
\(621\) −10.5660 + 25.5086i −0.424000 + 1.02363i
\(622\) 0 0
\(623\) 6.45423i 0.258583i
\(624\) 0 0
\(625\) 24.9522 + 1.54556i 0.998087 + 0.0618224i
\(626\) 0 0
\(627\) 2.22690 + 0.922412i 0.0889338 + 0.0368376i
\(628\) 0 0
\(629\) 13.1017 + 5.42690i 0.522399 + 0.216385i
\(630\) 0 0
\(631\) −32.6449 −1.29957 −0.649786 0.760117i \(-0.725142\pi\)
−0.649786 + 0.760117i \(0.725142\pi\)
\(632\) 0 0
\(633\) −16.9148 + 16.9148i −0.672303 + 0.672303i
\(634\) 0 0
\(635\) 24.0188 + 24.7734i 0.953156 + 0.983103i
\(636\) 0 0
\(637\) 8.13589 + 19.6418i 0.322356 + 0.778235i
\(638\) 0 0
\(639\) −7.81168 + 18.8591i −0.309025 + 0.746053i
\(640\) 0 0
\(641\) 16.3081 39.3711i 0.644129 1.55507i −0.176930 0.984223i \(-0.556617\pi\)
0.821060 0.570842i \(-0.193383\pi\)
\(642\) 0 0
\(643\) 16.2231 39.1661i 0.639777 1.54456i −0.187199 0.982322i \(-0.559941\pi\)
0.826976 0.562237i \(-0.190059\pi\)
\(644\) 0 0
\(645\) 4.73425 10.9475i 0.186411 0.431057i
\(646\) 0 0
\(647\) 18.5073i 0.727595i 0.931478 + 0.363798i \(0.118520\pi\)
−0.931478 + 0.363798i \(0.881480\pi\)
\(648\) 0 0
\(649\) −2.04886 4.94639i −0.0804249 0.194163i
\(650\) 0 0
\(651\) −4.49450 4.49450i −0.176153 0.176153i
\(652\) 0 0
\(653\) 3.48999 8.42559i 0.136574 0.329719i −0.840765 0.541401i \(-0.817894\pi\)
0.977339 + 0.211682i \(0.0678941\pi\)
\(654\) 0 0
\(655\) −9.17264 9.46084i −0.358405 0.369666i
\(656\) 0 0
\(657\) −11.9732 11.9732i −0.467118 0.467118i
\(658\) 0 0
\(659\) 40.6740 16.8477i 1.58444 0.656295i 0.595327 0.803484i \(-0.297023\pi\)
0.989108 + 0.147189i \(0.0470226\pi\)
\(660\) 0 0
\(661\) −17.7114 + 17.7114i −0.688894 + 0.688894i −0.961988 0.273093i \(-0.911953\pi\)
0.273093 + 0.961988i \(0.411953\pi\)
\(662\) 0 0
\(663\) 3.78379 + 1.56730i 0.146950 + 0.0608687i
\(664\) 0 0
\(665\) 8.62522 + 8.89622i 0.334472 + 0.344980i
\(666\) 0 0
\(667\) −28.9818 12.0047i −1.12218 0.464823i
\(668\) 0 0
\(669\) −1.53648 + 0.636431i −0.0594037 + 0.0246058i
\(670\) 0 0
\(671\) −3.77791 1.56486i −0.145844 0.0604108i
\(672\) 0 0
\(673\) −12.4579 30.0762i −0.480219 1.15935i −0.959505 0.281692i \(-0.909104\pi\)
0.479286 0.877659i \(-0.340896\pi\)
\(674\) 0 0
\(675\) −7.78558 20.5737i −0.299667 0.791884i
\(676\) 0 0
\(677\) −35.8032 −1.37603 −0.688014 0.725697i \(-0.741517\pi\)
−0.688014 + 0.725697i \(0.741517\pi\)
\(678\) 0 0
\(679\) −7.90752 −0.303463
\(680\) 0 0
\(681\) 13.9447i 0.534361i
\(682\) 0 0
\(683\) 25.6580 10.6279i 0.981778 0.406666i 0.166694 0.986009i \(-0.446691\pi\)
0.815084 + 0.579343i \(0.196691\pi\)
\(684\) 0 0
\(685\) 1.89130 + 4.77350i 0.0722629 + 0.182386i
\(686\) 0 0
\(687\) −14.8934 + 14.8934i −0.568220 + 0.568220i
\(688\) 0 0
\(689\) 0.324070 0.324070i 0.0123461 0.0123461i
\(690\) 0 0
\(691\) −16.9108 7.00470i −0.643318 0.266471i 0.0370815 0.999312i \(-0.488194\pi\)
−0.680400 + 0.732841i \(0.738194\pi\)
\(692\) 0 0
\(693\) 0.685320 0.685320i 0.0260332 0.0260332i
\(694\) 0 0
\(695\) 9.42339 + 0.145749i 0.357450 + 0.00552856i
\(696\) 0 0
\(697\) −7.53737 5.35052i −0.285498 0.202665i
\(698\) 0 0
\(699\) −2.86531 + 2.86531i −0.108376 + 0.108376i
\(700\) 0 0
\(701\) 51.1404i 1.93155i −0.259388 0.965773i \(-0.583521\pi\)
0.259388 0.965773i \(-0.416479\pi\)
\(702\) 0 0
\(703\) −23.3375 56.3417i −0.880190 2.12497i
\(704\) 0 0
\(705\) −0.287389 + 18.5811i −0.0108237 + 0.699806i
\(706\) 0 0
\(707\) −3.38525 3.38525i −0.127316 0.127316i
\(708\) 0 0
\(709\) −8.63115 20.8374i −0.324150 0.782567i −0.999004 0.0446158i \(-0.985794\pi\)
0.674855 0.737951i \(-0.264206\pi\)
\(710\) 0 0
\(711\) 3.67724 8.87765i 0.137907 0.332938i
\(712\) 0 0
\(713\) −38.1721 + 38.1721i −1.42956 + 1.42956i
\(714\) 0 0
\(715\) 0.0555909 3.59423i 0.00207898 0.134417i
\(716\) 0 0
\(717\) 2.47900i 0.0925800i
\(718\) 0 0
\(719\) 1.27454 3.07701i 0.0475324 0.114753i −0.898330 0.439321i \(-0.855219\pi\)
0.945862 + 0.324568i \(0.105219\pi\)
\(720\) 0 0
\(721\) 3.82362 + 1.58379i 0.142399 + 0.0589835i
\(722\) 0 0
\(723\) 2.57782 + 6.22340i 0.0958700 + 0.231451i
\(724\) 0 0
\(725\) 23.3750 8.84564i 0.868126 0.328519i
\(726\) 0 0
\(727\) 5.68563 13.7263i 0.210868 0.509082i −0.782689 0.622413i \(-0.786152\pi\)
0.993557 + 0.113332i \(0.0361523\pi\)
\(728\) 0 0
\(729\) −2.32032 + 2.32032i −0.0859379 + 0.0859379i
\(730\) 0 0
\(731\) −8.59389 + 3.55971i −0.317856 + 0.131660i
\(732\) 0 0
\(733\) −23.9700 −0.885354 −0.442677 0.896681i \(-0.645971\pi\)
−0.442677 + 0.896681i \(0.645971\pi\)
\(734\) 0 0
\(735\) 10.6748 4.22943i 0.393744 0.156005i
\(736\) 0 0
\(737\) −2.52030 + 2.52030i −0.0928363 + 0.0928363i
\(738\) 0 0
\(739\) 2.48118i 0.0912718i −0.998958 0.0456359i \(-0.985469\pi\)
0.998958 0.0456359i \(-0.0145314\pi\)
\(740\) 0 0
\(741\) −6.73990 16.2716i −0.247596 0.597751i
\(742\) 0 0
\(743\) 33.1371i 1.21568i 0.794059 + 0.607840i \(0.207964\pi\)
−0.794059 + 0.607840i \(0.792036\pi\)
\(744\) 0 0
\(745\) 15.2818 35.3376i 0.559880 1.29467i
\(746\) 0 0
\(747\) −7.47600 −0.273532
\(748\) 0 0
\(749\) −5.43838 13.1294i −0.198714 0.479738i
\(750\) 0 0
\(751\) −0.924929 2.23298i −0.0337512 0.0814825i 0.906105 0.423052i \(-0.139041\pi\)
−0.939856 + 0.341570i \(0.889041\pi\)
\(752\) 0 0
\(753\) 5.83998 2.41900i 0.212821 0.0881532i
\(754\) 0 0
\(755\) −5.19301 13.1067i −0.188993 0.477003i
\(756\) 0 0
\(757\) 33.8206 14.0089i 1.22923 0.509163i 0.328897 0.944366i \(-0.393323\pi\)
0.900333 + 0.435203i \(0.143323\pi\)
\(758\) 0 0
\(759\) 1.72304 + 1.72304i 0.0625424 + 0.0625424i
\(760\) 0 0
\(761\) 34.2999i 1.24337i −0.783268 0.621684i \(-0.786449\pi\)
0.783268 0.621684i \(-0.213551\pi\)
\(762\) 0 0
\(763\) 2.55571 + 2.55571i 0.0925228 + 0.0925228i
\(764\) 0 0
\(765\) −2.96578 + 6.85807i −0.107228 + 0.247954i
\(766\) 0 0
\(767\) −14.9707 + 36.1424i −0.540560 + 1.30503i
\(768\) 0 0
\(769\) 6.31659 0.227782 0.113891 0.993493i \(-0.463669\pi\)
0.113891 + 0.993493i \(0.463669\pi\)
\(770\) 0 0
\(771\) −6.47882 6.47882i −0.233329 0.233329i
\(772\) 0 0
\(773\) −12.0339 + 4.98461i −0.432830 + 0.179284i −0.588451 0.808533i \(-0.700262\pi\)
0.155621 + 0.987817i \(0.450262\pi\)
\(774\) 0 0
\(775\) 1.33011 42.9889i 0.0477790 1.54421i
\(776\) 0 0
\(777\) 7.25897 0.260414
\(778\) 0 0
\(779\) 6.64976 + 39.1895i 0.238252 + 1.40411i
\(780\) 0 0
\(781\) 2.92487 + 2.92487i 0.104660 + 0.104660i
\(782\) 0 0
\(783\) −15.5501 15.5501i −0.555716 0.555716i
\(784\) 0 0
\(785\) 18.4216 42.5982i 0.657496 1.52040i
\(786\) 0 0
\(787\) 48.7397 1.73738 0.868691 0.495355i \(-0.164962\pi\)
0.868691 + 0.495355i \(0.164962\pi\)
\(788\) 0 0
\(789\) 4.77761i 0.170088i
\(790\) 0 0
\(791\) −16.9210 + 7.00889i −0.601640 + 0.249207i
\(792\) 0 0
\(793\) 11.4342 + 27.6045i 0.406039 + 0.980264i
\(794\) 0 0
\(795\) −0.172295 0.177709i −0.00611068 0.00630268i
\(796\) 0 0
\(797\) −9.44830 9.44830i −0.334676 0.334676i 0.519683 0.854359i \(-0.326050\pi\)
−0.854359 + 0.519683i \(0.826050\pi\)
\(798\) 0 0
\(799\) 10.2481 10.2481i 0.362550 0.362550i
\(800\) 0 0
\(801\) −15.4627 6.40485i −0.546347 0.226304i
\(802\) 0 0
\(803\) −3.16998 + 1.31305i −0.111866 + 0.0463364i
\(804\) 0 0
\(805\) 4.61416 + 11.6458i 0.162628 + 0.410460i
\(806\) 0 0
\(807\) 19.4653 + 8.06277i 0.685209 + 0.283823i
\(808\) 0 0
\(809\) −14.6552 + 6.07038i −0.515249 + 0.213423i −0.625129 0.780522i \(-0.714953\pi\)
0.109880 + 0.993945i \(0.464953\pi\)
\(810\) 0 0
\(811\) −22.2617 22.2617i −0.781713 0.781713i 0.198407 0.980120i \(-0.436423\pi\)
−0.980120 + 0.198407i \(0.936423\pi\)
\(812\) 0 0
\(813\) −1.14362 + 2.76093i −0.0401084 + 0.0968302i
\(814\) 0 0
\(815\) 16.3250 15.8277i 0.571838 0.554419i
\(816\) 0 0
\(817\) 36.9566 + 15.3079i 1.29295 + 0.535557i
\(818\) 0 0
\(819\) −7.08169 −0.247454
\(820\) 0 0
\(821\) 24.2580 0.846611 0.423306 0.905987i \(-0.360870\pi\)
0.423306 + 0.905987i \(0.360870\pi\)
\(822\) 0 0
\(823\) 4.88030 + 2.02148i 0.170116 + 0.0704645i 0.466116 0.884723i \(-0.345653\pi\)
−0.296000 + 0.955188i \(0.595653\pi\)
\(824\) 0 0
\(825\) −1.94047 0.0600395i −0.0675584 0.00209031i
\(826\) 0 0
\(827\) 9.23717 22.3005i 0.321208 0.775464i −0.677977 0.735083i \(-0.737143\pi\)
0.999184 0.0403806i \(-0.0128570\pi\)
\(828\) 0 0
\(829\) 11.6114 + 11.6114i 0.403279 + 0.403279i 0.879387 0.476108i \(-0.157953\pi\)
−0.476108 + 0.879387i \(0.657953\pi\)
\(830\) 0 0
\(831\) −4.49989 + 1.86391i −0.156099 + 0.0646585i
\(832\) 0 0
\(833\) −8.27310 3.42683i −0.286646 0.118733i
\(834\) 0 0
\(835\) −29.5577 12.7822i −1.02289 0.442348i
\(836\) 0 0
\(837\) −34.9635 + 14.4824i −1.20852 + 0.500583i
\(838\) 0 0
\(839\) 5.31638 + 2.20212i 0.183542 + 0.0760256i 0.472562 0.881298i \(-0.343329\pi\)
−0.289020 + 0.957323i \(0.593329\pi\)
\(840\) 0 0
\(841\) −2.83870 + 2.83870i −0.0978864 + 0.0978864i
\(842\) 0 0
\(843\) −11.6531 11.6531i −0.401353 0.401353i
\(844\) 0 0
\(845\) 2.01266 1.95135i 0.0692374 0.0671283i
\(846\) 0 0
\(847\) 3.68246 + 8.89025i 0.126531 + 0.305473i
\(848\) 0 0
\(849\) −17.6615 + 7.31564i −0.606142 + 0.251072i
\(850\) 0 0
\(851\) 61.6510i 2.11337i
\(852\) 0 0
\(853\) 2.72360 0.0932543 0.0466272 0.998912i \(-0.485153\pi\)
0.0466272 + 0.998912i \(0.485153\pi\)
\(854\) 0 0
\(855\) 29.8723 11.8357i 1.02161 0.404771i
\(856\) 0 0
\(857\) 3.85361 + 3.85361i 0.131637 + 0.131637i 0.769855 0.638219i \(-0.220328\pi\)
−0.638219 + 0.769855i \(0.720328\pi\)
\(858\) 0 0
\(859\) 4.93558 + 4.93558i 0.168400 + 0.168400i 0.786276 0.617876i \(-0.212007\pi\)
−0.617876 + 0.786276i \(0.712007\pi\)
\(860\) 0 0
\(861\) −4.61259 1.05385i −0.157197 0.0359152i
\(862\) 0 0
\(863\) 11.5665 0.393728 0.196864 0.980431i \(-0.436924\pi\)
0.196864 + 0.980431i \(0.436924\pi\)
\(864\) 0 0
\(865\) −37.1811 0.575068i −1.26419 0.0195529i
\(866\) 0 0
\(867\) 11.4075 4.72516i 0.387420 0.160475i
\(868\) 0 0
\(869\) −1.37684 1.37684i −0.0467062 0.0467062i
\(870\) 0 0
\(871\) 26.0432 0.882442
\(872\) 0 0
\(873\) −7.84703 + 18.9444i −0.265582 + 0.641171i
\(874\) 0 0
\(875\) −9.03336 4.24275i −0.305383 0.143431i
\(876\) 0 0
\(877\) 24.5644 + 24.5644i 0.829482 + 0.829482i 0.987445 0.157963i \(-0.0504927\pi\)
−0.157963 + 0.987445i \(0.550493\pi\)
\(878\) 0 0
\(879\) 23.4047i 0.789420i
\(880\) 0 0
\(881\) −16.7957 16.7957i −0.565863 0.565863i 0.365104 0.930967i \(-0.381033\pi\)
−0.930967 + 0.365104i \(0.881033\pi\)
\(882\) 0 0
\(883\) 9.75916 4.04238i 0.328422 0.136037i −0.212379 0.977187i \(-0.568121\pi\)
0.540801 + 0.841151i \(0.318121\pi\)
\(884\) 0 0
\(885\) 19.3923 + 8.38622i 0.651865 + 0.281900i
\(886\) 0 0
\(887\) −0.00191650 0.000793840i −6.43498e−5 2.66545e-5i −0.382716 0.923866i \(-0.625011\pi\)
0.382651 + 0.923893i \(0.375011\pi\)
\(888\) 0 0
\(889\) −5.27136 12.7262i −0.176796 0.426822i
\(890\) 0 0
\(891\) −0.592775 1.43109i −0.0198587 0.0479432i
\(892\) 0 0
\(893\) −62.3245 −2.08561
\(894\) 0 0
\(895\) −37.5970 16.2589i −1.25673 0.543474i
\(896\) 0 0
\(897\) 17.8049i 0.594488i
\(898\) 0 0
\(899\) −16.4542 39.7240i −0.548780 1.32487i
\(900\) 0 0
\(901\) 0.193038i 0.00643102i
\(902\) 0 0
\(903\) −3.36684 + 3.36684i −0.112041 + 0.112041i
\(904\) 0 0
\(905\) 33.9564 + 14.6845i 1.12875 + 0.488129i
\(906\) 0 0
\(907\) −40.2351 −1.33599 −0.667993 0.744168i \(-0.732846\pi\)
−0.667993 + 0.744168i \(0.732846\pi\)
\(908\) 0 0
\(909\) −11.4696 + 4.75085i −0.380422 + 0.157576i
\(910\) 0 0
\(911\) −5.54934 + 5.54934i −0.183858 + 0.183858i −0.793034 0.609177i \(-0.791500\pi\)
0.609177 + 0.793034i \(0.291500\pi\)
\(912\) 0 0
\(913\) −0.579729 + 1.39959i −0.0191862 + 0.0463197i
\(914\) 0 0
\(915\) 15.0023 5.94403i 0.495960 0.196503i
\(916\) 0 0
\(917\) 2.01310 + 4.86006i 0.0664785 + 0.160493i
\(918\) 0 0
\(919\) −11.6319 4.81810i −0.383702 0.158935i 0.182491 0.983208i \(-0.441584\pi\)
−0.566192 + 0.824273i \(0.691584\pi\)
\(920\) 0 0
\(921\) 1.84405 4.45193i 0.0607635 0.146696i
\(922\) 0 0
\(923\) 30.2238i 0.994830i
\(924\) 0 0
\(925\) 33.6411 + 35.7894i 1.10611 + 1.17675i
\(926\) 0 0
\(927\) 7.58873 7.58873i 0.249247 0.249247i
\(928\) 0 0
\(929\) 8.21197 19.8255i 0.269426 0.650452i −0.730030 0.683415i \(-0.760494\pi\)
0.999457 + 0.0329624i \(0.0104942\pi\)
\(930\) 0 0
\(931\) 14.7365 + 35.5771i 0.482970 + 1.16599i
\(932\) 0 0
\(933\) −5.92278 5.92278i −0.193903 0.193903i
\(934\) 0 0
\(935\) 1.05392 + 1.08704i 0.0344670 + 0.0355500i
\(936\) 0 0
\(937\) −0.647467 1.56312i −0.0211518 0.0510650i 0.912951 0.408070i \(-0.133798\pi\)
−0.934103 + 0.357005i \(0.883798\pi\)
\(938\) 0 0
\(939\) 6.45478i 0.210644i
\(940\) 0 0
\(941\) 23.8797 23.8797i 0.778456 0.778456i −0.201112 0.979568i \(-0.564456\pi\)
0.979568 + 0.201112i \(0.0644556\pi\)
\(942\) 0 0
\(943\) −8.95045 + 39.1750i −0.291467 + 1.27571i
\(944\) 0 0
\(945\) −0.135805 + 8.78049i −0.00441774 + 0.285629i
\(946\) 0 0
\(947\) −1.52357 + 1.52357i −0.0495092 + 0.0495092i −0.731428 0.681919i \(-0.761146\pi\)
0.681919 + 0.731428i \(0.261146\pi\)
\(948\) 0 0
\(949\) 23.1625 + 9.59421i 0.751885 + 0.311441i
\(950\) 0 0
\(951\) −10.7936 + 10.7936i −0.350006 + 0.350006i
\(952\) 0 0
\(953\) 2.71670 2.71670i 0.0880026 0.0880026i −0.661735 0.749738i \(-0.730180\pi\)
0.749738 + 0.661735i \(0.230180\pi\)
\(954\) 0 0
\(955\) −22.0506 + 50.9897i −0.713539 + 1.64999i
\(956\) 0 0
\(957\) −1.79309 + 0.742724i −0.0579625 + 0.0240088i
\(958\) 0 0
\(959\) 2.04972i 0.0661890i
\(960\) 0 0
\(961\) −42.9927 −1.38686
\(962\) 0 0
\(963\) −36.8515 −1.18752
\(964\) 0 0
\(965\) −16.1915 + 37.4413i −0.521224 + 1.20528i
\(966\) 0 0
\(967\) 16.7330 + 40.3971i 0.538098 + 1.29908i 0.926049 + 0.377403i \(0.123183\pi\)
−0.387951 + 0.921680i \(0.626817\pi\)
\(968\) 0 0
\(969\) 6.85357 + 2.83884i 0.220168 + 0.0911967i
\(970\) 0 0
\(971\) 1.04760 0.433931i 0.0336192 0.0139255i −0.365810 0.930689i \(-0.619208\pi\)
0.399430 + 0.916764i \(0.369208\pi\)
\(972\) 0 0
\(973\) −3.47592 1.43977i −0.111433 0.0461570i
\(974\) 0 0
\(975\) 9.71561 + 10.3360i 0.311149 + 0.331018i
\(976\) 0 0
\(977\) −18.6000 7.70437i −0.595067 0.246485i 0.0647620 0.997901i \(-0.479371\pi\)
−0.659829 + 0.751416i \(0.729371\pi\)
\(978\) 0 0
\(979\) −2.39812 + 2.39812i −0.0766443 + 0.0766443i
\(980\) 0 0
\(981\) 8.65898 3.58667i 0.276460 0.114513i
\(982\) 0 0
\(983\) −29.9555 29.9555i −0.955431 0.955431i 0.0436173 0.999048i \(-0.486112\pi\)
−0.999048 + 0.0436173i \(0.986112\pi\)
\(984\) 0 0
\(985\) −3.12637 0.0483545i −0.0996143 0.00154070i
\(986\) 0 0
\(987\) 2.83896 6.85386i 0.0903651 0.218161i
\(988\) 0 0
\(989\) 28.5948 + 28.5948i 0.909262 + 0.909262i
\(990\) 0 0
\(991\) 6.70978 + 16.1988i 0.213143 + 0.514573i 0.993903 0.110258i \(-0.0351678\pi\)
−0.780760 + 0.624831i \(0.785168\pi\)
\(992\) 0 0
\(993\) 22.6702i 0.719417i
\(994\) 0 0
\(995\) −22.9700 9.93338i −0.728197 0.314909i
\(996\) 0 0
\(997\) −14.0520 + 33.9245i −0.445031 + 1.07440i 0.529129 + 0.848541i \(0.322519\pi\)
−0.974160 + 0.225858i \(0.927481\pi\)
\(998\) 0 0
\(999\) 16.5393 39.9295i 0.523281 1.26331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.8 yes 84
5.3 odd 4 820.2.x.a.793.14 yes 84
41.3 odd 8 820.2.x.a.577.14 84
205.3 even 8 inner 820.2.y.a.413.8 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.14 84 41.3 odd 8
820.2.x.a.793.14 yes 84 5.3 odd 4
820.2.y.a.137.8 yes 84 1.1 even 1 trivial
820.2.y.a.413.8 yes 84 205.3 even 8 inner