Properties

Label 820.2.y.a.137.6
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.6
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70434 - 0.705960i) q^{3} +(-1.80257 - 1.32316i) q^{5} +(-0.486096 + 1.17354i) q^{7} +(0.285071 + 0.285071i) q^{9} +(-0.170771 + 0.0707355i) q^{11} +(-2.06988 - 0.857371i) q^{13} +(2.13809 + 3.52765i) q^{15} +(3.47876 - 1.44095i) q^{17} +(-6.29520 - 2.60756i) q^{19} +(1.65694 - 1.65694i) q^{21} +(5.87283 + 5.87283i) q^{23} +(1.49851 + 4.77016i) q^{25} +(1.83327 + 4.42591i) q^{27} +(-7.26833 + 3.01064i) q^{29} +2.63759i q^{31} +0.340987 q^{33} +(2.42900 - 1.47220i) q^{35} +(2.97212 + 2.97212i) q^{37} +(2.92250 + 2.92250i) q^{39} +(3.14368 - 5.57828i) q^{41} +12.6403 q^{43} +(-0.136667 - 0.891054i) q^{45} +(3.76504 - 1.55953i) q^{47} +(3.80884 + 3.80884i) q^{49} -6.94623 q^{51} +(-2.15094 + 5.19282i) q^{53} +(0.401420 + 0.0984507i) q^{55} +(8.88832 + 8.88832i) q^{57} +13.4547i q^{59} +(-4.46735 - 4.46735i) q^{61} +(-0.473114 + 0.195970i) q^{63} +(2.59666 + 4.28424i) q^{65} +(3.93820 - 1.63126i) q^{67} +(-5.86331 - 14.1553i) q^{69} +(5.36440 + 12.9508i) q^{71} -7.79462 q^{73} +(0.813575 - 9.18787i) q^{75} -0.234790i q^{77} +(-2.69653 - 6.50999i) q^{79} -10.0469i q^{81} +(-11.4612 + 11.4612i) q^{83} +(-8.17730 - 2.00553i) q^{85} +14.5131 q^{87} +(2.18703 - 0.905899i) q^{89} +(2.01232 - 2.01232i) q^{91} +(1.86204 - 4.49536i) q^{93} +(7.89732 + 13.0298i) q^{95} +(-5.01568 - 12.1089i) q^{97} +(-0.0688464 - 0.0285171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70434 0.705960i −0.984001 0.407586i −0.168095 0.985771i \(-0.553761\pi\)
−0.815906 + 0.578184i \(0.803761\pi\)
\(4\) 0 0
\(5\) −1.80257 1.32316i −0.806133 0.591734i
\(6\) 0 0
\(7\) −0.486096 + 1.17354i −0.183727 + 0.443556i −0.988729 0.149716i \(-0.952164\pi\)
0.805002 + 0.593272i \(0.202164\pi\)
\(8\) 0 0
\(9\) 0.285071 + 0.285071i 0.0950237 + 0.0950237i
\(10\) 0 0
\(11\) −0.170771 + 0.0707355i −0.0514893 + 0.0213276i −0.408279 0.912857i \(-0.633871\pi\)
0.356790 + 0.934185i \(0.383871\pi\)
\(12\) 0 0
\(13\) −2.06988 0.857371i −0.574081 0.237792i 0.0767046 0.997054i \(-0.475560\pi\)
−0.650785 + 0.759262i \(0.725560\pi\)
\(14\) 0 0
\(15\) 2.13809 + 3.52765i 0.552053 + 0.910835i
\(16\) 0 0
\(17\) 3.47876 1.44095i 0.843722 0.349481i 0.0814021 0.996681i \(-0.474060\pi\)
0.762320 + 0.647200i \(0.224060\pi\)
\(18\) 0 0
\(19\) −6.29520 2.60756i −1.44422 0.598214i −0.483401 0.875399i \(-0.660599\pi\)
−0.960817 + 0.277185i \(0.910599\pi\)
\(20\) 0 0
\(21\) 1.65694 1.65694i 0.361575 0.361575i
\(22\) 0 0
\(23\) 5.87283 + 5.87283i 1.22457 + 1.22457i 0.965990 + 0.258581i \(0.0832549\pi\)
0.258581 + 0.965990i \(0.416745\pi\)
\(24\) 0 0
\(25\) 1.49851 + 4.77016i 0.299702 + 0.954033i
\(26\) 0 0
\(27\) 1.83327 + 4.42591i 0.352813 + 0.851767i
\(28\) 0 0
\(29\) −7.26833 + 3.01064i −1.34970 + 0.559062i −0.936208 0.351447i \(-0.885690\pi\)
−0.413488 + 0.910510i \(0.635690\pi\)
\(30\) 0 0
\(31\) 2.63759i 0.473726i 0.971543 + 0.236863i \(0.0761193\pi\)
−0.971543 + 0.236863i \(0.923881\pi\)
\(32\) 0 0
\(33\) 0.340987 0.0593583
\(34\) 0 0
\(35\) 2.42900 1.47220i 0.410575 0.248848i
\(36\) 0 0
\(37\) 2.97212 + 2.97212i 0.488614 + 0.488614i 0.907869 0.419254i \(-0.137708\pi\)
−0.419254 + 0.907869i \(0.637708\pi\)
\(38\) 0 0
\(39\) 2.92250 + 2.92250i 0.467975 + 0.467975i
\(40\) 0 0
\(41\) 3.14368 5.57828i 0.490961 0.871182i
\(42\) 0 0
\(43\) 12.6403 1.92763 0.963815 0.266573i \(-0.0858914\pi\)
0.963815 + 0.266573i \(0.0858914\pi\)
\(44\) 0 0
\(45\) −0.136667 0.891054i −0.0203731 0.132831i
\(46\) 0 0
\(47\) 3.76504 1.55953i 0.549188 0.227481i −0.0907958 0.995870i \(-0.528941\pi\)
0.639984 + 0.768388i \(0.278941\pi\)
\(48\) 0 0
\(49\) 3.80884 + 3.80884i 0.544120 + 0.544120i
\(50\) 0 0
\(51\) −6.94623 −0.972667
\(52\) 0 0
\(53\) −2.15094 + 5.19282i −0.295454 + 0.713288i 0.704540 + 0.709665i \(0.251154\pi\)
−0.999993 + 0.00362385i \(0.998846\pi\)
\(54\) 0 0
\(55\) 0.401420 + 0.0984507i 0.0541275 + 0.0132751i
\(56\) 0 0
\(57\) 8.88832 + 8.88832i 1.17729 + 1.17729i
\(58\) 0 0
\(59\) 13.4547i 1.75165i 0.482626 + 0.875826i \(0.339683\pi\)
−0.482626 + 0.875826i \(0.660317\pi\)
\(60\) 0 0
\(61\) −4.46735 4.46735i −0.571985 0.571985i 0.360697 0.932683i \(-0.382539\pi\)
−0.932683 + 0.360697i \(0.882539\pi\)
\(62\) 0 0
\(63\) −0.473114 + 0.195970i −0.0596068 + 0.0246899i
\(64\) 0 0
\(65\) 2.59666 + 4.28424i 0.322076 + 0.531395i
\(66\) 0 0
\(67\) 3.93820 1.63126i 0.481128 0.199290i −0.128919 0.991655i \(-0.541151\pi\)
0.610047 + 0.792365i \(0.291151\pi\)
\(68\) 0 0
\(69\) −5.86331 14.1553i −0.705860 1.70410i
\(70\) 0 0
\(71\) 5.36440 + 12.9508i 0.636637 + 1.53698i 0.831133 + 0.556074i \(0.187693\pi\)
−0.194496 + 0.980903i \(0.562307\pi\)
\(72\) 0 0
\(73\) −7.79462 −0.912292 −0.456146 0.889905i \(-0.650770\pi\)
−0.456146 + 0.889905i \(0.650770\pi\)
\(74\) 0 0
\(75\) 0.813575 9.18787i 0.0939435 1.06092i
\(76\) 0 0
\(77\) 0.234790i 0.0267568i
\(78\) 0 0
\(79\) −2.69653 6.50999i −0.303383 0.732431i −0.999889 0.0148807i \(-0.995263\pi\)
0.696506 0.717551i \(-0.254737\pi\)
\(80\) 0 0
\(81\) 10.0469i 1.11632i
\(82\) 0 0
\(83\) −11.4612 + 11.4612i −1.25803 + 1.25803i −0.305998 + 0.952032i \(0.598990\pi\)
−0.952032 + 0.305998i \(0.901010\pi\)
\(84\) 0 0
\(85\) −8.17730 2.00553i −0.886953 0.217530i
\(86\) 0 0
\(87\) 14.5131 1.55597
\(88\) 0 0
\(89\) 2.18703 0.905899i 0.231825 0.0960251i −0.263747 0.964592i \(-0.584958\pi\)
0.495572 + 0.868567i \(0.334958\pi\)
\(90\) 0 0
\(91\) 2.01232 2.01232i 0.210948 0.210948i
\(92\) 0 0
\(93\) 1.86204 4.49536i 0.193084 0.466147i
\(94\) 0 0
\(95\) 7.89732 + 13.0298i 0.810248 + 1.33683i
\(96\) 0 0
\(97\) −5.01568 12.1089i −0.509265 1.22948i −0.944307 0.329065i \(-0.893266\pi\)
0.435042 0.900410i \(-0.356734\pi\)
\(98\) 0 0
\(99\) −0.0688464 0.0285171i −0.00691932 0.00286608i
\(100\) 0 0
\(101\) −5.16472 + 12.4687i −0.513909 + 1.24069i 0.427683 + 0.903929i \(0.359330\pi\)
−0.941592 + 0.336757i \(0.890670\pi\)
\(102\) 0 0
\(103\) 4.00866i 0.394985i 0.980304 + 0.197492i \(0.0632798\pi\)
−0.980304 + 0.197492i \(0.936720\pi\)
\(104\) 0 0
\(105\) −5.17915 + 0.794359i −0.505434 + 0.0775215i
\(106\) 0 0
\(107\) 0.248757 0.248757i 0.0240483 0.0240483i −0.694980 0.719029i \(-0.744587\pi\)
0.719029 + 0.694980i \(0.244587\pi\)
\(108\) 0 0
\(109\) 3.33082 8.04132i 0.319035 0.770219i −0.680271 0.732961i \(-0.738138\pi\)
0.999306 0.0372576i \(-0.0118622\pi\)
\(110\) 0 0
\(111\) −2.96731 7.16371i −0.281644 0.679949i
\(112\) 0 0
\(113\) −6.59685 6.59685i −0.620580 0.620580i 0.325100 0.945680i \(-0.394602\pi\)
−0.945680 + 0.325100i \(0.894602\pi\)
\(114\) 0 0
\(115\) −2.81551 18.3569i −0.262548 1.71179i
\(116\) 0 0
\(117\) −0.345650 0.834474i −0.0319554 0.0771471i
\(118\) 0 0
\(119\) 4.78289i 0.438447i
\(120\) 0 0
\(121\) −7.75402 + 7.75402i −0.704911 + 0.704911i
\(122\) 0 0
\(123\) −9.29595 + 7.28797i −0.838188 + 0.657134i
\(124\) 0 0
\(125\) 3.61050 10.5813i 0.322933 0.946422i
\(126\) 0 0
\(127\) −8.78254 + 8.78254i −0.779324 + 0.779324i −0.979716 0.200392i \(-0.935779\pi\)
0.200392 + 0.979716i \(0.435779\pi\)
\(128\) 0 0
\(129\) −21.5434 8.92356i −1.89679 0.785675i
\(130\) 0 0
\(131\) −7.54803 + 7.54803i −0.659475 + 0.659475i −0.955256 0.295781i \(-0.904420\pi\)
0.295781 + 0.955256i \(0.404420\pi\)
\(132\) 0 0
\(133\) 6.12014 6.12014i 0.530683 0.530683i
\(134\) 0 0
\(135\) 2.55157 10.4037i 0.219605 0.895409i
\(136\) 0 0
\(137\) 3.46919 1.43698i 0.296393 0.122770i −0.229532 0.973301i \(-0.573719\pi\)
0.525924 + 0.850531i \(0.323719\pi\)
\(138\) 0 0
\(139\) 9.75476i 0.827388i −0.910416 0.413694i \(-0.864238\pi\)
0.910416 0.413694i \(-0.135762\pi\)
\(140\) 0 0
\(141\) −7.51788 −0.633119
\(142\) 0 0
\(143\) 0.414121 0.0346305
\(144\) 0 0
\(145\) 17.0852 + 4.19025i 1.41885 + 0.347982i
\(146\) 0 0
\(147\) −3.80267 9.18045i −0.313639 0.757191i
\(148\) 0 0
\(149\) −1.72511 0.714562i −0.141326 0.0585392i 0.310899 0.950443i \(-0.399370\pi\)
−0.452226 + 0.891904i \(0.649370\pi\)
\(150\) 0 0
\(151\) 8.05608 3.33694i 0.655594 0.271556i −0.0299891 0.999550i \(-0.509547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(152\) 0 0
\(153\) 1.40247 + 0.580920i 0.113383 + 0.0469646i
\(154\) 0 0
\(155\) 3.48995 4.75445i 0.280320 0.381886i
\(156\) 0 0
\(157\) 10.3738 + 4.29698i 0.827922 + 0.342937i 0.756080 0.654479i \(-0.227112\pi\)
0.0718425 + 0.997416i \(0.477112\pi\)
\(158\) 0 0
\(159\) 7.33185 7.33185i 0.581453 0.581453i
\(160\) 0 0
\(161\) −9.74676 + 4.03724i −0.768152 + 0.318179i
\(162\) 0 0
\(163\) 11.7086 + 11.7086i 0.917085 + 0.917085i 0.996816 0.0797310i \(-0.0254061\pi\)
−0.0797310 + 0.996816i \(0.525406\pi\)
\(164\) 0 0
\(165\) −0.614653 0.451180i −0.0478507 0.0351243i
\(166\) 0 0
\(167\) 1.68112 4.05857i 0.130089 0.314062i −0.845392 0.534146i \(-0.820633\pi\)
0.975481 + 0.220084i \(0.0706332\pi\)
\(168\) 0 0
\(169\) −5.64308 5.64308i −0.434083 0.434083i
\(170\) 0 0
\(171\) −1.05124 2.53792i −0.0803903 0.194079i
\(172\) 0 0
\(173\) 1.73349i 0.131795i 0.997826 + 0.0658975i \(0.0209910\pi\)
−0.997826 + 0.0658975i \(0.979009\pi\)
\(174\) 0 0
\(175\) −6.32639 0.560195i −0.478230 0.0423467i
\(176\) 0 0
\(177\) 9.49848 22.9314i 0.713950 1.72363i
\(178\) 0 0
\(179\) 2.20698 5.32812i 0.164957 0.398242i −0.819688 0.572811i \(-0.805853\pi\)
0.984645 + 0.174568i \(0.0558530\pi\)
\(180\) 0 0
\(181\) −1.70433 + 4.11462i −0.126682 + 0.305837i −0.974477 0.224486i \(-0.927930\pi\)
0.847795 + 0.530324i \(0.177930\pi\)
\(182\) 0 0
\(183\) 4.46011 + 10.7676i 0.329700 + 0.795967i
\(184\) 0 0
\(185\) −1.42487 9.29005i −0.104759 0.683018i
\(186\) 0 0
\(187\) −0.492143 + 0.492143i −0.0359891 + 0.0359891i
\(188\) 0 0
\(189\) −6.08512 −0.442628
\(190\) 0 0
\(191\) −17.6370 7.30549i −1.27617 0.528607i −0.361336 0.932436i \(-0.617679\pi\)
−0.914835 + 0.403829i \(0.867679\pi\)
\(192\) 0 0
\(193\) −1.42088 0.588548i −0.102277 0.0423646i 0.330958 0.943645i \(-0.392628\pi\)
−0.433235 + 0.901281i \(0.642628\pi\)
\(194\) 0 0
\(195\) −1.40108 9.13494i −0.100334 0.654167i
\(196\) 0 0
\(197\) 7.63343i 0.543860i 0.962317 + 0.271930i \(0.0876619\pi\)
−0.962317 + 0.271930i \(0.912338\pi\)
\(198\) 0 0
\(199\) −5.66541 + 13.6775i −0.401610 + 0.969572i 0.585665 + 0.810553i \(0.300833\pi\)
−0.987275 + 0.159020i \(0.949167\pi\)
\(200\) 0 0
\(201\) −7.86363 −0.554658
\(202\) 0 0
\(203\) 9.99313i 0.701380i
\(204\) 0 0
\(205\) −13.0477 + 5.89565i −0.911288 + 0.411770i
\(206\) 0 0
\(207\) 3.34835i 0.232726i
\(208\) 0 0
\(209\) 1.25948 0.0871202
\(210\) 0 0
\(211\) 4.44470 10.7305i 0.305986 0.738716i −0.693841 0.720128i \(-0.744083\pi\)
0.999827 0.0185876i \(-0.00591695\pi\)
\(212\) 0 0
\(213\) 25.8596i 1.77187i
\(214\) 0 0
\(215\) −22.7850 16.7251i −1.55393 1.14064i
\(216\) 0 0
\(217\) −3.09532 1.28212i −0.210124 0.0870362i
\(218\) 0 0
\(219\) 13.2847 + 5.50270i 0.897696 + 0.371838i
\(220\) 0 0
\(221\) −8.43602 −0.567468
\(222\) 0 0
\(223\) −3.45494 + 3.45494i −0.231360 + 0.231360i −0.813260 0.581900i \(-0.802309\pi\)
0.581900 + 0.813260i \(0.302309\pi\)
\(224\) 0 0
\(225\) −0.932654 + 1.78702i −0.0621769 + 0.119135i
\(226\) 0 0
\(227\) −2.96458 7.15712i −0.196766 0.475035i 0.794443 0.607338i \(-0.207763\pi\)
−0.991209 + 0.132304i \(0.957763\pi\)
\(228\) 0 0
\(229\) 8.86532 21.4028i 0.585837 1.41434i −0.301613 0.953431i \(-0.597525\pi\)
0.887450 0.460905i \(-0.152475\pi\)
\(230\) 0 0
\(231\) −0.165753 + 0.400162i −0.0109057 + 0.0263287i
\(232\) 0 0
\(233\) −11.1579 + 26.9376i −0.730978 + 1.76474i −0.0916669 + 0.995790i \(0.529220\pi\)
−0.639311 + 0.768948i \(0.720780\pi\)
\(234\) 0 0
\(235\) −8.85026 2.17058i −0.577327 0.141593i
\(236\) 0 0
\(237\) 12.9989i 0.844368i
\(238\) 0 0
\(239\) 7.26969 + 17.5506i 0.470237 + 1.13525i 0.964059 + 0.265690i \(0.0855998\pi\)
−0.493821 + 0.869564i \(0.664400\pi\)
\(240\) 0 0
\(241\) 9.20318 + 9.20318i 0.592829 + 0.592829i 0.938395 0.345566i \(-0.112313\pi\)
−0.345566 + 0.938395i \(0.612313\pi\)
\(242\) 0 0
\(243\) −1.59291 + 3.84563i −0.102185 + 0.246697i
\(244\) 0 0
\(245\) −1.82601 11.9054i −0.116659 0.760608i
\(246\) 0 0
\(247\) 10.7946 + 10.7946i 0.686847 + 0.686847i
\(248\) 0 0
\(249\) 27.6249 11.4426i 1.75066 0.725146i
\(250\) 0 0
\(251\) −8.50694 + 8.50694i −0.536953 + 0.536953i −0.922633 0.385680i \(-0.873967\pi\)
0.385680 + 0.922633i \(0.373967\pi\)
\(252\) 0 0
\(253\) −1.41833 0.587490i −0.0891693 0.0369351i
\(254\) 0 0
\(255\) 12.5211 + 9.19095i 0.784099 + 0.575560i
\(256\) 0 0
\(257\) 22.1202 + 9.16248i 1.37982 + 0.571540i 0.944433 0.328705i \(-0.106612\pi\)
0.435386 + 0.900244i \(0.356612\pi\)
\(258\) 0 0
\(259\) −4.93264 + 2.04317i −0.306499 + 0.126956i
\(260\) 0 0
\(261\) −2.93024 1.21374i −0.181377 0.0751289i
\(262\) 0 0
\(263\) 6.79987 + 16.4163i 0.419298 + 1.01227i 0.982552 + 0.185991i \(0.0595494\pi\)
−0.563254 + 0.826284i \(0.690451\pi\)
\(264\) 0 0
\(265\) 10.7481 6.51439i 0.660252 0.400176i
\(266\) 0 0
\(267\) −4.36698 −0.267255
\(268\) 0 0
\(269\) 29.1478 1.77717 0.888586 0.458709i \(-0.151688\pi\)
0.888586 + 0.458709i \(0.151688\pi\)
\(270\) 0 0
\(271\) 6.03560i 0.366637i −0.983054 0.183318i \(-0.941316\pi\)
0.983054 0.183318i \(-0.0586839\pi\)
\(272\) 0 0
\(273\) −4.85029 + 2.00905i −0.293553 + 0.121593i
\(274\) 0 0
\(275\) −0.593322 0.708606i −0.0357786 0.0427305i
\(276\) 0 0
\(277\) −19.4638 + 19.4638i −1.16947 + 1.16947i −0.187133 + 0.982335i \(0.559919\pi\)
−0.982335 + 0.187133i \(0.940081\pi\)
\(278\) 0 0
\(279\) −0.751902 + 0.751902i −0.0450152 + 0.0450152i
\(280\) 0 0
\(281\) −14.5996 6.04737i −0.870942 0.360756i −0.0979648 0.995190i \(-0.531233\pi\)
−0.772977 + 0.634434i \(0.781233\pi\)
\(282\) 0 0
\(283\) −16.5976 + 16.5976i −0.986623 + 0.986623i −0.999912 0.0132884i \(-0.995770\pi\)
0.0132884 + 0.999912i \(0.495770\pi\)
\(284\) 0 0
\(285\) −4.26117 27.7825i −0.252410 1.64569i
\(286\) 0 0
\(287\) 5.01820 + 6.40082i 0.296215 + 0.377828i
\(288\) 0 0
\(289\) −1.99540 + 1.99540i −0.117377 + 0.117377i
\(290\) 0 0
\(291\) 24.1786i 1.41737i
\(292\) 0 0
\(293\) −6.84694 16.5300i −0.400003 0.965692i −0.987664 0.156585i \(-0.949951\pi\)
0.587662 0.809107i \(-0.300049\pi\)
\(294\) 0 0
\(295\) 17.8027 24.2530i 1.03651 1.41207i
\(296\) 0 0
\(297\) −0.626138 0.626138i −0.0363322 0.0363322i
\(298\) 0 0
\(299\) −7.12085 17.1912i −0.411809 0.994195i
\(300\) 0 0
\(301\) −6.14440 + 14.8339i −0.354157 + 0.855012i
\(302\) 0 0
\(303\) 17.6049 17.6049i 1.01137 1.01137i
\(304\) 0 0
\(305\) 2.14170 + 13.9637i 0.122633 + 0.799560i
\(306\) 0 0
\(307\) 12.9449i 0.738806i −0.929269 0.369403i \(-0.879562\pi\)
0.929269 0.369403i \(-0.120438\pi\)
\(308\) 0 0
\(309\) 2.82995 6.83211i 0.160990 0.388665i
\(310\) 0 0
\(311\) 22.4956 + 9.31797i 1.27561 + 0.528374i 0.914664 0.404214i \(-0.132455\pi\)
0.360943 + 0.932588i \(0.382455\pi\)
\(312\) 0 0
\(313\) −2.04778 4.94378i −0.115747 0.279439i 0.855380 0.518001i \(-0.173324\pi\)
−0.971127 + 0.238563i \(0.923324\pi\)
\(314\) 0 0
\(315\) 1.11212 + 0.272754i 0.0626609 + 0.0153680i
\(316\) 0 0
\(317\) −7.31488 + 17.6597i −0.410845 + 0.991867i 0.574067 + 0.818808i \(0.305365\pi\)
−0.984912 + 0.173058i \(0.944635\pi\)
\(318\) 0 0
\(319\) 1.02826 1.02826i 0.0575714 0.0575714i
\(320\) 0 0
\(321\) −0.599579 + 0.248354i −0.0334652 + 0.0138618i
\(322\) 0 0
\(323\) −25.6568 −1.42758
\(324\) 0 0
\(325\) 0.988066 11.1584i 0.0548081 0.618959i
\(326\) 0 0
\(327\) −11.3537 + 11.3537i −0.627861 + 0.627861i
\(328\) 0 0
\(329\) 5.17651i 0.285390i
\(330\) 0 0
\(331\) −3.08622 7.45079i −0.169634 0.409532i 0.816085 0.577932i \(-0.196140\pi\)
−0.985719 + 0.168400i \(0.946140\pi\)
\(332\) 0 0
\(333\) 1.69453i 0.0928599i
\(334\) 0 0
\(335\) −9.25729 2.27041i −0.505780 0.124046i
\(336\) 0 0
\(337\) 35.7899 1.94960 0.974799 0.223085i \(-0.0716127\pi\)
0.974799 + 0.223085i \(0.0716127\pi\)
\(338\) 0 0
\(339\) 6.58616 + 15.9004i 0.357711 + 0.863590i
\(340\) 0 0
\(341\) −0.186572 0.450424i −0.0101034 0.0243918i
\(342\) 0 0
\(343\) −14.5361 + 6.02103i −0.784873 + 0.325105i
\(344\) 0 0
\(345\) −8.16064 + 33.2740i −0.439354 + 1.79141i
\(346\) 0 0
\(347\) −12.2140 + 5.05920i −0.655681 + 0.271592i −0.685620 0.727960i \(-0.740469\pi\)
0.0299386 + 0.999552i \(0.490469\pi\)
\(348\) 0 0
\(349\) 17.5342 + 17.5342i 0.938582 + 0.938582i 0.998220 0.0596379i \(-0.0189946\pi\)
−0.0596379 + 0.998220i \(0.518995\pi\)
\(350\) 0 0
\(351\) 10.7329i 0.572879i
\(352\) 0 0
\(353\) 15.5402 + 15.5402i 0.827124 + 0.827124i 0.987118 0.159994i \(-0.0511475\pi\)
−0.159994 + 0.987118i \(0.551148\pi\)
\(354\) 0 0
\(355\) 7.46624 30.4427i 0.396267 1.61573i
\(356\) 0 0
\(357\) 3.37653 8.15167i 0.178705 0.431432i
\(358\) 0 0
\(359\) −11.7961 −0.622575 −0.311288 0.950316i \(-0.600760\pi\)
−0.311288 + 0.950316i \(0.600760\pi\)
\(360\) 0 0
\(361\) 19.3951 + 19.3951i 1.02080 + 1.02080i
\(362\) 0 0
\(363\) 18.6895 7.74144i 0.980944 0.406320i
\(364\) 0 0
\(365\) 14.0503 + 10.3135i 0.735429 + 0.539834i
\(366\) 0 0
\(367\) −17.4818 −0.912545 −0.456273 0.889840i \(-0.650816\pi\)
−0.456273 + 0.889840i \(0.650816\pi\)
\(368\) 0 0
\(369\) 2.48638 0.694034i 0.129436 0.0361300i
\(370\) 0 0
\(371\) −5.04841 5.04841i −0.262101 0.262101i
\(372\) 0 0
\(373\) 0.999842 + 0.999842i 0.0517699 + 0.0517699i 0.732518 0.680748i \(-0.238345\pi\)
−0.680748 + 0.732518i \(0.738345\pi\)
\(374\) 0 0
\(375\) −13.6235 + 15.4853i −0.703515 + 0.799656i
\(376\) 0 0
\(377\) 17.6258 0.907775
\(378\) 0 0
\(379\) 28.1101i 1.44392i −0.691935 0.721959i \(-0.743242\pi\)
0.691935 0.721959i \(-0.256758\pi\)
\(380\) 0 0
\(381\) 21.1685 8.76830i 1.08450 0.449213i
\(382\) 0 0
\(383\) 1.08277 + 2.61405i 0.0553272 + 0.133572i 0.949126 0.314896i \(-0.101970\pi\)
−0.893799 + 0.448468i \(0.851970\pi\)
\(384\) 0 0
\(385\) −0.310664 + 0.423226i −0.0158329 + 0.0215696i
\(386\) 0 0
\(387\) 3.60339 + 3.60339i 0.183170 + 0.183170i
\(388\) 0 0
\(389\) −9.41091 + 9.41091i −0.477152 + 0.477152i −0.904220 0.427068i \(-0.859547\pi\)
0.427068 + 0.904220i \(0.359547\pi\)
\(390\) 0 0
\(391\) 28.8926 + 11.9677i 1.46116 + 0.605233i
\(392\) 0 0
\(393\) 18.1930 7.53580i 0.917716 0.380131i
\(394\) 0 0
\(395\) −3.75306 + 15.3026i −0.188837 + 0.769959i
\(396\) 0 0
\(397\) 9.09987 + 3.76929i 0.456709 + 0.189175i 0.599164 0.800626i \(-0.295500\pi\)
−0.142455 + 0.989801i \(0.545500\pi\)
\(398\) 0 0
\(399\) −14.7514 + 6.11021i −0.738492 + 0.305893i
\(400\) 0 0
\(401\) 5.38223 + 5.38223i 0.268776 + 0.268776i 0.828607 0.559831i \(-0.189134\pi\)
−0.559831 + 0.828607i \(0.689134\pi\)
\(402\) 0 0
\(403\) 2.26140 5.45950i 0.112648 0.271957i
\(404\) 0 0
\(405\) −13.2937 + 18.1103i −0.660567 + 0.899907i
\(406\) 0 0
\(407\) −0.717786 0.297317i −0.0355793 0.0147374i
\(408\) 0 0
\(409\) −32.8389 −1.62378 −0.811891 0.583810i \(-0.801561\pi\)
−0.811891 + 0.583810i \(0.801561\pi\)
\(410\) 0 0
\(411\) −6.92713 −0.341690
\(412\) 0 0
\(413\) −15.7896 6.54027i −0.776956 0.321826i
\(414\) 0 0
\(415\) 35.8246 5.49464i 1.75856 0.269721i
\(416\) 0 0
\(417\) −6.88648 + 16.6254i −0.337232 + 0.814151i
\(418\) 0 0
\(419\) −2.74262 2.74262i −0.133986 0.133986i 0.636933 0.770919i \(-0.280203\pi\)
−0.770919 + 0.636933i \(0.780203\pi\)
\(420\) 0 0
\(421\) 3.02621 1.25350i 0.147488 0.0610916i −0.307718 0.951478i \(-0.599565\pi\)
0.455207 + 0.890386i \(0.349565\pi\)
\(422\) 0 0
\(423\) 1.51788 + 0.628728i 0.0738020 + 0.0305698i
\(424\) 0 0
\(425\) 12.0865 + 14.4350i 0.586282 + 0.700198i
\(426\) 0 0
\(427\) 7.41417 3.07105i 0.358797 0.148618i
\(428\) 0 0
\(429\) −0.705802 0.292353i −0.0340764 0.0141149i
\(430\) 0 0
\(431\) −18.6912 + 18.6912i −0.900322 + 0.900322i −0.995464 0.0951414i \(-0.969670\pi\)
0.0951414 + 0.995464i \(0.469670\pi\)
\(432\) 0 0
\(433\) −12.1399 12.1399i −0.583408 0.583408i 0.352430 0.935838i \(-0.385356\pi\)
−0.935838 + 0.352430i \(0.885356\pi\)
\(434\) 0 0
\(435\) −26.1609 19.2031i −1.25432 0.920719i
\(436\) 0 0
\(437\) −21.6569 52.2844i −1.03599 2.50110i
\(438\) 0 0
\(439\) −21.2684 + 8.80967i −1.01509 + 0.420462i −0.827308 0.561749i \(-0.810129\pi\)
−0.187778 + 0.982211i \(0.560129\pi\)
\(440\) 0 0
\(441\) 2.17158i 0.103409i
\(442\) 0 0
\(443\) 16.5788 0.787683 0.393841 0.919178i \(-0.371146\pi\)
0.393841 + 0.919178i \(0.371146\pi\)
\(444\) 0 0
\(445\) −5.14093 1.26084i −0.243703 0.0597697i
\(446\) 0 0
\(447\) 2.43571 + 2.43571i 0.115205 + 0.115205i
\(448\) 0 0
\(449\) 9.03090 + 9.03090i 0.426194 + 0.426194i 0.887330 0.461135i \(-0.152558\pi\)
−0.461135 + 0.887330i \(0.652558\pi\)
\(450\) 0 0
\(451\) −0.142266 + 1.17498i −0.00669905 + 0.0553275i
\(452\) 0 0
\(453\) −16.0860 −0.755788
\(454\) 0 0
\(455\) −6.28995 + 0.964729i −0.294877 + 0.0452272i
\(456\) 0 0
\(457\) −21.8289 + 9.04182i −1.02111 + 0.422958i −0.829497 0.558512i \(-0.811373\pi\)
−0.191615 + 0.981470i \(0.561373\pi\)
\(458\) 0 0
\(459\) 12.7550 + 12.7550i 0.595353 + 0.595353i
\(460\) 0 0
\(461\) 13.5597 0.631540 0.315770 0.948836i \(-0.397737\pi\)
0.315770 + 0.948836i \(0.397737\pi\)
\(462\) 0 0
\(463\) 7.63673 18.4367i 0.354909 0.856826i −0.641091 0.767465i \(-0.721518\pi\)
0.995999 0.0893603i \(-0.0284823\pi\)
\(464\) 0 0
\(465\) −9.30451 + 5.63942i −0.431486 + 0.261522i
\(466\) 0 0
\(467\) 25.9559 + 25.9559i 1.20109 + 1.20109i 0.973834 + 0.227260i \(0.0729768\pi\)
0.227260 + 0.973834i \(0.427023\pi\)
\(468\) 0 0
\(469\) 5.41458i 0.250022i
\(470\) 0 0
\(471\) −14.6470 14.6470i −0.674900 0.674900i
\(472\) 0 0
\(473\) −2.15859 + 0.894119i −0.0992522 + 0.0411116i
\(474\) 0 0
\(475\) 3.00504 33.9366i 0.137881 1.55712i
\(476\) 0 0
\(477\) −2.09349 + 0.867153i −0.0958544 + 0.0397042i
\(478\) 0 0
\(479\) 6.43583 + 15.5375i 0.294060 + 0.709925i 0.999999 + 0.00165118i \(0.000525589\pi\)
−0.705938 + 0.708273i \(0.749474\pi\)
\(480\) 0 0
\(481\) −3.60372 8.70015i −0.164315 0.396693i
\(482\) 0 0
\(483\) 19.4619 0.885548
\(484\) 0 0
\(485\) −6.98090 + 28.4637i −0.316986 + 1.29247i
\(486\) 0 0
\(487\) 40.5470i 1.83736i 0.395004 + 0.918679i \(0.370743\pi\)
−0.395004 + 0.918679i \(0.629257\pi\)
\(488\) 0 0
\(489\) −11.6896 28.2211i −0.528621 1.27620i
\(490\) 0 0
\(491\) 10.4047i 0.469557i −0.972049 0.234779i \(-0.924563\pi\)
0.972049 0.234779i \(-0.0754365\pi\)
\(492\) 0 0
\(493\) −20.9466 + 20.9466i −0.943387 + 0.943387i
\(494\) 0 0
\(495\) 0.0863678 + 0.142499i 0.00388194 + 0.00640484i
\(496\) 0 0
\(497\) −17.8059 −0.798703
\(498\) 0 0
\(499\) −3.91012 + 1.61963i −0.175041 + 0.0725044i −0.468483 0.883473i \(-0.655199\pi\)
0.293442 + 0.955977i \(0.405199\pi\)
\(500\) 0 0
\(501\) −5.73038 + 5.73038i −0.256015 + 0.256015i
\(502\) 0 0
\(503\) −2.98057 + 7.19574i −0.132897 + 0.320842i −0.976294 0.216449i \(-0.930552\pi\)
0.843397 + 0.537291i \(0.180552\pi\)
\(504\) 0 0
\(505\) 25.8079 15.6420i 1.14843 0.696061i
\(506\) 0 0
\(507\) 5.63393 + 13.6015i 0.250212 + 0.604065i
\(508\) 0 0
\(509\) 20.5095 + 8.49531i 0.909067 + 0.376548i 0.787699 0.616060i \(-0.211272\pi\)
0.121368 + 0.992608i \(0.461272\pi\)
\(510\) 0 0
\(511\) 3.78893 9.14729i 0.167613 0.404652i
\(512\) 0 0
\(513\) 32.6423i 1.44119i
\(514\) 0 0
\(515\) 5.30408 7.22588i 0.233726 0.318410i
\(516\) 0 0
\(517\) −0.532644 + 0.532644i −0.0234257 + 0.0234257i
\(518\) 0 0
\(519\) 1.22378 2.95446i 0.0537179 0.129686i
\(520\) 0 0
\(521\) −7.26682 17.5437i −0.318365 0.768602i −0.999341 0.0362959i \(-0.988444\pi\)
0.680976 0.732306i \(-0.261556\pi\)
\(522\) 0 0
\(523\) 15.1191 + 15.1191i 0.661111 + 0.661111i 0.955642 0.294531i \(-0.0951635\pi\)
−0.294531 + 0.955642i \(0.595163\pi\)
\(524\) 0 0
\(525\) 10.3868 + 5.42094i 0.453319 + 0.236589i
\(526\) 0 0
\(527\) 3.80064 + 9.17555i 0.165558 + 0.399693i
\(528\) 0 0
\(529\) 45.9804i 1.99915i
\(530\) 0 0
\(531\) −3.83555 + 3.83555i −0.166449 + 0.166449i
\(532\) 0 0
\(533\) −11.2897 + 8.85106i −0.489011 + 0.383382i
\(534\) 0 0
\(535\) −0.777546 + 0.119257i −0.0336163 + 0.00515594i
\(536\) 0 0
\(537\) −7.52288 + 7.52288i −0.324636 + 0.324636i
\(538\) 0 0
\(539\) −0.919859 0.381018i −0.0396211 0.0164116i
\(540\) 0 0
\(541\) −0.855317 + 0.855317i −0.0367729 + 0.0367729i −0.725254 0.688481i \(-0.758278\pi\)
0.688481 + 0.725254i \(0.258278\pi\)
\(542\) 0 0
\(543\) 5.80952 5.80952i 0.249310 0.249310i
\(544\) 0 0
\(545\) −16.6440 + 10.0878i −0.712949 + 0.432115i
\(546\) 0 0
\(547\) 10.5837 4.38392i 0.452528 0.187443i −0.144766 0.989466i \(-0.546243\pi\)
0.597293 + 0.802023i \(0.296243\pi\)
\(548\) 0 0
\(549\) 2.54702i 0.108704i
\(550\) 0 0
\(551\) 53.6060 2.28369
\(552\) 0 0
\(553\) 8.95050 0.380614
\(554\) 0 0
\(555\) −4.12994 + 16.8393i −0.175306 + 0.714788i
\(556\) 0 0
\(557\) −2.54906 6.15398i −0.108007 0.260753i 0.860630 0.509230i \(-0.170070\pi\)
−0.968638 + 0.248478i \(0.920070\pi\)
\(558\) 0 0
\(559\) −26.1639 10.8374i −1.10661 0.458375i
\(560\) 0 0
\(561\) 1.18621 0.491345i 0.0500819 0.0207446i
\(562\) 0 0
\(563\) 3.34738 + 1.38653i 0.141075 + 0.0584353i 0.452104 0.891965i \(-0.350674\pi\)
−0.311029 + 0.950400i \(0.600674\pi\)
\(564\) 0 0
\(565\) 3.16261 + 20.6200i 0.133052 + 0.867488i
\(566\) 0 0
\(567\) 11.7905 + 4.88377i 0.495153 + 0.205099i
\(568\) 0 0
\(569\) 24.5865 24.5865i 1.03072 1.03072i 0.0312088 0.999513i \(-0.490064\pi\)
0.999513 0.0312088i \(-0.00993568\pi\)
\(570\) 0 0
\(571\) 7.36973 3.05264i 0.308413 0.127749i −0.223108 0.974794i \(-0.571620\pi\)
0.531522 + 0.847045i \(0.321620\pi\)
\(572\) 0 0
\(573\) 24.9021 + 24.9021i 1.04030 + 1.04030i
\(574\) 0 0
\(575\) −19.2139 + 36.8149i −0.801274 + 1.53529i
\(576\) 0 0
\(577\) 4.51165 10.8921i 0.187822 0.453443i −0.801718 0.597703i \(-0.796080\pi\)
0.989540 + 0.144260i \(0.0460801\pi\)
\(578\) 0 0
\(579\) 2.00617 + 2.00617i 0.0833737 + 0.0833737i
\(580\) 0 0
\(581\) −7.87892 19.0214i −0.326873 0.789141i
\(582\) 0 0
\(583\) 1.03893i 0.0430280i
\(584\) 0 0
\(585\) −0.481081 + 1.96155i −0.0198903 + 0.0811000i
\(586\) 0 0
\(587\) 8.19090 19.7746i 0.338074 0.816184i −0.659826 0.751418i \(-0.729370\pi\)
0.997901 0.0647656i \(-0.0206300\pi\)
\(588\) 0 0
\(589\) 6.87768 16.6042i 0.283390 0.684163i
\(590\) 0 0
\(591\) 5.38890 13.0100i 0.221670 0.535158i
\(592\) 0 0
\(593\) −15.7223 37.9570i −0.645638 1.55871i −0.818965 0.573844i \(-0.805452\pi\)
0.173327 0.984864i \(-0.444548\pi\)
\(594\) 0 0
\(595\) 6.32852 8.62150i 0.259444 0.353447i
\(596\) 0 0
\(597\) 19.3115 19.3115i 0.790369 0.790369i
\(598\) 0 0
\(599\) −13.9998 −0.572018 −0.286009 0.958227i \(-0.592329\pi\)
−0.286009 + 0.958227i \(0.592329\pi\)
\(600\) 0 0
\(601\) −0.873103 0.361651i −0.0356146 0.0147520i 0.364805 0.931084i \(-0.381136\pi\)
−0.400420 + 0.916332i \(0.631136\pi\)
\(602\) 0 0
\(603\) 1.58769 + 0.657643i 0.0646558 + 0.0267813i
\(604\) 0 0
\(605\) 24.2369 3.71737i 0.985371 0.151133i
\(606\) 0 0
\(607\) 22.3580i 0.907482i −0.891134 0.453741i \(-0.850089\pi\)
0.891134 0.453741i \(-0.149911\pi\)
\(608\) 0 0
\(609\) −7.05476 + 17.0317i −0.285873 + 0.690159i
\(610\) 0 0
\(611\) −9.13027 −0.369371
\(612\) 0 0
\(613\) 19.7712i 0.798552i 0.916831 + 0.399276i \(0.130739\pi\)
−0.916831 + 0.399276i \(0.869261\pi\)
\(614\) 0 0
\(615\) 26.3997 0.837068i 1.06454 0.0337538i
\(616\) 0 0
\(617\) 47.1754i 1.89921i −0.313451 0.949604i \(-0.601485\pi\)
0.313451 0.949604i \(-0.398515\pi\)
\(618\) 0 0
\(619\) −33.5171 −1.34716 −0.673582 0.739112i \(-0.735245\pi\)
−0.673582 + 0.739112i \(0.735245\pi\)
\(620\) 0 0
\(621\) −15.2261 + 36.7591i −0.611004 + 1.47509i
\(622\) 0 0
\(623\) 3.00692i 0.120470i
\(624\) 0 0
\(625\) −20.5089 + 14.2963i −0.820357 + 0.571852i
\(626\) 0 0
\(627\) −2.14658 0.889144i −0.0857263 0.0355090i
\(628\) 0 0
\(629\) 14.6220 + 6.05662i 0.583016 + 0.241493i
\(630\) 0 0
\(631\) 15.1068 0.601390 0.300695 0.953720i \(-0.402781\pi\)
0.300695 + 0.953720i \(0.402781\pi\)
\(632\) 0 0
\(633\) −15.1506 + 15.1506i −0.602181 + 0.602181i
\(634\) 0 0
\(635\) 27.4518 4.21046i 1.08939 0.167087i
\(636\) 0 0
\(637\) −4.61824 11.1494i −0.182982 0.441756i
\(638\) 0 0
\(639\) −2.16266 + 5.22113i −0.0855537 + 0.206545i
\(640\) 0 0
\(641\) −6.39457 + 15.4379i −0.252570 + 0.609759i −0.998410 0.0563664i \(-0.982048\pi\)
0.745840 + 0.666126i \(0.232048\pi\)
\(642\) 0 0
\(643\) 5.29933 12.7937i 0.208985 0.504535i −0.784279 0.620409i \(-0.786967\pi\)
0.993264 + 0.115874i \(0.0369668\pi\)
\(644\) 0 0
\(645\) 27.0262 + 44.5906i 1.06415 + 1.75575i
\(646\) 0 0
\(647\) 2.81591i 0.110705i 0.998467 + 0.0553525i \(0.0176283\pi\)
−0.998467 + 0.0553525i \(0.982372\pi\)
\(648\) 0 0
\(649\) −0.951725 2.29767i −0.0373585 0.0901913i
\(650\) 0 0
\(651\) 4.37035 + 4.37035i 0.171287 + 0.171287i
\(652\) 0 0
\(653\) 3.25217 7.85143i 0.127267 0.307250i −0.847384 0.530981i \(-0.821824\pi\)
0.974651 + 0.223731i \(0.0718236\pi\)
\(654\) 0 0
\(655\) 23.5931 3.61862i 0.921858 0.141391i
\(656\) 0 0
\(657\) −2.22202 2.22202i −0.0866893 0.0866893i
\(658\) 0 0
\(659\) −3.29175 + 1.36349i −0.128228 + 0.0531140i −0.445875 0.895095i \(-0.647107\pi\)
0.317647 + 0.948209i \(0.397107\pi\)
\(660\) 0 0
\(661\) 20.1584 20.1584i 0.784072 0.784072i −0.196444 0.980515i \(-0.562939\pi\)
0.980515 + 0.196444i \(0.0629392\pi\)
\(662\) 0 0
\(663\) 14.3778 + 5.95550i 0.558389 + 0.231292i
\(664\) 0 0
\(665\) −19.1299 + 2.93407i −0.741825 + 0.113778i
\(666\) 0 0
\(667\) −60.3667 25.0047i −2.33741 0.968186i
\(668\) 0 0
\(669\) 8.32743 3.44933i 0.321957 0.133359i
\(670\) 0 0
\(671\) 1.07889 + 0.446892i 0.0416502 + 0.0172521i
\(672\) 0 0
\(673\) 0.685647 + 1.65530i 0.0264298 + 0.0638071i 0.936543 0.350552i \(-0.114006\pi\)
−0.910114 + 0.414359i \(0.864006\pi\)
\(674\) 0 0
\(675\) −18.3651 + 15.3773i −0.706874 + 0.591872i
\(676\) 0 0
\(677\) 7.21198 0.277179 0.138589 0.990350i \(-0.455743\pi\)
0.138589 + 0.990350i \(0.455743\pi\)
\(678\) 0 0
\(679\) 16.6484 0.638907
\(680\) 0 0
\(681\) 14.2910i 0.547633i
\(682\) 0 0
\(683\) −5.67183 + 2.34935i −0.217027 + 0.0898953i −0.488548 0.872537i \(-0.662473\pi\)
0.271521 + 0.962432i \(0.412473\pi\)
\(684\) 0 0
\(685\) −8.15481 2.00002i −0.311579 0.0764167i
\(686\) 0 0
\(687\) −30.2190 + 30.2190i −1.15293 + 1.15293i
\(688\) 0 0
\(689\) 8.90435 8.90435i 0.339229 0.339229i
\(690\) 0 0
\(691\) −32.5129 13.4673i −1.23685 0.512319i −0.334119 0.942531i \(-0.608439\pi\)
−0.902728 + 0.430212i \(0.858439\pi\)
\(692\) 0 0
\(693\) 0.0669319 0.0669319i 0.00254253 0.00254253i
\(694\) 0 0
\(695\) −12.9071 + 17.5836i −0.489594 + 0.666985i
\(696\) 0 0
\(697\) 2.89810 23.9354i 0.109773 0.906617i
\(698\) 0 0
\(699\) 38.0337 38.0337i 1.43857 1.43857i
\(700\) 0 0
\(701\) 17.9583i 0.678274i 0.940737 + 0.339137i \(0.110135\pi\)
−0.940737 + 0.339137i \(0.889865\pi\)
\(702\) 0 0
\(703\) −10.9601 26.4601i −0.413369 0.997962i
\(704\) 0 0
\(705\) 13.5515 + 9.94733i 0.510379 + 0.374638i
\(706\) 0 0
\(707\) −12.1220 12.1220i −0.455895 0.455895i
\(708\) 0 0
\(709\) 5.72227 + 13.8148i 0.214904 + 0.518825i 0.994164 0.107876i \(-0.0344048\pi\)
−0.779260 + 0.626701i \(0.784405\pi\)
\(710\) 0 0
\(711\) 1.08711 2.62451i 0.0407698 0.0984269i
\(712\) 0 0
\(713\) −15.4902 + 15.4902i −0.580111 + 0.580111i
\(714\) 0 0
\(715\) −0.746481 0.547947i −0.0279168 0.0204920i
\(716\) 0 0
\(717\) 35.0443i 1.30875i
\(718\) 0 0
\(719\) −19.4680 + 46.9998i −0.726032 + 1.75280i −0.0706478 + 0.997501i \(0.522507\pi\)
−0.655384 + 0.755296i \(0.727493\pi\)
\(720\) 0 0
\(721\) −4.70431 1.94859i −0.175198 0.0725693i
\(722\) 0 0
\(723\) −9.18825 22.1824i −0.341715 0.824973i
\(724\) 0 0
\(725\) −25.2529 30.1597i −0.937871 1.12010i
\(726\) 0 0
\(727\) 0.682535 1.64778i 0.0253138 0.0611129i −0.910717 0.413031i \(-0.864470\pi\)
0.936031 + 0.351918i \(0.114470\pi\)
\(728\) 0 0
\(729\) −15.8830 + 15.8830i −0.588260 + 0.588260i
\(730\) 0 0
\(731\) 43.9726 18.2140i 1.62638 0.673670i
\(732\) 0 0
\(733\) 18.9691 0.700640 0.350320 0.936630i \(-0.386073\pi\)
0.350320 + 0.936630i \(0.386073\pi\)
\(734\) 0 0
\(735\) −5.29261 + 21.5799i −0.195221 + 0.795988i
\(736\) 0 0
\(737\) −0.557141 + 0.557141i −0.0205226 + 0.0205226i
\(738\) 0 0
\(739\) 24.3436i 0.895495i −0.894160 0.447748i \(-0.852226\pi\)
0.894160 0.447748i \(-0.147774\pi\)
\(740\) 0 0
\(741\) −10.7771 26.0183i −0.395908 0.955807i
\(742\) 0 0
\(743\) 27.3841i 1.00462i −0.864686 0.502312i \(-0.832483\pi\)
0.864686 0.502312i \(-0.167517\pi\)
\(744\) 0 0
\(745\) 2.16414 + 3.57063i 0.0792881 + 0.130818i
\(746\) 0 0
\(747\) −6.53451 −0.239085
\(748\) 0 0
\(749\) 0.171006 + 0.412846i 0.00624844 + 0.0150851i
\(750\) 0 0
\(751\) −17.8950 43.2023i −0.652997 1.57647i −0.808407 0.588624i \(-0.799670\pi\)
0.155410 0.987850i \(-0.450330\pi\)
\(752\) 0 0
\(753\) 20.5043 8.49314i 0.747217 0.309507i
\(754\) 0 0
\(755\) −18.9369 4.64440i −0.689185 0.169027i
\(756\) 0 0
\(757\) −6.16427 + 2.55332i −0.224044 + 0.0928021i −0.491882 0.870662i \(-0.663691\pi\)
0.267838 + 0.963464i \(0.413691\pi\)
\(758\) 0 0
\(759\) 2.00256 + 2.00256i 0.0726884 + 0.0726884i
\(760\) 0 0
\(761\) 17.0252i 0.617164i 0.951198 + 0.308582i \(0.0998544\pi\)
−0.951198 + 0.308582i \(0.900146\pi\)
\(762\) 0 0
\(763\) 7.81770 + 7.81770i 0.283020 + 0.283020i
\(764\) 0 0
\(765\) −1.75939 2.90283i −0.0636110 0.104952i
\(766\) 0 0
\(767\) 11.5357 27.8496i 0.416529 1.00559i
\(768\) 0 0
\(769\) −25.8774 −0.933161 −0.466581 0.884479i \(-0.654514\pi\)
−0.466581 + 0.884479i \(0.654514\pi\)
\(770\) 0 0
\(771\) −31.2319 31.2319i −1.12479 1.12479i
\(772\) 0 0
\(773\) 7.70394 3.19108i 0.277091 0.114775i −0.239810 0.970820i \(-0.577085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(774\) 0 0
\(775\) −12.5818 + 3.95247i −0.451950 + 0.141977i
\(776\) 0 0
\(777\) 9.84929 0.353341
\(778\) 0 0
\(779\) −34.3358 + 26.9191i −1.23021 + 0.964476i
\(780\) 0 0
\(781\) −1.83216 1.83216i −0.0655599 0.0655599i
\(782\) 0 0
\(783\) −26.6497 26.6497i −0.952381 0.952381i
\(784\) 0 0
\(785\) −13.0140 21.4718i −0.464489 0.766362i
\(786\) 0 0
\(787\) 1.93147 0.0688495 0.0344248 0.999407i \(-0.489040\pi\)
0.0344248 + 0.999407i \(0.489040\pi\)
\(788\) 0 0
\(789\) 32.7794i 1.16698i
\(790\) 0 0
\(791\) 10.9484 4.53496i 0.389279 0.161245i
\(792\) 0 0
\(793\) 5.41669 + 13.0770i 0.192352 + 0.464379i
\(794\) 0 0
\(795\) −22.9173 + 3.51498i −0.812795 + 0.124663i
\(796\) 0 0
\(797\) 14.3187 + 14.3187i 0.507194 + 0.507194i 0.913664 0.406470i \(-0.133240\pi\)
−0.406470 + 0.913664i \(0.633240\pi\)
\(798\) 0 0
\(799\) 10.8505 10.8505i 0.383862 0.383862i
\(800\) 0 0
\(801\) 0.881706 + 0.365215i 0.0311535 + 0.0129042i
\(802\) 0 0
\(803\) 1.33109 0.551357i 0.0469732 0.0194570i
\(804\) 0 0
\(805\) 22.9111 + 5.61909i 0.807510 + 0.198047i
\(806\) 0 0
\(807\) −49.6777 20.5772i −1.74874 0.724351i
\(808\) 0 0
\(809\) −34.8928 + 14.4531i −1.22677 + 0.508143i −0.899555 0.436808i \(-0.856109\pi\)
−0.327211 + 0.944951i \(0.606109\pi\)
\(810\) 0 0
\(811\) −29.3478 29.3478i −1.03054 1.03054i −0.999519 0.0310211i \(-0.990124\pi\)
−0.0310211 0.999519i \(-0.509876\pi\)
\(812\) 0 0
\(813\) −4.26090 + 10.2867i −0.149436 + 0.360771i
\(814\) 0 0
\(815\) −5.61323 36.5978i −0.196623 1.28196i
\(816\) 0 0
\(817\) −79.5733 32.9603i −2.78392 1.15314i
\(818\) 0 0
\(819\) 1.14731 0.0400901
\(820\) 0 0
\(821\) 26.5804 0.927661 0.463830 0.885924i \(-0.346475\pi\)
0.463830 + 0.885924i \(0.346475\pi\)
\(822\) 0 0
\(823\) 9.04496 + 3.74654i 0.315287 + 0.130596i 0.534715 0.845032i \(-0.320419\pi\)
−0.219428 + 0.975629i \(0.570419\pi\)
\(824\) 0 0
\(825\) 0.510974 + 1.62657i 0.0177898 + 0.0566298i
\(826\) 0 0
\(827\) −2.69337 + 6.50238i −0.0936577 + 0.226110i −0.963765 0.266753i \(-0.914049\pi\)
0.870107 + 0.492862i \(0.164049\pi\)
\(828\) 0 0
\(829\) 1.97169 + 1.97169i 0.0684797 + 0.0684797i 0.740517 0.672037i \(-0.234581\pi\)
−0.672037 + 0.740517i \(0.734581\pi\)
\(830\) 0 0
\(831\) 46.9136 19.4323i 1.62742 0.674098i
\(832\) 0 0
\(833\) 18.7384 + 7.76169i 0.649246 + 0.268927i
\(834\) 0 0
\(835\) −8.40046 + 5.09148i −0.290710 + 0.176198i
\(836\) 0 0
\(837\) −11.6738 + 4.83543i −0.403504 + 0.167137i
\(838\) 0 0
\(839\) −38.4178 15.9132i −1.32633 0.549384i −0.396724 0.917938i \(-0.629853\pi\)
−0.929606 + 0.368554i \(0.879853\pi\)
\(840\) 0 0
\(841\) 23.2586 23.2586i 0.802021 0.802021i
\(842\) 0 0
\(843\) 20.6135 + 20.6135i 0.709968 + 0.709968i
\(844\) 0 0
\(845\) 2.70536 + 17.6387i 0.0930673 + 0.606791i
\(846\) 0 0
\(847\) −5.33044 12.8688i −0.183156 0.442178i
\(848\) 0 0
\(849\) 40.0051 16.5707i 1.37297 0.568704i
\(850\) 0 0
\(851\) 34.9096i 1.19669i
\(852\) 0 0
\(853\) −9.26366 −0.317182 −0.158591 0.987344i \(-0.550695\pi\)
−0.158591 + 0.987344i \(0.550695\pi\)
\(854\) 0 0
\(855\) −1.46313 + 5.96573i −0.0500380 + 0.204024i
\(856\) 0 0
\(857\) −0.295199 0.295199i −0.0100838 0.0100838i 0.702047 0.712131i \(-0.252270\pi\)
−0.712131 + 0.702047i \(0.752270\pi\)
\(858\) 0 0
\(859\) −16.3411 16.3411i −0.557551 0.557551i 0.371058 0.928610i \(-0.378995\pi\)
−0.928610 + 0.371058i \(0.878995\pi\)
\(860\) 0 0
\(861\) −4.03399 14.4518i −0.137478 0.492516i
\(862\) 0 0
\(863\) 19.5247 0.664629 0.332315 0.943169i \(-0.392170\pi\)
0.332315 + 0.943169i \(0.392170\pi\)
\(864\) 0 0
\(865\) 2.29368 3.12474i 0.0779876 0.106244i
\(866\) 0 0
\(867\) 4.80952 1.99217i 0.163340 0.0676576i
\(868\) 0 0
\(869\) 0.920975 + 0.920975i 0.0312419 + 0.0312419i
\(870\) 0 0
\(871\) −9.55019 −0.323596
\(872\) 0 0
\(873\) 2.02208 4.88173i 0.0684370 0.165222i
\(874\) 0 0
\(875\) 10.6625 + 9.38060i 0.360459 + 0.317122i
\(876\) 0 0
\(877\) 15.4571 + 15.4571i 0.521950 + 0.521950i 0.918160 0.396210i \(-0.129675\pi\)
−0.396210 + 0.918160i \(0.629675\pi\)
\(878\) 0 0
\(879\) 33.0064i 1.11328i
\(880\) 0 0
\(881\) −29.7918 29.7918i −1.00371 1.00371i −0.999993 0.00371845i \(-0.998816\pi\)
−0.00371845 0.999993i \(-0.501184\pi\)
\(882\) 0 0
\(883\) 7.26055 3.00742i 0.244337 0.101208i −0.257154 0.966370i \(-0.582785\pi\)
0.501491 + 0.865163i \(0.332785\pi\)
\(884\) 0 0
\(885\) −47.4635 + 28.7674i −1.59547 + 0.967005i
\(886\) 0 0
\(887\) −39.5250 + 16.3718i −1.32712 + 0.549711i −0.929832 0.367983i \(-0.880048\pi\)
−0.397287 + 0.917694i \(0.630048\pi\)
\(888\) 0 0
\(889\) −6.03749 14.5758i −0.202491 0.488857i
\(890\) 0 0
\(891\) 0.710674 + 1.71572i 0.0238085 + 0.0574788i
\(892\) 0 0
\(893\) −27.7683 −0.929229
\(894\) 0 0
\(895\) −11.0282 + 6.68412i −0.368631 + 0.223426i
\(896\) 0 0
\(897\) 34.3267i 1.14614i
\(898\) 0 0
\(899\) −7.94085 19.1709i −0.264842 0.639386i
\(900\) 0 0
\(901\) 21.1639i 0.705073i
\(902\) 0 0
\(903\) 20.9443 20.9443i 0.696982 0.696982i
\(904\) 0 0
\(905\) 8.51647 5.16179i 0.283097 0.171584i
\(906\) 0 0
\(907\) 19.0737 0.633333 0.316666 0.948537i \(-0.397436\pi\)
0.316666 + 0.948537i \(0.397436\pi\)
\(908\) 0 0
\(909\) −5.02679 + 2.08216i −0.166728 + 0.0690610i
\(910\) 0 0
\(911\) −5.94016 + 5.94016i −0.196806 + 0.196806i −0.798629 0.601823i \(-0.794441\pi\)
0.601823 + 0.798629i \(0.294441\pi\)
\(912\) 0 0
\(913\) 1.14652 2.76795i 0.0379444 0.0916058i
\(914\) 0 0
\(915\) 6.20764 25.3108i 0.205218 0.836751i
\(916\) 0 0
\(917\) −5.18884 12.5270i −0.171351 0.413677i
\(918\) 0 0
\(919\) 4.83312 + 2.00194i 0.159430 + 0.0660380i 0.460971 0.887415i \(-0.347501\pi\)
−0.301541 + 0.953453i \(0.597501\pi\)
\(920\) 0 0
\(921\) −9.13861 + 22.0625i −0.301127 + 0.726986i
\(922\) 0 0
\(923\) 31.4058i 1.03374i
\(924\) 0 0
\(925\) −9.72376 + 18.6313i −0.319715 + 0.612593i
\(926\) 0 0
\(927\) −1.14275 + 1.14275i −0.0375329 + 0.0375329i
\(928\) 0 0
\(929\) 17.4115 42.0350i 0.571252 1.37912i −0.329238 0.944247i \(-0.606792\pi\)
0.900490 0.434877i \(-0.143208\pi\)
\(930\) 0 0
\(931\) −14.0456 33.9092i −0.460328 1.11133i
\(932\) 0 0
\(933\) −31.7620 31.7620i −1.03984 1.03984i
\(934\) 0 0
\(935\) 1.53830 0.235939i 0.0503079 0.00771604i
\(936\) 0 0
\(937\) −15.0171 36.2545i −0.490588 1.18438i −0.954422 0.298461i \(-0.903527\pi\)
0.463834 0.885922i \(-0.346473\pi\)
\(938\) 0 0
\(939\) 9.87152i 0.322145i
\(940\) 0 0
\(941\) −11.4531 + 11.4531i −0.373360 + 0.373360i −0.868700 0.495339i \(-0.835044\pi\)
0.495339 + 0.868700i \(0.335044\pi\)
\(942\) 0 0
\(943\) 51.2227 14.2980i 1.66804 0.465607i
\(944\) 0 0
\(945\) 10.9689 + 8.05157i 0.356817 + 0.261918i
\(946\) 0 0
\(947\) −6.43203 + 6.43203i −0.209013 + 0.209013i −0.803848 0.594835i \(-0.797217\pi\)
0.594835 + 0.803848i \(0.297217\pi\)
\(948\) 0 0
\(949\) 16.1339 + 6.68289i 0.523729 + 0.216936i
\(950\) 0 0
\(951\) 24.9341 24.9341i 0.808543 0.808543i
\(952\) 0 0
\(953\) 12.1178 12.1178i 0.392535 0.392535i −0.483055 0.875590i \(-0.660473\pi\)
0.875590 + 0.483055i \(0.160473\pi\)
\(954\) 0 0
\(955\) 22.1256 + 36.5052i 0.715969 + 1.18128i
\(956\) 0 0
\(957\) −2.47841 + 1.02659i −0.0801156 + 0.0331850i
\(958\) 0 0
\(959\) 4.76974i 0.154023i
\(960\) 0 0
\(961\) 24.0431 0.775584
\(962\) 0 0
\(963\) 0.141827 0.00457031
\(964\) 0 0
\(965\) 1.78250 + 2.94095i 0.0573806 + 0.0946725i
\(966\) 0 0
\(967\) −1.96806 4.75133i −0.0632887 0.152792i 0.889071 0.457769i \(-0.151351\pi\)
−0.952360 + 0.304977i \(0.901351\pi\)
\(968\) 0 0
\(969\) 43.7279 + 18.1127i 1.40474 + 0.581863i
\(970\) 0 0
\(971\) −7.92783 + 3.28382i −0.254416 + 0.105383i −0.506247 0.862389i \(-0.668967\pi\)
0.251830 + 0.967771i \(0.418967\pi\)
\(972\) 0 0
\(973\) 11.4476 + 4.74175i 0.366993 + 0.152013i
\(974\) 0 0
\(975\) −9.56141 + 18.3202i −0.306210 + 0.586717i
\(976\) 0 0
\(977\) 40.2670 + 16.6791i 1.28826 + 0.533613i 0.918465 0.395502i \(-0.129429\pi\)
0.369791 + 0.929115i \(0.379429\pi\)
\(978\) 0 0
\(979\) −0.309402 + 0.309402i −0.00988853 + 0.00988853i
\(980\) 0 0
\(981\) 3.24187 1.34283i 0.103505 0.0428731i
\(982\) 0 0
\(983\) −12.1599 12.1599i −0.387839 0.387839i 0.486077 0.873916i \(-0.338427\pi\)
−0.873916 + 0.486077i \(0.838427\pi\)
\(984\) 0 0
\(985\) 10.1002 13.7598i 0.321820 0.438423i
\(986\) 0 0
\(987\) 3.65441 8.82252i 0.116321 0.280824i
\(988\) 0 0
\(989\) 74.2344 + 74.2344i 2.36052 + 2.36052i
\(990\) 0 0
\(991\) 14.8836 + 35.9322i 0.472793 + 1.14142i 0.962924 + 0.269774i \(0.0869492\pi\)
−0.490130 + 0.871649i \(0.663051\pi\)
\(992\) 0 0
\(993\) 14.8774i 0.472121i
\(994\) 0 0
\(995\) 28.3098 17.1584i 0.897480 0.543959i
\(996\) 0 0
\(997\) −14.7351 + 35.5737i −0.466665 + 1.12663i 0.498945 + 0.866634i \(0.333721\pi\)
−0.965610 + 0.259995i \(0.916279\pi\)
\(998\) 0 0
\(999\) −7.70564 + 18.6031i −0.243796 + 0.588575i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.6 yes 84
5.3 odd 4 820.2.x.a.793.16 yes 84
41.3 odd 8 820.2.x.a.577.16 84
205.3 even 8 inner 820.2.y.a.413.6 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.16 84 41.3 odd 8
820.2.x.a.793.16 yes 84 5.3 odd 4
820.2.y.a.137.6 yes 84 1.1 even 1 trivial
820.2.y.a.413.6 yes 84 205.3 even 8 inner