Properties

Label 820.2.y.a.137.5
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.5
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.04447 - 0.846849i) q^{3} +(2.12876 + 0.684393i) q^{5} +(1.81325 - 4.37757i) q^{7} +(1.34140 + 1.34140i) q^{9} +(-0.881451 + 0.365109i) q^{11} +(3.32754 + 1.37831i) q^{13} +(-3.77261 - 3.20196i) q^{15} +(2.21596 - 0.917880i) q^{17} +(-4.27371 - 1.77023i) q^{19} +(-7.41429 + 7.41429i) q^{21} +(0.410884 + 0.410884i) q^{23} +(4.06321 + 2.91381i) q^{25} +(0.934048 + 2.25499i) q^{27} +(1.92379 - 0.796858i) q^{29} -2.06873i q^{31} +2.11130 q^{33} +(6.85595 - 8.07781i) q^{35} +(-4.84468 - 4.84468i) q^{37} +(-5.63586 - 5.63586i) q^{39} +(1.96004 - 6.09576i) q^{41} -7.06541 q^{43} +(1.93747 + 3.77357i) q^{45} +(8.68032 - 3.59551i) q^{47} +(-10.9255 - 10.9255i) q^{49} -5.30778 q^{51} +(-0.821734 + 1.98384i) q^{53} +(-2.12627 + 0.173969i) q^{55} +(7.23837 + 7.23837i) q^{57} -6.82043i q^{59} +(-5.25030 - 5.25030i) q^{61} +(8.30439 - 3.43979i) q^{63} +(6.14022 + 5.21144i) q^{65} +(10.4450 - 4.32646i) q^{67} +(-0.492085 - 1.18800i) q^{69} +(-2.24583 - 5.42190i) q^{71} +5.58085 q^{73} +(-5.83957 - 9.39815i) q^{75} +4.52065i q^{77} +(1.44471 + 3.48785i) q^{79} -11.0924i q^{81} +(-6.06087 + 6.06087i) q^{83} +(5.34543 - 0.437356i) q^{85} -4.60795 q^{87} +(-1.93175 + 0.800159i) q^{89} +(12.0673 - 12.0673i) q^{91} +(-1.75190 + 4.22946i) q^{93} +(-7.88615 - 6.69328i) q^{95} +(-5.64811 - 13.6357i) q^{97} +(-1.67214 - 0.692623i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.04447 0.846849i −1.18038 0.488929i −0.295768 0.955260i \(-0.595576\pi\)
−0.884610 + 0.466331i \(0.845576\pi\)
\(4\) 0 0
\(5\) 2.12876 + 0.684393i 0.952009 + 0.306070i
\(6\) 0 0
\(7\) 1.81325 4.37757i 0.685344 1.65457i −0.0686134 0.997643i \(-0.521858\pi\)
0.753957 0.656923i \(-0.228142\pi\)
\(8\) 0 0
\(9\) 1.34140 + 1.34140i 0.447135 + 0.447135i
\(10\) 0 0
\(11\) −0.881451 + 0.365109i −0.265767 + 0.110084i −0.511588 0.859231i \(-0.670943\pi\)
0.245821 + 0.969315i \(0.420943\pi\)
\(12\) 0 0
\(13\) 3.32754 + 1.37831i 0.922895 + 0.382275i 0.792979 0.609250i \(-0.208529\pi\)
0.129916 + 0.991525i \(0.458529\pi\)
\(14\) 0 0
\(15\) −3.77261 3.20196i −0.974084 0.826743i
\(16\) 0 0
\(17\) 2.21596 0.917880i 0.537449 0.222619i −0.0974134 0.995244i \(-0.531057\pi\)
0.634862 + 0.772625i \(0.281057\pi\)
\(18\) 0 0
\(19\) −4.27371 1.77023i −0.980455 0.406118i −0.165861 0.986149i \(-0.553040\pi\)
−0.814594 + 0.580031i \(0.803040\pi\)
\(20\) 0 0
\(21\) −7.41429 + 7.41429i −1.61793 + 1.61793i
\(22\) 0 0
\(23\) 0.410884 + 0.410884i 0.0856751 + 0.0856751i 0.748646 0.662970i \(-0.230705\pi\)
−0.662970 + 0.748646i \(0.730705\pi\)
\(24\) 0 0
\(25\) 4.06321 + 2.91381i 0.812642 + 0.582763i
\(26\) 0 0
\(27\) 0.934048 + 2.25499i 0.179758 + 0.433973i
\(28\) 0 0
\(29\) 1.92379 0.796858i 0.357238 0.147973i −0.196844 0.980435i \(-0.563069\pi\)
0.554082 + 0.832462i \(0.313069\pi\)
\(30\) 0 0
\(31\) 2.06873i 0.371554i −0.982592 0.185777i \(-0.940520\pi\)
0.982592 0.185777i \(-0.0594803\pi\)
\(32\) 0 0
\(33\) 2.11130 0.367530
\(34\) 0 0
\(35\) 6.85595 8.07781i 1.15887 1.36540i
\(36\) 0 0
\(37\) −4.84468 4.84468i −0.796461 0.796461i 0.186075 0.982536i \(-0.440423\pi\)
−0.982536 + 0.186075i \(0.940423\pi\)
\(38\) 0 0
\(39\) −5.63586 5.63586i −0.902459 0.902459i
\(40\) 0 0
\(41\) 1.96004 6.09576i 0.306106 0.951997i
\(42\) 0 0
\(43\) −7.06541 −1.07747 −0.538733 0.842477i \(-0.681097\pi\)
−0.538733 + 0.842477i \(0.681097\pi\)
\(44\) 0 0
\(45\) 1.93747 + 3.77357i 0.288822 + 0.562531i
\(46\) 0 0
\(47\) 8.68032 3.59551i 1.26616 0.524459i 0.354362 0.935108i \(-0.384698\pi\)
0.911793 + 0.410650i \(0.134698\pi\)
\(48\) 0 0
\(49\) −10.9255 10.9255i −1.56079 1.56079i
\(50\) 0 0
\(51\) −5.30778 −0.743237
\(52\) 0 0
\(53\) −0.821734 + 1.98384i −0.112874 + 0.272502i −0.970214 0.242248i \(-0.922115\pi\)
0.857340 + 0.514750i \(0.172115\pi\)
\(54\) 0 0
\(55\) −2.12627 + 0.173969i −0.286707 + 0.0234580i
\(56\) 0 0
\(57\) 7.23837 + 7.23837i 0.958745 + 0.958745i
\(58\) 0 0
\(59\) 6.82043i 0.887945i −0.896041 0.443972i \(-0.853569\pi\)
0.896041 0.443972i \(-0.146431\pi\)
\(60\) 0 0
\(61\) −5.25030 5.25030i −0.672232 0.672232i 0.285998 0.958230i \(-0.407675\pi\)
−0.958230 + 0.285998i \(0.907675\pi\)
\(62\) 0 0
\(63\) 8.30439 3.43979i 1.04625 0.433373i
\(64\) 0 0
\(65\) 6.14022 + 5.21144i 0.761601 + 0.646400i
\(66\) 0 0
\(67\) 10.4450 4.32646i 1.27606 0.528562i 0.361259 0.932465i \(-0.382347\pi\)
0.914801 + 0.403904i \(0.132347\pi\)
\(68\) 0 0
\(69\) −0.492085 1.18800i −0.0592400 0.143018i
\(70\) 0 0
\(71\) −2.24583 5.42190i −0.266530 0.643461i 0.732785 0.680460i \(-0.238220\pi\)
−0.999315 + 0.0369990i \(0.988220\pi\)
\(72\) 0 0
\(73\) 5.58085 0.653190 0.326595 0.945164i \(-0.394099\pi\)
0.326595 + 0.945164i \(0.394099\pi\)
\(74\) 0 0
\(75\) −5.83957 9.39815i −0.674296 1.08520i
\(76\) 0 0
\(77\) 4.52065i 0.515176i
\(78\) 0 0
\(79\) 1.44471 + 3.48785i 0.162543 + 0.392414i 0.984076 0.177747i \(-0.0568809\pi\)
−0.821533 + 0.570161i \(0.806881\pi\)
\(80\) 0 0
\(81\) 11.0924i 1.23249i
\(82\) 0 0
\(83\) −6.06087 + 6.06087i −0.665267 + 0.665267i −0.956617 0.291350i \(-0.905896\pi\)
0.291350 + 0.956617i \(0.405896\pi\)
\(84\) 0 0
\(85\) 5.34543 0.437356i 0.579793 0.0474379i
\(86\) 0 0
\(87\) −4.60795 −0.494024
\(88\) 0 0
\(89\) −1.93175 + 0.800159i −0.204766 + 0.0848167i −0.482709 0.875781i \(-0.660347\pi\)
0.277944 + 0.960597i \(0.410347\pi\)
\(90\) 0 0
\(91\) 12.0673 12.0673i 1.26500 1.26500i
\(92\) 0 0
\(93\) −1.75190 + 4.22946i −0.181664 + 0.438575i
\(94\) 0 0
\(95\) −7.88615 6.69328i −0.809102 0.686716i
\(96\) 0 0
\(97\) −5.64811 13.6357i −0.573479 1.38450i −0.898576 0.438819i \(-0.855397\pi\)
0.325097 0.945681i \(-0.394603\pi\)
\(98\) 0 0
\(99\) −1.67214 0.692623i −0.168056 0.0696112i
\(100\) 0 0
\(101\) −6.75684 + 16.3124i −0.672330 + 1.62315i 0.105310 + 0.994439i \(0.466417\pi\)
−0.777640 + 0.628710i \(0.783583\pi\)
\(102\) 0 0
\(103\) 8.01025i 0.789273i 0.918837 + 0.394636i \(0.129129\pi\)
−0.918837 + 0.394636i \(0.870871\pi\)
\(104\) 0 0
\(105\) −20.8575 + 10.7089i −2.03548 + 1.04508i
\(106\) 0 0
\(107\) 3.11465 3.11465i 0.301105 0.301105i −0.540341 0.841446i \(-0.681705\pi\)
0.841446 + 0.540341i \(0.181705\pi\)
\(108\) 0 0
\(109\) −5.14641 + 12.4245i −0.492936 + 1.19005i 0.460282 + 0.887773i \(0.347748\pi\)
−0.953219 + 0.302281i \(0.902252\pi\)
\(110\) 0 0
\(111\) 5.80212 + 14.0075i 0.550712 + 1.32954i
\(112\) 0 0
\(113\) 3.54373 + 3.54373i 0.333366 + 0.333366i 0.853863 0.520497i \(-0.174253\pi\)
−0.520497 + 0.853863i \(0.674253\pi\)
\(114\) 0 0
\(115\) 0.593465 + 1.15588i 0.0553409 + 0.107786i
\(116\) 0 0
\(117\) 2.61470 + 6.31246i 0.241730 + 0.583587i
\(118\) 0 0
\(119\) 11.3649i 1.04181i
\(120\) 0 0
\(121\) −7.13452 + 7.13452i −0.648593 + 0.648593i
\(122\) 0 0
\(123\) −9.16943 + 10.8028i −0.826780 + 0.974053i
\(124\) 0 0
\(125\) 6.65540 + 8.98364i 0.595277 + 0.803521i
\(126\) 0 0
\(127\) −2.45936 + 2.45936i −0.218232 + 0.218232i −0.807753 0.589521i \(-0.799317\pi\)
0.589521 + 0.807753i \(0.299317\pi\)
\(128\) 0 0
\(129\) 14.4451 + 5.98334i 1.27182 + 0.526804i
\(130\) 0 0
\(131\) 12.7798 12.7798i 1.11658 1.11658i 0.124340 0.992240i \(-0.460319\pi\)
0.992240 0.124340i \(-0.0396812\pi\)
\(132\) 0 0
\(133\) −15.4986 + 15.4986i −1.34390 + 1.34390i
\(134\) 0 0
\(135\) 0.445060 + 5.43959i 0.0383047 + 0.468165i
\(136\) 0 0
\(137\) 10.7739 4.46268i 0.920474 0.381273i 0.128417 0.991720i \(-0.459010\pi\)
0.792057 + 0.610447i \(0.209010\pi\)
\(138\) 0 0
\(139\) 2.58764i 0.219481i 0.993960 + 0.109741i \(0.0350020\pi\)
−0.993960 + 0.109741i \(0.964998\pi\)
\(140\) 0 0
\(141\) −20.7916 −1.75096
\(142\) 0 0
\(143\) −3.43630 −0.287358
\(144\) 0 0
\(145\) 4.64064 0.379691i 0.385384 0.0315316i
\(146\) 0 0
\(147\) 13.0847 + 31.5892i 1.07921 + 2.60543i
\(148\) 0 0
\(149\) 8.35679 + 3.46150i 0.684615 + 0.283577i 0.697755 0.716337i \(-0.254183\pi\)
−0.0131398 + 0.999914i \(0.504183\pi\)
\(150\) 0 0
\(151\) 3.68922 1.52812i 0.300224 0.124357i −0.227486 0.973781i \(-0.573051\pi\)
0.527710 + 0.849424i \(0.323051\pi\)
\(152\) 0 0
\(153\) 4.20374 + 1.74125i 0.339852 + 0.140771i
\(154\) 0 0
\(155\) 1.41582 4.40382i 0.113722 0.353723i
\(156\) 0 0
\(157\) 21.7267 + 8.99950i 1.73398 + 0.718238i 0.999202 + 0.0399303i \(0.0127136\pi\)
0.734778 + 0.678308i \(0.237286\pi\)
\(158\) 0 0
\(159\) 3.36003 3.36003i 0.266468 0.266468i
\(160\) 0 0
\(161\) 2.54371 1.05364i 0.200472 0.0830383i
\(162\) 0 0
\(163\) 5.14086 + 5.14086i 0.402664 + 0.402664i 0.879171 0.476507i \(-0.158097\pi\)
−0.476507 + 0.879171i \(0.658097\pi\)
\(164\) 0 0
\(165\) 4.49444 + 1.44496i 0.349891 + 0.112490i
\(166\) 0 0
\(167\) −8.02898 + 19.3837i −0.621301 + 1.49995i 0.228876 + 0.973456i \(0.426495\pi\)
−0.850177 + 0.526497i \(0.823505\pi\)
\(168\) 0 0
\(169\) −0.0195886 0.0195886i −0.00150681 0.00150681i
\(170\) 0 0
\(171\) −3.35818 8.10735i −0.256806 0.619985i
\(172\) 0 0
\(173\) 26.0789i 1.98274i −0.131076 0.991372i \(-0.541843\pi\)
0.131076 0.991372i \(-0.458157\pi\)
\(174\) 0 0
\(175\) 20.1230 12.5035i 1.52116 0.945178i
\(176\) 0 0
\(177\) −5.77588 + 13.9442i −0.434142 + 1.04811i
\(178\) 0 0
\(179\) −5.44075 + 13.1351i −0.406660 + 0.981765i 0.579350 + 0.815079i \(0.303307\pi\)
−0.986010 + 0.166686i \(0.946693\pi\)
\(180\) 0 0
\(181\) −5.81420 + 14.0367i −0.432166 + 1.04334i 0.546421 + 0.837511i \(0.315990\pi\)
−0.978587 + 0.205831i \(0.934010\pi\)
\(182\) 0 0
\(183\) 6.28789 + 15.1803i 0.464814 + 1.12216i
\(184\) 0 0
\(185\) −6.99748 13.6288i −0.514465 1.00201i
\(186\) 0 0
\(187\) −1.61813 + 1.61813i −0.118329 + 0.118329i
\(188\) 0 0
\(189\) 11.5651 0.841234
\(190\) 0 0
\(191\) 13.8761 + 5.74768i 1.00404 + 0.415887i 0.823277 0.567639i \(-0.192143\pi\)
0.180763 + 0.983527i \(0.442143\pi\)
\(192\) 0 0
\(193\) −1.72640 0.715099i −0.124269 0.0514740i 0.319682 0.947525i \(-0.396424\pi\)
−0.443952 + 0.896051i \(0.646424\pi\)
\(194\) 0 0
\(195\) −8.14023 15.8545i −0.582934 1.13537i
\(196\) 0 0
\(197\) 15.3718i 1.09519i 0.836743 + 0.547596i \(0.184457\pi\)
−0.836743 + 0.547596i \(0.815543\pi\)
\(198\) 0 0
\(199\) −6.31798 + 15.2530i −0.447870 + 1.08125i 0.525248 + 0.850949i \(0.323972\pi\)
−0.973118 + 0.230305i \(0.926028\pi\)
\(200\) 0 0
\(201\) −25.0184 −1.76466
\(202\) 0 0
\(203\) 9.86641i 0.692486i
\(204\) 0 0
\(205\) 8.34434 11.6349i 0.582794 0.812620i
\(206\) 0 0
\(207\) 1.10232i 0.0766166i
\(208\) 0 0
\(209\) 4.41339 0.305280
\(210\) 0 0
\(211\) −4.03466 + 9.74053i −0.277757 + 0.670566i −0.999773 0.0213111i \(-0.993216\pi\)
0.722015 + 0.691877i \(0.243216\pi\)
\(212\) 0 0
\(213\) 12.9868i 0.889842i
\(214\) 0 0
\(215\) −15.0405 4.83552i −1.02576 0.329780i
\(216\) 0 0
\(217\) −9.05600 3.75112i −0.614762 0.254643i
\(218\) 0 0
\(219\) −11.4099 4.72614i −0.771011 0.319363i
\(220\) 0 0
\(221\) 8.63882 0.581110
\(222\) 0 0
\(223\) −7.54584 + 7.54584i −0.505307 + 0.505307i −0.913082 0.407775i \(-0.866305\pi\)
0.407775 + 0.913082i \(0.366305\pi\)
\(224\) 0 0
\(225\) 1.54181 + 9.35901i 0.102787 + 0.623934i
\(226\) 0 0
\(227\) 8.85987 + 21.3896i 0.588050 + 1.41968i 0.885364 + 0.464899i \(0.153909\pi\)
−0.297314 + 0.954780i \(0.596091\pi\)
\(228\) 0 0
\(229\) 4.35571 10.5156i 0.287833 0.694891i −0.712141 0.702036i \(-0.752274\pi\)
0.999974 + 0.00714511i \(0.00227438\pi\)
\(230\) 0 0
\(231\) 3.82831 9.24235i 0.251884 0.608102i
\(232\) 0 0
\(233\) 10.4285 25.1766i 0.683194 1.64938i −0.0748674 0.997193i \(-0.523853\pi\)
0.758062 0.652183i \(-0.226147\pi\)
\(234\) 0 0
\(235\) 20.9390 1.71321i 1.36591 0.111757i
\(236\) 0 0
\(237\) 8.35427i 0.542668i
\(238\) 0 0
\(239\) −5.92992 14.3161i −0.383575 0.926031i −0.991268 0.131860i \(-0.957905\pi\)
0.607694 0.794172i \(-0.292095\pi\)
\(240\) 0 0
\(241\) −10.0865 10.0865i −0.649730 0.649730i 0.303198 0.952928i \(-0.401946\pi\)
−0.952928 + 0.303198i \(0.901946\pi\)
\(242\) 0 0
\(243\) −6.59142 + 15.9131i −0.422840 + 1.02083i
\(244\) 0 0
\(245\) −15.7804 30.7351i −1.00817 1.96359i
\(246\) 0 0
\(247\) −11.7810 11.7810i −0.749608 0.749608i
\(248\) 0 0
\(249\) 17.5239 7.25865i 1.11053 0.459999i
\(250\) 0 0
\(251\) −10.2125 + 10.2125i −0.644608 + 0.644608i −0.951685 0.307077i \(-0.900649\pi\)
0.307077 + 0.951685i \(0.400649\pi\)
\(252\) 0 0
\(253\) −0.512191 0.212156i −0.0322012 0.0133382i
\(254\) 0 0
\(255\) −11.2990 3.63261i −0.707568 0.227483i
\(256\) 0 0
\(257\) 7.43369 + 3.07914i 0.463701 + 0.192071i 0.602288 0.798279i \(-0.294256\pi\)
−0.138587 + 0.990350i \(0.544256\pi\)
\(258\) 0 0
\(259\) −29.9926 + 12.4233i −1.86365 + 0.771948i
\(260\) 0 0
\(261\) 3.64948 + 1.51166i 0.225897 + 0.0935697i
\(262\) 0 0
\(263\) −11.4992 27.7616i −0.709072 1.71185i −0.702307 0.711875i \(-0.747846\pi\)
−0.00676556 0.999977i \(-0.502154\pi\)
\(264\) 0 0
\(265\) −3.10700 + 3.66073i −0.190861 + 0.224877i
\(266\) 0 0
\(267\) 4.62704 0.283170
\(268\) 0 0
\(269\) −9.31129 −0.567719 −0.283860 0.958866i \(-0.591615\pi\)
−0.283860 + 0.958866i \(0.591615\pi\)
\(270\) 0 0
\(271\) 7.53080i 0.457463i 0.973489 + 0.228732i \(0.0734579\pi\)
−0.973489 + 0.228732i \(0.926542\pi\)
\(272\) 0 0
\(273\) −34.8906 + 14.4522i −2.11167 + 0.874684i
\(274\) 0 0
\(275\) −4.64538 1.08487i −0.280127 0.0654201i
\(276\) 0 0
\(277\) 19.2375 19.2375i 1.15587 1.15587i 0.170516 0.985355i \(-0.445457\pi\)
0.985355 0.170516i \(-0.0545435\pi\)
\(278\) 0 0
\(279\) 2.77500 2.77500i 0.166135 0.166135i
\(280\) 0 0
\(281\) 15.9980 + 6.62659i 0.954361 + 0.395309i 0.804868 0.593454i \(-0.202236\pi\)
0.149493 + 0.988763i \(0.452236\pi\)
\(282\) 0 0
\(283\) 13.5450 13.5450i 0.805167 0.805167i −0.178731 0.983898i \(-0.557199\pi\)
0.983898 + 0.178731i \(0.0571992\pi\)
\(284\) 0 0
\(285\) 10.4548 + 20.3626i 0.619291 + 1.20618i
\(286\) 0 0
\(287\) −23.1306 19.6333i −1.36536 1.15892i
\(288\) 0 0
\(289\) −7.95285 + 7.95285i −0.467815 + 0.467815i
\(290\) 0 0
\(291\) 32.6610i 1.91462i
\(292\) 0 0
\(293\) 0.880478 + 2.12566i 0.0514381 + 0.124183i 0.947510 0.319727i \(-0.103591\pi\)
−0.896072 + 0.443909i \(0.853591\pi\)
\(294\) 0 0
\(295\) 4.66786 14.5190i 0.271773 0.845331i
\(296\) 0 0
\(297\) −1.64664 1.64664i −0.0955475 0.0955475i
\(298\) 0 0
\(299\) 0.800907 + 1.93356i 0.0463176 + 0.111821i
\(300\) 0 0
\(301\) −12.8114 + 30.9293i −0.738434 + 1.78274i
\(302\) 0 0
\(303\) 27.6284 27.6284i 1.58721 1.58721i
\(304\) 0 0
\(305\) −7.58334 14.7699i −0.434221 0.845721i
\(306\) 0 0
\(307\) 34.6172i 1.97571i 0.155393 + 0.987853i \(0.450336\pi\)
−0.155393 + 0.987853i \(0.549664\pi\)
\(308\) 0 0
\(309\) 6.78347 16.3767i 0.385898 0.931641i
\(310\) 0 0
\(311\) −3.68078 1.52463i −0.208718 0.0864537i 0.275875 0.961193i \(-0.411032\pi\)
−0.484593 + 0.874740i \(0.661032\pi\)
\(312\) 0 0
\(313\) −1.31952 3.18560i −0.0745835 0.180061i 0.882191 0.470892i \(-0.156068\pi\)
−0.956774 + 0.290832i \(0.906068\pi\)
\(314\) 0 0
\(315\) 20.0322 1.63901i 1.12869 0.0923478i
\(316\) 0 0
\(317\) 5.57131 13.4503i 0.312916 0.755446i −0.686678 0.726961i \(-0.740932\pi\)
0.999594 0.0284845i \(-0.00906812\pi\)
\(318\) 0 0
\(319\) −1.40478 + 1.40478i −0.0786527 + 0.0786527i
\(320\) 0 0
\(321\) −9.00548 + 3.73019i −0.502637 + 0.208199i
\(322\) 0 0
\(323\) −11.0952 −0.617354
\(324\) 0 0
\(325\) 9.50437 + 15.2962i 0.527207 + 0.848482i
\(326\) 0 0
\(327\) 21.0434 21.0434i 1.16370 1.16370i
\(328\) 0 0
\(329\) 44.5183i 2.45437i
\(330\) 0 0
\(331\) −11.4155 27.5594i −0.627452 1.51480i −0.842778 0.538261i \(-0.819081\pi\)
0.215326 0.976542i \(-0.430919\pi\)
\(332\) 0 0
\(333\) 12.9974i 0.712250i
\(334\) 0 0
\(335\) 25.1959 2.06150i 1.37660 0.112632i
\(336\) 0 0
\(337\) −15.0203 −0.818210 −0.409105 0.912487i \(-0.634159\pi\)
−0.409105 + 0.912487i \(0.634159\pi\)
\(338\) 0 0
\(339\) −4.24406 10.2461i −0.230506 0.556490i
\(340\) 0 0
\(341\) 0.755311 + 1.82348i 0.0409024 + 0.0987471i
\(342\) 0 0
\(343\) −36.9949 + 15.3238i −1.99754 + 0.827407i
\(344\) 0 0
\(345\) −0.234471 2.86574i −0.0126235 0.154286i
\(346\) 0 0
\(347\) 20.9512 8.67826i 1.12472 0.465873i 0.258736 0.965948i \(-0.416694\pi\)
0.865982 + 0.500075i \(0.166694\pi\)
\(348\) 0 0
\(349\) 23.5083 + 23.5083i 1.25837 + 1.25837i 0.951871 + 0.306499i \(0.0991577\pi\)
0.306499 + 0.951871i \(0.400842\pi\)
\(350\) 0 0
\(351\) 8.79100i 0.469229i
\(352\) 0 0
\(353\) 13.0214 + 13.0214i 0.693059 + 0.693059i 0.962904 0.269844i \(-0.0869723\pi\)
−0.269844 + 0.962904i \(0.586972\pi\)
\(354\) 0 0
\(355\) −1.07010 13.0789i −0.0567952 0.694158i
\(356\) 0 0
\(357\) −9.62432 + 23.2352i −0.509373 + 1.22974i
\(358\) 0 0
\(359\) 35.6560 1.88185 0.940926 0.338614i \(-0.109958\pi\)
0.940926 + 0.338614i \(0.109958\pi\)
\(360\) 0 0
\(361\) 1.69583 + 1.69583i 0.0892542 + 0.0892542i
\(362\) 0 0
\(363\) 20.6282 8.54449i 1.08270 0.448469i
\(364\) 0 0
\(365\) 11.8803 + 3.81950i 0.621842 + 0.199922i
\(366\) 0 0
\(367\) −4.56215 −0.238142 −0.119071 0.992886i \(-0.537992\pi\)
−0.119071 + 0.992886i \(0.537992\pi\)
\(368\) 0 0
\(369\) 10.8061 5.54767i 0.562542 0.288800i
\(370\) 0 0
\(371\) 7.19440 + 7.19440i 0.373515 + 0.373515i
\(372\) 0 0
\(373\) 9.50451 + 9.50451i 0.492125 + 0.492125i 0.908975 0.416850i \(-0.136866\pi\)
−0.416850 + 0.908975i \(0.636866\pi\)
\(374\) 0 0
\(375\) −5.99900 24.0029i −0.309787 1.23951i
\(376\) 0 0
\(377\) 7.49980 0.386259
\(378\) 0 0
\(379\) 35.2748i 1.81194i 0.423337 + 0.905972i \(0.360859\pi\)
−0.423337 + 0.905972i \(0.639141\pi\)
\(380\) 0 0
\(381\) 7.11079 2.94539i 0.364297 0.150897i
\(382\) 0 0
\(383\) 5.20336 + 12.5620i 0.265879 + 0.641889i 0.999281 0.0379059i \(-0.0120687\pi\)
−0.733402 + 0.679795i \(0.762069\pi\)
\(384\) 0 0
\(385\) −3.09390 + 9.62336i −0.157680 + 0.490452i
\(386\) 0 0
\(387\) −9.47757 9.47757i −0.481772 0.481772i
\(388\) 0 0
\(389\) −11.6500 + 11.6500i −0.590676 + 0.590676i −0.937814 0.347138i \(-0.887154\pi\)
0.347138 + 0.937814i \(0.387154\pi\)
\(390\) 0 0
\(391\) 1.28764 + 0.533359i 0.0651189 + 0.0269731i
\(392\) 0 0
\(393\) −36.9506 + 15.3055i −1.86391 + 0.772058i
\(394\) 0 0
\(395\) 0.688385 + 8.41353i 0.0346364 + 0.423331i
\(396\) 0 0
\(397\) 10.5821 + 4.38326i 0.531101 + 0.219989i 0.632086 0.774899i \(-0.282199\pi\)
−0.100984 + 0.994888i \(0.532199\pi\)
\(398\) 0 0
\(399\) 44.8115 18.5615i 2.24338 0.929238i
\(400\) 0 0
\(401\) 15.4759 + 15.4759i 0.772830 + 0.772830i 0.978600 0.205770i \(-0.0659700\pi\)
−0.205770 + 0.978600i \(0.565970\pi\)
\(402\) 0 0
\(403\) 2.85136 6.88378i 0.142036 0.342906i
\(404\) 0 0
\(405\) 7.59154 23.6130i 0.377227 1.17334i
\(406\) 0 0
\(407\) 6.03919 + 2.50151i 0.299351 + 0.123995i
\(408\) 0 0
\(409\) −34.5850 −1.71012 −0.855058 0.518532i \(-0.826479\pi\)
−0.855058 + 0.518532i \(0.826479\pi\)
\(410\) 0 0
\(411\) −25.8061 −1.27292
\(412\) 0 0
\(413\) −29.8569 12.3671i −1.46916 0.608547i
\(414\) 0 0
\(415\) −17.0501 + 8.75410i −0.836958 + 0.429722i
\(416\) 0 0
\(417\) 2.19134 5.29037i 0.107311 0.259071i
\(418\) 0 0
\(419\) −8.17907 8.17907i −0.399574 0.399574i 0.478509 0.878083i \(-0.341177\pi\)
−0.878083 + 0.478509i \(0.841177\pi\)
\(420\) 0 0
\(421\) −17.3852 + 7.20118i −0.847302 + 0.350964i −0.763729 0.645537i \(-0.776633\pi\)
−0.0835737 + 0.996502i \(0.526633\pi\)
\(422\) 0 0
\(423\) 16.4668 + 6.82079i 0.800645 + 0.331638i
\(424\) 0 0
\(425\) 11.6784 + 2.72735i 0.566487 + 0.132296i
\(426\) 0 0
\(427\) −32.5037 + 13.4635i −1.57296 + 0.651542i
\(428\) 0 0
\(429\) 7.02543 + 2.91003i 0.339191 + 0.140498i
\(430\) 0 0
\(431\) −7.46649 + 7.46649i −0.359648 + 0.359648i −0.863683 0.504035i \(-0.831848\pi\)
0.504035 + 0.863683i \(0.331848\pi\)
\(432\) 0 0
\(433\) 9.67998 + 9.67998i 0.465190 + 0.465190i 0.900352 0.435162i \(-0.143309\pi\)
−0.435162 + 0.900352i \(0.643309\pi\)
\(434\) 0 0
\(435\) −9.80920 3.15365i −0.470315 0.151206i
\(436\) 0 0
\(437\) −1.02864 2.48335i −0.0492064 0.118795i
\(438\) 0 0
\(439\) 18.8403 7.80393i 0.899201 0.372461i 0.115288 0.993332i \(-0.463221\pi\)
0.783913 + 0.620871i \(0.213221\pi\)
\(440\) 0 0
\(441\) 29.3111i 1.39576i
\(442\) 0 0
\(443\) 6.49575 0.308623 0.154311 0.988022i \(-0.450684\pi\)
0.154311 + 0.988022i \(0.450684\pi\)
\(444\) 0 0
\(445\) −4.65986 + 0.381264i −0.220898 + 0.0180736i
\(446\) 0 0
\(447\) −14.1539 14.1539i −0.669456 0.669456i
\(448\) 0 0
\(449\) 12.9909 + 12.9909i 0.613078 + 0.613078i 0.943747 0.330669i \(-0.107274\pi\)
−0.330669 + 0.943747i \(0.607274\pi\)
\(450\) 0 0
\(451\) 0.497940 + 6.08874i 0.0234471 + 0.286707i
\(452\) 0 0
\(453\) −8.83660 −0.415180
\(454\) 0 0
\(455\) 33.9472 17.4296i 1.59147 0.817113i
\(456\) 0 0
\(457\) 15.0860 6.24882i 0.705692 0.292307i −0.000828363 1.00000i \(-0.500264\pi\)
0.706521 + 0.707692i \(0.250264\pi\)
\(458\) 0 0
\(459\) 4.13962 + 4.13962i 0.193221 + 0.193221i
\(460\) 0 0
\(461\) −1.96245 −0.0914004 −0.0457002 0.998955i \(-0.514552\pi\)
−0.0457002 + 0.998955i \(0.514552\pi\)
\(462\) 0 0
\(463\) −14.3426 + 34.6260i −0.666555 + 1.60921i 0.120779 + 0.992679i \(0.461461\pi\)
−0.787334 + 0.616527i \(0.788539\pi\)
\(464\) 0 0
\(465\) −6.62399 + 7.80451i −0.307180 + 0.361925i
\(466\) 0 0
\(467\) −12.6295 12.6295i −0.584423 0.584423i 0.351692 0.936116i \(-0.385606\pi\)
−0.936116 + 0.351692i \(0.885606\pi\)
\(468\) 0 0
\(469\) 53.5687i 2.47357i
\(470\) 0 0
\(471\) −36.7985 36.7985i −1.69559 1.69559i
\(472\) 0 0
\(473\) 6.22781 2.57964i 0.286355 0.118612i
\(474\) 0 0
\(475\) −12.2069 19.6456i −0.560089 0.901401i
\(476\) 0 0
\(477\) −3.76341 + 1.55886i −0.172315 + 0.0713751i
\(478\) 0 0
\(479\) 2.55351 + 6.16471i 0.116673 + 0.281673i 0.971418 0.237375i \(-0.0762869\pi\)
−0.854746 + 0.519047i \(0.826287\pi\)
\(480\) 0 0
\(481\) −9.44340 22.7984i −0.430582 1.03952i
\(482\) 0 0
\(483\) −6.09282 −0.277233
\(484\) 0 0
\(485\) −2.69124 32.8927i −0.122203 1.49358i
\(486\) 0 0
\(487\) 13.2572i 0.600742i −0.953822 0.300371i \(-0.902889\pi\)
0.953822 0.300371i \(-0.0971106\pi\)
\(488\) 0 0
\(489\) −6.15683 14.8639i −0.278421 0.672169i
\(490\) 0 0
\(491\) 10.9386i 0.493652i 0.969060 + 0.246826i \(0.0793876\pi\)
−0.969060 + 0.246826i \(0.920612\pi\)
\(492\) 0 0
\(493\) 3.53161 3.53161i 0.159056 0.159056i
\(494\) 0 0
\(495\) −3.08555 2.61883i −0.138685 0.117708i
\(496\) 0 0
\(497\) −27.8070 −1.24731
\(498\) 0 0
\(499\) 4.37824 1.81352i 0.195997 0.0811845i −0.282526 0.959260i \(-0.591172\pi\)
0.478523 + 0.878075i \(0.341172\pi\)
\(500\) 0 0
\(501\) 32.8301 32.8301i 1.46674 1.46674i
\(502\) 0 0
\(503\) 7.20310 17.3898i 0.321171 0.775374i −0.678016 0.735047i \(-0.737160\pi\)
0.999187 0.0403272i \(-0.0128400\pi\)
\(504\) 0 0
\(505\) −25.5478 + 30.1009i −1.13686 + 1.33947i
\(506\) 0 0
\(507\) 0.0234598 + 0.0566370i 0.00104189 + 0.00251534i
\(508\) 0 0
\(509\) 23.9967 + 9.93975i 1.06363 + 0.440572i 0.844740 0.535177i \(-0.179755\pi\)
0.218894 + 0.975749i \(0.429755\pi\)
\(510\) 0 0
\(511\) 10.1195 24.4306i 0.447660 1.08075i
\(512\) 0 0
\(513\) 11.2906i 0.498494i
\(514\) 0 0
\(515\) −5.48216 + 17.0519i −0.241573 + 0.751395i
\(516\) 0 0
\(517\) −6.33853 + 6.33853i −0.278768 + 0.278768i
\(518\) 0 0
\(519\) −22.0849 + 53.3177i −0.969421 + 2.34039i
\(520\) 0 0
\(521\) 2.37897 + 5.74335i 0.104225 + 0.251621i 0.967386 0.253308i \(-0.0815187\pi\)
−0.863161 + 0.504929i \(0.831519\pi\)
\(522\) 0 0
\(523\) 28.1529 + 28.1529i 1.23104 + 1.23104i 0.963564 + 0.267477i \(0.0861900\pi\)
0.267477 + 0.963564i \(0.413810\pi\)
\(524\) 0 0
\(525\) −51.7297 + 8.52197i −2.25767 + 0.371929i
\(526\) 0 0
\(527\) −1.89884 4.58421i −0.0827149 0.199691i
\(528\) 0 0
\(529\) 22.6623i 0.985320i
\(530\) 0 0
\(531\) 9.14895 9.14895i 0.397031 0.397031i
\(532\) 0 0
\(533\) 14.9240 17.5824i 0.646429 0.761576i
\(534\) 0 0
\(535\) 8.76199 4.49869i 0.378814 0.194495i
\(536\) 0 0
\(537\) 22.2469 22.2469i 0.960026 0.960026i
\(538\) 0 0
\(539\) 13.6193 + 5.64130i 0.586625 + 0.242988i
\(540\) 0 0
\(541\) 6.83003 6.83003i 0.293646 0.293646i −0.544873 0.838519i \(-0.683422\pi\)
0.838519 + 0.544873i \(0.183422\pi\)
\(542\) 0 0
\(543\) 23.7740 23.7740i 1.02024 1.02024i
\(544\) 0 0
\(545\) −19.4587 + 22.9266i −0.833520 + 0.982069i
\(546\) 0 0
\(547\) −0.789217 + 0.326905i −0.0337445 + 0.0139774i −0.399492 0.916737i \(-0.630813\pi\)
0.365747 + 0.930714i \(0.380813\pi\)
\(548\) 0 0
\(549\) 14.0855i 0.601156i
\(550\) 0 0
\(551\) −9.63231 −0.410350
\(552\) 0 0
\(553\) 17.8879 0.760672
\(554\) 0 0
\(555\) 2.76462 + 33.7896i 0.117352 + 1.43429i
\(556\) 0 0
\(557\) 13.9162 + 33.5967i 0.589649 + 1.42354i 0.883839 + 0.467792i \(0.154950\pi\)
−0.294190 + 0.955747i \(0.595050\pi\)
\(558\) 0 0
\(559\) −23.5105 9.73835i −0.994387 0.411888i
\(560\) 0 0
\(561\) 4.67854 1.93792i 0.197528 0.0818189i
\(562\) 0 0
\(563\) 14.1974 + 5.88077i 0.598351 + 0.247845i 0.661239 0.750176i \(-0.270031\pi\)
−0.0628879 + 0.998021i \(0.520031\pi\)
\(564\) 0 0
\(565\) 5.11843 + 9.96904i 0.215334 + 0.419401i
\(566\) 0 0
\(567\) −48.5576 20.1132i −2.03923 0.844676i
\(568\) 0 0
\(569\) 1.43427 1.43427i 0.0601277 0.0601277i −0.676404 0.736531i \(-0.736462\pi\)
0.736531 + 0.676404i \(0.236462\pi\)
\(570\) 0 0
\(571\) 23.9088 9.90334i 1.00055 0.414442i 0.178552 0.983931i \(-0.442859\pi\)
0.821999 + 0.569489i \(0.192859\pi\)
\(572\) 0 0
\(573\) −23.5020 23.5020i −0.981808 0.981808i
\(574\) 0 0
\(575\) 0.472269 + 2.86675i 0.0196950 + 0.119552i
\(576\) 0 0
\(577\) −6.80262 + 16.4230i −0.283197 + 0.683697i −0.999907 0.0136742i \(-0.995647\pi\)
0.716710 + 0.697372i \(0.245647\pi\)
\(578\) 0 0
\(579\) 2.92401 + 2.92401i 0.121518 + 0.121518i
\(580\) 0 0
\(581\) 15.5420 + 37.5218i 0.644792 + 1.55667i
\(582\) 0 0
\(583\) 2.04868i 0.0848477i
\(584\) 0 0
\(585\) 1.24587 + 15.2272i 0.0515103 + 0.629566i
\(586\) 0 0
\(587\) 12.4961 30.1683i 0.515770 1.24518i −0.424709 0.905330i \(-0.639624\pi\)
0.940480 0.339850i \(-0.110376\pi\)
\(588\) 0 0
\(589\) −3.66212 + 8.84113i −0.150895 + 0.364293i
\(590\) 0 0
\(591\) 13.0176 31.4272i 0.535471 1.29274i
\(592\) 0 0
\(593\) 16.3002 + 39.3522i 0.669369 + 1.61600i 0.782669 + 0.622438i \(0.213858\pi\)
−0.113300 + 0.993561i \(0.536142\pi\)
\(594\) 0 0
\(595\) 7.77803 24.1930i 0.318868 0.991817i
\(596\) 0 0
\(597\) 25.8339 25.8339i 1.05731 1.05731i
\(598\) 0 0
\(599\) −11.5079 −0.470199 −0.235099 0.971971i \(-0.575542\pi\)
−0.235099 + 0.971971i \(0.575542\pi\)
\(600\) 0 0
\(601\) 24.9899 + 10.3512i 1.01936 + 0.422233i 0.828861 0.559455i \(-0.188989\pi\)
0.190499 + 0.981687i \(0.438989\pi\)
\(602\) 0 0
\(603\) 19.8145 + 8.20744i 0.806909 + 0.334233i
\(604\) 0 0
\(605\) −20.0705 + 10.3048i −0.815981 + 0.418952i
\(606\) 0 0
\(607\) 21.5193i 0.873443i 0.899597 + 0.436722i \(0.143861\pi\)
−0.899597 + 0.436722i \(0.856139\pi\)
\(608\) 0 0
\(609\) −8.35536 + 20.1716i −0.338576 + 0.817396i
\(610\) 0 0
\(611\) 33.8399 1.36902
\(612\) 0 0
\(613\) 48.0920i 1.94242i −0.238231 0.971209i \(-0.576568\pi\)
0.238231 0.971209i \(-0.423432\pi\)
\(614\) 0 0
\(615\) −26.9128 + 16.7210i −1.08523 + 0.674255i
\(616\) 0 0
\(617\) 3.88630i 0.156456i 0.996935 + 0.0782282i \(0.0249263\pi\)
−0.996935 + 0.0782282i \(0.975074\pi\)
\(618\) 0 0
\(619\) −1.90502 −0.0765692 −0.0382846 0.999267i \(-0.512189\pi\)
−0.0382846 + 0.999267i \(0.512189\pi\)
\(620\) 0 0
\(621\) −0.542754 + 1.31032i −0.0217800 + 0.0525815i
\(622\) 0 0
\(623\) 9.90728i 0.396927i
\(624\) 0 0
\(625\) 8.01938 + 23.6789i 0.320775 + 0.947155i
\(626\) 0 0
\(627\) −9.02306 3.73747i −0.360346 0.149260i
\(628\) 0 0
\(629\) −15.1824 6.28877i −0.605364 0.250750i
\(630\) 0 0
\(631\) −24.0530 −0.957535 −0.478767 0.877942i \(-0.658916\pi\)
−0.478767 + 0.877942i \(0.658916\pi\)
\(632\) 0 0
\(633\) 16.4975 16.4975i 0.655718 0.655718i
\(634\) 0 0
\(635\) −6.91854 + 3.55220i −0.274554 + 0.140965i
\(636\) 0 0
\(637\) −21.2963 51.4139i −0.843792 2.03709i
\(638\) 0 0
\(639\) 4.26040 10.2855i 0.168539 0.406889i
\(640\) 0 0
\(641\) 6.62859 16.0028i 0.261814 0.632074i −0.737237 0.675634i \(-0.763870\pi\)
0.999051 + 0.0435599i \(0.0138699\pi\)
\(642\) 0 0
\(643\) −9.56163 + 23.0838i −0.377074 + 0.910337i 0.615438 + 0.788186i \(0.288979\pi\)
−0.992511 + 0.122151i \(0.961021\pi\)
\(644\) 0 0
\(645\) 26.6551 + 22.6232i 1.04954 + 0.890786i
\(646\) 0 0
\(647\) 15.5476i 0.611237i −0.952154 0.305619i \(-0.901137\pi\)
0.952154 0.305619i \(-0.0988633\pi\)
\(648\) 0 0
\(649\) 2.49020 + 6.01188i 0.0977489 + 0.235987i
\(650\) 0 0
\(651\) 15.3381 + 15.3381i 0.601149 + 0.601149i
\(652\) 0 0
\(653\) 18.7937 45.3721i 0.735455 1.77555i 0.111968 0.993712i \(-0.464285\pi\)
0.623487 0.781834i \(-0.285715\pi\)
\(654\) 0 0
\(655\) 35.9516 18.4587i 1.40475 0.721242i
\(656\) 0 0
\(657\) 7.48618 + 7.48618i 0.292064 + 0.292064i
\(658\) 0 0
\(659\) −24.8847 + 10.3076i −0.969371 + 0.401527i −0.810478 0.585769i \(-0.800793\pi\)
−0.158893 + 0.987296i \(0.550793\pi\)
\(660\) 0 0
\(661\) −6.01328 + 6.01328i −0.233889 + 0.233889i −0.814314 0.580425i \(-0.802887\pi\)
0.580425 + 0.814314i \(0.302887\pi\)
\(662\) 0 0
\(663\) −17.6619 7.31578i −0.685930 0.284121i
\(664\) 0 0
\(665\) −43.5999 + 22.3856i −1.69073 + 0.868076i
\(666\) 0 0
\(667\) 1.11787 + 0.463036i 0.0432840 + 0.0179288i
\(668\) 0 0
\(669\) 21.8175 9.03710i 0.843513 0.349394i
\(670\) 0 0
\(671\) 6.54481 + 2.71095i 0.252660 + 0.104655i
\(672\) 0 0
\(673\) 3.39162 + 8.18808i 0.130737 + 0.315627i 0.975670 0.219245i \(-0.0703595\pi\)
−0.844933 + 0.534873i \(0.820360\pi\)
\(674\) 0 0
\(675\) −2.77539 + 11.8842i −0.106825 + 0.457421i
\(676\) 0 0
\(677\) −31.8359 −1.22355 −0.611777 0.791030i \(-0.709545\pi\)
−0.611777 + 0.791030i \(0.709545\pi\)
\(678\) 0 0
\(679\) −69.9329 −2.68378
\(680\) 0 0
\(681\) 51.2335i 1.96327i
\(682\) 0 0
\(683\) −32.3607 + 13.4043i −1.23825 + 0.512899i −0.903167 0.429290i \(-0.858764\pi\)
−0.335082 + 0.942189i \(0.608764\pi\)
\(684\) 0 0
\(685\) 25.9892 2.12640i 0.992996 0.0812457i
\(686\) 0 0
\(687\) −17.8103 + 17.8103i −0.679504 + 0.679504i
\(688\) 0 0
\(689\) −5.46871 + 5.46871i −0.208341 + 0.208341i
\(690\) 0 0
\(691\) −15.3976 6.37790i −0.585753 0.242627i 0.0700696 0.997542i \(-0.477678\pi\)
−0.655822 + 0.754915i \(0.727678\pi\)
\(692\) 0 0
\(693\) −6.06401 + 6.06401i −0.230353 + 0.230353i
\(694\) 0 0
\(695\) −1.77097 + 5.50847i −0.0671766 + 0.208948i
\(696\) 0 0
\(697\) −1.25181 15.3070i −0.0474159 0.579795i
\(698\) 0 0
\(699\) −42.6416 + 42.6416i −1.61285 + 1.61285i
\(700\) 0 0
\(701\) 5.39909i 0.203921i −0.994788 0.101960i \(-0.967488\pi\)
0.994788 0.101960i \(-0.0325115\pi\)
\(702\) 0 0
\(703\) 12.1286 + 29.2809i 0.457437 + 1.10435i
\(704\) 0 0
\(705\) −44.2602 14.2296i −1.66693 0.535918i
\(706\) 0 0
\(707\) 59.1571 + 59.1571i 2.22483 + 2.22483i
\(708\) 0 0
\(709\) −6.17473 14.9071i −0.231897 0.559849i 0.764503 0.644620i \(-0.222984\pi\)
−0.996400 + 0.0847707i \(0.972984\pi\)
\(710\) 0 0
\(711\) −2.74067 + 6.61656i −0.102783 + 0.248140i
\(712\) 0 0
\(713\) 0.850006 0.850006i 0.0318330 0.0318330i
\(714\) 0 0
\(715\) −7.31505 2.35178i −0.273567 0.0879516i
\(716\) 0 0
\(717\) 34.2907i 1.28061i
\(718\) 0 0
\(719\) −10.3523 + 24.9927i −0.386076 + 0.932069i 0.604687 + 0.796463i \(0.293298\pi\)
−0.990763 + 0.135606i \(0.956702\pi\)
\(720\) 0 0
\(721\) 35.0654 + 14.5246i 1.30590 + 0.540923i
\(722\) 0 0
\(723\) 12.0799 + 29.1634i 0.449255 + 1.08460i
\(724\) 0 0
\(725\) 10.1386 + 2.36775i 0.376540 + 0.0879360i
\(726\) 0 0
\(727\) −1.49878 + 3.61838i −0.0555868 + 0.134198i −0.949233 0.314574i \(-0.898138\pi\)
0.893646 + 0.448772i \(0.148138\pi\)
\(728\) 0 0
\(729\) 3.42151 3.42151i 0.126723 0.126723i
\(730\) 0 0
\(731\) −15.6566 + 6.48520i −0.579082 + 0.239864i
\(732\) 0 0
\(733\) −38.6211 −1.42650 −0.713251 0.700908i \(-0.752778\pi\)
−0.713251 + 0.700908i \(0.752778\pi\)
\(734\) 0 0
\(735\) 6.23466 + 76.2008i 0.229969 + 2.81071i
\(736\) 0 0
\(737\) −7.62713 + 7.62713i −0.280949 + 0.280949i
\(738\) 0 0
\(739\) 17.8735i 0.657487i 0.944419 + 0.328743i \(0.106625\pi\)
−0.944419 + 0.328743i \(0.893375\pi\)
\(740\) 0 0
\(741\) 14.1092 + 34.0627i 0.518316 + 1.25133i
\(742\) 0 0
\(743\) 9.99751i 0.366773i −0.983041 0.183387i \(-0.941294\pi\)
0.983041 0.183387i \(-0.0587060\pi\)
\(744\) 0 0
\(745\) 15.4205 + 13.0880i 0.564965 + 0.479508i
\(746\) 0 0
\(747\) −16.2601 −0.594928
\(748\) 0 0
\(749\) −7.98698 19.2823i −0.291838 0.704559i
\(750\) 0 0
\(751\) −10.5747 25.5296i −0.385876 0.931587i −0.990804 0.135307i \(-0.956798\pi\)
0.604928 0.796280i \(-0.293202\pi\)
\(752\) 0 0
\(753\) 29.5277 12.2308i 1.07605 0.445714i
\(754\) 0 0
\(755\) 8.89929 0.728129i 0.323878 0.0264993i
\(756\) 0 0
\(757\) −4.81028 + 1.99248i −0.174833 + 0.0724181i −0.468383 0.883526i \(-0.655163\pi\)
0.293550 + 0.955944i \(0.405163\pi\)
\(758\) 0 0
\(759\) 0.867497 + 0.867497i 0.0314881 + 0.0314881i
\(760\) 0 0
\(761\) 31.5014i 1.14192i −0.820977 0.570962i \(-0.806571\pi\)
0.820977 0.570962i \(-0.193429\pi\)
\(762\) 0 0
\(763\) 45.0575 + 45.0575i 1.63119 + 1.63119i
\(764\) 0 0
\(765\) 7.75704 + 6.58370i 0.280457 + 0.238034i
\(766\) 0 0
\(767\) 9.40070 22.6953i 0.339439 0.819479i
\(768\) 0 0
\(769\) 31.7177 1.14377 0.571885 0.820334i \(-0.306213\pi\)
0.571885 + 0.820334i \(0.306213\pi\)
\(770\) 0 0
\(771\) −12.5904 12.5904i −0.453433 0.453433i
\(772\) 0 0
\(773\) −35.7325 + 14.8009i −1.28521 + 0.532351i −0.917554 0.397612i \(-0.869839\pi\)
−0.367654 + 0.929963i \(0.619839\pi\)
\(774\) 0 0
\(775\) 6.02789 8.40568i 0.216528 0.301941i
\(776\) 0 0
\(777\) 71.8397 2.57724
\(778\) 0 0
\(779\) −19.1675 + 22.5818i −0.686747 + 0.809076i
\(780\) 0 0
\(781\) 3.95917 + 3.95917i 0.141670 + 0.141670i
\(782\) 0 0
\(783\) 3.59382 + 3.59382i 0.128433 + 0.128433i
\(784\) 0 0
\(785\) 40.0917 + 34.0274i 1.43093 + 1.21449i
\(786\) 0 0
\(787\) −50.5730 −1.80273 −0.901366 0.433058i \(-0.857434\pi\)
−0.901366 + 0.433058i \(0.857434\pi\)
\(788\) 0 0
\(789\) 66.4959i 2.36732i
\(790\) 0 0
\(791\) 21.9386 9.08726i 0.780047 0.323106i
\(792\) 0 0
\(793\) −10.2340 24.7072i −0.363421 0.877377i
\(794\) 0 0
\(795\) 9.45227 4.85310i 0.335237 0.172122i
\(796\) 0 0
\(797\) −4.23854 4.23854i −0.150137 0.150137i 0.628042 0.778179i \(-0.283856\pi\)
−0.778179 + 0.628042i \(0.783856\pi\)
\(798\) 0 0
\(799\) 15.9350 15.9350i 0.563739 0.563739i
\(800\) 0 0
\(801\) −3.66460 1.51793i −0.129482 0.0536333i
\(802\) 0 0
\(803\) −4.91925 + 2.03762i −0.173597 + 0.0719060i
\(804\) 0 0
\(805\) 6.13604 0.502043i 0.216267 0.0176947i
\(806\) 0 0
\(807\) 19.0367 + 7.88526i 0.670123 + 0.277574i
\(808\) 0 0
\(809\) −14.4462 + 5.98380i −0.507901 + 0.210379i −0.621893 0.783102i \(-0.713636\pi\)
0.113992 + 0.993482i \(0.463636\pi\)
\(810\) 0 0
\(811\) 10.1692 + 10.1692i 0.357089 + 0.357089i 0.862739 0.505650i \(-0.168747\pi\)
−0.505650 + 0.862739i \(0.668747\pi\)
\(812\) 0 0
\(813\) 6.37745 15.3965i 0.223667 0.539980i
\(814\) 0 0
\(815\) 7.42528 + 14.4620i 0.260096 + 0.506583i
\(816\) 0 0
\(817\) 30.1955 + 12.5074i 1.05641 + 0.437578i
\(818\) 0 0
\(819\) 32.3743 1.13125
\(820\) 0 0
\(821\) 18.5070 0.645900 0.322950 0.946416i \(-0.395325\pi\)
0.322950 + 0.946416i \(0.395325\pi\)
\(822\) 0 0
\(823\) −9.54807 3.95494i −0.332825 0.137861i 0.210012 0.977699i \(-0.432650\pi\)
−0.542837 + 0.839838i \(0.682650\pi\)
\(824\) 0 0
\(825\) 8.57864 + 6.15192i 0.298670 + 0.214183i
\(826\) 0 0
\(827\) 9.30848 22.4727i 0.323687 0.781451i −0.675346 0.737501i \(-0.736006\pi\)
0.999034 0.0439499i \(-0.0139942\pi\)
\(828\) 0 0
\(829\) −14.3691 14.3691i −0.499058 0.499058i 0.412087 0.911145i \(-0.364800\pi\)
−0.911145 + 0.412087i \(0.864800\pi\)
\(830\) 0 0
\(831\) −55.6219 + 23.0394i −1.92950 + 0.799226i
\(832\) 0 0
\(833\) −34.2388 14.1822i −1.18630 0.491383i
\(834\) 0 0
\(835\) −30.3578 + 35.7681i −1.05057 + 1.23781i
\(836\) 0 0
\(837\) 4.66496 1.93229i 0.161245 0.0667898i
\(838\) 0 0
\(839\) 1.92039 + 0.795452i 0.0662992 + 0.0274620i 0.415587 0.909554i \(-0.363576\pi\)
−0.349287 + 0.937016i \(0.613576\pi\)
\(840\) 0 0
\(841\) −17.4401 + 17.4401i −0.601384 + 0.601384i
\(842\) 0 0
\(843\) −27.0958 27.0958i −0.933229 0.933229i
\(844\) 0 0
\(845\) −0.0282931 0.0551057i −0.000973311 0.00189569i
\(846\) 0 0
\(847\) 18.2952 + 44.1686i 0.628631 + 1.51765i
\(848\) 0 0
\(849\) −39.1630 + 16.2218i −1.34407 + 0.556732i
\(850\) 0 0
\(851\) 3.98120i 0.136474i
\(852\) 0 0
\(853\) −26.7502 −0.915910 −0.457955 0.888975i \(-0.651418\pi\)
−0.457955 + 0.888975i \(0.651418\pi\)
\(854\) 0 0
\(855\) −1.60012 19.5569i −0.0547230 0.668832i
\(856\) 0 0
\(857\) −23.1376 23.1376i −0.790364 0.790364i 0.191189 0.981553i \(-0.438766\pi\)
−0.981553 + 0.191189i \(0.938766\pi\)
\(858\) 0 0
\(859\) −13.8292 13.8292i −0.471847 0.471847i 0.430665 0.902512i \(-0.358279\pi\)
−0.902512 + 0.430665i \(0.858279\pi\)
\(860\) 0 0
\(861\) 30.6634 + 59.7280i 1.04501 + 2.03552i
\(862\) 0 0
\(863\) 32.3252 1.10036 0.550181 0.835046i \(-0.314559\pi\)
0.550181 + 0.835046i \(0.314559\pi\)
\(864\) 0 0
\(865\) 17.8482 55.5157i 0.606859 1.88759i
\(866\) 0 0
\(867\) 22.9943 9.52454i 0.780926 0.323470i
\(868\) 0 0
\(869\) −2.54689 2.54689i −0.0863973 0.0863973i
\(870\) 0 0
\(871\) 40.7194 1.37973
\(872\) 0 0
\(873\) 10.7146 25.8674i 0.362636 0.875480i
\(874\) 0 0
\(875\) 51.3944 12.8449i 1.73745 0.434237i
\(876\) 0 0
\(877\) 2.20192 + 2.20192i 0.0743537 + 0.0743537i 0.743306 0.668952i \(-0.233257\pi\)
−0.668952 + 0.743306i \(0.733257\pi\)
\(878\) 0 0
\(879\) 5.09150i 0.171732i
\(880\) 0 0
\(881\) −3.19507 3.19507i −0.107645 0.107645i 0.651233 0.758878i \(-0.274252\pi\)
−0.758878 + 0.651233i \(0.774252\pi\)
\(882\) 0 0
\(883\) 24.1133 9.98805i 0.811477 0.336125i 0.0619338 0.998080i \(-0.480273\pi\)
0.749543 + 0.661955i \(0.230273\pi\)
\(884\) 0 0
\(885\) −21.8388 + 25.7308i −0.734102 + 0.864933i
\(886\) 0 0
\(887\) 3.07272 1.27276i 0.103172 0.0427352i −0.330501 0.943806i \(-0.607218\pi\)
0.433672 + 0.901071i \(0.357218\pi\)
\(888\) 0 0
\(889\) 6.30658 + 15.2254i 0.211516 + 0.510644i
\(890\) 0 0
\(891\) 4.04992 + 9.77738i 0.135677 + 0.327554i
\(892\) 0 0
\(893\) −43.4620 −1.45440
\(894\) 0 0
\(895\) −20.5716 + 24.2379i −0.687633 + 0.810183i
\(896\) 0 0
\(897\) 4.63136i 0.154637i
\(898\) 0 0
\(899\) −1.64848 3.97979i −0.0549800 0.132733i
\(900\) 0 0
\(901\) 5.15036i 0.171583i
\(902\) 0 0
\(903\) 52.3850 52.3850i 1.74326 1.74326i
\(904\) 0 0
\(905\) −21.9837 + 25.9016i −0.730762 + 0.860998i
\(906\) 0 0
\(907\) −33.1688 −1.10135 −0.550676 0.834719i \(-0.685630\pi\)
−0.550676 + 0.834719i \(0.685630\pi\)
\(908\) 0 0
\(909\) −30.9452 + 12.8179i −1.02639 + 0.425144i
\(910\) 0 0
\(911\) 32.4282 32.4282i 1.07439 1.07439i 0.0773939 0.997001i \(-0.475340\pi\)
0.997001 0.0773939i \(-0.0246599\pi\)
\(912\) 0 0
\(913\) 3.12948 7.55524i 0.103571 0.250042i
\(914\) 0 0
\(915\) 2.99609 + 36.6186i 0.0990477 + 1.21057i
\(916\) 0 0
\(917\) −32.7716 79.1177i −1.08221 2.61270i
\(918\) 0 0
\(919\) 43.6564 + 18.0831i 1.44009 + 0.596506i 0.959821 0.280613i \(-0.0905379\pi\)
0.480272 + 0.877119i \(0.340538\pi\)
\(920\) 0 0
\(921\) 29.3155 70.7739i 0.965979 2.33208i
\(922\) 0 0
\(923\) 21.1371i 0.695735i
\(924\) 0 0
\(925\) −5.56847 33.8015i −0.183090 1.11139i
\(926\) 0 0
\(927\) −10.7450 + 10.7450i −0.352911 + 0.352911i
\(928\) 0 0
\(929\) −19.8878 + 48.0135i −0.652499 + 1.57527i 0.156641 + 0.987656i \(0.449934\pi\)
−0.809140 + 0.587616i \(0.800066\pi\)
\(930\) 0 0
\(931\) 27.3518 + 66.0331i 0.896419 + 2.16415i
\(932\) 0 0
\(933\) 6.23413 + 6.23413i 0.204096 + 0.204096i
\(934\) 0 0
\(935\) −4.55205 + 2.33717i −0.148868 + 0.0764336i
\(936\) 0 0
\(937\) −18.2958 44.1700i −0.597698 1.44297i −0.875921 0.482454i \(-0.839745\pi\)
0.278223 0.960517i \(-0.410255\pi\)
\(938\) 0 0
\(939\) 7.63031i 0.249006i
\(940\) 0 0
\(941\) 0.0757829 0.0757829i 0.00247045 0.00247045i −0.705870 0.708341i \(-0.749444\pi\)
0.708341 + 0.705870i \(0.249444\pi\)
\(942\) 0 0
\(943\) 3.30999 1.69930i 0.107788 0.0553368i
\(944\) 0 0
\(945\) 24.6192 + 7.91504i 0.800862 + 0.257476i
\(946\) 0 0
\(947\) −19.5466 + 19.5466i −0.635180 + 0.635180i −0.949363 0.314182i \(-0.898270\pi\)
0.314182 + 0.949363i \(0.398270\pi\)
\(948\) 0 0
\(949\) 18.5705 + 7.69217i 0.602825 + 0.249698i
\(950\) 0 0
\(951\) −22.7808 + 22.7808i −0.738718 + 0.738718i
\(952\) 0 0
\(953\) −7.80941 + 7.80941i −0.252972 + 0.252972i −0.822188 0.569216i \(-0.807247\pi\)
0.569216 + 0.822188i \(0.307247\pi\)
\(954\) 0 0
\(955\) 25.6052 + 21.7321i 0.828565 + 0.703235i
\(956\) 0 0
\(957\) 4.06168 1.68240i 0.131296 0.0543844i
\(958\) 0 0
\(959\) 55.2554i 1.78429i
\(960\) 0 0
\(961\) 26.7204 0.861947
\(962\) 0 0
\(963\) 8.35602 0.269269
\(964\) 0 0
\(965\) −3.18568 2.70381i −0.102551 0.0870388i
\(966\) 0 0
\(967\) −20.4685 49.4153i −0.658222 1.58909i −0.800547 0.599270i \(-0.795458\pi\)
0.142325 0.989820i \(-0.454542\pi\)
\(968\) 0 0
\(969\) 22.6839 + 9.39597i 0.728711 + 0.301842i
\(970\) 0 0
\(971\) −41.6076 + 17.2345i −1.33525 + 0.553080i −0.932149 0.362074i \(-0.882069\pi\)
−0.403104 + 0.915154i \(0.632069\pi\)
\(972\) 0 0
\(973\) 11.3276 + 4.69205i 0.363146 + 0.150420i
\(974\) 0 0
\(975\) −6.47784 39.3215i −0.207457 1.25930i
\(976\) 0 0
\(977\) 18.3585 + 7.60433i 0.587340 + 0.243284i 0.656506 0.754321i \(-0.272034\pi\)
−0.0691660 + 0.997605i \(0.522034\pi\)
\(978\) 0 0
\(979\) 1.41060 1.41060i 0.0450830 0.0450830i
\(980\) 0 0
\(981\) −23.5697 + 9.76289i −0.752523 + 0.311705i
\(982\) 0 0
\(983\) 22.0753 + 22.0753i 0.704091 + 0.704091i 0.965286 0.261195i \(-0.0841165\pi\)
−0.261195 + 0.965286i \(0.584116\pi\)
\(984\) 0 0
\(985\) −10.5203 + 32.7228i −0.335206 + 1.04263i
\(986\) 0 0
\(987\) −37.7003 + 91.0165i −1.20001 + 2.89709i
\(988\) 0 0
\(989\) −2.90306 2.90306i −0.0923120 0.0923120i
\(990\) 0 0
\(991\) 12.9983 + 31.3806i 0.412904 + 0.996838i 0.984354 + 0.176201i \(0.0563810\pi\)
−0.571450 + 0.820637i \(0.693619\pi\)
\(992\) 0 0
\(993\) 66.0118i 2.09482i
\(994\) 0 0
\(995\) −23.8885 + 28.1459i −0.757316 + 0.892284i
\(996\) 0 0
\(997\) −2.39091 + 5.77216i −0.0757208 + 0.182806i −0.957207 0.289403i \(-0.906543\pi\)
0.881487 + 0.472209i \(0.156543\pi\)
\(998\) 0 0
\(999\) 6.39955 15.4499i 0.202473 0.488813i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.5 yes 84
5.3 odd 4 820.2.x.a.793.17 yes 84
41.3 odd 8 820.2.x.a.577.17 84
205.3 even 8 inner 820.2.y.a.413.5 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.17 84 41.3 odd 8
820.2.x.a.793.17 yes 84 5.3 odd 4
820.2.y.a.137.5 yes 84 1.1 even 1 trivial
820.2.y.a.413.5 yes 84 205.3 even 8 inner