Properties

Label 820.2.y.a.137.17
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.17
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.07085 + 0.857774i) q^{3} +(2.22915 - 0.175717i) q^{5} +(0.0957430 - 0.231144i) q^{7} +(1.43132 + 1.43132i) q^{9} +(-3.00068 + 1.24292i) q^{11} +(-0.159938 - 0.0662484i) q^{13} +(4.76697 + 1.54823i) q^{15} +(2.76943 - 1.14714i) q^{17} +(5.11603 + 2.11913i) q^{19} +(0.396538 - 0.396538i) q^{21} +(6.52881 + 6.52881i) q^{23} +(4.93825 - 0.783399i) q^{25} +(-0.837022 - 2.02075i) q^{27} +(-5.48777 + 2.27311i) q^{29} -4.49794i q^{31} -7.28009 q^{33} +(0.172810 - 0.532079i) q^{35} +(-2.67648 - 2.67648i) q^{37} +(-0.274381 - 0.274381i) q^{39} +(-6.25145 - 1.38541i) q^{41} -6.29767 q^{43} +(3.44214 + 2.93913i) q^{45} +(0.626265 - 0.259407i) q^{47} +(4.90549 + 4.90549i) q^{49} +6.71907 q^{51} +(4.65277 - 11.2328i) q^{53} +(-6.47056 + 3.29793i) q^{55} +(8.77679 + 8.77679i) q^{57} -2.87123i q^{59} +(-6.75796 - 6.75796i) q^{61} +(0.467880 - 0.193802i) q^{63} +(-0.368167 - 0.119574i) q^{65} +(-10.4995 + 4.34904i) q^{67} +(7.91994 + 19.1204i) q^{69} +(-2.27489 - 5.49206i) q^{71} -5.86285 q^{73} +(10.8983 + 2.61360i) q^{75} +0.812589i q^{77} +(5.51307 + 13.3097i) q^{79} -10.9752i q^{81} +(-1.54246 + 1.54246i) q^{83} +(5.97192 - 3.04378i) q^{85} -13.3142 q^{87} +(-5.80891 + 2.40613i) q^{89} +(-0.0306259 + 0.0306259i) q^{91} +(3.85822 - 9.31456i) q^{93} +(11.7768 + 3.82489i) q^{95} +(-2.76542 - 6.67632i) q^{97} +(-6.07395 - 2.51591i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.07085 + 0.857774i 1.19561 + 0.495236i 0.889576 0.456786i \(-0.151000\pi\)
0.306029 + 0.952022i \(0.401000\pi\)
\(4\) 0 0
\(5\) 2.22915 0.175717i 0.996908 0.0785829i
\(6\) 0 0
\(7\) 0.0957430 0.231144i 0.0361874 0.0873642i −0.904753 0.425938i \(-0.859944\pi\)
0.940940 + 0.338573i \(0.109944\pi\)
\(8\) 0 0
\(9\) 1.43132 + 1.43132i 0.477107 + 0.477107i
\(10\) 0 0
\(11\) −3.00068 + 1.24292i −0.904738 + 0.374755i −0.786040 0.618176i \(-0.787872\pi\)
−0.118698 + 0.992930i \(0.537872\pi\)
\(12\) 0 0
\(13\) −0.159938 0.0662484i −0.0443588 0.0183740i 0.360394 0.932800i \(-0.382642\pi\)
−0.404753 + 0.914426i \(0.632642\pi\)
\(14\) 0 0
\(15\) 4.76697 + 1.54823i 1.23083 + 0.399750i
\(16\) 0 0
\(17\) 2.76943 1.14714i 0.671687 0.278222i −0.0206602 0.999787i \(-0.506577\pi\)
0.692347 + 0.721565i \(0.256577\pi\)
\(18\) 0 0
\(19\) 5.11603 + 2.11913i 1.17370 + 0.486161i 0.882413 0.470475i \(-0.155918\pi\)
0.291284 + 0.956637i \(0.405918\pi\)
\(20\) 0 0
\(21\) 0.396538 0.396538i 0.0865318 0.0865318i
\(22\) 0 0
\(23\) 6.52881 + 6.52881i 1.36135 + 1.36135i 0.872198 + 0.489152i \(0.162694\pi\)
0.489152 + 0.872198i \(0.337306\pi\)
\(24\) 0 0
\(25\) 4.93825 0.783399i 0.987649 0.156680i
\(26\) 0 0
\(27\) −0.837022 2.02075i −0.161085 0.388894i
\(28\) 0 0
\(29\) −5.48777 + 2.27311i −1.01905 + 0.422106i −0.828750 0.559620i \(-0.810947\pi\)
−0.190304 + 0.981725i \(0.560947\pi\)
\(30\) 0 0
\(31\) 4.49794i 0.807854i −0.914791 0.403927i \(-0.867645\pi\)
0.914791 0.403927i \(-0.132355\pi\)
\(32\) 0 0
\(33\) −7.28009 −1.26730
\(34\) 0 0
\(35\) 0.172810 0.532079i 0.0292102 0.0899378i
\(36\) 0 0
\(37\) −2.67648 2.67648i −0.440011 0.440011i 0.452005 0.892016i \(-0.350709\pi\)
−0.892016 + 0.452005i \(0.850709\pi\)
\(38\) 0 0
\(39\) −0.274381 0.274381i −0.0439361 0.0439361i
\(40\) 0 0
\(41\) −6.25145 1.38541i −0.976313 0.216365i
\(42\) 0 0
\(43\) −6.29767 −0.960386 −0.480193 0.877163i \(-0.659433\pi\)
−0.480193 + 0.877163i \(0.659433\pi\)
\(44\) 0 0
\(45\) 3.44214 + 2.93913i 0.513124 + 0.438139i
\(46\) 0 0
\(47\) 0.626265 0.259407i 0.0913501 0.0378385i −0.336540 0.941669i \(-0.609257\pi\)
0.427891 + 0.903831i \(0.359257\pi\)
\(48\) 0 0
\(49\) 4.90549 + 4.90549i 0.700784 + 0.700784i
\(50\) 0 0
\(51\) 6.71907 0.940858
\(52\) 0 0
\(53\) 4.65277 11.2328i 0.639107 1.54294i −0.188764 0.982022i \(-0.560448\pi\)
0.827871 0.560918i \(-0.189552\pi\)
\(54\) 0 0
\(55\) −6.47056 + 3.29793i −0.872491 + 0.444693i
\(56\) 0 0
\(57\) 8.77679 + 8.77679i 1.16251 + 1.16251i
\(58\) 0 0
\(59\) 2.87123i 0.373802i −0.982379 0.186901i \(-0.940156\pi\)
0.982379 0.186901i \(-0.0598444\pi\)
\(60\) 0 0
\(61\) −6.75796 6.75796i −0.865268 0.865268i 0.126676 0.991944i \(-0.459569\pi\)
−0.991944 + 0.126676i \(0.959569\pi\)
\(62\) 0 0
\(63\) 0.467880 0.193802i 0.0589473 0.0244168i
\(64\) 0 0
\(65\) −0.368167 0.119574i −0.0456655 0.0148314i
\(66\) 0 0
\(67\) −10.4995 + 4.34904i −1.28272 + 0.531320i −0.916807 0.399330i \(-0.869243\pi\)
−0.365912 + 0.930650i \(0.619243\pi\)
\(68\) 0 0
\(69\) 7.91994 + 19.1204i 0.953448 + 2.30183i
\(70\) 0 0
\(71\) −2.27489 5.49206i −0.269979 0.651787i 0.729503 0.683978i \(-0.239752\pi\)
−0.999482 + 0.0321907i \(0.989752\pi\)
\(72\) 0 0
\(73\) −5.86285 −0.686195 −0.343098 0.939300i \(-0.611476\pi\)
−0.343098 + 0.939300i \(0.611476\pi\)
\(74\) 0 0
\(75\) 10.8983 + 2.61360i 1.25843 + 0.301792i
\(76\) 0 0
\(77\) 0.812589i 0.0926031i
\(78\) 0 0
\(79\) 5.51307 + 13.3097i 0.620269 + 1.49746i 0.851388 + 0.524536i \(0.175761\pi\)
−0.231120 + 0.972925i \(0.574239\pi\)
\(80\) 0 0
\(81\) 10.9752i 1.21947i
\(82\) 0 0
\(83\) −1.54246 + 1.54246i −0.169307 + 0.169307i −0.786675 0.617368i \(-0.788199\pi\)
0.617368 + 0.786675i \(0.288199\pi\)
\(84\) 0 0
\(85\) 5.97192 3.04378i 0.647746 0.330144i
\(86\) 0 0
\(87\) −13.3142 −1.42743
\(88\) 0 0
\(89\) −5.80891 + 2.40613i −0.615743 + 0.255049i −0.668682 0.743549i \(-0.733141\pi\)
0.0529389 + 0.998598i \(0.483141\pi\)
\(90\) 0 0
\(91\) −0.0306259 + 0.0306259i −0.00321046 + 0.00321046i
\(92\) 0 0
\(93\) 3.85822 9.31456i 0.400079 0.965875i
\(94\) 0 0
\(95\) 11.7768 + 3.82489i 1.20827 + 0.392425i
\(96\) 0 0
\(97\) −2.76542 6.67632i −0.280786 0.677878i 0.719068 0.694940i \(-0.244569\pi\)
−0.999854 + 0.0170616i \(0.994569\pi\)
\(98\) 0 0
\(99\) −6.07395 2.51591i −0.610454 0.252859i
\(100\) 0 0
\(101\) −5.26260 + 12.7050i −0.523648 + 1.26420i 0.411974 + 0.911196i \(0.364840\pi\)
−0.935622 + 0.353003i \(0.885160\pi\)
\(102\) 0 0
\(103\) 5.35305i 0.527452i −0.964598 0.263726i \(-0.915049\pi\)
0.964598 0.263726i \(-0.0849514\pi\)
\(104\) 0 0
\(105\) 0.814267 0.953623i 0.0794643 0.0930641i
\(106\) 0 0
\(107\) −5.13335 + 5.13335i −0.496260 + 0.496260i −0.910272 0.414012i \(-0.864127\pi\)
0.414012 + 0.910272i \(0.364127\pi\)
\(108\) 0 0
\(109\) 6.11798 14.7701i 0.585996 1.41472i −0.301304 0.953528i \(-0.597422\pi\)
0.887301 0.461192i \(-0.152578\pi\)
\(110\) 0 0
\(111\) −3.24677 7.83840i −0.308170 0.743988i
\(112\) 0 0
\(113\) 0.751818 + 0.751818i 0.0707251 + 0.0707251i 0.741585 0.670859i \(-0.234075\pi\)
−0.670859 + 0.741585i \(0.734075\pi\)
\(114\) 0 0
\(115\) 15.7009 + 13.4065i 1.46412 + 1.25016i
\(116\) 0 0
\(117\) −0.134100 0.323745i −0.0123975 0.0299302i
\(118\) 0 0
\(119\) 0.749968i 0.0687495i
\(120\) 0 0
\(121\) −0.318972 + 0.318972i −0.0289974 + 0.0289974i
\(122\) 0 0
\(123\) −11.7574 8.23131i −1.06013 0.742192i
\(124\) 0 0
\(125\) 10.8705 2.61405i 0.972283 0.233808i
\(126\) 0 0
\(127\) 4.29375 4.29375i 0.381009 0.381009i −0.490457 0.871466i \(-0.663170\pi\)
0.871466 + 0.490457i \(0.163170\pi\)
\(128\) 0 0
\(129\) −13.0415 5.40198i −1.14824 0.475618i
\(130\) 0 0
\(131\) 0.502255 0.502255i 0.0438822 0.0438822i −0.684825 0.728707i \(-0.740121\pi\)
0.728707 + 0.684825i \(0.240121\pi\)
\(132\) 0 0
\(133\) 0.979647 0.979647i 0.0849462 0.0849462i
\(134\) 0 0
\(135\) −2.22093 4.35748i −0.191147 0.375032i
\(136\) 0 0
\(137\) −16.1542 + 6.69127i −1.38014 + 0.571674i −0.944520 0.328455i \(-0.893472\pi\)
−0.435623 + 0.900129i \(0.643472\pi\)
\(138\) 0 0
\(139\) 10.9375i 0.927704i −0.885913 0.463852i \(-0.846467\pi\)
0.885913 0.463852i \(-0.153533\pi\)
\(140\) 0 0
\(141\) 1.51941 0.127958
\(142\) 0 0
\(143\) 0.562263 0.0470188
\(144\) 0 0
\(145\) −11.8337 + 6.03140i −0.982732 + 0.500880i
\(146\) 0 0
\(147\) 5.95073 + 14.3663i 0.490808 + 1.18491i
\(148\) 0 0
\(149\) 7.72747 + 3.20082i 0.633059 + 0.262221i 0.676052 0.736854i \(-0.263689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(150\) 0 0
\(151\) 3.16216 1.30981i 0.257333 0.106591i −0.250288 0.968172i \(-0.580525\pi\)
0.507621 + 0.861581i \(0.330525\pi\)
\(152\) 0 0
\(153\) 5.60587 + 2.32203i 0.453208 + 0.187725i
\(154\) 0 0
\(155\) −0.790364 10.0266i −0.0634836 0.805356i
\(156\) 0 0
\(157\) −7.86134 3.25627i −0.627403 0.259879i 0.0462460 0.998930i \(-0.485274\pi\)
−0.673649 + 0.739051i \(0.735274\pi\)
\(158\) 0 0
\(159\) 19.2704 19.2704i 1.52824 1.52824i
\(160\) 0 0
\(161\) 2.13418 0.884007i 0.168197 0.0696695i
\(162\) 0 0
\(163\) 11.0842 + 11.0842i 0.868179 + 0.868179i 0.992271 0.124092i \(-0.0396017\pi\)
−0.124092 + 0.992271i \(0.539602\pi\)
\(164\) 0 0
\(165\) −16.2284 + 1.27923i −1.26338 + 0.0995882i
\(166\) 0 0
\(167\) −4.94477 + 11.9377i −0.382638 + 0.923769i 0.608816 + 0.793311i \(0.291645\pi\)
−0.991454 + 0.130458i \(0.958355\pi\)
\(168\) 0 0
\(169\) −9.17120 9.17120i −0.705477 0.705477i
\(170\) 0 0
\(171\) 4.28952 + 10.3558i 0.328028 + 0.791930i
\(172\) 0 0
\(173\) 9.88179i 0.751299i 0.926762 + 0.375649i \(0.122580\pi\)
−0.926762 + 0.375649i \(0.877420\pi\)
\(174\) 0 0
\(175\) 0.291724 1.21645i 0.0220523 0.0919550i
\(176\) 0 0
\(177\) 2.46286 5.94588i 0.185120 0.446920i
\(178\) 0 0
\(179\) 3.46037 8.35406i 0.258640 0.624412i −0.740209 0.672377i \(-0.765274\pi\)
0.998849 + 0.0479647i \(0.0152735\pi\)
\(180\) 0 0
\(181\) 0.839831 2.02753i 0.0624242 0.150705i −0.889589 0.456761i \(-0.849009\pi\)
0.952014 + 0.306056i \(0.0990094\pi\)
\(182\) 0 0
\(183\) −8.19792 19.7915i −0.606008 1.46303i
\(184\) 0 0
\(185\) −6.43659 5.49598i −0.473227 0.404073i
\(186\) 0 0
\(187\) −6.88437 + 6.88437i −0.503435 + 0.503435i
\(188\) 0 0
\(189\) −0.547223 −0.0398046
\(190\) 0 0
\(191\) 12.1736 + 5.04247i 0.880850 + 0.364860i 0.776826 0.629715i \(-0.216828\pi\)
0.104024 + 0.994575i \(0.466828\pi\)
\(192\) 0 0
\(193\) −19.3761 8.02585i −1.39472 0.577713i −0.446346 0.894860i \(-0.647275\pi\)
−0.948376 + 0.317147i \(0.897275\pi\)
\(194\) 0 0
\(195\) −0.659851 0.563424i −0.0472529 0.0403476i
\(196\) 0 0
\(197\) 12.7028i 0.905039i −0.891754 0.452520i \(-0.850525\pi\)
0.891754 0.452520i \(-0.149475\pi\)
\(198\) 0 0
\(199\) −4.34463 + 10.4889i −0.307983 + 0.743536i 0.691788 + 0.722101i \(0.256823\pi\)
−0.999770 + 0.0214350i \(0.993177\pi\)
\(200\) 0 0
\(201\) −25.4734 −1.79675
\(202\) 0 0
\(203\) 1.48610i 0.104304i
\(204\) 0 0
\(205\) −14.1789 1.98981i −0.990296 0.138974i
\(206\) 0 0
\(207\) 18.6896i 1.29902i
\(208\) 0 0
\(209\) −17.9854 −1.24408
\(210\) 0 0
\(211\) 9.70134 23.4211i 0.667868 1.61237i −0.117304 0.993096i \(-0.537425\pi\)
0.785171 0.619279i \(-0.212575\pi\)
\(212\) 0 0
\(213\) 13.3246i 0.912984i
\(214\) 0 0
\(215\) −14.0385 + 1.10661i −0.957416 + 0.0754699i
\(216\) 0 0
\(217\) −1.03967 0.430646i −0.0705776 0.0292342i
\(218\) 0 0
\(219\) −12.1411 5.02900i −0.820418 0.339828i
\(220\) 0 0
\(221\) −0.518934 −0.0349073
\(222\) 0 0
\(223\) −5.89652 + 5.89652i −0.394860 + 0.394860i −0.876416 0.481555i \(-0.840072\pi\)
0.481555 + 0.876416i \(0.340072\pi\)
\(224\) 0 0
\(225\) 8.18951 + 5.94692i 0.545967 + 0.396461i
\(226\) 0 0
\(227\) 3.33248 + 8.04531i 0.221184 + 0.533986i 0.995051 0.0993621i \(-0.0316802\pi\)
−0.773867 + 0.633348i \(0.781680\pi\)
\(228\) 0 0
\(229\) 3.60205 8.69612i 0.238030 0.574656i −0.759049 0.651034i \(-0.774336\pi\)
0.997079 + 0.0763779i \(0.0243355\pi\)
\(230\) 0 0
\(231\) −0.697018 + 1.68275i −0.0458604 + 0.110717i
\(232\) 0 0
\(233\) 0.0477648 0.115314i 0.00312917 0.00755449i −0.922307 0.386457i \(-0.873699\pi\)
0.925436 + 0.378903i \(0.123699\pi\)
\(234\) 0 0
\(235\) 1.35046 0.688304i 0.0880942 0.0449000i
\(236\) 0 0
\(237\) 32.2914i 2.09755i
\(238\) 0 0
\(239\) 4.34880 + 10.4989i 0.281300 + 0.679119i 0.999866 0.0163397i \(-0.00520132\pi\)
−0.718566 + 0.695458i \(0.755201\pi\)
\(240\) 0 0
\(241\) 1.45287 + 1.45287i 0.0935878 + 0.0935878i 0.752351 0.658763i \(-0.228920\pi\)
−0.658763 + 0.752351i \(0.728920\pi\)
\(242\) 0 0
\(243\) 6.90319 16.6658i 0.442840 1.06911i
\(244\) 0 0
\(245\) 11.7971 + 10.0731i 0.753686 + 0.643547i
\(246\) 0 0
\(247\) −0.677858 0.677858i −0.0431311 0.0431311i
\(248\) 0 0
\(249\) −4.51729 + 1.87112i −0.286272 + 0.118578i
\(250\) 0 0
\(251\) 17.7813 17.7813i 1.12235 1.12235i 0.130959 0.991388i \(-0.458194\pi\)
0.991388 0.130959i \(-0.0418055\pi\)
\(252\) 0 0
\(253\) −27.7056 11.4760i −1.74184 0.721493i
\(254\) 0 0
\(255\) 14.9778 1.18065i 0.937948 0.0739353i
\(256\) 0 0
\(257\) −8.67753 3.59435i −0.541290 0.224210i 0.0952501 0.995453i \(-0.469635\pi\)
−0.636540 + 0.771244i \(0.719635\pi\)
\(258\) 0 0
\(259\) −0.874907 + 0.362398i −0.0543641 + 0.0225183i
\(260\) 0 0
\(261\) −11.1083 4.60121i −0.687587 0.284808i
\(262\) 0 0
\(263\) 10.2897 + 24.8414i 0.634487 + 1.53179i 0.833925 + 0.551877i \(0.186088\pi\)
−0.199438 + 0.979910i \(0.563912\pi\)
\(264\) 0 0
\(265\) 8.39795 25.8571i 0.515882 1.58839i
\(266\) 0 0
\(267\) −14.0933 −0.862495
\(268\) 0 0
\(269\) 15.0810 0.919507 0.459753 0.888047i \(-0.347938\pi\)
0.459753 + 0.888047i \(0.347938\pi\)
\(270\) 0 0
\(271\) 2.29249i 0.139259i −0.997573 0.0696294i \(-0.977818\pi\)
0.997573 0.0696294i \(-0.0221817\pi\)
\(272\) 0 0
\(273\) −0.0896916 + 0.0371515i −0.00542838 + 0.00224851i
\(274\) 0 0
\(275\) −13.8444 + 8.48858i −0.834847 + 0.511880i
\(276\) 0 0
\(277\) 5.60574 5.60574i 0.336816 0.336816i −0.518351 0.855168i \(-0.673454\pi\)
0.855168 + 0.518351i \(0.173454\pi\)
\(278\) 0 0
\(279\) 6.43800 6.43800i 0.385433 0.385433i
\(280\) 0 0
\(281\) 5.22285 + 2.16337i 0.311569 + 0.129056i 0.532988 0.846123i \(-0.321069\pi\)
−0.221419 + 0.975179i \(0.571069\pi\)
\(282\) 0 0
\(283\) −15.7011 + 15.7011i −0.933331 + 0.933331i −0.997912 0.0645813i \(-0.979429\pi\)
0.0645813 + 0.997912i \(0.479429\pi\)
\(284\) 0 0
\(285\) 21.1070 + 18.0226i 1.25027 + 1.06757i
\(286\) 0 0
\(287\) −0.918762 + 1.31234i −0.0542328 + 0.0774651i
\(288\) 0 0
\(289\) −5.66697 + 5.66697i −0.333351 + 0.333351i
\(290\) 0 0
\(291\) 16.1978i 0.949530i
\(292\) 0 0
\(293\) 2.35697 + 5.69024i 0.137696 + 0.332427i 0.977653 0.210226i \(-0.0674199\pi\)
−0.839957 + 0.542653i \(0.817420\pi\)
\(294\) 0 0
\(295\) −0.504523 6.40041i −0.0293745 0.372646i
\(296\) 0 0
\(297\) 5.02326 + 5.02326i 0.291479 + 0.291479i
\(298\) 0 0
\(299\) −0.611681 1.47673i −0.0353744 0.0854014i
\(300\) 0 0
\(301\) −0.602958 + 1.45567i −0.0347539 + 0.0839034i
\(302\) 0 0
\(303\) −21.7961 + 21.7961i −1.25215 + 1.25215i
\(304\) 0 0
\(305\) −16.2520 13.8770i −0.930588 0.794597i
\(306\) 0 0
\(307\) 4.62519i 0.263974i 0.991251 + 0.131987i \(0.0421356\pi\)
−0.991251 + 0.131987i \(0.957864\pi\)
\(308\) 0 0
\(309\) 4.59171 11.0854i 0.261213 0.630624i
\(310\) 0 0
\(311\) 18.9657 + 7.85583i 1.07544 + 0.445463i 0.848909 0.528540i \(-0.177260\pi\)
0.226535 + 0.974003i \(0.427260\pi\)
\(312\) 0 0
\(313\) −7.42460 17.9246i −0.419663 1.01316i −0.982445 0.186551i \(-0.940269\pi\)
0.562782 0.826605i \(-0.309731\pi\)
\(314\) 0 0
\(315\) 1.00892 0.514229i 0.0568463 0.0289735i
\(316\) 0 0
\(317\) −10.9861 + 26.5228i −0.617041 + 1.48967i 0.238082 + 0.971245i \(0.423481\pi\)
−0.855123 + 0.518424i \(0.826519\pi\)
\(318\) 0 0
\(319\) 13.6417 13.6417i 0.763790 0.763790i
\(320\) 0 0
\(321\) −15.0337 + 6.22714i −0.839097 + 0.347565i
\(322\) 0 0
\(323\) 16.5994 0.923617
\(324\) 0 0
\(325\) −0.841712 0.201856i −0.0466898 0.0111970i
\(326\) 0 0
\(327\) 25.3388 25.3388i 1.40124 1.40124i
\(328\) 0 0
\(329\) 0.169594i 0.00935001i
\(330\) 0 0
\(331\) −4.22960 10.2111i −0.232480 0.561255i 0.763988 0.645230i \(-0.223239\pi\)
−0.996468 + 0.0839747i \(0.973239\pi\)
\(332\) 0 0
\(333\) 7.66180i 0.419864i
\(334\) 0 0
\(335\) −22.6408 + 11.5396i −1.23700 + 0.630476i
\(336\) 0 0
\(337\) 8.80269 0.479513 0.239757 0.970833i \(-0.422932\pi\)
0.239757 + 0.970833i \(0.422932\pi\)
\(338\) 0 0
\(339\) 0.912012 + 2.20179i 0.0495337 + 0.119585i
\(340\) 0 0
\(341\) 5.59059 + 13.4969i 0.302747 + 0.730896i
\(342\) 0 0
\(343\) 3.22155 1.33441i 0.173947 0.0720513i
\(344\) 0 0
\(345\) 21.0145 + 41.2307i 1.13138 + 2.21979i
\(346\) 0 0
\(347\) −32.9940 + 13.6666i −1.77121 + 0.733659i −0.776597 + 0.629998i \(0.783056\pi\)
−0.994613 + 0.103661i \(0.966944\pi\)
\(348\) 0 0
\(349\) −7.82835 7.82835i −0.419042 0.419042i 0.465832 0.884873i \(-0.345755\pi\)
−0.884873 + 0.465832i \(0.845755\pi\)
\(350\) 0 0
\(351\) 0.378646i 0.0202106i
\(352\) 0 0
\(353\) −11.9845 11.9845i −0.637870 0.637870i 0.312160 0.950030i \(-0.398948\pi\)
−0.950030 + 0.312160i \(0.898948\pi\)
\(354\) 0 0
\(355\) −6.03611 11.8429i −0.320364 0.628556i
\(356\) 0 0
\(357\) 0.643303 1.55307i 0.0340472 0.0821973i
\(358\) 0 0
\(359\) 32.2936 1.70439 0.852196 0.523223i \(-0.175270\pi\)
0.852196 + 0.523223i \(0.175270\pi\)
\(360\) 0 0
\(361\) 8.24801 + 8.24801i 0.434106 + 0.434106i
\(362\) 0 0
\(363\) −0.934148 + 0.386937i −0.0490301 + 0.0203089i
\(364\) 0 0
\(365\) −13.0692 + 1.03020i −0.684073 + 0.0539232i
\(366\) 0 0
\(367\) 12.7327 0.664643 0.332322 0.943166i \(-0.392168\pi\)
0.332322 + 0.943166i \(0.392168\pi\)
\(368\) 0 0
\(369\) −6.96486 10.9308i −0.362576 0.569034i
\(370\) 0 0
\(371\) −2.15092 2.15092i −0.111670 0.111670i
\(372\) 0 0
\(373\) 0.724553 + 0.724553i 0.0375160 + 0.0375160i 0.725616 0.688100i \(-0.241555\pi\)
−0.688100 + 0.725616i \(0.741555\pi\)
\(374\) 0 0
\(375\) 24.7533 + 3.91109i 1.27826 + 0.201968i
\(376\) 0 0
\(377\) 1.02829 0.0529597
\(378\) 0 0
\(379\) 24.6126i 1.26427i −0.774860 0.632133i \(-0.782180\pi\)
0.774860 0.632133i \(-0.217820\pi\)
\(380\) 0 0
\(381\) 12.5748 5.20864i 0.644225 0.266847i
\(382\) 0 0
\(383\) 10.6421 + 25.6923i 0.543785 + 1.31281i 0.922034 + 0.387110i \(0.126526\pi\)
−0.378249 + 0.925704i \(0.623474\pi\)
\(384\) 0 0
\(385\) 0.142785 + 1.81139i 0.00727702 + 0.0923167i
\(386\) 0 0
\(387\) −9.01399 9.01399i −0.458207 0.458207i
\(388\) 0 0
\(389\) 10.5624 10.5624i 0.535533 0.535533i −0.386681 0.922214i \(-0.626379\pi\)
0.922214 + 0.386681i \(0.126379\pi\)
\(390\) 0 0
\(391\) 25.5706 + 10.5917i 1.29316 + 0.535644i
\(392\) 0 0
\(393\) 1.47092 0.609273i 0.0741979 0.0307338i
\(394\) 0 0
\(395\) 14.6282 + 28.7007i 0.736025 + 1.44409i
\(396\) 0 0
\(397\) 20.8168 + 8.62260i 1.04477 + 0.432756i 0.838020 0.545639i \(-0.183713\pi\)
0.206745 + 0.978395i \(0.433713\pi\)
\(398\) 0 0
\(399\) 2.86902 1.18839i 0.143631 0.0594937i
\(400\) 0 0
\(401\) −14.3525 14.3525i −0.716729 0.716729i 0.251205 0.967934i \(-0.419173\pi\)
−0.967934 + 0.251205i \(0.919173\pi\)
\(402\) 0 0
\(403\) −0.297982 + 0.719392i −0.0148435 + 0.0358355i
\(404\) 0 0
\(405\) −1.92853 24.4655i −0.0958294 1.21570i
\(406\) 0 0
\(407\) 11.3579 + 4.70460i 0.562990 + 0.233198i
\(408\) 0 0
\(409\) 27.7714 1.37321 0.686603 0.727033i \(-0.259101\pi\)
0.686603 + 0.727033i \(0.259101\pi\)
\(410\) 0 0
\(411\) −39.1924 −1.93322
\(412\) 0 0
\(413\) −0.663667 0.274900i −0.0326569 0.0135269i
\(414\) 0 0
\(415\) −3.16735 + 3.70942i −0.155479 + 0.182088i
\(416\) 0 0
\(417\) 9.38188 22.6499i 0.459432 1.10917i
\(418\) 0 0
\(419\) 24.0432 + 24.0432i 1.17459 + 1.17459i 0.981104 + 0.193482i \(0.0619780\pi\)
0.193482 + 0.981104i \(0.438022\pi\)
\(420\) 0 0
\(421\) 15.8131 6.55002i 0.770685 0.319228i 0.0375352 0.999295i \(-0.488049\pi\)
0.733150 + 0.680067i \(0.238049\pi\)
\(422\) 0 0
\(423\) 1.26768 + 0.525091i 0.0616368 + 0.0255308i
\(424\) 0 0
\(425\) 12.7775 7.83442i 0.619799 0.380025i
\(426\) 0 0
\(427\) −2.20909 + 0.915035i −0.106905 + 0.0442816i
\(428\) 0 0
\(429\) 1.16436 + 0.482295i 0.0562160 + 0.0232854i
\(430\) 0 0
\(431\) −0.981291 + 0.981291i −0.0472671 + 0.0472671i −0.730345 0.683078i \(-0.760641\pi\)
0.683078 + 0.730345i \(0.260641\pi\)
\(432\) 0 0
\(433\) 10.1296 + 10.1296i 0.486798 + 0.486798i 0.907294 0.420496i \(-0.138144\pi\)
−0.420496 + 0.907294i \(0.638144\pi\)
\(434\) 0 0
\(435\) −29.6793 + 2.33952i −1.42301 + 0.112171i
\(436\) 0 0
\(437\) 19.5662 + 47.2370i 0.935978 + 2.25965i
\(438\) 0 0
\(439\) −28.9551 + 11.9936i −1.38195 + 0.572424i −0.945003 0.327061i \(-0.893942\pi\)
−0.436951 + 0.899485i \(0.643942\pi\)
\(440\) 0 0
\(441\) 14.0426i 0.668697i
\(442\) 0 0
\(443\) 28.0480 1.33260 0.666300 0.745683i \(-0.267877\pi\)
0.666300 + 0.745683i \(0.267877\pi\)
\(444\) 0 0
\(445\) −12.5261 + 6.38435i −0.593796 + 0.302647i
\(446\) 0 0
\(447\) 13.2568 + 13.2568i 0.627027 + 0.627027i
\(448\) 0 0
\(449\) 24.9077 + 24.9077i 1.17547 + 1.17547i 0.980886 + 0.194581i \(0.0623348\pi\)
0.194581 + 0.980886i \(0.437665\pi\)
\(450\) 0 0
\(451\) 20.4805 3.61289i 0.964391 0.170124i
\(452\) 0 0
\(453\) 7.67187 0.360456
\(454\) 0 0
\(455\) −0.0628882 + 0.0736512i −0.00294825 + 0.00345282i
\(456\) 0 0
\(457\) 14.8029 6.13156i 0.692450 0.286822i −0.00857035 0.999963i \(-0.502728\pi\)
0.701021 + 0.713141i \(0.252728\pi\)
\(458\) 0 0
\(459\) −4.63616 4.63616i −0.216397 0.216397i
\(460\) 0 0
\(461\) 27.2669 1.26994 0.634972 0.772535i \(-0.281012\pi\)
0.634972 + 0.772535i \(0.281012\pi\)
\(462\) 0 0
\(463\) 4.94752 11.9444i 0.229931 0.555102i −0.766238 0.642557i \(-0.777873\pi\)
0.996168 + 0.0874552i \(0.0278735\pi\)
\(464\) 0 0
\(465\) 6.96383 21.4415i 0.322940 0.994328i
\(466\) 0 0
\(467\) 0.962372 + 0.962372i 0.0445333 + 0.0445333i 0.729023 0.684489i \(-0.239975\pi\)
−0.684489 + 0.729023i \(0.739975\pi\)
\(468\) 0 0
\(469\) 2.84329i 0.131291i
\(470\) 0 0
\(471\) −13.4865 13.4865i −0.621425 0.621425i
\(472\) 0 0
\(473\) 18.8973 7.82751i 0.868897 0.359909i
\(474\) 0 0
\(475\) 26.9243 + 6.45689i 1.23537 + 0.296262i
\(476\) 0 0
\(477\) 22.7373 9.41810i 1.04107 0.431225i
\(478\) 0 0
\(479\) 5.38950 + 13.0114i 0.246253 + 0.594507i 0.997880 0.0650815i \(-0.0207307\pi\)
−0.751627 + 0.659588i \(0.770731\pi\)
\(480\) 0 0
\(481\) 0.250758 + 0.605383i 0.0114336 + 0.0276031i
\(482\) 0 0
\(483\) 5.17785 0.235600
\(484\) 0 0
\(485\) −7.33769 14.3966i −0.333188 0.653717i
\(486\) 0 0
\(487\) 38.5997i 1.74912i −0.484917 0.874560i \(-0.661150\pi\)
0.484917 0.874560i \(-0.338850\pi\)
\(488\) 0 0
\(489\) 13.4459 + 32.4614i 0.608046 + 1.46795i
\(490\) 0 0
\(491\) 30.4438i 1.37391i 0.726699 + 0.686956i \(0.241053\pi\)
−0.726699 + 0.686956i \(0.758947\pi\)
\(492\) 0 0
\(493\) −12.5905 + 12.5905i −0.567045 + 0.567045i
\(494\) 0 0
\(495\) −13.9818 4.54106i −0.628437 0.204105i
\(496\) 0 0
\(497\) −1.48726 −0.0667127
\(498\) 0 0
\(499\) 15.7034 6.50457i 0.702981 0.291184i −0.00241537 0.999997i \(-0.500769\pi\)
0.705397 + 0.708813i \(0.250769\pi\)
\(500\) 0 0
\(501\) −20.4797 + 20.4797i −0.914967 + 0.914967i
\(502\) 0 0
\(503\) −9.30853 + 22.4728i −0.415047 + 1.00201i 0.568715 + 0.822534i \(0.307441\pi\)
−0.983762 + 0.179477i \(0.942559\pi\)
\(504\) 0 0
\(505\) −9.49865 + 29.2462i −0.422685 + 1.30144i
\(506\) 0 0
\(507\) −11.1254 26.8590i −0.494094 1.19285i
\(508\) 0 0
\(509\) −17.1288 7.09498i −0.759220 0.314479i −0.0307229 0.999528i \(-0.509781\pi\)
−0.728497 + 0.685049i \(0.759781\pi\)
\(510\) 0 0
\(511\) −0.561327 + 1.35516i −0.0248316 + 0.0599489i
\(512\) 0 0
\(513\) 12.1120i 0.534757i
\(514\) 0 0
\(515\) −0.940620 11.9328i −0.0414487 0.525821i
\(516\) 0 0
\(517\) −1.55680 + 1.55680i −0.0684678 + 0.0684678i
\(518\) 0 0
\(519\) −8.47634 + 20.4637i −0.372070 + 0.898257i
\(520\) 0 0
\(521\) 0.504954 + 1.21907i 0.0221224 + 0.0534083i 0.934555 0.355819i \(-0.115798\pi\)
−0.912432 + 0.409228i \(0.865798\pi\)
\(522\) 0 0
\(523\) −24.9780 24.9780i −1.09221 1.09221i −0.995292 0.0969193i \(-0.969101\pi\)
−0.0969193 0.995292i \(-0.530899\pi\)
\(524\) 0 0
\(525\) 1.64756 2.26885i 0.0719053 0.0990209i
\(526\) 0 0
\(527\) −5.15976 12.4568i −0.224763 0.542625i
\(528\) 0 0
\(529\) 62.2507i 2.70655i
\(530\) 0 0
\(531\) 4.10965 4.10965i 0.178343 0.178343i
\(532\) 0 0
\(533\) 0.908063 + 0.635729i 0.0393326 + 0.0275365i
\(534\) 0 0
\(535\) −10.5410 + 12.3450i −0.455728 + 0.533723i
\(536\) 0 0
\(537\) 14.3318 14.3318i 0.618463 0.618463i
\(538\) 0 0
\(539\) −20.8169 8.62264i −0.896648 0.371404i
\(540\) 0 0
\(541\) 10.9802 10.9802i 0.472077 0.472077i −0.430509 0.902586i \(-0.641666\pi\)
0.902586 + 0.430509i \(0.141666\pi\)
\(542\) 0 0
\(543\) 3.47833 3.47833i 0.149269 0.149269i
\(544\) 0 0
\(545\) 11.0426 33.9999i 0.473011 1.45639i
\(546\) 0 0
\(547\) 13.6892 5.67026i 0.585309 0.242443i −0.0703220 0.997524i \(-0.522403\pi\)
0.655631 + 0.755081i \(0.272403\pi\)
\(548\) 0 0
\(549\) 19.3456i 0.825651i
\(550\) 0 0
\(551\) −32.8926 −1.40127
\(552\) 0 0
\(553\) 3.60430 0.153270
\(554\) 0 0
\(555\) −8.61489 16.9025i −0.365682 0.717471i
\(556\) 0 0
\(557\) −10.0925 24.3654i −0.427633 1.03240i −0.980036 0.198820i \(-0.936289\pi\)
0.552403 0.833577i \(-0.313711\pi\)
\(558\) 0 0
\(559\) 1.00724 + 0.417211i 0.0426016 + 0.0176461i
\(560\) 0 0
\(561\) −20.1617 + 8.35127i −0.851229 + 0.352591i
\(562\) 0 0
\(563\) −33.6106 13.9220i −1.41652 0.586741i −0.462534 0.886601i \(-0.653060\pi\)
−0.953983 + 0.299861i \(0.903060\pi\)
\(564\) 0 0
\(565\) 1.80802 + 1.54381i 0.0760641 + 0.0649486i
\(566\) 0 0
\(567\) −2.53686 1.05080i −0.106538 0.0441295i
\(568\) 0 0
\(569\) −27.3236 + 27.3236i −1.14547 + 1.14547i −0.158031 + 0.987434i \(0.550515\pi\)
−0.987434 + 0.158031i \(0.949485\pi\)
\(570\) 0 0
\(571\) −24.9063 + 10.3165i −1.04230 + 0.431733i −0.837136 0.546995i \(-0.815772\pi\)
−0.205160 + 0.978728i \(0.565772\pi\)
\(572\) 0 0
\(573\) 20.8844 + 20.8844i 0.872457 + 0.872457i
\(574\) 0 0
\(575\) 37.3555 + 27.1262i 1.55783 + 1.13124i
\(576\) 0 0
\(577\) −6.91737 + 16.7000i −0.287974 + 0.695230i −0.999976 0.00694702i \(-0.997789\pi\)
0.712002 + 0.702177i \(0.247789\pi\)
\(578\) 0 0
\(579\) −33.2406 33.2406i −1.38143 1.38143i
\(580\) 0 0
\(581\) 0.208851 + 0.504211i 0.00866460 + 0.0209182i
\(582\) 0 0
\(583\) 39.4889i 1.63546i
\(584\) 0 0
\(585\) −0.355816 0.698114i −0.0147112 0.0288635i
\(586\) 0 0
\(587\) 3.04789 7.35826i 0.125800 0.303708i −0.848414 0.529333i \(-0.822442\pi\)
0.974214 + 0.225625i \(0.0724423\pi\)
\(588\) 0 0
\(589\) 9.53172 23.0116i 0.392748 0.948177i
\(590\) 0 0
\(591\) 10.8962 26.3057i 0.448208 1.08207i
\(592\) 0 0
\(593\) 12.0588 + 29.1125i 0.495195 + 1.19551i 0.952044 + 0.305962i \(0.0989782\pi\)
−0.456848 + 0.889545i \(0.651022\pi\)
\(594\) 0 0
\(595\) −0.131782 1.67179i −0.00540254 0.0685369i
\(596\) 0 0
\(597\) −17.9942 + 17.9942i −0.736452 + 0.736452i
\(598\) 0 0
\(599\) −6.24271 −0.255070 −0.127535 0.991834i \(-0.540707\pi\)
−0.127535 + 0.991834i \(0.540707\pi\)
\(600\) 0 0
\(601\) 6.78171 + 2.80907i 0.276632 + 0.114585i 0.516686 0.856175i \(-0.327165\pi\)
−0.240055 + 0.970759i \(0.577165\pi\)
\(602\) 0 0
\(603\) −21.2530 8.80329i −0.865490 0.358498i
\(604\) 0 0
\(605\) −0.654989 + 0.767086i −0.0266291 + 0.0311865i
\(606\) 0 0
\(607\) 12.0268i 0.488151i −0.969756 0.244076i \(-0.921515\pi\)
0.969756 0.244076i \(-0.0784845\pi\)
\(608\) 0 0
\(609\) −1.27474 + 3.07749i −0.0516549 + 0.124706i
\(610\) 0 0
\(611\) −0.117349 −0.00474743
\(612\) 0 0
\(613\) 4.93404i 0.199284i 0.995023 + 0.0996421i \(0.0317698\pi\)
−0.995023 + 0.0996421i \(0.968230\pi\)
\(614\) 0 0
\(615\) −27.6555 16.2829i −1.11518 0.656588i
\(616\) 0 0
\(617\) 20.9156i 0.842031i 0.907053 + 0.421016i \(0.138326\pi\)
−0.907053 + 0.421016i \(0.861674\pi\)
\(618\) 0 0
\(619\) −25.4726 −1.02383 −0.511916 0.859036i \(-0.671064\pi\)
−0.511916 + 0.859036i \(0.671064\pi\)
\(620\) 0 0
\(621\) 7.72833 18.6578i 0.310127 0.748714i
\(622\) 0 0
\(623\) 1.57306i 0.0630235i
\(624\) 0 0
\(625\) 23.7726 7.73724i 0.950903 0.309489i
\(626\) 0 0
\(627\) −37.2452 15.4274i −1.48743 0.616113i
\(628\) 0 0
\(629\) −10.4826 4.34205i −0.417970 0.173129i
\(630\) 0 0
\(631\) 1.59357 0.0634390 0.0317195 0.999497i \(-0.489902\pi\)
0.0317195 + 0.999497i \(0.489902\pi\)
\(632\) 0 0
\(633\) 40.1800 40.1800i 1.59701 1.59701i
\(634\) 0 0
\(635\) 8.81694 10.3259i 0.349890 0.409771i
\(636\) 0 0
\(637\) −0.459592 1.10955i −0.0182097 0.0439621i
\(638\) 0 0
\(639\) 4.60481 11.1170i 0.182163 0.439781i
\(640\) 0 0
\(641\) 7.96987 19.2410i 0.314791 0.759973i −0.684723 0.728803i \(-0.740077\pi\)
0.999514 0.0311693i \(-0.00992311\pi\)
\(642\) 0 0
\(643\) −17.2129 + 41.5557i −0.678812 + 1.63880i 0.0873714 + 0.996176i \(0.472153\pi\)
−0.766184 + 0.642622i \(0.777847\pi\)
\(644\) 0 0
\(645\) −30.0208 9.75022i −1.18207 0.383915i
\(646\) 0 0
\(647\) 22.9558i 0.902484i −0.892402 0.451242i \(-0.850981\pi\)
0.892402 0.451242i \(-0.149019\pi\)
\(648\) 0 0
\(649\) 3.56871 + 8.61562i 0.140084 + 0.338193i
\(650\) 0 0
\(651\) −1.78361 1.78361i −0.0699051 0.0699051i
\(652\) 0 0
\(653\) 15.5738 37.5984i 0.609449 1.47134i −0.254151 0.967164i \(-0.581796\pi\)
0.863601 0.504176i \(-0.168204\pi\)
\(654\) 0 0
\(655\) 1.03135 1.20786i 0.0402981 0.0471949i
\(656\) 0 0
\(657\) −8.39162 8.39162i −0.327388 0.327388i
\(658\) 0 0
\(659\) −27.0533 + 11.2058i −1.05385 + 0.436517i −0.841263 0.540626i \(-0.818187\pi\)
−0.212582 + 0.977143i \(0.568187\pi\)
\(660\) 0 0
\(661\) −19.5944 + 19.5944i −0.762133 + 0.762133i −0.976708 0.214575i \(-0.931163\pi\)
0.214575 + 0.976708i \(0.431163\pi\)
\(662\) 0 0
\(663\) −1.07463 0.445128i −0.0417353 0.0172873i
\(664\) 0 0
\(665\) 2.01164 2.35592i 0.0780082 0.0913588i
\(666\) 0 0
\(667\) −50.6693 20.9879i −1.96192 0.812655i
\(668\) 0 0
\(669\) −17.2687 + 7.15293i −0.667646 + 0.276548i
\(670\) 0 0
\(671\) 28.6781 + 11.8788i 1.10710 + 0.458578i
\(672\) 0 0
\(673\) 7.24261 + 17.4852i 0.279182 + 0.674006i 0.999813 0.0193129i \(-0.00614788\pi\)
−0.720631 + 0.693319i \(0.756148\pi\)
\(674\) 0 0
\(675\) −5.71648 9.32324i −0.220027 0.358852i
\(676\) 0 0
\(677\) 31.3949 1.20660 0.603302 0.797512i \(-0.293851\pi\)
0.603302 + 0.797512i \(0.293851\pi\)
\(678\) 0 0
\(679\) −1.80796 −0.0693832
\(680\) 0 0
\(681\) 19.5191i 0.747975i
\(682\) 0 0
\(683\) −37.6121 + 15.5794i −1.43919 + 0.596130i −0.959601 0.281365i \(-0.909213\pi\)
−0.479585 + 0.877495i \(0.659213\pi\)
\(684\) 0 0
\(685\) −34.8343 + 17.7544i −1.33095 + 0.678362i
\(686\) 0 0
\(687\) 14.9186 14.9186i 0.569181 0.569181i
\(688\) 0 0
\(689\) −1.48831 + 1.48831i −0.0567000 + 0.0567000i
\(690\) 0 0
\(691\) −13.0122 5.38984i −0.495008 0.205039i 0.121191 0.992629i \(-0.461329\pi\)
−0.616200 + 0.787590i \(0.711329\pi\)
\(692\) 0 0
\(693\) −1.16308 + 1.16308i −0.0441816 + 0.0441816i
\(694\) 0 0
\(695\) −1.92190 24.3813i −0.0729017 0.924835i
\(696\) 0 0
\(697\) −18.9022 + 3.33447i −0.715973 + 0.126302i
\(698\) 0 0
\(699\) 0.197827 0.197827i 0.00748251 0.00748251i
\(700\) 0 0
\(701\) 18.8015i 0.710124i 0.934843 + 0.355062i \(0.115540\pi\)
−0.934843 + 0.355062i \(0.884460\pi\)
\(702\) 0 0
\(703\) −8.02114 19.3648i −0.302523 0.730356i
\(704\) 0 0
\(705\) 3.38701 0.266986i 0.127562 0.0100553i
\(706\) 0 0
\(707\) 2.43284 + 2.43284i 0.0914962 + 0.0914962i
\(708\) 0 0
\(709\) −8.12773 19.6221i −0.305243 0.736923i −0.999846 0.0175293i \(-0.994420\pi\)
0.694603 0.719393i \(-0.255580\pi\)
\(710\) 0 0
\(711\) −11.1595 + 26.9414i −0.418514 + 1.01038i
\(712\) 0 0
\(713\) 29.3662 29.3662i 1.09977 1.09977i
\(714\) 0 0
\(715\) 1.25337 0.0987991i 0.0468734 0.00369488i
\(716\) 0 0
\(717\) 25.4720i 0.951268i
\(718\) 0 0
\(719\) −5.69223 + 13.7423i −0.212284 + 0.512500i −0.993774 0.111419i \(-0.964460\pi\)
0.781489 + 0.623919i \(0.214460\pi\)
\(720\) 0 0
\(721\) −1.23733 0.512517i −0.0460804 0.0190871i
\(722\) 0 0
\(723\) 1.76244 + 4.25492i 0.0655460 + 0.158242i
\(724\) 0 0
\(725\) −25.3192 + 15.5243i −0.940332 + 0.576557i
\(726\) 0 0
\(727\) 4.97936 12.0212i 0.184674 0.445843i −0.804245 0.594298i \(-0.797430\pi\)
0.988919 + 0.148455i \(0.0474300\pi\)
\(728\) 0 0
\(729\) 5.30898 5.30898i 0.196629 0.196629i
\(730\) 0 0
\(731\) −17.4410 + 7.22430i −0.645078 + 0.267200i
\(732\) 0 0
\(733\) 43.4827 1.60607 0.803036 0.595931i \(-0.203217\pi\)
0.803036 + 0.595931i \(0.203217\pi\)
\(734\) 0 0
\(735\) 15.7895 + 30.9791i 0.582404 + 1.14268i
\(736\) 0 0
\(737\) 26.1001 26.1001i 0.961410 0.961410i
\(738\) 0 0
\(739\) 1.05826i 0.0389289i 0.999811 + 0.0194644i \(0.00619612\pi\)
−0.999811 + 0.0194644i \(0.993804\pi\)
\(740\) 0 0
\(741\) −0.822293 1.98519i −0.0302077 0.0729278i
\(742\) 0 0
\(743\) 15.2753i 0.560397i −0.959942 0.280198i \(-0.909600\pi\)
0.959942 0.280198i \(-0.0904003\pi\)
\(744\) 0 0
\(745\) 17.7881 + 5.77728i 0.651707 + 0.211663i
\(746\) 0 0
\(747\) −4.41552 −0.161555
\(748\) 0 0
\(749\) 0.695061 + 1.67803i 0.0253970 + 0.0613137i
\(750\) 0 0
\(751\) 2.06773 + 4.99193i 0.0754524 + 0.182158i 0.957105 0.289740i \(-0.0935689\pi\)
−0.881653 + 0.471898i \(0.843569\pi\)
\(752\) 0 0
\(753\) 52.0748 21.5701i 1.89771 0.786057i
\(754\) 0 0
\(755\) 6.81878 3.47541i 0.248161 0.126483i
\(756\) 0 0
\(757\) 47.6790 19.7493i 1.73292 0.717800i 0.733655 0.679522i \(-0.237813\pi\)
0.999267 0.0382776i \(-0.0121871\pi\)
\(758\) 0 0
\(759\) −47.5303 47.5303i −1.72524 1.72524i
\(760\) 0 0
\(761\) 23.3761i 0.847382i 0.905807 + 0.423691i \(0.139266\pi\)
−0.905807 + 0.423691i \(0.860734\pi\)
\(762\) 0 0
\(763\) −2.82827 2.82827i −0.102390 0.102390i
\(764\) 0 0
\(765\) 12.9044 + 4.19111i 0.466558 + 0.151530i
\(766\) 0 0
\(767\) −0.190214 + 0.459218i −0.00686824 + 0.0165814i
\(768\) 0 0
\(769\) 0.970937 0.0350129 0.0175065 0.999847i \(-0.494427\pi\)
0.0175065 + 0.999847i \(0.494427\pi\)
\(770\) 0 0
\(771\) −14.8867 14.8867i −0.536132 0.536132i
\(772\) 0 0
\(773\) −11.6334 + 4.81869i −0.418423 + 0.173316i −0.581954 0.813222i \(-0.697712\pi\)
0.163531 + 0.986538i \(0.447712\pi\)
\(774\) 0 0
\(775\) −3.52368 22.2120i −0.126574 0.797877i
\(776\) 0 0
\(777\) −2.12266 −0.0761498
\(778\) 0 0
\(779\) −29.0467 20.3354i −1.04071 0.728592i
\(780\) 0 0
\(781\) 13.6524 + 13.6524i 0.488521 + 0.488521i
\(782\) 0 0
\(783\) 9.18677 + 9.18677i 0.328308 + 0.328308i
\(784\) 0 0
\(785\) −18.0963 5.87736i −0.645885 0.209772i
\(786\) 0 0
\(787\) −26.6939 −0.951535 −0.475768 0.879571i \(-0.657830\pi\)
−0.475768 + 0.879571i \(0.657830\pi\)
\(788\) 0 0
\(789\) 60.2690i 2.14563i
\(790\) 0 0
\(791\) 0.245759 0.101797i 0.00873820 0.00361948i
\(792\) 0 0
\(793\) 0.633150 + 1.52856i 0.0224838 + 0.0542807i
\(794\) 0 0
\(795\) 39.5705 46.3427i 1.40342 1.64361i
\(796\) 0 0
\(797\) −37.5630 37.5630i −1.33055 1.33055i −0.904877 0.425672i \(-0.860038\pi\)
−0.425672 0.904877i \(-0.639962\pi\)
\(798\) 0 0
\(799\) 1.43682 1.43682i 0.0508312 0.0508312i
\(800\) 0 0
\(801\) −11.7583 4.87047i −0.415461 0.172089i
\(802\) 0 0
\(803\) 17.5925 7.28706i 0.620827 0.257155i
\(804\) 0 0
\(805\) 4.60208 2.34560i 0.162202 0.0826715i
\(806\) 0 0
\(807\) 31.2306 + 12.9361i 1.09937 + 0.455373i
\(808\) 0 0
\(809\) 34.9150 14.4623i 1.22755 0.508466i 0.327744 0.944766i \(-0.393712\pi\)
0.899801 + 0.436300i \(0.143712\pi\)
\(810\) 0 0
\(811\) −1.42303 1.42303i −0.0499693 0.0499693i 0.681681 0.731650i \(-0.261249\pi\)
−0.731650 + 0.681681i \(0.761249\pi\)
\(812\) 0 0
\(813\) 1.96644 4.74740i 0.0689660 0.166499i
\(814\) 0 0
\(815\) 26.6560 + 22.7606i 0.933718 + 0.797270i
\(816\) 0 0
\(817\) −32.2191 13.3456i −1.12720 0.466903i
\(818\) 0 0
\(819\) −0.0876708 −0.00306347
\(820\) 0 0
\(821\) −16.8467 −0.587954 −0.293977 0.955813i \(-0.594979\pi\)
−0.293977 + 0.955813i \(0.594979\pi\)
\(822\) 0 0
\(823\) 29.2851 + 12.1303i 1.02081 + 0.422835i 0.829389 0.558672i \(-0.188689\pi\)
0.191426 + 0.981507i \(0.438689\pi\)
\(824\) 0 0
\(825\) −35.9509 + 5.70322i −1.25165 + 0.198561i
\(826\) 0 0
\(827\) −5.30999 + 12.8195i −0.184647 + 0.445776i −0.988914 0.148492i \(-0.952558\pi\)
0.804267 + 0.594268i \(0.202558\pi\)
\(828\) 0 0
\(829\) 32.0783 + 32.0783i 1.11413 + 1.11413i 0.992586 + 0.121541i \(0.0387834\pi\)
0.121541 + 0.992586i \(0.461217\pi\)
\(830\) 0 0
\(831\) 16.4171 6.80019i 0.569503 0.235896i
\(832\) 0 0
\(833\) 19.2127 + 7.95816i 0.665680 + 0.275734i
\(834\) 0 0
\(835\) −8.92499 + 27.4799i −0.308862 + 0.950981i
\(836\) 0 0
\(837\) −9.08922 + 3.76488i −0.314169 + 0.130133i
\(838\) 0 0
\(839\) 18.0712 + 7.48535i 0.623888 + 0.258423i 0.672154 0.740412i \(-0.265369\pi\)
−0.0482655 + 0.998835i \(0.515369\pi\)
\(840\) 0 0
\(841\) 4.44249 4.44249i 0.153189 0.153189i
\(842\) 0 0
\(843\) 8.96004 + 8.96004i 0.308600 + 0.308600i
\(844\) 0 0
\(845\) −22.0555 18.8325i −0.758733 0.647857i
\(846\) 0 0
\(847\) 0.0431891 + 0.104268i 0.00148400 + 0.00358268i
\(848\) 0 0
\(849\) −45.9825 + 19.0466i −1.57811 + 0.653677i
\(850\) 0 0
\(851\) 34.9485i 1.19802i
\(852\) 0 0
\(853\) −42.6895 −1.46166 −0.730830 0.682560i \(-0.760867\pi\)
−0.730830 + 0.682560i \(0.760867\pi\)
\(854\) 0 0
\(855\) 11.3817 + 22.3310i 0.389246 + 0.763703i
\(856\) 0 0
\(857\) 0.314016 + 0.314016i 0.0107266 + 0.0107266i 0.712450 0.701723i \(-0.247586\pi\)
−0.701723 + 0.712450i \(0.747586\pi\)
\(858\) 0 0
\(859\) 15.4113 + 15.4113i 0.525825 + 0.525825i 0.919325 0.393500i \(-0.128736\pi\)
−0.393500 + 0.919325i \(0.628736\pi\)
\(860\) 0 0
\(861\) −3.02831 + 1.92957i −0.103205 + 0.0657597i
\(862\) 0 0
\(863\) −28.6000 −0.973556 −0.486778 0.873526i \(-0.661828\pi\)
−0.486778 + 0.873526i \(0.661828\pi\)
\(864\) 0 0
\(865\) 1.73640 + 22.0280i 0.0590392 + 0.748975i
\(866\) 0 0
\(867\) −16.5964 + 6.87446i −0.563644 + 0.233469i
\(868\) 0 0
\(869\) −33.0859 33.0859i −1.12236 1.12236i
\(870\) 0 0
\(871\) 1.96739 0.0666623
\(872\) 0 0
\(873\) 5.59775 13.5142i 0.189455 0.457385i
\(874\) 0 0
\(875\) 0.436548 2.76292i 0.0147580 0.0934036i
\(876\) 0 0
\(877\) 0.740530 + 0.740530i 0.0250059 + 0.0250059i 0.719499 0.694493i \(-0.244371\pi\)
−0.694493 + 0.719499i \(0.744371\pi\)
\(878\) 0 0
\(879\) 13.8054i 0.465644i
\(880\) 0 0
\(881\) 17.1395 + 17.1395i 0.577445 + 0.577445i 0.934199 0.356753i \(-0.116116\pi\)
−0.356753 + 0.934199i \(0.616116\pi\)
\(882\) 0 0
\(883\) 15.9689 6.61454i 0.537397 0.222597i −0.0974428 0.995241i \(-0.531066\pi\)
0.634839 + 0.772644i \(0.281066\pi\)
\(884\) 0 0
\(885\) 4.44531 13.6870i 0.149427 0.460085i
\(886\) 0 0
\(887\) −1.98882 + 0.823794i −0.0667779 + 0.0276603i −0.415822 0.909446i \(-0.636506\pi\)
0.349044 + 0.937106i \(0.386506\pi\)
\(888\) 0 0
\(889\) −0.581378 1.40357i −0.0194988 0.0470743i
\(890\) 0 0
\(891\) 13.6413 + 32.9331i 0.457002 + 1.10330i
\(892\) 0 0
\(893\) 3.75371 0.125613
\(894\) 0 0
\(895\) 6.24574 19.2305i 0.208772 0.642806i
\(896\) 0 0
\(897\) 3.58276i 0.119625i
\(898\) 0 0
\(899\) 10.2243 + 24.6837i 0.341000 + 0.823247i
\(900\) 0 0
\(901\) 36.4458i 1.21419i
\(902\) 0 0
\(903\) −2.49727 + 2.49727i −0.0831039 + 0.0831039i
\(904\) 0 0
\(905\) 1.51584 4.66725i 0.0503883 0.155145i
\(906\) 0 0
\(907\) 12.7735 0.424139 0.212069 0.977255i \(-0.431980\pi\)
0.212069 + 0.977255i \(0.431980\pi\)
\(908\) 0 0
\(909\) −25.7175 + 10.6525i −0.852994 + 0.353322i
\(910\) 0 0
\(911\) −27.7653 + 27.7653i −0.919905 + 0.919905i −0.997022 0.0771166i \(-0.975429\pi\)
0.0771166 + 0.997022i \(0.475429\pi\)
\(912\) 0 0
\(913\) 2.71127 6.54559i 0.0897300 0.216627i
\(914\) 0 0
\(915\) −21.7521 42.6778i −0.719103 1.41089i
\(916\) 0 0
\(917\) −0.0680059 0.164181i −0.00224575 0.00542172i
\(918\) 0 0
\(919\) 46.1563 + 19.1186i 1.52256 + 0.630664i 0.978102 0.208126i \(-0.0667366\pi\)
0.544455 + 0.838790i \(0.316737\pi\)
\(920\) 0 0
\(921\) −3.96737 + 9.57807i −0.130729 + 0.315608i
\(922\) 0 0
\(923\) 1.02910i 0.0338731i
\(924\) 0 0
\(925\) −15.3139 11.1204i −0.503517 0.365636i
\(926\) 0 0
\(927\) 7.66193 7.66193i 0.251651 0.251651i
\(928\) 0 0
\(929\) 3.83864 9.26730i 0.125942 0.304050i −0.848315 0.529492i \(-0.822383\pi\)
0.974257 + 0.225442i \(0.0723825\pi\)
\(930\) 0 0
\(931\) 14.7013 + 35.4920i 0.481814 + 1.16320i
\(932\) 0 0
\(933\) 32.5365 + 32.5365i 1.06520 + 1.06520i
\(934\) 0 0
\(935\) −14.1366 + 16.5560i −0.462317 + 0.541440i
\(936\) 0 0
\(937\) −4.70130 11.3499i −0.153585 0.370786i 0.828295 0.560293i \(-0.189311\pi\)
−0.981880 + 0.189506i \(0.939311\pi\)
\(938\) 0 0
\(939\) 43.4877i 1.41917i
\(940\) 0 0
\(941\) −13.5648 + 13.5648i −0.442201 + 0.442201i −0.892751 0.450550i \(-0.851228\pi\)
0.450550 + 0.892751i \(0.351228\pi\)
\(942\) 0 0
\(943\) −31.7695 49.8596i −1.03456 1.62365i
\(944\) 0 0
\(945\) −1.21984 + 0.0961563i −0.0396815 + 0.00312796i
\(946\) 0 0
\(947\) 22.0861 22.0861i 0.717703 0.717703i −0.250432 0.968134i \(-0.580573\pi\)
0.968134 + 0.250432i \(0.0805725\pi\)
\(948\) 0 0
\(949\) 0.937692 + 0.388405i 0.0304388 + 0.0126082i
\(950\) 0 0
\(951\) −45.5011 + 45.5011i −1.47548 + 1.47548i
\(952\) 0 0
\(953\) 17.9119 17.9119i 0.580222 0.580222i −0.354742 0.934964i \(-0.615431\pi\)
0.934964 + 0.354742i \(0.115431\pi\)
\(954\) 0 0
\(955\) 28.0228 + 9.10133i 0.906798 + 0.294512i
\(956\) 0 0
\(957\) 39.9515 16.5484i 1.29145 0.534935i
\(958\) 0 0
\(959\) 4.37458i 0.141262i
\(960\) 0 0
\(961\) 10.7685 0.347371
\(962\) 0 0
\(963\) −14.6949 −0.473538
\(964\) 0 0
\(965\) −44.6026 14.4861i −1.43581 0.466325i
\(966\) 0 0
\(967\) −9.37236 22.6269i −0.301395 0.727632i −0.999927 0.0120533i \(-0.996163\pi\)
0.698532 0.715578i \(-0.253837\pi\)
\(968\) 0 0
\(969\) 34.3749 + 14.2386i 1.10428 + 0.457409i
\(970\) 0 0
\(971\) 41.7787 17.3053i 1.34074 0.555353i 0.407041 0.913410i \(-0.366561\pi\)
0.933700 + 0.358057i \(0.116561\pi\)
\(972\) 0 0
\(973\) −2.52813 1.04719i −0.0810481 0.0335712i
\(974\) 0 0
\(975\) −1.56991 1.14001i −0.0502774 0.0365096i
\(976\) 0 0
\(977\) −6.10784 2.52995i −0.195407 0.0809403i 0.282834 0.959169i \(-0.408725\pi\)
−0.478241 + 0.878229i \(0.658725\pi\)
\(978\) 0 0
\(979\) 14.4400 14.4400i 0.461505 0.461505i
\(980\) 0 0
\(981\) 29.8975 12.3840i 0.954555 0.395390i
\(982\) 0 0
\(983\) 20.7699 + 20.7699i 0.662458 + 0.662458i 0.955959 0.293501i \(-0.0948204\pi\)
−0.293501 + 0.955959i \(0.594820\pi\)
\(984\) 0 0
\(985\) −2.23210 28.3166i −0.0711206 0.902241i
\(986\) 0 0
\(987\) 0.145473 0.351203i 0.00463046 0.0111789i
\(988\) 0 0
\(989\) −41.1163 41.1163i −1.30742 1.30742i
\(990\) 0 0
\(991\) 0.446779 + 1.07862i 0.0141924 + 0.0342635i 0.930817 0.365486i \(-0.119097\pi\)
−0.916624 + 0.399749i \(0.869097\pi\)
\(992\) 0 0
\(993\) 24.7738i 0.786172i
\(994\) 0 0
\(995\) −7.84178 + 24.1447i −0.248601 + 0.765439i
\(996\) 0 0
\(997\) −12.1635 + 29.3653i −0.385222 + 0.930007i 0.605716 + 0.795681i \(0.292887\pi\)
−0.990937 + 0.134326i \(0.957113\pi\)
\(998\) 0 0
\(999\) −3.16823 + 7.64877i −0.100238 + 0.241996i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.17 yes 84
5.3 odd 4 820.2.x.a.793.5 yes 84
41.3 odd 8 820.2.x.a.577.5 84
205.3 even 8 inner 820.2.y.a.413.17 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.5 84 41.3 odd 8
820.2.x.a.793.5 yes 84 5.3 odd 4
820.2.y.a.137.17 yes 84 1.1 even 1 trivial
820.2.y.a.413.17 yes 84 205.3 even 8 inner