Properties

Label 820.2.y.a.137.12
Level $820$
Weight $2$
Character 820.137
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(137,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.137"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.y (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 137.12
Character \(\chi\) \(=\) 820.137
Dual form 820.2.y.a.413.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.124058 + 0.0513864i) q^{3} +(-0.0384730 - 2.23574i) q^{5} +(-1.97802 + 4.77536i) q^{7} +(-2.10857 - 2.10857i) q^{9} +(1.44680 - 0.599283i) q^{11} +(2.66954 + 1.10576i) q^{13} +(0.110114 - 0.279338i) q^{15} +(3.55865 - 1.47404i) q^{17} +(7.04336 + 2.91746i) q^{19} +(-0.490777 + 0.490777i) q^{21} +(3.15426 + 3.15426i) q^{23} +(-4.99704 + 0.172031i) q^{25} +(-0.307392 - 0.742110i) q^{27} +(8.72309 - 3.61322i) q^{29} +0.581838i q^{31} +0.210282 q^{33} +(10.7525 + 4.23861i) q^{35} +(3.55128 + 3.55128i) q^{37} +(0.274356 + 0.274356i) q^{39} +(3.07916 - 5.61416i) q^{41} -7.84817 q^{43} +(-4.63309 + 4.79533i) q^{45} +(2.27624 - 0.942851i) q^{47} +(-13.9418 - 13.9418i) q^{49} +0.517223 q^{51} +(-1.76450 + 4.25988i) q^{53} +(-1.39550 - 3.21160i) q^{55} +(0.723866 + 0.723866i) q^{57} +2.23104i q^{59} +(2.78581 + 2.78581i) q^{61} +(14.2400 - 5.89839i) q^{63} +(2.36948 - 6.01092i) q^{65} +(1.81373 - 0.751271i) q^{67} +(0.229224 + 0.553397i) q^{69} +(-3.41502 - 8.24458i) q^{71} +6.77830 q^{73} +(-0.628762 - 0.235438i) q^{75} +8.09438i q^{77} +(3.17162 + 7.65698i) q^{79} +8.83805i q^{81} +(-2.19939 + 2.19939i) q^{83} +(-3.43248 - 7.89948i) q^{85} +1.26784 q^{87} +(-10.7228 + 4.44154i) q^{89} +(-10.5608 + 10.5608i) q^{91} +(-0.0298985 + 0.0721815i) q^{93} +(6.25169 - 15.8594i) q^{95} +(6.98542 + 16.8643i) q^{97} +(-4.31431 - 1.78704i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q + 8 q^{9} + 4 q^{13} + 4 q^{15} - 16 q^{17} - 8 q^{21} - 12 q^{27} + 28 q^{29} + 40 q^{33} - 20 q^{35} + 24 q^{37} - 16 q^{39} - 20 q^{45} + 28 q^{47} - 24 q^{49} - 32 q^{53} + 16 q^{55} - 8 q^{57}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.124058 + 0.0513864i 0.0716248 + 0.0296680i 0.418208 0.908351i \(-0.362658\pi\)
−0.346583 + 0.938019i \(0.612658\pi\)
\(4\) 0 0
\(5\) −0.0384730 2.23574i −0.0172057 0.999852i
\(6\) 0 0
\(7\) −1.97802 + 4.77536i −0.747621 + 1.80492i −0.176016 + 0.984387i \(0.556321\pi\)
−0.571605 + 0.820529i \(0.693679\pi\)
\(8\) 0 0
\(9\) −2.10857 2.10857i −0.702857 0.702857i
\(10\) 0 0
\(11\) 1.44680 0.599283i 0.436226 0.180691i −0.153753 0.988109i \(-0.549136\pi\)
0.589979 + 0.807419i \(0.299136\pi\)
\(12\) 0 0
\(13\) 2.66954 + 1.10576i 0.740396 + 0.306682i 0.720816 0.693126i \(-0.243767\pi\)
0.0195797 + 0.999808i \(0.493767\pi\)
\(14\) 0 0
\(15\) 0.110114 0.279338i 0.0284312 0.0721246i
\(16\) 0 0
\(17\) 3.55865 1.47404i 0.863098 0.357507i 0.0931799 0.995649i \(-0.470297\pi\)
0.769918 + 0.638142i \(0.220297\pi\)
\(18\) 0 0
\(19\) 7.04336 + 2.91746i 1.61586 + 0.669311i 0.993543 0.113456i \(-0.0361921\pi\)
0.622316 + 0.782767i \(0.286192\pi\)
\(20\) 0 0
\(21\) −0.490777 + 0.490777i −0.107096 + 0.107096i
\(22\) 0 0
\(23\) 3.15426 + 3.15426i 0.657709 + 0.657709i 0.954837 0.297129i \(-0.0960290\pi\)
−0.297129 + 0.954837i \(0.596029\pi\)
\(24\) 0 0
\(25\) −4.99704 + 0.172031i −0.999408 + 0.0344062i
\(26\) 0 0
\(27\) −0.307392 0.742110i −0.0591576 0.142819i
\(28\) 0 0
\(29\) 8.72309 3.61322i 1.61984 0.670959i 0.625798 0.779985i \(-0.284773\pi\)
0.994039 + 0.109026i \(0.0347733\pi\)
\(30\) 0 0
\(31\) 0.581838i 0.104501i 0.998634 + 0.0522506i \(0.0166394\pi\)
−0.998634 + 0.0522506i \(0.983361\pi\)
\(32\) 0 0
\(33\) 0.210282 0.0366053
\(34\) 0 0
\(35\) 10.7525 + 4.23861i 1.81751 + 0.716455i
\(36\) 0 0
\(37\) 3.55128 + 3.55128i 0.583827 + 0.583827i 0.935953 0.352126i \(-0.114541\pi\)
−0.352126 + 0.935953i \(0.614541\pi\)
\(38\) 0 0
\(39\) 0.274356 + 0.274356i 0.0439321 + 0.0439321i
\(40\) 0 0
\(41\) 3.07916 5.61416i 0.480885 0.876784i
\(42\) 0 0
\(43\) −7.84817 −1.19683 −0.598417 0.801185i \(-0.704203\pi\)
−0.598417 + 0.801185i \(0.704203\pi\)
\(44\) 0 0
\(45\) −4.63309 + 4.79533i −0.690660 + 0.714846i
\(46\) 0 0
\(47\) 2.27624 0.942851i 0.332024 0.137529i −0.210442 0.977606i \(-0.567490\pi\)
0.542467 + 0.840077i \(0.317490\pi\)
\(48\) 0 0
\(49\) −13.9418 13.9418i −1.99168 1.99168i
\(50\) 0 0
\(51\) 0.517223 0.0724257
\(52\) 0 0
\(53\) −1.76450 + 4.25988i −0.242373 + 0.585139i −0.997518 0.0704187i \(-0.977566\pi\)
0.755145 + 0.655558i \(0.227566\pi\)
\(54\) 0 0
\(55\) −1.39550 3.21160i −0.188170 0.433053i
\(56\) 0 0
\(57\) 0.723866 + 0.723866i 0.0958784 + 0.0958784i
\(58\) 0 0
\(59\) 2.23104i 0.290456i 0.989398 + 0.145228i \(0.0463916\pi\)
−0.989398 + 0.145228i \(0.953608\pi\)
\(60\) 0 0
\(61\) 2.78581 + 2.78581i 0.356687 + 0.356687i 0.862590 0.505904i \(-0.168841\pi\)
−0.505904 + 0.862590i \(0.668841\pi\)
\(62\) 0 0
\(63\) 14.2400 5.89839i 1.79407 0.743127i
\(64\) 0 0
\(65\) 2.36948 6.01092i 0.293898 0.745563i
\(66\) 0 0
\(67\) 1.81373 0.751271i 0.221582 0.0917823i −0.269131 0.963104i \(-0.586736\pi\)
0.490713 + 0.871321i \(0.336736\pi\)
\(68\) 0 0
\(69\) 0.229224 + 0.553397i 0.0275954 + 0.0666211i
\(70\) 0 0
\(71\) −3.41502 8.24458i −0.405288 0.978452i −0.986360 0.164600i \(-0.947367\pi\)
0.581072 0.813852i \(-0.302633\pi\)
\(72\) 0 0
\(73\) 6.77830 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(74\) 0 0
\(75\) −0.628762 0.235438i −0.0726031 0.0271861i
\(76\) 0 0
\(77\) 8.09438i 0.922440i
\(78\) 0 0
\(79\) 3.17162 + 7.65698i 0.356836 + 0.861477i 0.995741 + 0.0921922i \(0.0293874\pi\)
−0.638906 + 0.769285i \(0.720613\pi\)
\(80\) 0 0
\(81\) 8.83805i 0.982005i
\(82\) 0 0
\(83\) −2.19939 + 2.19939i −0.241415 + 0.241415i −0.817435 0.576020i \(-0.804605\pi\)
0.576020 + 0.817435i \(0.304605\pi\)
\(84\) 0 0
\(85\) −3.43248 7.89948i −0.372304 0.856819i
\(86\) 0 0
\(87\) 1.26784 0.135926
\(88\) 0 0
\(89\) −10.7228 + 4.44154i −1.13662 + 0.470802i −0.870025 0.493008i \(-0.835898\pi\)
−0.266592 + 0.963810i \(0.585898\pi\)
\(90\) 0 0
\(91\) −10.5608 + 10.5608i −1.10707 + 1.10707i
\(92\) 0 0
\(93\) −0.0298985 + 0.0721815i −0.00310034 + 0.00748487i
\(94\) 0 0
\(95\) 6.25169 15.8594i 0.641410 1.62714i
\(96\) 0 0
\(97\) 6.98542 + 16.8643i 0.709262 + 1.71231i 0.701837 + 0.712338i \(0.252364\pi\)
0.00742554 + 0.999972i \(0.497636\pi\)
\(98\) 0 0
\(99\) −4.31431 1.78704i −0.433604 0.179605i
\(100\) 0 0
\(101\) −4.83064 + 11.6622i −0.480667 + 1.16043i 0.478626 + 0.878019i \(0.341135\pi\)
−0.959293 + 0.282413i \(0.908865\pi\)
\(102\) 0 0
\(103\) 1.93720i 0.190878i 0.995435 + 0.0954391i \(0.0304255\pi\)
−0.995435 + 0.0954391i \(0.969574\pi\)
\(104\) 0 0
\(105\) 1.11613 + 1.07837i 0.108923 + 0.105238i
\(106\) 0 0
\(107\) 8.75910 8.75910i 0.846774 0.846774i −0.142955 0.989729i \(-0.545660\pi\)
0.989729 + 0.142955i \(0.0456603\pi\)
\(108\) 0 0
\(109\) 2.53161 6.11185i 0.242484 0.585409i −0.755044 0.655674i \(-0.772385\pi\)
0.997528 + 0.0702651i \(0.0223845\pi\)
\(110\) 0 0
\(111\) 0.258076 + 0.623051i 0.0244955 + 0.0591374i
\(112\) 0 0
\(113\) −7.53604 7.53604i −0.708931 0.708931i 0.257379 0.966311i \(-0.417141\pi\)
−0.966311 + 0.257379i \(0.917141\pi\)
\(114\) 0 0
\(115\) 6.93075 7.17345i 0.646295 0.668928i
\(116\) 0 0
\(117\) −3.29734 7.96047i −0.304839 0.735946i
\(118\) 0 0
\(119\) 19.9095i 1.82510i
\(120\) 0 0
\(121\) −6.04409 + 6.04409i −0.549463 + 0.549463i
\(122\) 0 0
\(123\) 0.670485 0.538253i 0.0604556 0.0485326i
\(124\) 0 0
\(125\) 0.576867 + 11.1654i 0.0515966 + 0.998668i
\(126\) 0 0
\(127\) 5.23641 5.23641i 0.464656 0.464656i −0.435522 0.900178i \(-0.643436\pi\)
0.900178 + 0.435522i \(0.143436\pi\)
\(128\) 0 0
\(129\) −0.973626 0.403289i −0.0857230 0.0355076i
\(130\) 0 0
\(131\) −2.28279 + 2.28279i −0.199448 + 0.199448i −0.799764 0.600315i \(-0.795042\pi\)
0.600315 + 0.799764i \(0.295042\pi\)
\(132\) 0 0
\(133\) −27.8638 + 27.8638i −2.41610 + 2.41610i
\(134\) 0 0
\(135\) −1.64734 + 0.715799i −0.141780 + 0.0616061i
\(136\) 0 0
\(137\) 15.0682 6.24145i 1.28736 0.533243i 0.369164 0.929364i \(-0.379644\pi\)
0.918198 + 0.396121i \(0.129644\pi\)
\(138\) 0 0
\(139\) 18.6315i 1.58030i −0.612913 0.790151i \(-0.710002\pi\)
0.612913 0.790151i \(-0.289998\pi\)
\(140\) 0 0
\(141\) 0.330835 0.0278614
\(142\) 0 0
\(143\) 4.52494 0.378395
\(144\) 0 0
\(145\) −8.41382 19.3635i −0.698730 1.60805i
\(146\) 0 0
\(147\) −1.01317 2.44600i −0.0835646 0.201743i
\(148\) 0 0
\(149\) −11.6445 4.82329i −0.953951 0.395140i −0.149237 0.988801i \(-0.547682\pi\)
−0.804715 + 0.593662i \(0.797682\pi\)
\(150\) 0 0
\(151\) −1.10497 + 0.457695i −0.0899215 + 0.0372467i −0.427191 0.904162i \(-0.640497\pi\)
0.337269 + 0.941408i \(0.390497\pi\)
\(152\) 0 0
\(153\) −10.6118 4.39554i −0.857911 0.355358i
\(154\) 0 0
\(155\) 1.30084 0.0223850i 0.104486 0.00179801i
\(156\) 0 0
\(157\) 5.84494 + 2.42105i 0.466477 + 0.193221i 0.603526 0.797343i \(-0.293762\pi\)
−0.137049 + 0.990564i \(0.543762\pi\)
\(158\) 0 0
\(159\) −0.437800 + 0.437800i −0.0347198 + 0.0347198i
\(160\) 0 0
\(161\) −21.3019 + 8.82355i −1.67883 + 0.695393i
\(162\) 0 0
\(163\) −10.0081 10.0081i −0.783896 0.783896i 0.196590 0.980486i \(-0.437013\pi\)
−0.980486 + 0.196590i \(0.937013\pi\)
\(164\) 0 0
\(165\) −0.00809016 0.470134i −0.000629818 0.0365999i
\(166\) 0 0
\(167\) −3.93896 + 9.50948i −0.304806 + 0.735866i 0.695052 + 0.718960i \(0.255382\pi\)
−0.999857 + 0.0169058i \(0.994618\pi\)
\(168\) 0 0
\(169\) −3.28867 3.28867i −0.252975 0.252975i
\(170\) 0 0
\(171\) −8.69977 21.0031i −0.665288 1.60615i
\(172\) 0 0
\(173\) 19.0543i 1.44867i −0.689449 0.724334i \(-0.742147\pi\)
0.689449 0.724334i \(-0.257853\pi\)
\(174\) 0 0
\(175\) 9.06273 24.2029i 0.685078 1.82957i
\(176\) 0 0
\(177\) −0.114645 + 0.276777i −0.00861724 + 0.0208039i
\(178\) 0 0
\(179\) −7.03366 + 16.9808i −0.525721 + 1.26920i 0.408582 + 0.912721i \(0.366023\pi\)
−0.934303 + 0.356480i \(0.883977\pi\)
\(180\) 0 0
\(181\) 2.19045 5.28821i 0.162815 0.393070i −0.821326 0.570459i \(-0.806765\pi\)
0.984141 + 0.177390i \(0.0567653\pi\)
\(182\) 0 0
\(183\) 0.202449 + 0.488754i 0.0149654 + 0.0361298i
\(184\) 0 0
\(185\) 7.80310 8.07635i 0.573695 0.593785i
\(186\) 0 0
\(187\) 4.26527 4.26527i 0.311908 0.311908i
\(188\) 0 0
\(189\) 4.15187 0.302004
\(190\) 0 0
\(191\) −11.6232 4.81450i −0.841027 0.348365i −0.0797686 0.996813i \(-0.525418\pi\)
−0.761258 + 0.648449i \(0.775418\pi\)
\(192\) 0 0
\(193\) −5.50875 2.28180i −0.396528 0.164247i 0.175504 0.984479i \(-0.443845\pi\)
−0.572032 + 0.820231i \(0.693845\pi\)
\(194\) 0 0
\(195\) 0.602832 0.623942i 0.0431697 0.0446814i
\(196\) 0 0
\(197\) 9.70195i 0.691235i −0.938375 0.345618i \(-0.887669\pi\)
0.938375 0.345618i \(-0.112331\pi\)
\(198\) 0 0
\(199\) 9.74422 23.5246i 0.690749 1.66762i −0.0525160 0.998620i \(-0.516724\pi\)
0.743265 0.668997i \(-0.233276\pi\)
\(200\) 0 0
\(201\) 0.263612 0.0185938
\(202\) 0 0
\(203\) 48.8029i 3.42529i
\(204\) 0 0
\(205\) −12.6702 6.66821i −0.884928 0.465728i
\(206\) 0 0
\(207\) 13.3020i 0.924551i
\(208\) 0 0
\(209\) 11.9387 0.825818
\(210\) 0 0
\(211\) −9.05819 + 21.8684i −0.623591 + 1.50548i 0.223867 + 0.974620i \(0.428132\pi\)
−0.847458 + 0.530863i \(0.821868\pi\)
\(212\) 0 0
\(213\) 1.19829i 0.0821055i
\(214\) 0 0
\(215\) 0.301943 + 17.5464i 0.0205923 + 1.19666i
\(216\) 0 0
\(217\) −2.77848 1.15089i −0.188616 0.0781272i
\(218\) 0 0
\(219\) 0.840901 + 0.348313i 0.0568228 + 0.0235368i
\(220\) 0 0
\(221\) 11.1299 0.748675
\(222\) 0 0
\(223\) −6.90096 + 6.90096i −0.462122 + 0.462122i −0.899351 0.437228i \(-0.855960\pi\)
0.437228 + 0.899351i \(0.355960\pi\)
\(224\) 0 0
\(225\) 10.8994 + 10.1739i 0.726623 + 0.678258i
\(226\) 0 0
\(227\) 7.29338 + 17.6078i 0.484079 + 1.16867i 0.957655 + 0.287917i \(0.0929626\pi\)
−0.473577 + 0.880753i \(0.657037\pi\)
\(228\) 0 0
\(229\) 5.79728 13.9959i 0.383095 0.924873i −0.608269 0.793731i \(-0.708136\pi\)
0.991364 0.131142i \(-0.0418643\pi\)
\(230\) 0 0
\(231\) −0.415941 + 1.00417i −0.0273669 + 0.0660695i
\(232\) 0 0
\(233\) −4.05421 + 9.78773i −0.265600 + 0.641216i −0.999267 0.0382943i \(-0.987808\pi\)
0.733666 + 0.679510i \(0.237808\pi\)
\(234\) 0 0
\(235\) −2.19554 5.05281i −0.143221 0.329609i
\(236\) 0 0
\(237\) 1.11289i 0.0722897i
\(238\) 0 0
\(239\) −4.54233 10.9662i −0.293819 0.709342i −0.999999 0.00130963i \(-0.999583\pi\)
0.706180 0.708032i \(-0.250417\pi\)
\(240\) 0 0
\(241\) −0.769654 0.769654i −0.0495778 0.0495778i 0.681883 0.731461i \(-0.261161\pi\)
−0.731461 + 0.681883i \(0.761161\pi\)
\(242\) 0 0
\(243\) −1.37633 + 3.32276i −0.0882917 + 0.213155i
\(244\) 0 0
\(245\) −30.6337 + 31.7065i −1.95712 + 2.02565i
\(246\) 0 0
\(247\) 15.5765 + 15.5765i 0.991110 + 0.991110i
\(248\) 0 0
\(249\) −0.385871 + 0.159833i −0.0244536 + 0.0101290i
\(250\) 0 0
\(251\) −0.221906 + 0.221906i −0.0140066 + 0.0140066i −0.714075 0.700069i \(-0.753153\pi\)
0.700069 + 0.714075i \(0.253153\pi\)
\(252\) 0 0
\(253\) 6.45388 + 2.67328i 0.405752 + 0.168068i
\(254\) 0 0
\(255\) −0.0198991 1.15638i −0.00124613 0.0724150i
\(256\) 0 0
\(257\) −21.1679 8.76802i −1.32042 0.546934i −0.392510 0.919748i \(-0.628393\pi\)
−0.927906 + 0.372813i \(0.878393\pi\)
\(258\) 0 0
\(259\) −23.9831 + 9.93414i −1.49024 + 0.617277i
\(260\) 0 0
\(261\) −26.0120 10.7745i −1.61010 0.666926i
\(262\) 0 0
\(263\) 4.00664 + 9.67289i 0.247060 + 0.596456i 0.997952 0.0639695i \(-0.0203760\pi\)
−0.750892 + 0.660425i \(0.770376\pi\)
\(264\) 0 0
\(265\) 9.59185 + 3.78107i 0.589223 + 0.232269i
\(266\) 0 0
\(267\) −1.55848 −0.0953777
\(268\) 0 0
\(269\) 19.6796 1.19989 0.599944 0.800042i \(-0.295190\pi\)
0.599944 + 0.800042i \(0.295190\pi\)
\(270\) 0 0
\(271\) 0.451821i 0.0274462i −0.999906 0.0137231i \(-0.995632\pi\)
0.999906 0.0137231i \(-0.00436834\pi\)
\(272\) 0 0
\(273\) −1.85283 + 0.767466i −0.112138 + 0.0464492i
\(274\) 0 0
\(275\) −7.12661 + 3.24354i −0.429751 + 0.195593i
\(276\) 0 0
\(277\) −3.27930 + 3.27930i −0.197034 + 0.197034i −0.798727 0.601693i \(-0.794493\pi\)
0.601693 + 0.798727i \(0.294493\pi\)
\(278\) 0 0
\(279\) 1.22685 1.22685i 0.0734493 0.0734493i
\(280\) 0 0
\(281\) −1.04096 0.431179i −0.0620984 0.0257220i 0.351418 0.936219i \(-0.385700\pi\)
−0.413516 + 0.910497i \(0.635700\pi\)
\(282\) 0 0
\(283\) −8.48943 + 8.48943i −0.504644 + 0.504644i −0.912878 0.408234i \(-0.866145\pi\)
0.408234 + 0.912878i \(0.366145\pi\)
\(284\) 0 0
\(285\) 1.59053 1.64622i 0.0942146 0.0975139i
\(286\) 0 0
\(287\) 20.7190 + 25.8090i 1.22300 + 1.52346i
\(288\) 0 0
\(289\) −1.52965 + 1.52965i −0.0899793 + 0.0899793i
\(290\) 0 0
\(291\) 2.45110i 0.143686i
\(292\) 0 0
\(293\) 0.463834 + 1.11979i 0.0270975 + 0.0654191i 0.936849 0.349734i \(-0.113728\pi\)
−0.909752 + 0.415153i \(0.863728\pi\)
\(294\) 0 0
\(295\) 4.98801 0.0858347i 0.290413 0.00499749i
\(296\) 0 0
\(297\) −0.889468 0.889468i −0.0516122 0.0516122i
\(298\) 0 0
\(299\) 4.93256 + 11.9083i 0.285258 + 0.688673i
\(300\) 0 0
\(301\) 15.5238 37.4778i 0.894778 2.16019i
\(302\) 0 0
\(303\) −1.19856 + 1.19856i −0.0688553 + 0.0688553i
\(304\) 0 0
\(305\) 6.12116 6.33552i 0.350497 0.362771i
\(306\) 0 0
\(307\) 1.60008i 0.0913215i −0.998957 0.0456607i \(-0.985461\pi\)
0.998957 0.0456607i \(-0.0145393\pi\)
\(308\) 0 0
\(309\) −0.0995458 + 0.240325i −0.00566297 + 0.0136716i
\(310\) 0 0
\(311\) 13.7665 + 5.70228i 0.780628 + 0.323347i 0.737169 0.675708i \(-0.236162\pi\)
0.0434593 + 0.999055i \(0.486162\pi\)
\(312\) 0 0
\(313\) −0.326936 0.789294i −0.0184795 0.0446135i 0.914370 0.404879i \(-0.132686\pi\)
−0.932850 + 0.360265i \(0.882686\pi\)
\(314\) 0 0
\(315\) −13.7351 31.6099i −0.773886 1.78102i
\(316\) 0 0
\(317\) 3.45993 8.35302i 0.194329 0.469152i −0.796439 0.604719i \(-0.793286\pi\)
0.990768 + 0.135567i \(0.0432855\pi\)
\(318\) 0 0
\(319\) 10.4552 10.4552i 0.585379 0.585379i
\(320\) 0 0
\(321\) 1.53673 0.636536i 0.0857721 0.0355280i
\(322\) 0 0
\(323\) 29.3653 1.63393
\(324\) 0 0
\(325\) −13.5300 5.06627i −0.750509 0.281026i
\(326\) 0 0
\(327\) 0.628132 0.628132i 0.0347358 0.0347358i
\(328\) 0 0
\(329\) 12.7349i 0.702095i
\(330\) 0 0
\(331\) −9.36169 22.6011i −0.514565 1.24227i −0.941201 0.337847i \(-0.890302\pi\)
0.426636 0.904423i \(-0.359698\pi\)
\(332\) 0 0
\(333\) 14.9762i 0.820693i
\(334\) 0 0
\(335\) −1.74942 4.02612i −0.0955812 0.219970i
\(336\) 0 0
\(337\) −13.5956 −0.740598 −0.370299 0.928913i \(-0.620745\pi\)
−0.370299 + 0.928913i \(0.620745\pi\)
\(338\) 0 0
\(339\) −0.547655 1.32216i −0.0297445 0.0718096i
\(340\) 0 0
\(341\) 0.348686 + 0.841802i 0.0188824 + 0.0455861i
\(342\) 0 0
\(343\) 60.7264 25.1537i 3.27892 1.35817i
\(344\) 0 0
\(345\) 1.22843 0.533776i 0.0661365 0.0287376i
\(346\) 0 0
\(347\) 25.7053 10.6475i 1.37993 0.571587i 0.435469 0.900204i \(-0.356582\pi\)
0.944463 + 0.328617i \(0.106582\pi\)
\(348\) 0 0
\(349\) −1.05562 1.05562i −0.0565061 0.0565061i 0.678289 0.734795i \(-0.262722\pi\)
−0.734795 + 0.678289i \(0.762722\pi\)
\(350\) 0 0
\(351\) 2.32099i 0.123885i
\(352\) 0 0
\(353\) −16.9283 16.9283i −0.901000 0.901000i 0.0945227 0.995523i \(-0.469868\pi\)
−0.995523 + 0.0945227i \(0.969868\pi\)
\(354\) 0 0
\(355\) −18.3013 + 7.95228i −0.971334 + 0.422063i
\(356\) 0 0
\(357\) −1.02308 + 2.46993i −0.0541470 + 0.130722i
\(358\) 0 0
\(359\) 1.28422 0.0677783 0.0338892 0.999426i \(-0.489211\pi\)
0.0338892 + 0.999426i \(0.489211\pi\)
\(360\) 0 0
\(361\) 27.6624 + 27.6624i 1.45592 + 1.45592i
\(362\) 0 0
\(363\) −1.06040 + 0.439232i −0.0556566 + 0.0230537i
\(364\) 0 0
\(365\) −0.260782 15.1545i −0.0136499 0.793223i
\(366\) 0 0
\(367\) −24.4450 −1.27602 −0.638008 0.770029i \(-0.720242\pi\)
−0.638008 + 0.770029i \(0.720242\pi\)
\(368\) 0 0
\(369\) −18.3305 + 5.34521i −0.954247 + 0.278261i
\(370\) 0 0
\(371\) −16.8522 16.8522i −0.874925 0.874925i
\(372\) 0 0
\(373\) 14.3400 + 14.3400i 0.742495 + 0.742495i 0.973058 0.230562i \(-0.0740565\pi\)
−0.230562 + 0.973058i \(0.574057\pi\)
\(374\) 0 0
\(375\) −0.502187 + 1.41480i −0.0259328 + 0.0730601i
\(376\) 0 0
\(377\) 27.2819 1.40509
\(378\) 0 0
\(379\) 13.6541i 0.701364i −0.936495 0.350682i \(-0.885950\pi\)
0.936495 0.350682i \(-0.114050\pi\)
\(380\) 0 0
\(381\) 0.918697 0.380537i 0.0470663 0.0194955i
\(382\) 0 0
\(383\) 5.30558 + 12.8088i 0.271102 + 0.654499i 0.999531 0.0306228i \(-0.00974906\pi\)
−0.728429 + 0.685122i \(0.759749\pi\)
\(384\) 0 0
\(385\) 18.0969 0.311415i 0.922303 0.0158712i
\(386\) 0 0
\(387\) 16.5484 + 16.5484i 0.841203 + 0.841203i
\(388\) 0 0
\(389\) −5.02196 + 5.02196i −0.254623 + 0.254623i −0.822863 0.568240i \(-0.807625\pi\)
0.568240 + 0.822863i \(0.307625\pi\)
\(390\) 0 0
\(391\) 15.8744 + 6.57539i 0.802803 + 0.332532i
\(392\) 0 0
\(393\) −0.400503 + 0.165894i −0.0202027 + 0.00836822i
\(394\) 0 0
\(395\) 16.9970 7.38550i 0.855210 0.371605i
\(396\) 0 0
\(397\) −30.4977 12.6326i −1.53064 0.634010i −0.550948 0.834540i \(-0.685734\pi\)
−0.979688 + 0.200530i \(0.935734\pi\)
\(398\) 0 0
\(399\) −4.88854 + 2.02490i −0.244733 + 0.101372i
\(400\) 0 0
\(401\) −0.412704 0.412704i −0.0206095 0.0206095i 0.696727 0.717336i \(-0.254639\pi\)
−0.717336 + 0.696727i \(0.754639\pi\)
\(402\) 0 0
\(403\) −0.643372 + 1.55324i −0.0320486 + 0.0773722i
\(404\) 0 0
\(405\) 19.7595 0.340026i 0.981860 0.0168960i
\(406\) 0 0
\(407\) 7.26621 + 3.00976i 0.360173 + 0.149188i
\(408\) 0 0
\(409\) 23.7886 1.17627 0.588136 0.808762i \(-0.299862\pi\)
0.588136 + 0.808762i \(0.299862\pi\)
\(410\) 0 0
\(411\) 2.19005 0.108027
\(412\) 0 0
\(413\) −10.6540 4.41303i −0.524249 0.217151i
\(414\) 0 0
\(415\) 5.00188 + 4.83265i 0.245533 + 0.237225i
\(416\) 0 0
\(417\) 0.957405 2.31138i 0.0468843 0.113189i
\(418\) 0 0
\(419\) −20.5497 20.5497i −1.00392 1.00392i −0.999992 0.00392531i \(-0.998751\pi\)
−0.00392531 0.999992i \(-0.501249\pi\)
\(420\) 0 0
\(421\) 33.4635 13.8611i 1.63091 0.675547i 0.635580 0.772035i \(-0.280761\pi\)
0.995334 + 0.0964889i \(0.0307612\pi\)
\(422\) 0 0
\(423\) −6.78769 2.81155i −0.330029 0.136702i
\(424\) 0 0
\(425\) −17.5291 + 7.97803i −0.850287 + 0.386991i
\(426\) 0 0
\(427\) −18.8136 + 7.79286i −0.910456 + 0.377123i
\(428\) 0 0
\(429\) 0.561354 + 0.232520i 0.0271024 + 0.0112262i
\(430\) 0 0
\(431\) −2.47624 + 2.47624i −0.119276 + 0.119276i −0.764225 0.644949i \(-0.776878\pi\)
0.644949 + 0.764225i \(0.276878\pi\)
\(432\) 0 0
\(433\) 19.2809 + 19.2809i 0.926579 + 0.926579i 0.997483 0.0709037i \(-0.0225883\pi\)
−0.0709037 + 0.997483i \(0.522588\pi\)
\(434\) 0 0
\(435\) −0.0487775 2.83455i −0.00233870 0.135906i
\(436\) 0 0
\(437\) 13.0142 + 31.4190i 0.622553 + 1.50298i
\(438\) 0 0
\(439\) −4.72164 + 1.95577i −0.225352 + 0.0933438i −0.492503 0.870311i \(-0.663918\pi\)
0.267151 + 0.963655i \(0.413918\pi\)
\(440\) 0 0
\(441\) 58.7944i 2.79973i
\(442\) 0 0
\(443\) −21.8037 −1.03593 −0.517963 0.855403i \(-0.673309\pi\)
−0.517963 + 0.855403i \(0.673309\pi\)
\(444\) 0 0
\(445\) 10.3426 + 23.8025i 0.490289 + 1.12835i
\(446\) 0 0
\(447\) −1.19673 1.19673i −0.0566036 0.0566036i
\(448\) 0 0
\(449\) 13.3094 + 13.3094i 0.628110 + 0.628110i 0.947592 0.319482i \(-0.103509\pi\)
−0.319482 + 0.947592i \(0.603509\pi\)
\(450\) 0 0
\(451\) 1.09046 9.96784i 0.0513476 0.469367i
\(452\) 0 0
\(453\) −0.160600 −0.00754564
\(454\) 0 0
\(455\) 24.0174 + 23.2048i 1.12595 + 1.08786i
\(456\) 0 0
\(457\) −0.465744 + 0.192918i −0.0217866 + 0.00902430i −0.393550 0.919303i \(-0.628753\pi\)
0.371764 + 0.928327i \(0.378753\pi\)
\(458\) 0 0
\(459\) −2.18780 2.18780i −0.102118 0.102118i
\(460\) 0 0
\(461\) −13.3263 −0.620666 −0.310333 0.950628i \(-0.600441\pi\)
−0.310333 + 0.950628i \(0.600441\pi\)
\(462\) 0 0
\(463\) 10.7686 25.9976i 0.500458 1.20821i −0.448777 0.893644i \(-0.648140\pi\)
0.949235 0.314568i \(-0.101860\pi\)
\(464\) 0 0
\(465\) 0.162529 + 0.0640683i 0.00753711 + 0.00297109i
\(466\) 0 0
\(467\) −23.2661 23.2661i −1.07663 1.07663i −0.996810 0.0798168i \(-0.974566\pi\)
−0.0798168 0.996810i \(-0.525434\pi\)
\(468\) 0 0
\(469\) 10.1472i 0.468556i
\(470\) 0 0
\(471\) 0.600701 + 0.600701i 0.0276788 + 0.0276788i
\(472\) 0 0
\(473\) −11.3547 + 4.70328i −0.522090 + 0.216257i
\(474\) 0 0
\(475\) −35.6979 13.3670i −1.63793 0.613319i
\(476\) 0 0
\(477\) 12.7028 5.26168i 0.581622 0.240916i
\(478\) 0 0
\(479\) 10.2878 + 24.8368i 0.470059 + 1.13482i 0.964137 + 0.265406i \(0.0855060\pi\)
−0.494077 + 0.869418i \(0.664494\pi\)
\(480\) 0 0
\(481\) 5.55341 + 13.4071i 0.253214 + 0.611312i
\(482\) 0 0
\(483\) −3.09608 −0.140876
\(484\) 0 0
\(485\) 37.4354 16.2664i 1.69985 0.738619i
\(486\) 0 0
\(487\) 38.5942i 1.74887i 0.485143 + 0.874435i \(0.338768\pi\)
−0.485143 + 0.874435i \(0.661232\pi\)
\(488\) 0 0
\(489\) −0.727303 1.75587i −0.0328898 0.0794030i
\(490\) 0 0
\(491\) 19.6407i 0.886374i 0.896429 + 0.443187i \(0.146152\pi\)
−0.896429 + 0.443187i \(0.853848\pi\)
\(492\) 0 0
\(493\) 25.7164 25.7164i 1.15821 1.15821i
\(494\) 0 0
\(495\) −3.82938 + 9.71441i −0.172118 + 0.436630i
\(496\) 0 0
\(497\) 46.1258 2.06903
\(498\) 0 0
\(499\) 11.9164 4.93593i 0.533451 0.220963i −0.0996627 0.995021i \(-0.531776\pi\)
0.633114 + 0.774058i \(0.281776\pi\)
\(500\) 0 0
\(501\) −0.977316 + 0.977316i −0.0436633 + 0.0436633i
\(502\) 0 0
\(503\) 0.440178 1.06268i 0.0196266 0.0473828i −0.913762 0.406249i \(-0.866837\pi\)
0.933389 + 0.358866i \(0.116837\pi\)
\(504\) 0 0
\(505\) 26.2595 + 10.3514i 1.16853 + 0.460630i
\(506\) 0 0
\(507\) −0.238992 0.576978i −0.0106140 0.0256245i
\(508\) 0 0
\(509\) 6.71011 + 2.77942i 0.297421 + 0.123196i 0.526404 0.850235i \(-0.323540\pi\)
−0.228983 + 0.973430i \(0.573540\pi\)
\(510\) 0 0
\(511\) −13.4076 + 32.3688i −0.593118 + 1.43191i
\(512\) 0 0
\(513\) 6.12375i 0.270370i
\(514\) 0 0
\(515\) 4.33107 0.0745300i 0.190850 0.00328418i
\(516\) 0 0
\(517\) 2.72823 2.72823i 0.119987 0.119987i
\(518\) 0 0
\(519\) 0.979130 2.36383i 0.0429790 0.103761i
\(520\) 0 0
\(521\) −4.68228 11.3040i −0.205135 0.495239i 0.787510 0.616302i \(-0.211370\pi\)
−0.992645 + 0.121063i \(0.961370\pi\)
\(522\) 0 0
\(523\) −13.6458 13.6458i −0.596690 0.596690i 0.342740 0.939430i \(-0.388645\pi\)
−0.939430 + 0.342740i \(0.888645\pi\)
\(524\) 0 0
\(525\) 2.36800 2.53686i 0.103348 0.110718i
\(526\) 0 0
\(527\) 0.857652 + 2.07055i 0.0373599 + 0.0901948i
\(528\) 0 0
\(529\) 3.10127i 0.134838i
\(530\) 0 0
\(531\) 4.70430 4.70430i 0.204149 0.204149i
\(532\) 0 0
\(533\) 14.4278 11.5824i 0.624939 0.501689i
\(534\) 0 0
\(535\) −19.9200 19.2461i −0.861218 0.832080i
\(536\) 0 0
\(537\) −1.74516 + 1.74516i −0.0753092 + 0.0753092i
\(538\) 0 0
\(539\) −28.5260 11.8158i −1.22870 0.508944i
\(540\) 0 0
\(541\) −23.9623 + 23.9623i −1.03022 + 1.03022i −0.0306898 + 0.999529i \(0.509770\pi\)
−0.999529 + 0.0306898i \(0.990230\pi\)
\(542\) 0 0
\(543\) 0.543484 0.543484i 0.0233231 0.0233231i
\(544\) 0 0
\(545\) −13.7619 5.42488i −0.589495 0.232376i
\(546\) 0 0
\(547\) −36.4014 + 15.0780i −1.55641 + 0.644687i −0.984461 0.175601i \(-0.943813\pi\)
−0.571951 + 0.820288i \(0.693813\pi\)
\(548\) 0 0
\(549\) 11.7482i 0.501399i
\(550\) 0 0
\(551\) 71.9813 3.06651
\(552\) 0 0
\(553\) −42.8384 −1.82167
\(554\) 0 0
\(555\) 1.38305 0.600961i 0.0587072 0.0255094i
\(556\) 0 0
\(557\) 5.31276 + 12.8261i 0.225109 + 0.543460i 0.995570 0.0940267i \(-0.0299739\pi\)
−0.770461 + 0.637487i \(0.779974\pi\)
\(558\) 0 0
\(559\) −20.9510 8.67817i −0.886131 0.367048i
\(560\) 0 0
\(561\) 0.748318 0.309963i 0.0315940 0.0130867i
\(562\) 0 0
\(563\) 17.1985 + 7.12385i 0.724830 + 0.300234i 0.714426 0.699711i \(-0.246688\pi\)
0.0104044 + 0.999946i \(0.496688\pi\)
\(564\) 0 0
\(565\) −16.5587 + 17.1385i −0.696629 + 0.721024i
\(566\) 0 0
\(567\) −42.2049 17.4818i −1.77244 0.734168i
\(568\) 0 0
\(569\) 19.6719 19.6719i 0.824688 0.824688i −0.162088 0.986776i \(-0.551823\pi\)
0.986776 + 0.162088i \(0.0518229\pi\)
\(570\) 0 0
\(571\) 21.4792 8.89696i 0.898875 0.372326i 0.115088 0.993355i \(-0.463285\pi\)
0.783788 + 0.621029i \(0.213285\pi\)
\(572\) 0 0
\(573\) −1.19455 1.19455i −0.0499031 0.0499031i
\(574\) 0 0
\(575\) −16.3046 15.2193i −0.679949 0.634690i
\(576\) 0 0
\(577\) 6.70482 16.1869i 0.279125 0.673868i −0.720687 0.693261i \(-0.756173\pi\)
0.999812 + 0.0193927i \(0.00617329\pi\)
\(578\) 0 0
\(579\) −0.566150 0.566150i −0.0235284 0.0235284i
\(580\) 0 0
\(581\) −6.15245 14.8533i −0.255247 0.616220i
\(582\) 0 0
\(583\) 7.22062i 0.299047i
\(584\) 0 0
\(585\) −17.6707 + 7.67824i −0.730592 + 0.317456i
\(586\) 0 0
\(587\) 9.34917 22.5709i 0.385882 0.931601i −0.604921 0.796286i \(-0.706795\pi\)
0.990803 0.135315i \(-0.0432047\pi\)
\(588\) 0 0
\(589\) −1.69749 + 4.09809i −0.0699437 + 0.168859i
\(590\) 0 0
\(591\) 0.498548 1.20360i 0.0205075 0.0495096i
\(592\) 0 0
\(593\) −14.7840 35.6916i −0.607105 1.46568i −0.866135 0.499811i \(-0.833403\pi\)
0.259030 0.965869i \(-0.416597\pi\)
\(594\) 0 0
\(595\) 44.5124 0.765978i 1.82483 0.0314020i
\(596\) 0 0
\(597\) 2.41769 2.41769i 0.0989496 0.0989496i
\(598\) 0 0
\(599\) 15.0603 0.615348 0.307674 0.951492i \(-0.400449\pi\)
0.307674 + 0.951492i \(0.400449\pi\)
\(600\) 0 0
\(601\) −38.3446 15.8828i −1.56411 0.647874i −0.578310 0.815817i \(-0.696288\pi\)
−0.985797 + 0.167942i \(0.946288\pi\)
\(602\) 0 0
\(603\) −5.40848 2.24027i −0.220250 0.0912307i
\(604\) 0 0
\(605\) 13.7455 + 13.2805i 0.558835 + 0.539928i
\(606\) 0 0
\(607\) 20.5003i 0.832080i −0.909346 0.416040i \(-0.863418\pi\)
0.909346 0.416040i \(-0.136582\pi\)
\(608\) 0 0
\(609\) −2.50781 + 6.05438i −0.101621 + 0.245336i
\(610\) 0 0
\(611\) 7.11908 0.288007
\(612\) 0 0
\(613\) 11.0998i 0.448315i −0.974553 0.224157i \(-0.928037\pi\)
0.974553 0.224157i \(-0.0719630\pi\)
\(614\) 0 0
\(615\) −1.22919 1.47832i −0.0495656 0.0596117i
\(616\) 0 0
\(617\) 21.4931i 0.865280i −0.901567 0.432640i \(-0.857582\pi\)
0.901567 0.432640i \(-0.142418\pi\)
\(618\) 0 0
\(619\) −2.11090 −0.0848441 −0.0424221 0.999100i \(-0.513507\pi\)
−0.0424221 + 0.999100i \(0.513507\pi\)
\(620\) 0 0
\(621\) 1.37121 3.31040i 0.0550249 0.132842i
\(622\) 0 0
\(623\) 59.9908i 2.40348i
\(624\) 0 0
\(625\) 24.9408 1.71929i 0.997632 0.0687717i
\(626\) 0 0
\(627\) 1.48109 + 0.613487i 0.0591490 + 0.0245003i
\(628\) 0 0
\(629\) 17.8725 + 7.40302i 0.712622 + 0.295178i
\(630\) 0 0
\(631\) 2.74593 0.109314 0.0546569 0.998505i \(-0.482593\pi\)
0.0546569 + 0.998505i \(0.482593\pi\)
\(632\) 0 0
\(633\) −2.24748 + 2.24748i −0.0893292 + 0.0893292i
\(634\) 0 0
\(635\) −11.9087 11.5058i −0.472582 0.456592i
\(636\) 0 0
\(637\) −21.8018 52.6342i −0.863819 2.08544i
\(638\) 0 0
\(639\) −10.1835 + 24.5851i −0.402852 + 0.972571i
\(640\) 0 0
\(641\) −7.05347 + 17.0286i −0.278595 + 0.672588i −0.999797 0.0201364i \(-0.993590\pi\)
0.721202 + 0.692725i \(0.243590\pi\)
\(642\) 0 0
\(643\) −14.3276 + 34.5900i −0.565027 + 1.36409i 0.340676 + 0.940181i \(0.389344\pi\)
−0.905702 + 0.423914i \(0.860656\pi\)
\(644\) 0 0
\(645\) −0.864190 + 2.19229i −0.0340275 + 0.0863212i
\(646\) 0 0
\(647\) 40.3011i 1.58440i 0.610263 + 0.792199i \(0.291064\pi\)
−0.610263 + 0.792199i \(0.708936\pi\)
\(648\) 0 0
\(649\) 1.33702 + 3.22786i 0.0524827 + 0.126705i
\(650\) 0 0
\(651\) −0.285553 0.285553i −0.0111917 0.0111917i
\(652\) 0 0
\(653\) −18.1784 + 43.8865i −0.711374 + 1.71741i −0.0148365 + 0.999890i \(0.504723\pi\)
−0.696538 + 0.717520i \(0.745277\pi\)
\(654\) 0 0
\(655\) 5.19155 + 5.01590i 0.202851 + 0.195987i
\(656\) 0 0
\(657\) −14.2925 14.2925i −0.557605 0.557605i
\(658\) 0 0
\(659\) −1.31316 + 0.543928i −0.0511534 + 0.0211884i −0.408113 0.912931i \(-0.633813\pi\)
0.356960 + 0.934120i \(0.383813\pi\)
\(660\) 0 0
\(661\) 15.1836 15.1836i 0.590575 0.590575i −0.347212 0.937787i \(-0.612871\pi\)
0.937787 + 0.347212i \(0.112871\pi\)
\(662\) 0 0
\(663\) 1.38075 + 0.571924i 0.0536237 + 0.0222117i
\(664\) 0 0
\(665\) 63.3682 + 61.2242i 2.45731 + 2.37417i
\(666\) 0 0
\(667\) 38.9120 + 16.1179i 1.50668 + 0.624086i
\(668\) 0 0
\(669\) −1.21073 + 0.501502i −0.0468096 + 0.0193892i
\(670\) 0 0
\(671\) 5.70000 + 2.36102i 0.220046 + 0.0911460i
\(672\) 0 0
\(673\) 8.69970 + 21.0029i 0.335349 + 0.809604i 0.998149 + 0.0608080i \(0.0193677\pi\)
−0.662801 + 0.748796i \(0.730632\pi\)
\(674\) 0 0
\(675\) 1.66372 + 3.65547i 0.0640364 + 0.140699i
\(676\) 0 0
\(677\) −18.4225 −0.708036 −0.354018 0.935239i \(-0.615185\pi\)
−0.354018 + 0.935239i \(0.615185\pi\)
\(678\) 0 0
\(679\) −94.3504 −3.62084
\(680\) 0 0
\(681\) 2.55916i 0.0980673i
\(682\) 0 0
\(683\) −20.9447 + 8.67559i −0.801428 + 0.331962i −0.745528 0.666474i \(-0.767803\pi\)
−0.0558995 + 0.998436i \(0.517803\pi\)
\(684\) 0 0
\(685\) −14.5340 33.4484i −0.555314 1.27800i
\(686\) 0 0
\(687\) 1.43839 1.43839i 0.0548782 0.0548782i
\(688\) 0 0
\(689\) −9.42079 + 9.42079i −0.358903 + 0.358903i
\(690\) 0 0
\(691\) −39.9296 16.5394i −1.51899 0.629187i −0.541603 0.840634i \(-0.682183\pi\)
−0.977390 + 0.211447i \(0.932183\pi\)
\(692\) 0 0
\(693\) 17.0676 17.0676i 0.648343 0.648343i
\(694\) 0 0
\(695\) −41.6551 + 0.716809i −1.58007 + 0.0271901i
\(696\) 0 0
\(697\) 2.68216 24.5176i 0.101594 0.928670i
\(698\) 0 0
\(699\) −1.00591 + 1.00591i −0.0380471 + 0.0380471i
\(700\) 0 0
\(701\) 5.18584i 0.195867i −0.995193 0.0979333i \(-0.968777\pi\)
0.995193 0.0979333i \(-0.0312232\pi\)
\(702\) 0 0
\(703\) 14.6522 + 35.3737i 0.552620 + 1.33414i
\(704\) 0 0
\(705\) −0.0127282 0.739661i −0.000479373 0.0278572i
\(706\) 0 0
\(707\) −46.1361 46.1361i −1.73513 1.73513i
\(708\) 0 0
\(709\) 7.63909 + 18.4424i 0.286892 + 0.692619i 0.999964 0.00847206i \(-0.00269677\pi\)
−0.713072 + 0.701091i \(0.752697\pi\)
\(710\) 0 0
\(711\) 9.45768 22.8329i 0.354691 0.856300i
\(712\) 0 0
\(713\) −1.83527 + 1.83527i −0.0687313 + 0.0687313i
\(714\) 0 0
\(715\) −0.174088 10.1166i −0.00651053 0.378339i
\(716\) 0 0
\(717\) 1.59385i 0.0595235i
\(718\) 0 0
\(719\) 2.75049 6.64026i 0.102576 0.247640i −0.864257 0.503051i \(-0.832211\pi\)
0.966833 + 0.255411i \(0.0822108\pi\)
\(720\) 0 0
\(721\) −9.25084 3.83182i −0.344519 0.142705i
\(722\) 0 0
\(723\) −0.0559318 0.135031i −0.00208013 0.00502187i
\(724\) 0 0
\(725\) −42.9680 + 19.5561i −1.59579 + 0.726294i
\(726\) 0 0
\(727\) −18.9775 + 45.8158i −0.703838 + 1.69921i 0.0110146 + 0.999939i \(0.496494\pi\)
−0.714852 + 0.699275i \(0.753506\pi\)
\(728\) 0 0
\(729\) 18.4068 18.4068i 0.681735 0.681735i
\(730\) 0 0
\(731\) −27.9288 + 11.5685i −1.03299 + 0.427877i
\(732\) 0 0
\(733\) 14.1493 0.522615 0.261307 0.965256i \(-0.415846\pi\)
0.261307 + 0.965256i \(0.415846\pi\)
\(734\) 0 0
\(735\) −5.42963 + 2.35928i −0.200275 + 0.0870233i
\(736\) 0 0
\(737\) 2.17387 2.17387i 0.0800757 0.0800757i
\(738\) 0 0
\(739\) 38.0109i 1.39825i 0.714998 + 0.699127i \(0.246428\pi\)
−0.714998 + 0.699127i \(0.753572\pi\)
\(740\) 0 0
\(741\) 1.13197 + 2.73281i 0.0415838 + 0.100392i
\(742\) 0 0
\(743\) 26.4012i 0.968564i −0.874912 0.484282i \(-0.839081\pi\)
0.874912 0.484282i \(-0.160919\pi\)
\(744\) 0 0
\(745\) −10.3356 + 26.2195i −0.378668 + 0.960609i
\(746\) 0 0
\(747\) 9.27515 0.339360
\(748\) 0 0
\(749\) 24.5022 + 59.1535i 0.895291 + 2.16142i
\(750\) 0 0
\(751\) 7.58678 + 18.3161i 0.276846 + 0.668364i 0.999745 0.0225890i \(-0.00719092\pi\)
−0.722899 + 0.690954i \(0.757191\pi\)
\(752\) 0 0
\(753\) −0.0389322 + 0.0161262i −0.00141877 + 0.000587673i
\(754\) 0 0
\(755\) 1.06580 + 2.45282i 0.0387884 + 0.0892673i
\(756\) 0 0
\(757\) −10.6777 + 4.42285i −0.388088 + 0.160751i −0.568191 0.822896i \(-0.692357\pi\)
0.180104 + 0.983648i \(0.442357\pi\)
\(758\) 0 0
\(759\) 0.663283 + 0.663283i 0.0240756 + 0.0240756i
\(760\) 0 0
\(761\) 51.5226i 1.86769i −0.357676 0.933846i \(-0.616431\pi\)
0.357676 0.933846i \(-0.383569\pi\)
\(762\) 0 0
\(763\) 24.1787 + 24.1787i 0.875328 + 0.875328i
\(764\) 0 0
\(765\) −9.41900 + 23.8942i −0.340545 + 0.863898i
\(766\) 0 0
\(767\) −2.46699 + 5.95583i −0.0890777 + 0.215053i
\(768\) 0 0
\(769\) −4.24770 −0.153176 −0.0765879 0.997063i \(-0.524403\pi\)
−0.0765879 + 0.997063i \(0.524403\pi\)
\(770\) 0 0
\(771\) −2.17548 2.17548i −0.0783481 0.0783481i
\(772\) 0 0
\(773\) −27.3395 + 11.3244i −0.983335 + 0.407311i −0.815660 0.578532i \(-0.803626\pi\)
−0.167675 + 0.985842i \(0.553626\pi\)
\(774\) 0 0
\(775\) −0.100094 2.90747i −0.00359549 0.104439i
\(776\) 0 0
\(777\) −3.48577 −0.125051
\(778\) 0 0
\(779\) 38.0667 30.5592i 1.36388 1.09490i
\(780\) 0 0
\(781\) −9.88168 9.88168i −0.353594 0.353594i
\(782\) 0 0
\(783\) −5.36281 5.36281i −0.191651 0.191651i
\(784\) 0 0
\(785\) 5.18796 13.1609i 0.185166 0.469732i
\(786\) 0 0
\(787\) 4.01912 0.143266 0.0716330 0.997431i \(-0.477179\pi\)
0.0716330 + 0.997431i \(0.477179\pi\)
\(788\) 0 0
\(789\) 1.40588i 0.0500508i
\(790\) 0 0
\(791\) 50.8938 21.0809i 1.80957 0.749550i
\(792\) 0 0
\(793\) 4.35639 + 10.5173i 0.154700 + 0.373479i
\(794\) 0 0
\(795\) 0.995648 + 0.961961i 0.0353120 + 0.0341173i
\(796\) 0 0
\(797\) −19.5782 19.5782i −0.693494 0.693494i 0.269505 0.962999i \(-0.413140\pi\)
−0.962999 + 0.269505i \(0.913140\pi\)
\(798\) 0 0
\(799\) 6.71054 6.71054i 0.237402 0.237402i
\(800\) 0 0
\(801\) 31.9751 + 13.2445i 1.12979 + 0.467972i
\(802\) 0 0
\(803\) 9.80683 4.06212i 0.346076 0.143349i
\(804\) 0 0
\(805\) 20.5467 + 47.2860i 0.724175 + 1.66661i
\(806\) 0 0
\(807\) 2.44141 + 1.01127i 0.0859417 + 0.0355982i
\(808\) 0 0
\(809\) 42.0230 17.4065i 1.47745 0.611980i 0.508906 0.860822i \(-0.330050\pi\)
0.968544 + 0.248842i \(0.0800500\pi\)
\(810\) 0 0
\(811\) −21.1865 21.1865i −0.743960 0.743960i 0.229378 0.973338i \(-0.426331\pi\)
−0.973338 + 0.229378i \(0.926331\pi\)
\(812\) 0 0
\(813\) 0.0232175 0.0560520i 0.000814273 0.00196583i
\(814\) 0 0
\(815\) −21.9905 + 22.7606i −0.770293 + 0.797267i
\(816\) 0 0
\(817\) −55.2775 22.8967i −1.93392 0.801054i
\(818\) 0 0
\(819\) 44.5363 1.55622
\(820\) 0 0
\(821\) −21.0312 −0.733995 −0.366998 0.930222i \(-0.619614\pi\)
−0.366998 + 0.930222i \(0.619614\pi\)
\(822\) 0 0
\(823\) −21.6103 8.95128i −0.753287 0.312022i −0.0272053 0.999630i \(-0.508661\pi\)
−0.726082 + 0.687608i \(0.758661\pi\)
\(824\) 0 0
\(825\) −1.05079 + 0.0361750i −0.0365836 + 0.00125945i
\(826\) 0 0
\(827\) −9.05968 + 21.8720i −0.315036 + 0.760564i 0.684467 + 0.729044i \(0.260035\pi\)
−0.999503 + 0.0315203i \(0.989965\pi\)
\(828\) 0 0
\(829\) −12.4962 12.4962i −0.434010 0.434010i 0.455980 0.889990i \(-0.349289\pi\)
−0.889990 + 0.455980i \(0.849289\pi\)
\(830\) 0 0
\(831\) −0.575335 + 0.238312i −0.0199581 + 0.00826694i
\(832\) 0 0
\(833\) −70.1645 29.0631i −2.43105 1.00698i
\(834\) 0 0
\(835\) 21.4122 + 8.44061i 0.741001 + 0.292099i
\(836\) 0 0
\(837\) 0.431787 0.178852i 0.0149248 0.00618204i
\(838\) 0 0
\(839\) −20.8139 8.62142i −0.718577 0.297644i −0.00672867 0.999977i \(-0.502142\pi\)
−0.711849 + 0.702333i \(0.752142\pi\)
\(840\) 0 0
\(841\) 42.5308 42.5308i 1.46658 1.46658i
\(842\) 0 0
\(843\) −0.106982 0.106982i −0.00368467 0.00368467i
\(844\) 0 0
\(845\) −7.22607 + 7.47912i −0.248585 + 0.257290i
\(846\) 0 0
\(847\) −16.9074 40.8180i −0.580945 1.40252i
\(848\) 0 0
\(849\) −1.48942 + 0.616938i −0.0511168 + 0.0211733i
\(850\) 0 0
\(851\) 22.4033i 0.767976i
\(852\) 0 0
\(853\) −37.3672 −1.27943 −0.639714 0.768613i \(-0.720947\pi\)
−0.639714 + 0.768613i \(0.720947\pi\)
\(854\) 0 0
\(855\) −46.6227 + 20.2584i −1.59446 + 0.692824i
\(856\) 0 0
\(857\) −30.3210 30.3210i −1.03574 1.03574i −0.999337 0.0364072i \(-0.988409\pi\)
−0.0364072 0.999337i \(-0.511591\pi\)
\(858\) 0 0
\(859\) −31.0175 31.0175i −1.05830 1.05830i −0.998192 0.0601110i \(-0.980855\pi\)
−0.0601110 0.998192i \(-0.519145\pi\)
\(860\) 0 0
\(861\) 1.24412 + 4.26648i 0.0423994 + 0.145401i
\(862\) 0 0
\(863\) 39.2347 1.33557 0.667783 0.744356i \(-0.267243\pi\)
0.667783 + 0.744356i \(0.267243\pi\)
\(864\) 0 0
\(865\) −42.6003 + 0.733075i −1.44845 + 0.0249253i
\(866\) 0 0
\(867\) −0.268368 + 0.111162i −0.00911425 + 0.00377525i
\(868\) 0 0
\(869\) 9.17740 + 9.17740i 0.311322 + 0.311322i
\(870\) 0 0
\(871\) 5.67254 0.192207
\(872\) 0 0
\(873\) 20.8303 50.2888i 0.704999 1.70202i
\(874\) 0 0
\(875\) −54.4601 19.3307i −1.84109 0.653498i
\(876\) 0 0
\(877\) 31.3625 + 31.3625i 1.05903 + 1.05903i 0.998144 + 0.0608905i \(0.0193940\pi\)
0.0608905 + 0.998144i \(0.480606\pi\)
\(878\) 0 0
\(879\) 0.162754i 0.00548956i
\(880\) 0 0
\(881\) 27.4019 + 27.4019i 0.923195 + 0.923195i 0.997254 0.0740592i \(-0.0235954\pi\)
−0.0740592 + 0.997254i \(0.523595\pi\)
\(882\) 0 0
\(883\) −21.0081 + 8.70184i −0.706979 + 0.292840i −0.707054 0.707160i \(-0.749976\pi\)
7.49254e−5 1.00000i \(0.499976\pi\)
\(884\) 0 0
\(885\) 0.623212 + 0.245667i 0.0209490 + 0.00825802i
\(886\) 0 0
\(887\) −35.3713 + 14.6513i −1.18765 + 0.491941i −0.886989 0.461790i \(-0.847207\pi\)
−0.300662 + 0.953731i \(0.597207\pi\)
\(888\) 0 0
\(889\) 14.6480 + 35.3634i 0.491279 + 1.18605i
\(890\) 0 0
\(891\) 5.29649 + 12.7869i 0.177439 + 0.428376i
\(892\) 0 0
\(893\) 18.7831 0.628554
\(894\) 0 0
\(895\) 38.2351 + 15.0721i 1.27806 + 0.503805i
\(896\) 0 0
\(897\) 1.73078i 0.0577890i
\(898\) 0 0
\(899\) 2.10231 + 5.07542i 0.0701159 + 0.169275i
\(900\) 0 0
\(901\) 17.7603i 0.591683i
\(902\) 0 0
\(903\) 3.85170 3.85170i 0.128177 0.128177i
\(904\) 0 0
\(905\) −11.9073 4.69381i −0.395813 0.156028i
\(906\) 0 0
\(907\) −18.0756 −0.600192 −0.300096 0.953909i \(-0.597019\pi\)
−0.300096 + 0.953909i \(0.597019\pi\)
\(908\) 0 0
\(909\) 34.7763 14.4048i 1.15346 0.477778i
\(910\) 0 0
\(911\) −15.5601 + 15.5601i −0.515528 + 0.515528i −0.916215 0.400687i \(-0.868772\pi\)
0.400687 + 0.916215i \(0.368772\pi\)
\(912\) 0 0
\(913\) −1.86402 + 4.50014i −0.0616900 + 0.148933i
\(914\) 0 0
\(915\) 1.08494 0.471426i 0.0358669 0.0155849i
\(916\) 0 0
\(917\) −6.38575 15.4166i −0.210876 0.509100i
\(918\) 0 0
\(919\) 41.5468 + 17.2093i 1.37050 + 0.567681i 0.941925 0.335823i \(-0.109014\pi\)
0.428579 + 0.903504i \(0.359014\pi\)
\(920\) 0 0
\(921\) 0.0822225 0.198503i 0.00270932 0.00654088i
\(922\) 0 0
\(923\) 25.7854i 0.848737i
\(924\) 0 0
\(925\) −18.3568 17.1350i −0.603568 0.563394i
\(926\) 0 0
\(927\) 4.08473 4.08473i 0.134160 0.134160i
\(928\) 0 0
\(929\) 9.68203 23.3745i 0.317657 0.766892i −0.681720 0.731613i \(-0.738768\pi\)
0.999377 0.0352793i \(-0.0112321\pi\)
\(930\) 0 0
\(931\) −57.5224 138.871i −1.88522 4.55132i
\(932\) 0 0
\(933\) 1.41483 + 1.41483i 0.0463193 + 0.0463193i
\(934\) 0 0
\(935\) −9.70013 9.37193i −0.317228 0.306495i
\(936\) 0 0
\(937\) 8.90697 + 21.5033i 0.290978 + 0.702483i 0.999996 0.00270675i \(-0.000861586\pi\)
−0.709018 + 0.705190i \(0.750862\pi\)
\(938\) 0 0
\(939\) 0.114718i 0.00374369i
\(940\) 0 0
\(941\) 12.0967 12.0967i 0.394342 0.394342i −0.481890 0.876232i \(-0.660049\pi\)
0.876232 + 0.481890i \(0.160049\pi\)
\(942\) 0 0
\(943\) 27.4210 7.99603i 0.892951 0.260387i
\(944\) 0 0
\(945\) −0.159735 9.28248i −0.00519618 0.301959i
\(946\) 0 0
\(947\) −21.3941 + 21.3941i −0.695214 + 0.695214i −0.963374 0.268161i \(-0.913584\pi\)
0.268161 + 0.963374i \(0.413584\pi\)
\(948\) 0 0
\(949\) 18.0949 + 7.49516i 0.587386 + 0.243303i
\(950\) 0 0
\(951\) 0.858463 0.858463i 0.0278376 0.0278376i
\(952\) 0 0
\(953\) 19.9985 19.9985i 0.647816 0.647816i −0.304649 0.952465i \(-0.598539\pi\)
0.952465 + 0.304649i \(0.0985391\pi\)
\(954\) 0 0
\(955\) −10.3168 + 26.1717i −0.333843 + 0.846896i
\(956\) 0 0
\(957\) 1.83431 0.759794i 0.0592947 0.0245607i
\(958\) 0 0
\(959\) 84.3017i 2.72225i
\(960\) 0 0
\(961\) 30.6615 0.989080
\(962\) 0 0
\(963\) −36.9384 −1.19032
\(964\) 0 0
\(965\) −4.88956 + 12.4039i −0.157401 + 0.399296i
\(966\) 0 0
\(967\) −18.1289 43.7670i −0.582985 1.40745i −0.890094 0.455776i \(-0.849362\pi\)
0.307109 0.951674i \(-0.400638\pi\)
\(968\) 0 0
\(969\) 3.64299 + 1.50898i 0.117030 + 0.0484753i
\(970\) 0 0
\(971\) −8.17341 + 3.38554i −0.262297 + 0.108647i −0.509957 0.860200i \(-0.670339\pi\)
0.247660 + 0.968847i \(0.420339\pi\)
\(972\) 0 0
\(973\) 88.9720 + 36.8534i 2.85231 + 1.18147i
\(974\) 0 0
\(975\) −1.41816 1.32377i −0.0454176 0.0423945i
\(976\) 0 0
\(977\) 36.9215 + 15.2934i 1.18122 + 0.489279i 0.884888 0.465804i \(-0.154235\pi\)
0.296337 + 0.955083i \(0.404235\pi\)
\(978\) 0 0
\(979\) −12.8520 + 12.8520i −0.410752 + 0.410752i
\(980\) 0 0
\(981\) −18.2253 + 7.54919i −0.581891 + 0.241027i
\(982\) 0 0
\(983\) 24.4923 + 24.4923i 0.781184 + 0.781184i 0.980031 0.198846i \(-0.0637195\pi\)
−0.198846 + 0.980031i \(0.563719\pi\)
\(984\) 0 0
\(985\) −21.6910 + 0.373263i −0.691133 + 0.0118932i
\(986\) 0 0
\(987\) −0.654399 + 1.57986i −0.0208297 + 0.0502874i
\(988\) 0 0
\(989\) −24.7552 24.7552i −0.787169 0.787169i
\(990\) 0 0
\(991\) −19.7674 47.7227i −0.627932 1.51596i −0.842188 0.539183i \(-0.818733\pi\)
0.214257 0.976777i \(-0.431267\pi\)
\(992\) 0 0
\(993\) 3.28491i 0.104243i
\(994\) 0 0
\(995\) −52.9698 20.8805i −1.67925 0.661955i
\(996\) 0 0
\(997\) 2.49277 6.01807i 0.0789467 0.190594i −0.879478 0.475939i \(-0.842108\pi\)
0.958425 + 0.285345i \(0.0921082\pi\)
\(998\) 0 0
\(999\) 1.54380 3.72707i 0.0488438 0.117919i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.y.a.137.12 yes 84
5.3 odd 4 820.2.x.a.793.10 yes 84
41.3 odd 8 820.2.x.a.577.10 84
205.3 even 8 inner 820.2.y.a.413.12 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.577.10 84 41.3 odd 8
820.2.x.a.793.10 yes 84 5.3 odd 4
820.2.y.a.137.12 yes 84 1.1 even 1 trivial
820.2.y.a.413.12 yes 84 205.3 even 8 inner