Properties

Label 820.2.x.a.817.15
Level $820$
Weight $2$
Character 820.817
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 817.15
Character \(\chi\) \(=\) 820.817
Dual form 820.2.x.a.273.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17715 - 0.487592i) q^{3} +(2.02779 + 0.942363i) q^{5} +(-0.0522617 - 0.126171i) q^{7} +(-0.973380 + 0.973380i) q^{9} +(-1.39412 + 3.36569i) q^{11} +(2.67998 - 1.11008i) q^{13} +(2.84651 + 0.120567i) q^{15} +(4.97519 + 2.06079i) q^{17} +(-1.09138 - 2.63482i) q^{19} +(-0.123040 - 0.123040i) q^{21} +(3.63902 + 3.63902i) q^{23} +(3.22390 + 3.82184i) q^{25} +(-2.13398 + 5.15188i) q^{27} +(0.0765437 - 0.184793i) q^{29} -3.53619i q^{31} +4.64169i q^{33} +(0.0129228 - 0.305098i) q^{35} +(-2.65667 - 2.65667i) q^{37} +(2.61348 - 2.61348i) q^{39} +(0.722911 - 6.36219i) q^{41} -1.71177i q^{43} +(-2.89109 + 1.05654i) q^{45} +(-6.26338 - 2.59438i) q^{47} +(4.93656 - 4.93656i) q^{49} +6.86138 q^{51} +(-0.857011 - 2.06901i) q^{53} +(-5.99869 + 5.51117i) q^{55} +(-2.56943 - 2.56943i) q^{57} +10.3918i q^{59} +(0.729392 - 0.729392i) q^{61} +(0.173683 + 0.0719417i) q^{63} +(6.48055 + 0.274492i) q^{65} +(-5.82842 - 2.41421i) q^{67} +(6.05804 + 2.50932i) q^{69} +(-1.08593 - 0.449805i) q^{71} +2.01433i q^{73} +(5.65852 + 2.92693i) q^{75} +0.497511 q^{77} +(-2.96500 - 1.22814i) q^{79} +2.97536i q^{81} +(8.37256 - 8.37256i) q^{83} +(8.14665 + 8.86730i) q^{85} -0.254851i q^{87} +(-2.94049 + 7.09896i) q^{89} +(-0.280121 - 0.280121i) q^{91} +(-1.72422 - 4.16263i) q^{93} +(0.269866 - 6.37134i) q^{95} +(-0.859610 + 2.07528i) q^{97} +(-1.91909 - 4.63310i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.17715 0.487592i 0.679629 0.281512i −0.0160429 0.999871i \(-0.505107\pi\)
0.695672 + 0.718360i \(0.255107\pi\)
\(4\) 0 0
\(5\) 2.02779 + 0.942363i 0.906857 + 0.421438i
\(6\) 0 0
\(7\) −0.0522617 0.126171i −0.0197531 0.0476881i 0.913695 0.406400i \(-0.133216\pi\)
−0.933448 + 0.358712i \(0.883216\pi\)
\(8\) 0 0
\(9\) −0.973380 + 0.973380i −0.324460 + 0.324460i
\(10\) 0 0
\(11\) −1.39412 + 3.36569i −0.420342 + 1.01479i 0.561905 + 0.827202i \(0.310069\pi\)
−0.982247 + 0.187593i \(0.939931\pi\)
\(12\) 0 0
\(13\) 2.67998 1.11008i 0.743293 0.307882i 0.0212912 0.999773i \(-0.493222\pi\)
0.722002 + 0.691891i \(0.243222\pi\)
\(14\) 0 0
\(15\) 2.84651 + 0.120567i 0.734966 + 0.0311304i
\(16\) 0 0
\(17\) 4.97519 + 2.06079i 1.20666 + 0.499816i 0.893146 0.449767i \(-0.148493\pi\)
0.313516 + 0.949583i \(0.398493\pi\)
\(18\) 0 0
\(19\) −1.09138 2.63482i −0.250379 0.604468i 0.747856 0.663861i \(-0.231083\pi\)
−0.998235 + 0.0593932i \(0.981083\pi\)
\(20\) 0 0
\(21\) −0.123040 0.123040i −0.0268495 0.0268495i
\(22\) 0 0
\(23\) 3.63902 + 3.63902i 0.758789 + 0.758789i 0.976102 0.217313i \(-0.0697292\pi\)
−0.217313 + 0.976102i \(0.569729\pi\)
\(24\) 0 0
\(25\) 3.22390 + 3.82184i 0.644781 + 0.764368i
\(26\) 0 0
\(27\) −2.13398 + 5.15188i −0.410685 + 0.991481i
\(28\) 0 0
\(29\) 0.0765437 0.184793i 0.0142138 0.0343152i −0.916613 0.399775i \(-0.869088\pi\)
0.930827 + 0.365460i \(0.119088\pi\)
\(30\) 0 0
\(31\) 3.53619i 0.635119i −0.948238 0.317559i \(-0.897137\pi\)
0.948238 0.317559i \(-0.102863\pi\)
\(32\) 0 0
\(33\) 4.64169i 0.808015i
\(34\) 0 0
\(35\) 0.0129228 0.305098i 0.00218435 0.0515710i
\(36\) 0 0
\(37\) −2.65667 2.65667i −0.436754 0.436754i 0.454164 0.890918i \(-0.349938\pi\)
−0.890918 + 0.454164i \(0.849938\pi\)
\(38\) 0 0
\(39\) 2.61348 2.61348i 0.418491 0.418491i
\(40\) 0 0
\(41\) 0.722911 6.36219i 0.112900 0.993606i
\(42\) 0 0
\(43\) 1.71177i 0.261042i −0.991446 0.130521i \(-0.958335\pi\)
0.991446 0.130521i \(-0.0416650\pi\)
\(44\) 0 0
\(45\) −2.89109 + 1.05654i −0.430979 + 0.157499i
\(46\) 0 0
\(47\) −6.26338 2.59438i −0.913607 0.378429i −0.124171 0.992261i \(-0.539627\pi\)
−0.789436 + 0.613832i \(0.789627\pi\)
\(48\) 0 0
\(49\) 4.93656 4.93656i 0.705223 0.705223i
\(50\) 0 0
\(51\) 6.86138 0.960786
\(52\) 0 0
\(53\) −0.857011 2.06901i −0.117719 0.284200i 0.854026 0.520230i \(-0.174154\pi\)
−0.971746 + 0.236030i \(0.924154\pi\)
\(54\) 0 0
\(55\) −5.99869 + 5.51117i −0.808863 + 0.743126i
\(56\) 0 0
\(57\) −2.56943 2.56943i −0.340329 0.340329i
\(58\) 0 0
\(59\) 10.3918i 1.35290i 0.736487 + 0.676452i \(0.236483\pi\)
−0.736487 + 0.676452i \(0.763517\pi\)
\(60\) 0 0
\(61\) 0.729392 0.729392i 0.0933891 0.0933891i −0.658869 0.752258i \(-0.728965\pi\)
0.752258 + 0.658869i \(0.228965\pi\)
\(62\) 0 0
\(63\) 0.173683 + 0.0719417i 0.0218820 + 0.00906381i
\(64\) 0 0
\(65\) 6.48055 + 0.274492i 0.803814 + 0.0340465i
\(66\) 0 0
\(67\) −5.82842 2.41421i −0.712055 0.294943i −0.00290043 0.999996i \(-0.500923\pi\)
−0.709155 + 0.705053i \(0.750923\pi\)
\(68\) 0 0
\(69\) 6.05804 + 2.50932i 0.729303 + 0.302087i
\(70\) 0 0
\(71\) −1.08593 0.449805i −0.128876 0.0533820i 0.317314 0.948321i \(-0.397219\pi\)
−0.446189 + 0.894939i \(0.647219\pi\)
\(72\) 0 0
\(73\) 2.01433i 0.235759i 0.993028 + 0.117880i \(0.0376097\pi\)
−0.993028 + 0.117880i \(0.962390\pi\)
\(74\) 0 0
\(75\) 5.65852 + 2.92693i 0.653390 + 0.337973i
\(76\) 0 0
\(77\) 0.497511 0.0566967
\(78\) 0 0
\(79\) −2.96500 1.22814i −0.333588 0.138177i 0.209601 0.977787i \(-0.432783\pi\)
−0.543189 + 0.839610i \(0.682783\pi\)
\(80\) 0 0
\(81\) 2.97536i 0.330596i
\(82\) 0 0
\(83\) 8.37256 8.37256i 0.919008 0.919008i −0.0779496 0.996957i \(-0.524837\pi\)
0.996957 + 0.0779496i \(0.0248373\pi\)
\(84\) 0 0
\(85\) 8.14665 + 8.86730i 0.883629 + 0.961794i
\(86\) 0 0
\(87\) 0.254851i 0.0273229i
\(88\) 0 0
\(89\) −2.94049 + 7.09896i −0.311691 + 0.752489i 0.687952 + 0.725757i \(0.258510\pi\)
−0.999643 + 0.0267321i \(0.991490\pi\)
\(90\) 0 0
\(91\) −0.280121 0.280121i −0.0293646 0.0293646i
\(92\) 0 0
\(93\) −1.72422 4.16263i −0.178793 0.431645i
\(94\) 0 0
\(95\) 0.269866 6.37134i 0.0276876 0.653685i
\(96\) 0 0
\(97\) −0.859610 + 2.07528i −0.0872801 + 0.210713i −0.961493 0.274831i \(-0.911378\pi\)
0.874213 + 0.485543i \(0.161378\pi\)
\(98\) 0 0
\(99\) −1.91909 4.63310i −0.192876 0.465645i
\(100\) 0 0
\(101\) 16.6155 6.88236i 1.65330 0.684820i 0.655765 0.754965i \(-0.272346\pi\)
0.997537 + 0.0701445i \(0.0223460\pi\)
\(102\) 0 0
\(103\) −2.51098 −0.247414 −0.123707 0.992319i \(-0.539478\pi\)
−0.123707 + 0.992319i \(0.539478\pi\)
\(104\) 0 0
\(105\) −0.133551 0.365448i −0.0130333 0.0356641i
\(106\) 0 0
\(107\) −3.63299 + 3.63299i −0.351215 + 0.351215i −0.860561 0.509347i \(-0.829887\pi\)
0.509347 + 0.860561i \(0.329887\pi\)
\(108\) 0 0
\(109\) −1.97303 + 0.817254i −0.188982 + 0.0782787i −0.475167 0.879895i \(-0.657613\pi\)
0.286186 + 0.958174i \(0.407613\pi\)
\(110\) 0 0
\(111\) −4.42267 1.83193i −0.419782 0.173879i
\(112\) 0 0
\(113\) −15.0019 15.0019i −1.41126 1.41126i −0.751305 0.659956i \(-0.770575\pi\)
−0.659956 0.751305i \(-0.729425\pi\)
\(114\) 0 0
\(115\) 3.94991 + 10.8085i 0.368331 + 1.00790i
\(116\) 0 0
\(117\) −1.52811 + 3.68917i −0.141273 + 0.341064i
\(118\) 0 0
\(119\) 0.735425i 0.0674163i
\(120\) 0 0
\(121\) −1.60616 1.60616i −0.146015 0.146015i
\(122\) 0 0
\(123\) −2.25118 7.84174i −0.202982 0.707066i
\(124\) 0 0
\(125\) 2.93586 + 10.7880i 0.262591 + 0.964907i
\(126\) 0 0
\(127\) −4.45241 + 4.45241i −0.395088 + 0.395088i −0.876496 0.481409i \(-0.840125\pi\)
0.481409 + 0.876496i \(0.340125\pi\)
\(128\) 0 0
\(129\) −0.834643 2.01501i −0.0734863 0.177412i
\(130\) 0 0
\(131\) −13.8556 13.8556i −1.21057 1.21057i −0.970838 0.239735i \(-0.922939\pi\)
−0.239735 0.970838i \(-0.577061\pi\)
\(132\) 0 0
\(133\) −0.275400 + 0.275400i −0.0238802 + 0.0238802i
\(134\) 0 0
\(135\) −9.18222 + 8.43598i −0.790280 + 0.726054i
\(136\) 0 0
\(137\) −2.63440 1.09120i −0.225072 0.0932278i 0.267298 0.963614i \(-0.413869\pi\)
−0.492370 + 0.870386i \(0.663869\pi\)
\(138\) 0 0
\(139\) 8.89978i 0.754869i −0.926036 0.377435i \(-0.876806\pi\)
0.926036 0.377435i \(-0.123194\pi\)
\(140\) 0 0
\(141\) −8.63794 −0.727446
\(142\) 0 0
\(143\) 10.5676i 0.883705i
\(144\) 0 0
\(145\) 0.329357 0.302590i 0.0273516 0.0251287i
\(146\) 0 0
\(147\) 3.40405 8.21811i 0.280761 0.677818i
\(148\) 0 0
\(149\) 5.37439 + 12.9749i 0.440287 + 1.06295i 0.975848 + 0.218450i \(0.0701001\pi\)
−0.535561 + 0.844496i \(0.679900\pi\)
\(150\) 0 0
\(151\) 0.893869 2.15799i 0.0727421 0.175615i −0.883326 0.468759i \(-0.844701\pi\)
0.956068 + 0.293144i \(0.0947014\pi\)
\(152\) 0 0
\(153\) −6.84869 + 2.83682i −0.553684 + 0.229343i
\(154\) 0 0
\(155\) 3.33238 7.17067i 0.267663 0.575962i
\(156\) 0 0
\(157\) 2.63529 1.09157i 0.210319 0.0871171i −0.275037 0.961434i \(-0.588690\pi\)
0.485356 + 0.874317i \(0.338690\pi\)
\(158\) 0 0
\(159\) −2.01766 2.01766i −0.160011 0.160011i
\(160\) 0 0
\(161\) 0.268957 0.649320i 0.0211968 0.0511736i
\(162\) 0 0
\(163\) −11.9357 11.9357i −0.934872 0.934872i 0.0631327 0.998005i \(-0.479891\pi\)
−0.998005 + 0.0631327i \(0.979891\pi\)
\(164\) 0 0
\(165\) −4.37416 + 9.41240i −0.340528 + 0.732754i
\(166\) 0 0
\(167\) 2.50027 + 6.03619i 0.193477 + 0.467094i 0.990611 0.136707i \(-0.0436520\pi\)
−0.797135 + 0.603801i \(0.793652\pi\)
\(168\) 0 0
\(169\) −3.24238 + 3.24238i −0.249414 + 0.249414i
\(170\) 0 0
\(171\) 3.62700 + 1.50235i 0.277364 + 0.114888i
\(172\) 0 0
\(173\) 3.62675 0.275737 0.137868 0.990451i \(-0.455975\pi\)
0.137868 + 0.990451i \(0.455975\pi\)
\(174\) 0 0
\(175\) 0.313718 0.606498i 0.0237149 0.0458470i
\(176\) 0 0
\(177\) 5.06698 + 12.2328i 0.380858 + 0.919472i
\(178\) 0 0
\(179\) −3.53799 + 1.46548i −0.264441 + 0.109535i −0.510965 0.859602i \(-0.670712\pi\)
0.246523 + 0.969137i \(0.420712\pi\)
\(180\) 0 0
\(181\) 13.8304 5.72875i 1.02801 0.425815i 0.196015 0.980601i \(-0.437200\pi\)
0.831993 + 0.554786i \(0.187200\pi\)
\(182\) 0 0
\(183\) 0.502959 1.21425i 0.0371798 0.0897600i
\(184\) 0 0
\(185\) −2.88363 7.89073i −0.212009 0.580138i
\(186\) 0 0
\(187\) −13.8720 + 13.8720i −1.01442 + 1.01442i
\(188\) 0 0
\(189\) 0.761543 0.0553941
\(190\) 0 0
\(191\) −9.72673 23.4824i −0.703801 1.69913i −0.714938 0.699188i \(-0.753545\pi\)
0.0111364 0.999938i \(-0.496455\pi\)
\(192\) 0 0
\(193\) −22.9203 + 9.49392i −1.64984 + 0.683387i −0.997235 0.0743096i \(-0.976325\pi\)
−0.652607 + 0.757697i \(0.726325\pi\)
\(194\) 0 0
\(195\) 7.76244 2.83675i 0.555880 0.203144i
\(196\) 0 0
\(197\) −17.6946 −1.26069 −0.630344 0.776316i \(-0.717086\pi\)
−0.630344 + 0.776316i \(0.717086\pi\)
\(198\) 0 0
\(199\) −6.20314 + 2.56942i −0.439729 + 0.182142i −0.591553 0.806266i \(-0.701485\pi\)
0.151825 + 0.988407i \(0.451485\pi\)
\(200\) 0 0
\(201\) −8.03809 −0.566963
\(202\) 0 0
\(203\) −0.0273158 −0.00191719
\(204\) 0 0
\(205\) 7.46140 12.2200i 0.521127 0.853479i
\(206\) 0 0
\(207\) −7.08431 −0.492393
\(208\) 0 0
\(209\) 10.3895 0.718656
\(210\) 0 0
\(211\) −10.1221 + 4.19272i −0.696836 + 0.288639i −0.702845 0.711343i \(-0.748087\pi\)
0.00600904 + 0.999982i \(0.498087\pi\)
\(212\) 0 0
\(213\) −1.49762 −0.102615
\(214\) 0 0
\(215\) 1.61310 3.47111i 0.110013 0.236728i
\(216\) 0 0
\(217\) −0.446164 + 0.184807i −0.0302876 + 0.0125455i
\(218\) 0 0
\(219\) 0.982170 + 2.37117i 0.0663689 + 0.160229i
\(220\) 0 0
\(221\) 15.6211 1.05079
\(222\) 0 0
\(223\) 10.1606 10.1606i 0.680404 0.680404i −0.279687 0.960091i \(-0.590231\pi\)
0.960091 + 0.279687i \(0.0902307\pi\)
\(224\) 0 0
\(225\) −6.85819 0.582017i −0.457212 0.0388012i
\(226\) 0 0
\(227\) −1.99103 + 4.80678i −0.132149 + 0.319037i −0.976079 0.217417i \(-0.930237\pi\)
0.843929 + 0.536455i \(0.180237\pi\)
\(228\) 0 0
\(229\) −10.6187 + 4.39839i −0.701700 + 0.290654i −0.704865 0.709341i \(-0.748993\pi\)
0.00316489 + 0.999995i \(0.498993\pi\)
\(230\) 0 0
\(231\) 0.585646 0.242583i 0.0385327 0.0159608i
\(232\) 0 0
\(233\) 0.113484 + 0.273974i 0.00743456 + 0.0179486i 0.927553 0.373691i \(-0.121908\pi\)
−0.920119 + 0.391640i \(0.871908\pi\)
\(234\) 0 0
\(235\) −10.2560 11.1632i −0.669028 0.728209i
\(236\) 0 0
\(237\) −4.08908 −0.265615
\(238\) 0 0
\(239\) 7.25697 + 3.00594i 0.469414 + 0.194438i 0.604836 0.796350i \(-0.293239\pi\)
−0.135421 + 0.990788i \(0.543239\pi\)
\(240\) 0 0
\(241\) 19.9707 19.9707i 1.28642 1.28642i 0.349482 0.936943i \(-0.386358\pi\)
0.936943 0.349482i \(-0.113642\pi\)
\(242\) 0 0
\(243\) −4.95118 11.9532i −0.317618 0.766798i
\(244\) 0 0
\(245\) 14.6624 5.35830i 0.936744 0.342329i
\(246\) 0 0
\(247\) −5.84973 5.84973i −0.372210 0.372210i
\(248\) 0 0
\(249\) 5.77338 13.9382i 0.365873 0.883295i
\(250\) 0 0
\(251\) −16.6541 16.6541i −1.05120 1.05120i −0.998617 0.0525807i \(-0.983255\pi\)
−0.0525807 0.998617i \(-0.516745\pi\)
\(252\) 0 0
\(253\) −17.3211 + 7.17462i −1.08897 + 0.451064i
\(254\) 0 0
\(255\) 13.9135 + 6.46591i 0.871296 + 0.404911i
\(256\) 0 0
\(257\) 23.2565 9.63318i 1.45070 0.600901i 0.488337 0.872655i \(-0.337604\pi\)
0.962367 + 0.271754i \(0.0876038\pi\)
\(258\) 0 0
\(259\) −0.196352 + 0.474036i −0.0122007 + 0.0294552i
\(260\) 0 0
\(261\) 0.105368 + 0.254380i 0.00652209 + 0.0157457i
\(262\) 0 0
\(263\) 3.30155 7.97066i 0.203583 0.491492i −0.788805 0.614643i \(-0.789300\pi\)
0.992388 + 0.123151i \(0.0393000\pi\)
\(264\) 0 0
\(265\) 0.211914 5.00314i 0.0130178 0.307340i
\(266\) 0 0
\(267\) 9.79032i 0.599158i
\(268\) 0 0
\(269\) 24.2413 1.47802 0.739010 0.673694i \(-0.235293\pi\)
0.739010 + 0.673694i \(0.235293\pi\)
\(270\) 0 0
\(271\) 21.5717i 1.31039i 0.755461 + 0.655194i \(0.227413\pi\)
−0.755461 + 0.655194i \(0.772587\pi\)
\(272\) 0 0
\(273\) −0.466329 0.193160i −0.0282235 0.0116906i
\(274\) 0 0
\(275\) −17.3576 + 5.52259i −1.04670 + 0.333025i
\(276\) 0 0
\(277\) −17.6302 + 17.6302i −1.05930 + 1.05930i −0.0611676 + 0.998128i \(0.519482\pi\)
−0.998128 + 0.0611676i \(0.980518\pi\)
\(278\) 0 0
\(279\) 3.44206 + 3.44206i 0.206071 + 0.206071i
\(280\) 0 0
\(281\) 1.24749 + 3.01171i 0.0744192 + 0.179664i 0.956711 0.291038i \(-0.0940007\pi\)
−0.882292 + 0.470702i \(0.844001\pi\)
\(282\) 0 0
\(283\) −2.17743 + 2.17743i −0.129435 + 0.129435i −0.768856 0.639422i \(-0.779174\pi\)
0.639422 + 0.768856i \(0.279174\pi\)
\(284\) 0 0
\(285\) −2.78894 7.63161i −0.165203 0.452058i
\(286\) 0 0
\(287\) −0.840503 + 0.241288i −0.0496133 + 0.0142428i
\(288\) 0 0
\(289\) 8.48486 + 8.48486i 0.499109 + 0.499109i
\(290\) 0 0
\(291\) 2.86206i 0.167777i
\(292\) 0 0
\(293\) −4.05129 + 9.78067i −0.236679 + 0.571393i −0.996935 0.0782300i \(-0.975073\pi\)
0.760257 + 0.649623i \(0.225073\pi\)
\(294\) 0 0
\(295\) −9.79289 + 21.0725i −0.570164 + 1.22689i
\(296\) 0 0
\(297\) −14.3646 14.3646i −0.833521 0.833521i
\(298\) 0 0
\(299\) 13.7921 + 5.71289i 0.797620 + 0.330385i
\(300\) 0 0
\(301\) −0.215975 + 0.0894597i −0.0124486 + 0.00515637i
\(302\) 0 0
\(303\) 16.2032 16.2032i 0.930847 0.930847i
\(304\) 0 0
\(305\) 2.16641 0.791705i 0.124048 0.0453329i
\(306\) 0 0
\(307\) −29.6900 −1.69450 −0.847248 0.531197i \(-0.821742\pi\)
−0.847248 + 0.531197i \(0.821742\pi\)
\(308\) 0 0
\(309\) −2.95581 + 1.22434i −0.168150 + 0.0696500i
\(310\) 0 0
\(311\) 4.04831 + 9.77348i 0.229558 + 0.554203i 0.996124 0.0879632i \(-0.0280358\pi\)
−0.766565 + 0.642166i \(0.778036\pi\)
\(312\) 0 0
\(313\) 2.07688 5.01403i 0.117392 0.283410i −0.854251 0.519860i \(-0.825984\pi\)
0.971644 + 0.236450i \(0.0759841\pi\)
\(314\) 0 0
\(315\) 0.284398 + 0.309555i 0.0160240 + 0.0174415i
\(316\) 0 0
\(317\) 0.308161 + 0.743966i 0.0173080 + 0.0417853i 0.932297 0.361693i \(-0.117801\pi\)
−0.914989 + 0.403478i \(0.867801\pi\)
\(318\) 0 0
\(319\) 0.515246 + 0.515246i 0.0288482 + 0.0288482i
\(320\) 0 0
\(321\) −2.50517 + 6.04800i −0.139825 + 0.337567i
\(322\) 0 0
\(323\) 15.3578i 0.854531i
\(324\) 0 0
\(325\) 12.8826 + 6.66365i 0.714596 + 0.369633i
\(326\) 0 0
\(327\) −1.92406 + 1.92406i −0.106401 + 0.106401i
\(328\) 0 0
\(329\) 0.925842i 0.0510433i
\(330\) 0 0
\(331\) −18.8782 7.81961i −1.03764 0.429805i −0.202176 0.979349i \(-0.564801\pi\)
−0.835465 + 0.549544i \(0.814801\pi\)
\(332\) 0 0
\(333\) 5.17190 0.283418
\(334\) 0 0
\(335\) −9.54378 10.3880i −0.521432 0.567558i
\(336\) 0 0
\(337\) 4.10336i 0.223524i 0.993735 + 0.111762i \(0.0356494\pi\)
−0.993735 + 0.111762i \(0.964351\pi\)
\(338\) 0 0
\(339\) −24.9743 10.3447i −1.35642 0.561847i
\(340\) 0 0
\(341\) 11.9017 + 4.92986i 0.644515 + 0.266967i
\(342\) 0 0
\(343\) −1.76404 0.730689i −0.0952492 0.0394535i
\(344\) 0 0
\(345\) 9.91977 + 10.7973i 0.534063 + 0.581305i
\(346\) 0 0
\(347\) 27.0874 + 11.2200i 1.45413 + 0.602320i 0.963177 0.268868i \(-0.0866495\pi\)
0.490951 + 0.871187i \(0.336649\pi\)
\(348\) 0 0
\(349\) 18.6691 18.6691i 0.999333 0.999333i −0.000667260 1.00000i \(-0.500212\pi\)
1.00000 0.000667260i \(0.000212395\pi\)
\(350\) 0 0
\(351\) 16.1758i 0.863403i
\(352\) 0 0
\(353\) 17.3875 + 17.3875i 0.925444 + 0.925444i 0.997407 0.0719631i \(-0.0229264\pi\)
−0.0719631 + 0.997407i \(0.522926\pi\)
\(354\) 0 0
\(355\) −1.77815 1.93545i −0.0943746 0.102723i
\(356\) 0 0
\(357\) −0.358587 0.865707i −0.0189785 0.0458181i
\(358\) 0 0
\(359\) 27.5526 1.45417 0.727086 0.686546i \(-0.240874\pi\)
0.727086 + 0.686546i \(0.240874\pi\)
\(360\) 0 0
\(361\) 7.68388 7.68388i 0.404415 0.404415i
\(362\) 0 0
\(363\) −2.67384 1.10754i −0.140340 0.0581309i
\(364\) 0 0
\(365\) −1.89823 + 4.08464i −0.0993577 + 0.213800i
\(366\) 0 0
\(367\) 2.34363i 0.122336i 0.998127 + 0.0611682i \(0.0194826\pi\)
−0.998127 + 0.0611682i \(0.980517\pi\)
\(368\) 0 0
\(369\) 5.48916 + 6.89649i 0.285754 + 0.359017i
\(370\) 0 0
\(371\) −0.216260 + 0.216260i −0.0112276 + 0.0112276i
\(372\) 0 0
\(373\) 10.2660 + 10.2660i 0.531552 + 0.531552i 0.921034 0.389482i \(-0.127346\pi\)
−0.389482 + 0.921034i \(0.627346\pi\)
\(374\) 0 0
\(375\) 8.71609 + 11.2676i 0.450097 + 0.581856i
\(376\) 0 0
\(377\) 0.580212i 0.0298824i
\(378\) 0 0
\(379\) 0.360110i 0.0184976i −0.999957 0.00924881i \(-0.997056\pi\)
0.999957 0.00924881i \(-0.00294403\pi\)
\(380\) 0 0
\(381\) −3.07020 + 7.41212i −0.157291 + 0.379735i
\(382\) 0 0
\(383\) 8.94022 21.5836i 0.456824 1.10287i −0.512852 0.858477i \(-0.671411\pi\)
0.969676 0.244393i \(-0.0785888\pi\)
\(384\) 0 0
\(385\) 1.00885 + 0.468836i 0.0514158 + 0.0238941i
\(386\) 0 0
\(387\) 1.66620 + 1.66620i 0.0846976 + 0.0846976i
\(388\) 0 0
\(389\) 3.69311 + 3.69311i 0.187248 + 0.187248i 0.794505 0.607257i \(-0.207730\pi\)
−0.607257 + 0.794505i \(0.707730\pi\)
\(390\) 0 0
\(391\) 10.6056 + 25.6041i 0.536347 + 1.29486i
\(392\) 0 0
\(393\) −23.0661 9.55429i −1.16353 0.481950i
\(394\) 0 0
\(395\) −4.85505 5.28452i −0.244284 0.265893i
\(396\) 0 0
\(397\) −29.3365 + 12.1516i −1.47236 + 0.609871i −0.967396 0.253270i \(-0.918494\pi\)
−0.504963 + 0.863141i \(0.668494\pi\)
\(398\) 0 0
\(399\) −0.189905 + 0.458470i −0.00950712 + 0.0229522i
\(400\) 0 0
\(401\) 16.8775 16.8775i 0.842820 0.842820i −0.146405 0.989225i \(-0.546770\pi\)
0.989225 + 0.146405i \(0.0467702\pi\)
\(402\) 0 0
\(403\) −3.92547 9.47693i −0.195542 0.472079i
\(404\) 0 0
\(405\) −2.80387 + 6.03342i −0.139325 + 0.299803i
\(406\) 0 0
\(407\) 12.6452 5.23783i 0.626801 0.259630i
\(408\) 0 0
\(409\) −23.9966 −1.18656 −0.593279 0.804997i \(-0.702167\pi\)
−0.593279 + 0.804997i \(0.702167\pi\)
\(410\) 0 0
\(411\) −3.63315 −0.179210
\(412\) 0 0
\(413\) 1.31115 0.543095i 0.0645174 0.0267240i
\(414\) 0 0
\(415\) 24.8678 9.08784i 1.22071 0.446105i
\(416\) 0 0
\(417\) −4.33946 10.4764i −0.212504 0.513031i
\(418\) 0 0
\(419\) 15.9566 15.9566i 0.779533 0.779533i −0.200218 0.979751i \(-0.564165\pi\)
0.979751 + 0.200218i \(0.0641651\pi\)
\(420\) 0 0
\(421\) −8.96845 + 21.6518i −0.437096 + 1.05524i 0.539851 + 0.841760i \(0.318480\pi\)
−0.976947 + 0.213482i \(0.931520\pi\)
\(422\) 0 0
\(423\) 8.62196 3.57133i 0.419214 0.173644i
\(424\) 0 0
\(425\) 8.16353 + 25.6582i 0.395989 + 1.24460i
\(426\) 0 0
\(427\) −0.130147 0.0539088i −0.00629827 0.00260883i
\(428\) 0 0
\(429\) 5.15267 + 12.4396i 0.248773 + 0.600592i
\(430\) 0 0
\(431\) 12.4486 + 12.4486i 0.599628 + 0.599628i 0.940213 0.340586i \(-0.110625\pi\)
−0.340586 + 0.940213i \(0.610625\pi\)
\(432\) 0 0
\(433\) 17.3716 + 17.3716i 0.834827 + 0.834827i 0.988173 0.153345i \(-0.0490046\pi\)
−0.153345 + 0.988173i \(0.549005\pi\)
\(434\) 0 0
\(435\) 0.240163 0.516787i 0.0115149 0.0247780i
\(436\) 0 0
\(437\) 5.61661 13.5597i 0.268679 0.648648i
\(438\) 0 0
\(439\) 4.85410 11.7188i 0.231674 0.559310i −0.764701 0.644386i \(-0.777113\pi\)
0.996374 + 0.0850758i \(0.0271132\pi\)
\(440\) 0 0
\(441\) 9.61030i 0.457633i
\(442\) 0 0
\(443\) 4.63283i 0.220112i 0.993925 + 0.110056i \(0.0351031\pi\)
−0.993925 + 0.110056i \(0.964897\pi\)
\(444\) 0 0
\(445\) −12.6525 + 11.6242i −0.599786 + 0.551042i
\(446\) 0 0
\(447\) 12.6529 + 12.6529i 0.598463 + 0.598463i
\(448\) 0 0
\(449\) 16.3537 16.3537i 0.771780 0.771780i −0.206637 0.978418i \(-0.566252\pi\)
0.978418 + 0.206637i \(0.0662520\pi\)
\(450\) 0 0
\(451\) 20.4053 + 11.3027i 0.960850 + 0.532224i
\(452\) 0 0
\(453\) 2.97613i 0.139831i
\(454\) 0 0
\(455\) −0.304052 0.832002i −0.0142542 0.0390049i
\(456\) 0 0
\(457\) −19.1719 7.94128i −0.896825 0.371477i −0.113827 0.993501i \(-0.536311\pi\)
−0.782999 + 0.622023i \(0.786311\pi\)
\(458\) 0 0
\(459\) −21.2339 + 21.2339i −0.991115 + 0.991115i
\(460\) 0 0
\(461\) 28.0939 1.30846 0.654232 0.756294i \(-0.272992\pi\)
0.654232 + 0.756294i \(0.272992\pi\)
\(462\) 0 0
\(463\) 16.4064 + 39.6084i 0.762468 + 1.84076i 0.461569 + 0.887104i \(0.347287\pi\)
0.300899 + 0.953656i \(0.402713\pi\)
\(464\) 0 0
\(465\) 0.426349 10.0658i 0.0197715 0.466791i
\(466\) 0 0
\(467\) 8.61010 + 8.61010i 0.398428 + 0.398428i 0.877678 0.479250i \(-0.159091\pi\)
−0.479250 + 0.877678i \(0.659091\pi\)
\(468\) 0 0
\(469\) 0.861548i 0.0397826i
\(470\) 0 0
\(471\) 2.56990 2.56990i 0.118415 0.118415i
\(472\) 0 0
\(473\) 5.76128 + 2.38640i 0.264904 + 0.109727i
\(474\) 0 0
\(475\) 6.55134 12.6655i 0.300596 0.581131i
\(476\) 0 0
\(477\) 2.84813 + 1.17973i 0.130407 + 0.0540163i
\(478\) 0 0
\(479\) 3.58956 + 1.48684i 0.164011 + 0.0679357i 0.463179 0.886265i \(-0.346709\pi\)
−0.299167 + 0.954201i \(0.596709\pi\)
\(480\) 0 0
\(481\) −10.0689 4.17069i −0.459105 0.190167i
\(482\) 0 0
\(483\) 0.895490i 0.0407462i
\(484\) 0 0
\(485\) −3.69878 + 3.39818i −0.167953 + 0.154303i
\(486\) 0 0
\(487\) 19.3884 0.878570 0.439285 0.898348i \(-0.355232\pi\)
0.439285 + 0.898348i \(0.355232\pi\)
\(488\) 0 0
\(489\) −19.8698 8.23034i −0.898544 0.372189i
\(490\) 0 0
\(491\) 7.82643i 0.353202i −0.984283 0.176601i \(-0.943490\pi\)
0.984283 0.176601i \(-0.0565102\pi\)
\(492\) 0 0
\(493\) 0.761640 0.761640i 0.0343025 0.0343025i
\(494\) 0 0
\(495\) 0.474536 11.2035i 0.0213288 0.503558i
\(496\) 0 0
\(497\) 0.160520i 0.00720029i
\(498\) 0 0
\(499\) −1.98918 + 4.80230i −0.0890478 + 0.214980i −0.962129 0.272594i \(-0.912118\pi\)
0.873081 + 0.487575i \(0.162118\pi\)
\(500\) 0 0
\(501\) 5.88640 + 5.88640i 0.262985 + 0.262985i
\(502\) 0 0
\(503\) 16.6926 + 40.2995i 0.744286 + 1.79687i 0.587484 + 0.809235i \(0.300118\pi\)
0.156802 + 0.987630i \(0.449882\pi\)
\(504\) 0 0
\(505\) 40.1785 + 1.70181i 1.78792 + 0.0757294i
\(506\) 0 0
\(507\) −2.23581 + 5.39773i −0.0992959 + 0.239722i
\(508\) 0 0
\(509\) −14.2039 34.2914i −0.629579 1.51994i −0.840147 0.542358i \(-0.817532\pi\)
0.210569 0.977579i \(-0.432468\pi\)
\(510\) 0 0
\(511\) 0.254149 0.105272i 0.0112429 0.00465696i
\(512\) 0 0
\(513\) 15.9032 0.702145
\(514\) 0 0
\(515\) −5.09176 2.36626i −0.224370 0.104270i
\(516\) 0 0
\(517\) 17.4637 17.4637i 0.768055 0.768055i
\(518\) 0 0
\(519\) 4.26923 1.76837i 0.187399 0.0776230i
\(520\) 0 0
\(521\) −20.9244 8.66718i −0.916716 0.379716i −0.126092 0.992019i \(-0.540244\pi\)
−0.790624 + 0.612302i \(0.790244\pi\)
\(522\) 0 0
\(523\) 8.36722 + 8.36722i 0.365873 + 0.365873i 0.865970 0.500097i \(-0.166702\pi\)
−0.500097 + 0.865970i \(0.666702\pi\)
\(524\) 0 0
\(525\) 0.0735698 0.866907i 0.00321085 0.0378349i
\(526\) 0 0
\(527\) 7.28736 17.5932i 0.317442 0.766373i
\(528\) 0 0
\(529\) 3.48499i 0.151521i
\(530\) 0 0
\(531\) −10.1152 10.1152i −0.438963 0.438963i
\(532\) 0 0
\(533\) −5.12517 17.8530i −0.221996 0.773300i
\(534\) 0 0
\(535\) −10.7906 + 3.94337i −0.466517 + 0.170487i
\(536\) 0 0
\(537\) −3.45019 + 3.45019i −0.148887 + 0.148887i
\(538\) 0 0
\(539\) 9.73281 + 23.4971i 0.419222 + 1.01209i
\(540\) 0 0
\(541\) −14.3332 14.3332i −0.616231 0.616231i 0.328332 0.944562i \(-0.393514\pi\)
−0.944562 + 0.328332i \(0.893514\pi\)
\(542\) 0 0
\(543\) 13.4872 13.4872i 0.578792 0.578792i
\(544\) 0 0
\(545\) −4.77104 0.202083i −0.204369 0.00865629i
\(546\) 0 0
\(547\) 15.0179 + 6.22063i 0.642120 + 0.265975i 0.679893 0.733311i \(-0.262026\pi\)
−0.0377725 + 0.999286i \(0.512026\pi\)
\(548\) 0 0
\(549\) 1.41995i 0.0606020i
\(550\) 0 0
\(551\) −0.570433 −0.0243013
\(552\) 0 0
\(553\) 0.438281i 0.0186376i
\(554\) 0 0
\(555\) −7.24193 7.88255i −0.307403 0.334595i
\(556\) 0 0
\(557\) 2.50478 6.04707i 0.106131 0.256222i −0.861889 0.507098i \(-0.830718\pi\)
0.968019 + 0.250875i \(0.0807184\pi\)
\(558\) 0 0
\(559\) −1.90020 4.58750i −0.0803701 0.194030i
\(560\) 0 0
\(561\) −9.56556 + 23.0933i −0.403858 + 0.975000i
\(562\) 0 0
\(563\) −33.7102 + 13.9632i −1.42072 + 0.588480i −0.955041 0.296475i \(-0.904189\pi\)
−0.465676 + 0.884955i \(0.654189\pi\)
\(564\) 0 0
\(565\) −16.2835 44.5580i −0.685054 1.87457i
\(566\) 0 0
\(567\) 0.375404 0.155497i 0.0157655 0.00653027i
\(568\) 0 0
\(569\) −4.26563 4.26563i −0.178825 0.178825i 0.612019 0.790843i \(-0.290358\pi\)
−0.790843 + 0.612019i \(0.790358\pi\)
\(570\) 0 0
\(571\) 17.6909 42.7095i 0.740339 1.78734i 0.135841 0.990731i \(-0.456626\pi\)
0.604498 0.796606i \(-0.293374\pi\)
\(572\) 0 0
\(573\) −22.8997 22.8997i −0.956647 0.956647i
\(574\) 0 0
\(575\) −2.17590 + 25.6396i −0.0907412 + 1.06925i
\(576\) 0 0
\(577\) 1.84842 + 4.46249i 0.0769509 + 0.185776i 0.957674 0.287856i \(-0.0929426\pi\)
−0.880723 + 0.473632i \(0.842943\pi\)
\(578\) 0 0
\(579\) −22.3516 + 22.3516i −0.928899 + 0.928899i
\(580\) 0 0
\(581\) −1.49394 0.618809i −0.0619790 0.0256725i
\(582\) 0 0
\(583\) 8.15842 0.337887
\(584\) 0 0
\(585\) −6.57523 + 6.04086i −0.271852 + 0.249759i
\(586\) 0 0
\(587\) −2.03978 4.92446i −0.0841906 0.203254i 0.876178 0.481988i \(-0.160085\pi\)
−0.960368 + 0.278734i \(0.910085\pi\)
\(588\) 0 0
\(589\) −9.31721 + 3.85932i −0.383909 + 0.159020i
\(590\) 0 0
\(591\) −20.8292 + 8.62775i −0.856801 + 0.354898i
\(592\) 0 0
\(593\) −5.14339 + 12.4172i −0.211214 + 0.509915i −0.993610 0.112865i \(-0.963997\pi\)
0.782396 + 0.622781i \(0.213997\pi\)
\(594\) 0 0
\(595\) 0.693037 1.49129i 0.0284118 0.0611370i
\(596\) 0 0
\(597\) −6.04920 + 6.04920i −0.247577 + 0.247577i
\(598\) 0 0
\(599\) −5.14350 −0.210158 −0.105079 0.994464i \(-0.533509\pi\)
−0.105079 + 0.994464i \(0.533509\pi\)
\(600\) 0 0
\(601\) −3.85646 9.31032i −0.157308 0.379776i 0.825501 0.564401i \(-0.190893\pi\)
−0.982809 + 0.184625i \(0.940893\pi\)
\(602\) 0 0
\(603\) 8.02322 3.32333i 0.326731 0.135336i
\(604\) 0 0
\(605\) −1.74338 4.77055i −0.0708783 0.193950i
\(606\) 0 0
\(607\) 15.9525 0.647491 0.323746 0.946144i \(-0.395058\pi\)
0.323746 + 0.946144i \(0.395058\pi\)
\(608\) 0 0
\(609\) −0.0321548 + 0.0133190i −0.00130298 + 0.000539712i
\(610\) 0 0
\(611\) −19.6657 −0.795589
\(612\) 0 0
\(613\) −32.1295 −1.29770 −0.648849 0.760917i \(-0.724749\pi\)
−0.648849 + 0.760917i \(0.724749\pi\)
\(614\) 0 0
\(615\) 2.82485 18.0229i 0.113909 0.726752i
\(616\) 0 0
\(617\) −24.1103 −0.970646 −0.485323 0.874335i \(-0.661298\pi\)
−0.485323 + 0.874335i \(0.661298\pi\)
\(618\) 0 0
\(619\) 43.9636 1.76705 0.883523 0.468388i \(-0.155165\pi\)
0.883523 + 0.468388i \(0.155165\pi\)
\(620\) 0 0
\(621\) −26.5134 + 10.9822i −1.06395 + 0.440701i
\(622\) 0 0
\(623\) 1.04936 0.0420416
\(624\) 0 0
\(625\) −4.21289 + 24.6425i −0.168516 + 0.985699i
\(626\) 0 0
\(627\) 12.2300 5.06583i 0.488419 0.202310i
\(628\) 0 0
\(629\) −7.74260 18.6923i −0.308718 0.745310i
\(630\) 0 0
\(631\) 4.20212 0.167284 0.0836418 0.996496i \(-0.473345\pi\)
0.0836418 + 0.996496i \(0.473345\pi\)
\(632\) 0 0
\(633\) −9.87094 + 9.87094i −0.392335 + 0.392335i
\(634\) 0 0
\(635\) −13.2244 + 4.83279i −0.524793 + 0.191783i
\(636\) 0 0
\(637\) 7.74989 18.7099i 0.307062 0.741313i
\(638\) 0 0
\(639\) 1.49485 0.619187i 0.0591353 0.0244947i
\(640\) 0 0
\(641\) −21.7477 + 9.00821i −0.858984 + 0.355803i −0.768310 0.640078i \(-0.778902\pi\)
−0.0906741 + 0.995881i \(0.528902\pi\)
\(642\) 0 0
\(643\) 17.9984 + 43.4520i 0.709788 + 1.71358i 0.700530 + 0.713623i \(0.252947\pi\)
0.00925848 + 0.999957i \(0.497053\pi\)
\(644\) 0 0
\(645\) 0.206383 4.87256i 0.00812632 0.191857i
\(646\) 0 0
\(647\) 48.1647 1.89355 0.946774 0.321899i \(-0.104321\pi\)
0.946774 + 0.321899i \(0.104321\pi\)
\(648\) 0 0
\(649\) −34.9758 14.4874i −1.37292 0.568682i
\(650\) 0 0
\(651\) −0.435093 + 0.435093i −0.0170526 + 0.0170526i
\(652\) 0 0
\(653\) −5.68337 13.7209i −0.222408 0.536939i 0.772808 0.634639i \(-0.218851\pi\)
−0.995216 + 0.0977002i \(0.968851\pi\)
\(654\) 0 0
\(655\) −15.0394 41.1535i −0.587636 1.60800i
\(656\) 0 0
\(657\) −1.96071 1.96071i −0.0764944 0.0764944i
\(658\) 0 0
\(659\) −15.9583 + 38.5268i −0.621648 + 1.50079i 0.228120 + 0.973633i \(0.426742\pi\)
−0.849768 + 0.527157i \(0.823258\pi\)
\(660\) 0 0
\(661\) −0.425721 0.425721i −0.0165586 0.0165586i 0.698779 0.715338i \(-0.253727\pi\)
−0.715338 + 0.698779i \(0.753727\pi\)
\(662\) 0 0
\(663\) 18.3884 7.61671i 0.714145 0.295809i
\(664\) 0 0
\(665\) −0.817981 + 0.298928i −0.0317199 + 0.0115919i
\(666\) 0 0
\(667\) 0.951010 0.393921i 0.0368233 0.0152527i
\(668\) 0 0
\(669\) 7.00634 16.9148i 0.270881 0.653964i
\(670\) 0 0
\(671\) 1.43805 + 3.47177i 0.0555154 + 0.134026i
\(672\) 0 0
\(673\) −8.17483 + 19.7358i −0.315117 + 0.760759i 0.684383 + 0.729123i \(0.260072\pi\)
−0.999499 + 0.0316358i \(0.989928\pi\)
\(674\) 0 0
\(675\) −26.5694 + 8.45345i −1.02266 + 0.325373i
\(676\) 0 0
\(677\) 28.3686i 1.09029i −0.838341 0.545147i \(-0.816474\pi\)
0.838341 0.545147i \(-0.183526\pi\)
\(678\) 0 0
\(679\) 0.306765 0.0117726
\(680\) 0 0
\(681\) 6.62912i 0.254028i
\(682\) 0 0
\(683\) −21.0204 8.70693i −0.804323 0.333162i −0.0576366 0.998338i \(-0.518356\pi\)
−0.746687 + 0.665176i \(0.768356\pi\)
\(684\) 0 0
\(685\) −4.31371 4.69530i −0.164818 0.179398i
\(686\) 0 0
\(687\) −10.3551 + 10.3551i −0.395073 + 0.395073i
\(688\) 0 0
\(689\) −4.59355 4.59355i −0.175000 0.175000i
\(690\) 0 0
\(691\) −8.59161 20.7420i −0.326840 0.789062i −0.998823 0.0484957i \(-0.984557\pi\)
0.671983 0.740566i \(-0.265443\pi\)
\(692\) 0 0
\(693\) −0.484268 + 0.484268i −0.0183958 + 0.0183958i
\(694\) 0 0
\(695\) 8.38682 18.0469i 0.318130 0.684559i
\(696\) 0 0
\(697\) 16.7078 30.1633i 0.632852 1.14252i
\(698\) 0 0
\(699\) 0.267175 + 0.267175i 0.0101055 + 0.0101055i
\(700\) 0 0
\(701\) 34.4894i 1.30265i 0.758800 + 0.651324i \(0.225786\pi\)
−0.758800 + 0.651324i \(0.774214\pi\)
\(702\) 0 0
\(703\) −4.10041 + 9.89926i −0.154650 + 0.373358i
\(704\) 0 0
\(705\) −17.5160 8.14008i −0.659690 0.306573i
\(706\) 0 0
\(707\) −1.73671 1.73671i −0.0653156 0.0653156i
\(708\) 0 0
\(709\) −13.9091 5.76133i −0.522366 0.216371i 0.105890 0.994378i \(-0.466231\pi\)
−0.628256 + 0.778007i \(0.716231\pi\)
\(710\) 0 0
\(711\) 4.08152 1.69062i 0.153069 0.0634032i
\(712\) 0 0
\(713\) 12.8683 12.8683i 0.481921 0.481921i
\(714\) 0 0
\(715\) −9.95850 + 21.4289i −0.372427 + 0.801395i
\(716\) 0 0
\(717\) 10.0082 0.373764
\(718\) 0 0
\(719\) −41.6838 + 17.2660i −1.55454 + 0.643913i −0.984131 0.177445i \(-0.943217\pi\)
−0.570413 + 0.821358i \(0.693217\pi\)
\(720\) 0 0
\(721\) 0.131228 + 0.316813i 0.00488719 + 0.0117987i
\(722\) 0 0
\(723\) 13.7710 33.2461i 0.512148 1.23643i
\(724\) 0 0
\(725\) 0.953018 0.303217i 0.0353942 0.0112612i
\(726\) 0 0
\(727\) 3.83585 + 9.26056i 0.142264 + 0.343455i 0.978911 0.204287i \(-0.0654876\pi\)
−0.836647 + 0.547742i \(0.815488\pi\)
\(728\) 0 0
\(729\) −17.9683 17.9683i −0.665491 0.665491i
\(730\) 0 0
\(731\) 3.52759 8.51636i 0.130473 0.314989i
\(732\) 0 0
\(733\) 13.4057i 0.495151i 0.968869 + 0.247575i \(0.0796338\pi\)
−0.968869 + 0.247575i \(0.920366\pi\)
\(734\) 0 0
\(735\) 14.6472 13.4568i 0.540269 0.496361i
\(736\) 0 0
\(737\) 16.2510 16.2510i 0.598613 0.598613i
\(738\) 0 0
\(739\) 13.5812i 0.499593i 0.968298 + 0.249796i \(0.0803637\pi\)
−0.968298 + 0.249796i \(0.919636\pi\)
\(740\) 0 0
\(741\) −9.73831 4.03374i −0.357746 0.148183i
\(742\) 0 0
\(743\) 22.5559 0.827497 0.413748 0.910391i \(-0.364219\pi\)
0.413748 + 0.910391i \(0.364219\pi\)
\(744\) 0 0
\(745\) −1.32893 + 31.3751i −0.0486882 + 1.14949i
\(746\) 0 0
\(747\) 16.2994i 0.596363i
\(748\) 0 0
\(749\) 0.648244 + 0.268512i 0.0236863 + 0.00981120i
\(750\) 0 0
\(751\) 26.2895 + 10.8895i 0.959319 + 0.397363i 0.806726 0.590926i \(-0.201238\pi\)
0.152593 + 0.988289i \(0.451238\pi\)
\(752\) 0 0
\(753\) −27.7248 11.4840i −1.01035 0.418500i
\(754\) 0 0
\(755\) 3.84619 3.53361i 0.139977 0.128601i
\(756\) 0 0
\(757\) −17.0468 7.06101i −0.619576 0.256637i 0.0507409 0.998712i \(-0.483842\pi\)
−0.670317 + 0.742075i \(0.733842\pi\)
\(758\) 0 0
\(759\) −16.8912 + 16.8912i −0.613113 + 0.613113i
\(760\) 0 0
\(761\) 23.1561i 0.839406i 0.907661 + 0.419703i \(0.137866\pi\)
−0.907661 + 0.419703i \(0.862134\pi\)
\(762\) 0 0
\(763\) 0.206227 + 0.206227i 0.00746593 + 0.00746593i
\(764\) 0 0
\(765\) −16.5610 0.701463i −0.598766 0.0253614i
\(766\) 0 0
\(767\) 11.5358 + 27.8499i 0.416535 + 1.00560i
\(768\) 0 0
\(769\) −20.0750 −0.723922 −0.361961 0.932193i \(-0.617893\pi\)
−0.361961 + 0.932193i \(0.617893\pi\)
\(770\) 0 0
\(771\) 22.6794 22.6794i 0.816779 0.816779i
\(772\) 0 0
\(773\) −34.9607 14.4812i −1.25745 0.520852i −0.348323 0.937375i \(-0.613249\pi\)
−0.909125 + 0.416523i \(0.863249\pi\)
\(774\) 0 0
\(775\) 13.5148 11.4003i 0.485464 0.409512i
\(776\) 0 0
\(777\) 0.653752i 0.0234532i
\(778\) 0 0
\(779\) −17.5521 + 5.03880i −0.628871 + 0.180534i
\(780\) 0 0
\(781\) 3.02781 3.02781i 0.108344 0.108344i
\(782\) 0 0
\(783\) 0.788689 + 0.788689i 0.0281854 + 0.0281854i
\(784\) 0 0
\(785\) 6.37250 + 0.269915i 0.227444 + 0.00963367i
\(786\) 0 0
\(787\) 24.1385i 0.860445i −0.902723 0.430222i \(-0.858435\pi\)
0.902723 0.430222i \(-0.141565\pi\)
\(788\) 0 0
\(789\) 10.9925i 0.391343i
\(790\) 0 0
\(791\) −1.10878 + 2.67683i −0.0394236 + 0.0951770i
\(792\) 0 0
\(793\) 1.14507 2.76444i 0.0406626 0.0981682i
\(794\) 0 0
\(795\) −2.19004 5.99278i −0.0776726 0.212542i
\(796\) 0 0
\(797\) 28.3880 + 28.3880i 1.00556 + 1.00556i 0.999984 + 0.00557171i \(0.00177354\pi\)
0.00557171 + 0.999984i \(0.498226\pi\)
\(798\) 0 0
\(799\) −25.8150 25.8150i −0.913270 0.913270i
\(800\) 0 0
\(801\) −4.04778 9.77220i −0.143021 0.345284i
\(802\) 0 0
\(803\) −6.77961 2.80820i −0.239247 0.0990994i
\(804\) 0 0
\(805\) 1.15729 1.06323i 0.0407890 0.0374740i
\(806\) 0 0
\(807\) 28.5357 11.8199i 1.00451 0.416080i
\(808\) 0 0
\(809\) −1.70266 + 4.11060i −0.0598625 + 0.144521i −0.950981 0.309251i \(-0.899922\pi\)
0.891118 + 0.453772i \(0.149922\pi\)
\(810\) 0 0
\(811\) 10.8882 10.8882i 0.382337 0.382337i −0.489606 0.871944i \(-0.662859\pi\)
0.871944 + 0.489606i \(0.162859\pi\)
\(812\) 0 0
\(813\) 10.5182 + 25.3932i 0.368889 + 0.890577i
\(814\) 0 0
\(815\) −12.9553 35.4508i −0.453806 1.24179i
\(816\) 0 0
\(817\) −4.51018 + 1.86818i −0.157791 + 0.0653593i
\(818\) 0 0
\(819\) 0.545328 0.0190553
\(820\) 0 0
\(821\) 16.0582 0.560436 0.280218 0.959936i \(-0.409593\pi\)
0.280218 + 0.959936i \(0.409593\pi\)
\(822\) 0 0
\(823\) 16.3749 6.78273i 0.570795 0.236431i −0.0785692 0.996909i \(-0.525035\pi\)
0.649364 + 0.760478i \(0.275035\pi\)
\(824\) 0 0
\(825\) −17.7398 + 14.9644i −0.617620 + 0.520992i
\(826\) 0 0
\(827\) −16.7861 40.5253i −0.583711 1.40920i −0.889425 0.457080i \(-0.848895\pi\)
0.305714 0.952123i \(-0.401105\pi\)
\(828\) 0 0
\(829\) 25.4294 25.4294i 0.883198 0.883198i −0.110660 0.993858i \(-0.535296\pi\)
0.993858 + 0.110660i \(0.0352964\pi\)
\(830\) 0 0
\(831\) −12.1571 + 29.3497i −0.421724 + 1.01813i
\(832\) 0 0
\(833\) 34.7336 14.3871i 1.20345 0.498484i
\(834\) 0 0
\(835\) −0.618244 + 14.5963i −0.0213952 + 0.505126i
\(836\) 0 0
\(837\) 18.2181 + 7.54616i 0.629708 + 0.260834i
\(838\) 0 0
\(839\) 12.5334 + 30.2583i 0.432701 + 1.04463i 0.978413 + 0.206660i \(0.0662592\pi\)
−0.545712 + 0.837973i \(0.683741\pi\)
\(840\) 0 0
\(841\) 20.4778 + 20.4778i 0.706131 + 0.706131i
\(842\) 0 0
\(843\) 2.93698 + 2.93698i 0.101155 + 0.101155i
\(844\) 0 0
\(845\) −9.63038 + 3.51938i −0.331295 + 0.121070i
\(846\) 0 0
\(847\) −0.118710 + 0.286591i −0.00407892 + 0.00984739i
\(848\) 0 0
\(849\) −1.50147 + 3.62486i −0.0515302 + 0.124405i
\(850\) 0 0
\(851\) 19.3354i 0.662808i
\(852\) 0 0
\(853\) 32.1199i 1.09977i 0.835242 + 0.549883i \(0.185328\pi\)
−0.835242 + 0.549883i \(0.814672\pi\)
\(854\) 0 0
\(855\) 5.93905 + 6.46441i 0.203111 + 0.221078i
\(856\) 0 0
\(857\) −14.1050 14.1050i −0.481817 0.481817i 0.423895 0.905711i \(-0.360663\pi\)
−0.905711 + 0.423895i \(0.860663\pi\)
\(858\) 0 0
\(859\) −21.7100 + 21.7100i −0.740734 + 0.740734i −0.972719 0.231985i \(-0.925478\pi\)
0.231985 + 0.972719i \(0.425478\pi\)
\(860\) 0 0
\(861\) −0.871749 + 0.693856i −0.0297091 + 0.0236465i
\(862\) 0 0
\(863\) 24.4641i 0.832769i 0.909189 + 0.416385i \(0.136703\pi\)
−0.909189 + 0.416385i \(0.863297\pi\)
\(864\) 0 0
\(865\) 7.35430 + 3.41771i 0.250054 + 0.116206i
\(866\) 0 0
\(867\) 14.1251 + 5.85082i 0.479714 + 0.198704i
\(868\) 0 0
\(869\) 8.26710 8.26710i 0.280442 0.280442i
\(870\) 0 0
\(871\) −18.3000 −0.620073
\(872\) 0 0
\(873\) −1.18331 2.85677i −0.0400490 0.0966868i
\(874\) 0 0
\(875\) 1.20770 0.934218i 0.0408276 0.0315823i
\(876\) 0 0
\(877\) −25.6976 25.6976i −0.867746 0.867746i 0.124476 0.992223i \(-0.460275\pi\)
−0.992223 + 0.124476i \(0.960275\pi\)
\(878\) 0 0
\(879\) 13.4887i 0.454963i
\(880\) 0 0
\(881\) 15.4359 15.4359i 0.520049 0.520049i −0.397537 0.917586i \(-0.630135\pi\)
0.917586 + 0.397537i \(0.130135\pi\)
\(882\) 0 0
\(883\) −27.5548 11.4136i −0.927292 0.384097i −0.132642 0.991164i \(-0.542346\pi\)
−0.794651 + 0.607067i \(0.792346\pi\)
\(884\) 0 0
\(885\) −1.25292 + 29.5805i −0.0421164 + 0.994338i
\(886\) 0 0
\(887\) −6.45462 2.67359i −0.216725 0.0897704i 0.271680 0.962388i \(-0.412421\pi\)
−0.488404 + 0.872617i \(0.662421\pi\)
\(888\) 0 0
\(889\) 0.794455 + 0.329074i 0.0266452 + 0.0110368i
\(890\) 0 0
\(891\) −10.0141 4.14800i −0.335487 0.138963i
\(892\) 0 0
\(893\) 19.3343i 0.646997i
\(894\) 0 0
\(895\) −8.55532 0.362371i −0.285973 0.0121127i
\(896\) 0 0
\(897\) 19.0210 0.635093
\(898\) 0 0
\(899\) −0.653463 0.270673i −0.0217942 0.00902746i
\(900\) 0 0
\(901\) 12.0598i 0.401771i
\(902\) 0 0
\(903\) −0.210615 + 0.210615i −0.00700884 + 0.00700884i
\(904\) 0 0
\(905\) 33.4438 + 1.41655i 1.11171 + 0.0470878i
\(906\) 0 0
\(907\) 1.35625i 0.0450337i 0.999746 + 0.0225168i \(0.00716793\pi\)
−0.999746 + 0.0225168i \(0.992832\pi\)
\(908\) 0 0
\(909\) −9.47403 + 22.8723i −0.314234 + 0.758627i
\(910\) 0 0
\(911\) −20.5044 20.5044i −0.679340 0.679340i 0.280511 0.959851i \(-0.409496\pi\)
−0.959851 + 0.280511i \(0.909496\pi\)
\(912\) 0 0
\(913\) 16.5071 + 39.8518i 0.546307 + 1.31890i
\(914\) 0 0
\(915\) 2.16416 1.98828i 0.0715450 0.0657305i
\(916\) 0 0
\(917\) −1.02406 + 2.47230i −0.0338174 + 0.0816425i
\(918\) 0 0
\(919\) 5.80964 + 14.0257i 0.191642 + 0.462665i 0.990270 0.139160i \(-0.0444403\pi\)
−0.798628 + 0.601825i \(0.794440\pi\)
\(920\) 0 0
\(921\) −34.9496 + 14.4766i −1.15163 + 0.477020i
\(922\) 0 0
\(923\) −3.40958 −0.112228
\(924\) 0 0
\(925\) 1.58851 18.7182i 0.0522300 0.615451i
\(926\) 0 0
\(927\) 2.44414 2.44414i 0.0802761 0.0802761i
\(928\) 0 0
\(929\) −13.5502 + 5.61266i −0.444567 + 0.184145i −0.593725 0.804668i \(-0.702343\pi\)
0.149159 + 0.988813i \(0.452343\pi\)
\(930\) 0 0
\(931\) −18.3946 7.61928i −0.602858 0.249712i
\(932\) 0 0
\(933\) 9.53095 + 9.53095i 0.312029 + 0.312029i
\(934\) 0 0
\(935\) −41.2020 + 15.0571i −1.34745 + 0.492420i
\(936\) 0 0
\(937\) 2.36304 5.70489i 0.0771972 0.186371i −0.880569 0.473917i \(-0.842840\pi\)
0.957767 + 0.287547i \(0.0928396\pi\)
\(938\) 0 0
\(939\) 6.91495i 0.225661i
\(940\) 0 0
\(941\) 0.141295 + 0.141295i 0.00460609 + 0.00460609i 0.709406 0.704800i \(-0.248963\pi\)
−0.704800 + 0.709406i \(0.748963\pi\)
\(942\) 0 0
\(943\) 25.7828 20.5215i 0.839605 0.668270i
\(944\) 0 0
\(945\) 1.54425 + 0.717650i 0.0502346 + 0.0233452i
\(946\) 0 0
\(947\) 3.31720 3.31720i 0.107794 0.107794i −0.651152 0.758947i \(-0.725714\pi\)
0.758947 + 0.651152i \(0.225714\pi\)
\(948\) 0 0
\(949\) 2.23607 + 5.39836i 0.0725860 + 0.175238i
\(950\) 0 0
\(951\) 0.725504 + 0.725504i 0.0235261 + 0.0235261i
\(952\) 0 0
\(953\) 9.03395 9.03395i 0.292638 0.292638i −0.545483 0.838122i \(-0.683654\pi\)
0.838122 + 0.545483i \(0.183654\pi\)
\(954\) 0 0
\(955\) 2.40514 56.7836i 0.0778284 1.83747i
\(956\) 0 0
\(957\) 0.857752 + 0.355293i 0.0277272 + 0.0114850i
\(958\) 0 0
\(959\) 0.389413i 0.0125748i
\(960\) 0 0
\(961\) 18.4953 0.596624
\(962\) 0 0
\(963\) 7.07257i 0.227910i
\(964\) 0 0
\(965\) −55.4245 2.34757i −1.78418 0.0755709i
\(966\) 0 0
\(967\) −0.910974 + 2.19929i −0.0292949 + 0.0707243i −0.937850 0.347041i \(-0.887187\pi\)
0.908555 + 0.417765i \(0.137187\pi\)
\(968\) 0 0
\(969\) −7.48835 18.0785i −0.240560 0.580764i
\(970\) 0 0
\(971\) −10.2061 + 24.6396i −0.327528 + 0.790724i 0.671246 + 0.741234i \(0.265759\pi\)
−0.998775 + 0.0494891i \(0.984241\pi\)
\(972\) 0 0
\(973\) −1.12289 + 0.465117i −0.0359983 + 0.0149110i
\(974\) 0 0
\(975\) 18.4139 + 1.56269i 0.589716 + 0.0500460i
\(976\) 0 0
\(977\) 39.6514 16.4242i 1.26856 0.525455i 0.356035 0.934473i \(-0.384129\pi\)
0.912526 + 0.409018i \(0.134129\pi\)
\(978\) 0 0
\(979\) −19.7936 19.7936i −0.632605 0.632605i
\(980\) 0 0
\(981\) 1.12501 2.71600i 0.0359187 0.0867153i
\(982\) 0 0
\(983\) −13.0026 13.0026i −0.414720 0.414720i 0.468659 0.883379i \(-0.344737\pi\)
−0.883379 + 0.468659i \(0.844737\pi\)
\(984\) 0 0
\(985\) −35.8810 16.6747i −1.14326 0.531302i
\(986\) 0 0
\(987\) 0.451433 + 1.08986i 0.0143693 + 0.0346905i
\(988\) 0 0
\(989\) 6.22915 6.22915i 0.198076 0.198076i
\(990\) 0 0
\(991\) 17.0114 + 7.04634i 0.540384 + 0.223834i 0.636144 0.771570i \(-0.280528\pi\)
−0.0957603 + 0.995404i \(0.530528\pi\)
\(992\) 0 0
\(993\) −26.0353 −0.826206
\(994\) 0 0
\(995\) −15.0000 0.635344i −0.475532 0.0201417i
\(996\) 0 0
\(997\) −11.2964 27.2718i −0.357759 0.863707i −0.995615 0.0935508i \(-0.970178\pi\)
0.637855 0.770156i \(-0.279822\pi\)
\(998\) 0 0
\(999\) 19.3561 8.01757i 0.612401 0.253665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.817.15 yes 84
5.3 odd 4 820.2.y.a.653.15 yes 84
41.27 odd 8 820.2.y.a.437.15 yes 84
205.68 even 8 inner 820.2.x.a.273.15 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.15 84 205.68 even 8 inner
820.2.x.a.817.15 yes 84 1.1 even 1 trivial
820.2.y.a.437.15 yes 84 41.27 odd 8
820.2.y.a.653.15 yes 84 5.3 odd 4