Properties

Label 820.2.x.a.273.6
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.6
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30072 - 0.538776i) q^{3} +(1.59126 + 1.57096i) q^{5} +(-0.188362 + 0.454747i) q^{7} +(-0.719728 - 0.719728i) q^{9} +(-0.189669 - 0.457901i) q^{11} +(1.98169 + 0.820844i) q^{13} +(-1.22338 - 2.90070i) q^{15} +(5.85122 - 2.42365i) q^{17} +(0.0217955 - 0.0526190i) q^{19} +(0.490013 - 0.490013i) q^{21} +(-2.81893 + 2.81893i) q^{23} +(0.0641897 + 4.99959i) q^{25} +(2.16472 + 5.22610i) q^{27} +(0.996646 + 2.40612i) q^{29} +10.5037i q^{31} +0.697789i q^{33} +(-1.01412 + 0.427710i) q^{35} +(4.54494 - 4.54494i) q^{37} +(-2.13538 - 2.13538i) q^{39} +(5.37057 - 3.48669i) q^{41} -11.9827i q^{43} +(-0.0146097 - 2.27593i) q^{45} +(8.60362 - 3.56374i) q^{47} +(4.77843 + 4.77843i) q^{49} -8.91660 q^{51} +(-3.08766 + 7.45426i) q^{53} +(0.417531 - 1.02660i) q^{55} +(-0.0566997 + 0.0566997i) q^{57} +9.71888i q^{59} +(6.46086 + 6.46086i) q^{61} +(0.462864 - 0.191724i) q^{63} +(1.86387 + 4.41933i) q^{65} +(14.4796 - 5.99766i) q^{67} +(5.18540 - 2.14786i) q^{69} +(-5.71563 + 2.36749i) q^{71} -6.53797i q^{73} +(2.61016 - 6.53765i) q^{75} +0.243955 q^{77} +(-6.06436 + 2.51194i) q^{79} -4.91043i q^{81} +(1.32027 + 1.32027i) q^{83} +(13.1182 + 5.33536i) q^{85} -3.66665i q^{87} +(2.35851 + 5.69395i) q^{89} +(-0.746553 + 0.746553i) q^{91} +(5.65915 - 13.6624i) q^{93} +(0.117344 - 0.0494905i) q^{95} +(4.68468 + 11.3098i) q^{97} +(-0.193054 + 0.466074i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.30072 0.538776i −0.750971 0.311062i −0.0258332 0.999666i \(-0.508224\pi\)
−0.725138 + 0.688604i \(0.758224\pi\)
\(4\) 0 0
\(5\) 1.59126 + 1.57096i 0.711631 + 0.702553i
\(6\) 0 0
\(7\) −0.188362 + 0.454747i −0.0711943 + 0.171878i −0.955471 0.295085i \(-0.904652\pi\)
0.884277 + 0.466963i \(0.154652\pi\)
\(8\) 0 0
\(9\) −0.719728 0.719728i −0.239909 0.239909i
\(10\) 0 0
\(11\) −0.189669 0.457901i −0.0571872 0.138062i 0.892703 0.450645i \(-0.148806\pi\)
−0.949891 + 0.312583i \(0.898806\pi\)
\(12\) 0 0
\(13\) 1.98169 + 0.820844i 0.549623 + 0.227661i 0.640173 0.768231i \(-0.278863\pi\)
−0.0905504 + 0.995892i \(0.528863\pi\)
\(14\) 0 0
\(15\) −1.22338 2.90070i −0.315876 0.748959i
\(16\) 0 0
\(17\) 5.85122 2.42365i 1.41913 0.587822i 0.464487 0.885580i \(-0.346239\pi\)
0.954641 + 0.297758i \(0.0962388\pi\)
\(18\) 0 0
\(19\) 0.0217955 0.0526190i 0.00500023 0.0120716i −0.921360 0.388711i \(-0.872920\pi\)
0.926360 + 0.376639i \(0.122920\pi\)
\(20\) 0 0
\(21\) 0.490013 0.490013i 0.106930 0.106930i
\(22\) 0 0
\(23\) −2.81893 + 2.81893i −0.587787 + 0.587787i −0.937031 0.349245i \(-0.886438\pi\)
0.349245 + 0.937031i \(0.386438\pi\)
\(24\) 0 0
\(25\) 0.0641897 + 4.99959i 0.0128379 + 0.999918i
\(26\) 0 0
\(27\) 2.16472 + 5.22610i 0.416600 + 1.00576i
\(28\) 0 0
\(29\) 0.996646 + 2.40612i 0.185073 + 0.446805i 0.988999 0.147925i \(-0.0472593\pi\)
−0.803926 + 0.594729i \(0.797259\pi\)
\(30\) 0 0
\(31\) 10.5037i 1.88652i 0.332049 + 0.943262i \(0.392260\pi\)
−0.332049 + 0.943262i \(0.607740\pi\)
\(32\) 0 0
\(33\) 0.697789i 0.121469i
\(34\) 0 0
\(35\) −1.01412 + 0.427710i −0.171418 + 0.0722961i
\(36\) 0 0
\(37\) 4.54494 4.54494i 0.747183 0.747183i −0.226766 0.973949i \(-0.572815\pi\)
0.973949 + 0.226766i \(0.0728154\pi\)
\(38\) 0 0
\(39\) −2.13538 2.13538i −0.341934 0.341934i
\(40\) 0 0
\(41\) 5.37057 3.48669i 0.838741 0.544530i
\(42\) 0 0
\(43\) 11.9827i 1.82734i −0.406457 0.913670i \(-0.633236\pi\)
0.406457 0.913670i \(-0.366764\pi\)
\(44\) 0 0
\(45\) −0.0146097 2.27593i −0.00217789 0.339276i
\(46\) 0 0
\(47\) 8.60362 3.56374i 1.25497 0.519824i 0.346606 0.938011i \(-0.387334\pi\)
0.908361 + 0.418186i \(0.137334\pi\)
\(48\) 0 0
\(49\) 4.77843 + 4.77843i 0.682633 + 0.682633i
\(50\) 0 0
\(51\) −8.91660 −1.24857
\(52\) 0 0
\(53\) −3.08766 + 7.45426i −0.424122 + 1.02392i 0.556996 + 0.830515i \(0.311954\pi\)
−0.981119 + 0.193407i \(0.938046\pi\)
\(54\) 0 0
\(55\) 0.417531 1.02660i 0.0562998 0.138426i
\(56\) 0 0
\(57\) −0.0566997 + 0.0566997i −0.00751005 + 0.00751005i
\(58\) 0 0
\(59\) 9.71888i 1.26529i 0.774442 + 0.632645i \(0.218031\pi\)
−0.774442 + 0.632645i \(0.781969\pi\)
\(60\) 0 0
\(61\) 6.46086 + 6.46086i 0.827228 + 0.827228i 0.987132 0.159905i \(-0.0511187\pi\)
−0.159905 + 0.987132i \(0.551119\pi\)
\(62\) 0 0
\(63\) 0.462864 0.191724i 0.0583154 0.0241550i
\(64\) 0 0
\(65\) 1.86387 + 4.41933i 0.231185 + 0.548150i
\(66\) 0 0
\(67\) 14.4796 5.99766i 1.76897 0.732730i 0.773925 0.633277i \(-0.218291\pi\)
0.995042 0.0994529i \(-0.0317093\pi\)
\(68\) 0 0
\(69\) 5.18540 2.14786i 0.624249 0.258572i
\(70\) 0 0
\(71\) −5.71563 + 2.36749i −0.678321 + 0.280970i −0.695125 0.718889i \(-0.744651\pi\)
0.0168040 + 0.999859i \(0.494651\pi\)
\(72\) 0 0
\(73\) 6.53797i 0.765211i −0.923912 0.382605i \(-0.875027\pi\)
0.923912 0.382605i \(-0.124973\pi\)
\(74\) 0 0
\(75\) 2.61016 6.53765i 0.301396 0.754902i
\(76\) 0 0
\(77\) 0.243955 0.0278013
\(78\) 0 0
\(79\) −6.06436 + 2.51194i −0.682293 + 0.282615i −0.696785 0.717280i \(-0.745387\pi\)
0.0144919 + 0.999895i \(0.495387\pi\)
\(80\) 0 0
\(81\) 4.91043i 0.545604i
\(82\) 0 0
\(83\) 1.32027 + 1.32027i 0.144918 + 0.144918i 0.775844 0.630925i \(-0.217325\pi\)
−0.630925 + 0.775844i \(0.717325\pi\)
\(84\) 0 0
\(85\) 13.1182 + 5.33536i 1.42287 + 0.578701i
\(86\) 0 0
\(87\) 3.66665i 0.393106i
\(88\) 0 0
\(89\) 2.35851 + 5.69395i 0.250002 + 0.603557i 0.998204 0.0599137i \(-0.0190826\pi\)
−0.748202 + 0.663471i \(0.769083\pi\)
\(90\) 0 0
\(91\) −0.746553 + 0.746553i −0.0782600 + 0.0782600i
\(92\) 0 0
\(93\) 5.65915 13.6624i 0.586826 1.41672i
\(94\) 0 0
\(95\) 0.117344 0.0494905i 0.0120393 0.00507762i
\(96\) 0 0
\(97\) 4.68468 + 11.3098i 0.475657 + 1.14834i 0.961626 + 0.274362i \(0.0884666\pi\)
−0.485969 + 0.873976i \(0.661533\pi\)
\(98\) 0 0
\(99\) −0.193054 + 0.466074i −0.0194027 + 0.0468422i
\(100\) 0 0
\(101\) −2.96526 1.22825i −0.295055 0.122216i 0.230246 0.973133i \(-0.426047\pi\)
−0.525300 + 0.850917i \(0.676047\pi\)
\(102\) 0 0
\(103\) −13.3057 −1.31105 −0.655527 0.755172i \(-0.727554\pi\)
−0.655527 + 0.755172i \(0.727554\pi\)
\(104\) 0 0
\(105\) 1.54953 0.00994677i 0.151218 0.000970705i
\(106\) 0 0
\(107\) −7.17591 7.17591i −0.693721 0.693721i 0.269327 0.963049i \(-0.413199\pi\)
−0.963049 + 0.269327i \(0.913199\pi\)
\(108\) 0 0
\(109\) −16.8126 6.96403i −1.61036 0.667033i −0.617527 0.786550i \(-0.711865\pi\)
−0.992832 + 0.119517i \(0.961865\pi\)
\(110\) 0 0
\(111\) −8.36039 + 3.46299i −0.793533 + 0.328692i
\(112\) 0 0
\(113\) 7.75944 7.75944i 0.729947 0.729947i −0.240662 0.970609i \(-0.577365\pi\)
0.970609 + 0.240662i \(0.0773646\pi\)
\(114\) 0 0
\(115\) −8.91404 + 0.0572213i −0.831239 + 0.00533591i
\(116\) 0 0
\(117\) −0.835495 2.01706i −0.0772416 0.186478i
\(118\) 0 0
\(119\) 3.11735i 0.285767i
\(120\) 0 0
\(121\) 7.60448 7.60448i 0.691316 0.691316i
\(122\) 0 0
\(123\) −8.86415 + 1.64168i −0.799253 + 0.148025i
\(124\) 0 0
\(125\) −7.75199 + 8.05646i −0.693359 + 0.720592i
\(126\) 0 0
\(127\) −0.911552 0.911552i −0.0808871 0.0808871i 0.665506 0.746393i \(-0.268216\pi\)
−0.746393 + 0.665506i \(0.768216\pi\)
\(128\) 0 0
\(129\) −6.45597 + 15.5861i −0.568417 + 1.37228i
\(130\) 0 0
\(131\) 8.94315 8.94315i 0.781367 0.781367i −0.198695 0.980061i \(-0.563670\pi\)
0.980061 + 0.198695i \(0.0636703\pi\)
\(132\) 0 0
\(133\) 0.0198229 + 0.0198229i 0.00171886 + 0.00171886i
\(134\) 0 0
\(135\) −4.76535 + 11.7167i −0.410136 + 1.00842i
\(136\) 0 0
\(137\) −0.351496 + 0.145594i −0.0300303 + 0.0124390i −0.397648 0.917538i \(-0.630173\pi\)
0.367618 + 0.929977i \(0.380173\pi\)
\(138\) 0 0
\(139\) 16.4127i 1.39210i −0.717992 0.696052i \(-0.754938\pi\)
0.717992 0.696052i \(-0.245062\pi\)
\(140\) 0 0
\(141\) −13.1110 −1.10414
\(142\) 0 0
\(143\) 1.06311i 0.0889014i
\(144\) 0 0
\(145\) −2.19399 + 5.39443i −0.182201 + 0.447983i
\(146\) 0 0
\(147\) −3.64090 8.78991i −0.300296 0.724979i
\(148\) 0 0
\(149\) −7.15737 + 17.2794i −0.586355 + 1.41559i 0.300609 + 0.953747i \(0.402810\pi\)
−0.886964 + 0.461838i \(0.847190\pi\)
\(150\) 0 0
\(151\) −2.76918 6.68540i −0.225353 0.544050i 0.770248 0.637744i \(-0.220132\pi\)
−0.995601 + 0.0936942i \(0.970132\pi\)
\(152\) 0 0
\(153\) −5.95566 2.46691i −0.481486 0.199438i
\(154\) 0 0
\(155\) −16.5009 + 16.7141i −1.32538 + 1.34251i
\(156\) 0 0
\(157\) −10.2939 4.26387i −0.821542 0.340294i −0.0679933 0.997686i \(-0.521660\pi\)
−0.753549 + 0.657392i \(0.771660\pi\)
\(158\) 0 0
\(159\) 8.03235 8.03235i 0.637007 0.637007i
\(160\) 0 0
\(161\) −0.750918 1.81288i −0.0591807 0.142875i
\(162\) 0 0
\(163\) −6.31580 + 6.31580i −0.494692 + 0.494692i −0.909781 0.415089i \(-0.863750\pi\)
0.415089 + 0.909781i \(0.363750\pi\)
\(164\) 0 0
\(165\) −1.09620 + 1.11036i −0.0853388 + 0.0864415i
\(166\) 0 0
\(167\) 1.51616 3.66034i 0.117324 0.283246i −0.854298 0.519783i \(-0.826013\pi\)
0.971622 + 0.236538i \(0.0760126\pi\)
\(168\) 0 0
\(169\) −5.93907 5.93907i −0.456851 0.456851i
\(170\) 0 0
\(171\) −0.0535582 + 0.0221845i −0.00409570 + 0.00169649i
\(172\) 0 0
\(173\) −11.9549 −0.908917 −0.454459 0.890768i \(-0.650167\pi\)
−0.454459 + 0.890768i \(0.650167\pi\)
\(174\) 0 0
\(175\) −2.28564 0.912544i −0.172778 0.0689819i
\(176\) 0 0
\(177\) 5.23630 12.6415i 0.393584 0.950197i
\(178\) 0 0
\(179\) 8.40792 + 3.48267i 0.628437 + 0.260307i 0.674089 0.738650i \(-0.264536\pi\)
−0.0456517 + 0.998957i \(0.514536\pi\)
\(180\) 0 0
\(181\) −19.9999 8.28422i −1.48658 0.615761i −0.516010 0.856583i \(-0.672583\pi\)
−0.970569 + 0.240821i \(0.922583\pi\)
\(182\) 0 0
\(183\) −4.92281 11.8847i −0.363905 0.878543i
\(184\) 0 0
\(185\) 14.3721 0.0922575i 1.05665 0.00678291i
\(186\) 0 0
\(187\) −2.21958 2.21958i −0.162312 0.162312i
\(188\) 0 0
\(189\) −2.78430 −0.202528
\(190\) 0 0
\(191\) −2.07967 + 5.02076i −0.150479 + 0.363290i −0.981087 0.193569i \(-0.937994\pi\)
0.830607 + 0.556859i \(0.187994\pi\)
\(192\) 0 0
\(193\) 14.0879 + 5.83539i 1.01407 + 0.420040i 0.826937 0.562295i \(-0.190081\pi\)
0.187130 + 0.982335i \(0.440081\pi\)
\(194\) 0 0
\(195\) −0.0433459 6.75251i −0.00310407 0.483557i
\(196\) 0 0
\(197\) −17.5199 −1.24824 −0.624122 0.781327i \(-0.714543\pi\)
−0.624122 + 0.781327i \(0.714543\pi\)
\(198\) 0 0
\(199\) 10.8383 + 4.48936i 0.768304 + 0.318242i 0.732185 0.681105i \(-0.238500\pi\)
0.0361190 + 0.999347i \(0.488500\pi\)
\(200\) 0 0
\(201\) −22.0653 −1.55637
\(202\) 0 0
\(203\) −1.28190 −0.0899721
\(204\) 0 0
\(205\) 14.0234 + 2.88871i 0.979436 + 0.201756i
\(206\) 0 0
\(207\) 4.05772 0.282031
\(208\) 0 0
\(209\) −0.0282282 −0.00195258
\(210\) 0 0
\(211\) −17.0929 7.08012i −1.17673 0.487416i −0.293315 0.956016i \(-0.594758\pi\)
−0.883410 + 0.468600i \(0.844758\pi\)
\(212\) 0 0
\(213\) 8.70998 0.596798
\(214\) 0 0
\(215\) 18.8243 19.0675i 1.28380 1.30039i
\(216\) 0 0
\(217\) −4.77654 1.97851i −0.324252 0.134310i
\(218\) 0 0
\(219\) −3.52250 + 8.50406i −0.238028 + 0.574651i
\(220\) 0 0
\(221\) 13.5848 0.913809
\(222\) 0 0
\(223\) 5.85628 + 5.85628i 0.392166 + 0.392166i 0.875459 0.483293i \(-0.160559\pi\)
−0.483293 + 0.875459i \(0.660559\pi\)
\(224\) 0 0
\(225\) 3.55215 3.64454i 0.236810 0.242970i
\(226\) 0 0
\(227\) 2.94037 + 7.09869i 0.195159 + 0.471156i 0.990920 0.134455i \(-0.0429285\pi\)
−0.795760 + 0.605612i \(0.792928\pi\)
\(228\) 0 0
\(229\) 5.31111 + 2.19993i 0.350968 + 0.145376i 0.551201 0.834373i \(-0.314170\pi\)
−0.200233 + 0.979748i \(0.564170\pi\)
\(230\) 0 0
\(231\) −0.317317 0.131437i −0.0208780 0.00864793i
\(232\) 0 0
\(233\) 1.86028 4.49111i 0.121871 0.294222i −0.851157 0.524912i \(-0.824098\pi\)
0.973027 + 0.230690i \(0.0740983\pi\)
\(234\) 0 0
\(235\) 19.2890 + 7.84510i 1.25828 + 0.511758i
\(236\) 0 0
\(237\) 9.24140 0.600293
\(238\) 0 0
\(239\) −7.97443 + 3.30312i −0.515823 + 0.213661i −0.625381 0.780319i \(-0.715056\pi\)
0.109558 + 0.993980i \(0.465056\pi\)
\(240\) 0 0
\(241\) −12.1579 12.1579i −0.783158 0.783158i 0.197205 0.980362i \(-0.436814\pi\)
−0.980362 + 0.197205i \(0.936814\pi\)
\(242\) 0 0
\(243\) 3.84854 9.29119i 0.246884 0.596030i
\(244\) 0 0
\(245\) 0.0969973 + 15.1104i 0.00619693 + 0.965369i
\(246\) 0 0
\(247\) 0.0863839 0.0863839i 0.00549648 0.00549648i
\(248\) 0 0
\(249\) −1.00597 2.42863i −0.0637508 0.153908i
\(250\) 0 0
\(251\) −5.31667 + 5.31667i −0.335585 + 0.335585i −0.854703 0.519118i \(-0.826261\pi\)
0.519118 + 0.854703i \(0.326261\pi\)
\(252\) 0 0
\(253\) 1.82545 + 0.756126i 0.114765 + 0.0475372i
\(254\) 0 0
\(255\) −14.1886 14.0076i −0.888524 0.877189i
\(256\) 0 0
\(257\) 22.9273 + 9.49681i 1.43017 + 0.592395i 0.957393 0.288789i \(-0.0932526\pi\)
0.472774 + 0.881184i \(0.343253\pi\)
\(258\) 0 0
\(259\) 1.21070 + 2.92289i 0.0752293 + 0.181620i
\(260\) 0 0
\(261\) 1.01444 2.44906i 0.0627920 0.151593i
\(262\) 0 0
\(263\) 3.79530 + 9.16267i 0.234028 + 0.564994i 0.996644 0.0818574i \(-0.0260852\pi\)
−0.762616 + 0.646852i \(0.776085\pi\)
\(264\) 0 0
\(265\) −16.6236 + 7.01106i −1.02118 + 0.430686i
\(266\) 0 0
\(267\) 8.67694i 0.531020i
\(268\) 0 0
\(269\) 0.579557 0.0353362 0.0176681 0.999844i \(-0.494376\pi\)
0.0176681 + 0.999844i \(0.494376\pi\)
\(270\) 0 0
\(271\) 2.11139i 0.128258i −0.997942 0.0641288i \(-0.979573\pi\)
0.997942 0.0641288i \(-0.0204268\pi\)
\(272\) 0 0
\(273\) 1.37328 0.568831i 0.0831147 0.0344272i
\(274\) 0 0
\(275\) 2.27714 0.977657i 0.137317 0.0589550i
\(276\) 0 0
\(277\) 4.32839 + 4.32839i 0.260068 + 0.260068i 0.825081 0.565014i \(-0.191129\pi\)
−0.565014 + 0.825081i \(0.691129\pi\)
\(278\) 0 0
\(279\) 7.55982 7.55982i 0.452595 0.452595i
\(280\) 0 0
\(281\) −4.40245 + 10.6285i −0.262628 + 0.634041i −0.999100 0.0424280i \(-0.986491\pi\)
0.736471 + 0.676469i \(0.236491\pi\)
\(282\) 0 0
\(283\) −14.2991 14.2991i −0.849996 0.849996i 0.140136 0.990132i \(-0.455246\pi\)
−0.990132 + 0.140136i \(0.955246\pi\)
\(284\) 0 0
\(285\) −0.179296 + 0.00115094i −0.0106206 + 6.81761e-5i
\(286\) 0 0
\(287\) 0.573951 + 3.09901i 0.0338792 + 0.182929i
\(288\) 0 0
\(289\) 16.3418 16.3418i 0.961283 0.961283i
\(290\) 0 0
\(291\) 17.2349i 1.01033i
\(292\) 0 0
\(293\) 1.81364 + 4.37852i 0.105954 + 0.255796i 0.967961 0.251101i \(-0.0807925\pi\)
−0.862007 + 0.506897i \(0.830793\pi\)
\(294\) 0 0
\(295\) −15.2679 + 15.4652i −0.888934 + 0.900421i
\(296\) 0 0
\(297\) 1.98245 1.98245i 0.115034 0.115034i
\(298\) 0 0
\(299\) −7.90014 + 3.27235i −0.456877 + 0.189245i
\(300\) 0 0
\(301\) 5.44908 + 2.25708i 0.314080 + 0.130096i
\(302\) 0 0
\(303\) 3.19522 + 3.19522i 0.183561 + 0.183561i
\(304\) 0 0
\(305\) 0.131149 + 20.4306i 0.00750956 + 1.16985i
\(306\) 0 0
\(307\) 14.4264 0.823361 0.411680 0.911328i \(-0.364942\pi\)
0.411680 + 0.911328i \(0.364942\pi\)
\(308\) 0 0
\(309\) 17.3070 + 7.16881i 0.984563 + 0.407820i
\(310\) 0 0
\(311\) 5.53375 13.3596i 0.313790 0.757556i −0.685768 0.727820i \(-0.740533\pi\)
0.999558 0.0297355i \(-0.00946651\pi\)
\(312\) 0 0
\(313\) −5.85254 14.1293i −0.330805 0.798634i −0.998529 0.0542251i \(-0.982731\pi\)
0.667724 0.744409i \(-0.267269\pi\)
\(314\) 0 0
\(315\) 1.03773 + 0.422056i 0.0584692 + 0.0237802i
\(316\) 0 0
\(317\) 4.37125 10.5531i 0.245514 0.592723i −0.752299 0.658822i \(-0.771055\pi\)
0.997813 + 0.0660987i \(0.0210552\pi\)
\(318\) 0 0
\(319\) 0.912730 0.912730i 0.0511030 0.0511030i
\(320\) 0 0
\(321\) 5.46764 + 13.2001i 0.305174 + 0.736755i
\(322\) 0 0
\(323\) 0.360710i 0.0200704i
\(324\) 0 0
\(325\) −3.97668 + 9.96034i −0.220586 + 0.552500i
\(326\) 0 0
\(327\) 18.1165 + 18.1165i 1.00184 + 1.00184i
\(328\) 0 0
\(329\) 4.58375i 0.252710i
\(330\) 0 0
\(331\) −13.0248 + 5.39503i −0.715906 + 0.296538i −0.710746 0.703449i \(-0.751642\pi\)
−0.00515976 + 0.999987i \(0.501642\pi\)
\(332\) 0 0
\(333\) −6.54224 −0.358512
\(334\) 0 0
\(335\) 32.4628 + 13.2031i 1.77363 + 0.721360i
\(336\) 0 0
\(337\) 30.2100i 1.64564i −0.568300 0.822821i \(-0.692399\pi\)
0.568300 0.822821i \(-0.307601\pi\)
\(338\) 0 0
\(339\) −14.2735 + 5.91226i −0.775228 + 0.321110i
\(340\) 0 0
\(341\) 4.80966 1.99223i 0.260458 0.107885i
\(342\) 0 0
\(343\) −6.25628 + 2.59144i −0.337808 + 0.139924i
\(344\) 0 0
\(345\) 11.6255 + 4.72824i 0.625896 + 0.254560i
\(346\) 0 0
\(347\) −28.8006 + 11.9296i −1.54610 + 0.640414i −0.982605 0.185709i \(-0.940542\pi\)
−0.563491 + 0.826122i \(0.690542\pi\)
\(348\) 0 0
\(349\) −25.4667 25.4667i −1.36320 1.36320i −0.869802 0.493401i \(-0.835753\pi\)
−0.493401 0.869802i \(-0.664247\pi\)
\(350\) 0 0
\(351\) 12.1334i 0.647634i
\(352\) 0 0
\(353\) −4.64880 + 4.64880i −0.247431 + 0.247431i −0.819915 0.572485i \(-0.805980\pi\)
0.572485 + 0.819915i \(0.305980\pi\)
\(354\) 0 0
\(355\) −12.8143 5.21172i −0.680110 0.276610i
\(356\) 0 0
\(357\) 1.67955 4.05480i 0.0888913 0.214603i
\(358\) 0 0
\(359\) 32.4231 1.71123 0.855614 0.517614i \(-0.173180\pi\)
0.855614 + 0.517614i \(0.173180\pi\)
\(360\) 0 0
\(361\) 13.4327 + 13.4327i 0.706986 + 0.706986i
\(362\) 0 0
\(363\) −13.9884 + 5.79418i −0.734200 + 0.304116i
\(364\) 0 0
\(365\) 10.2709 10.4036i 0.537601 0.544548i
\(366\) 0 0
\(367\) 8.13367i 0.424574i −0.977207 0.212287i \(-0.931909\pi\)
0.977207 0.212287i \(-0.0680912\pi\)
\(368\) 0 0
\(369\) −6.37482 1.35588i −0.331860 0.0705841i
\(370\) 0 0
\(371\) −2.80821 2.80821i −0.145795 0.145795i
\(372\) 0 0
\(373\) 12.1598 12.1598i 0.629611 0.629611i −0.318359 0.947970i \(-0.603132\pi\)
0.947970 + 0.318359i \(0.103132\pi\)
\(374\) 0 0
\(375\) 14.4238 6.30261i 0.744842 0.325465i
\(376\) 0 0
\(377\) 5.58627i 0.287708i
\(378\) 0 0
\(379\) 19.0663i 0.979371i −0.871899 0.489685i \(-0.837112\pi\)
0.871899 0.489685i \(-0.162888\pi\)
\(380\) 0 0
\(381\) 0.694551 + 1.67679i 0.0355829 + 0.0859048i
\(382\) 0 0
\(383\) 12.4975 + 30.1716i 0.638591 + 1.54169i 0.828557 + 0.559904i \(0.189162\pi\)
−0.189967 + 0.981791i \(0.560838\pi\)
\(384\) 0 0
\(385\) 0.388195 + 0.383243i 0.0197843 + 0.0195319i
\(386\) 0 0
\(387\) −8.62426 + 8.62426i −0.438396 + 0.438396i
\(388\) 0 0
\(389\) 0.725677 0.725677i 0.0367933 0.0367933i −0.688471 0.725264i \(-0.741718\pi\)
0.725264 + 0.688471i \(0.241718\pi\)
\(390\) 0 0
\(391\) −9.66204 + 23.3262i −0.488631 + 1.17966i
\(392\) 0 0
\(393\) −16.4509 + 6.81418i −0.829837 + 0.343730i
\(394\) 0 0
\(395\) −13.5961 5.52970i −0.684093 0.278230i
\(396\) 0 0
\(397\) −10.9657 4.54215i −0.550354 0.227964i 0.0901374 0.995929i \(-0.471269\pi\)
−0.640492 + 0.767965i \(0.721269\pi\)
\(398\) 0 0
\(399\) −0.0151039 0.0364641i −0.000756142 0.00182549i
\(400\) 0 0
\(401\) 27.2714 + 27.2714i 1.36187 + 1.36187i 0.871532 + 0.490338i \(0.163127\pi\)
0.490338 + 0.871532i \(0.336873\pi\)
\(402\) 0 0
\(403\) −8.62192 + 20.8151i −0.429488 + 1.03688i
\(404\) 0 0
\(405\) 7.71408 7.81376i 0.383316 0.388269i
\(406\) 0 0
\(407\) −2.94316 1.21910i −0.145887 0.0604284i
\(408\) 0 0
\(409\) −3.49897 −0.173013 −0.0865065 0.996251i \(-0.527570\pi\)
−0.0865065 + 0.996251i \(0.527570\pi\)
\(410\) 0 0
\(411\) 0.535640 0.0264212
\(412\) 0 0
\(413\) −4.41963 1.83067i −0.217476 0.0900815i
\(414\) 0 0
\(415\) 0.0268001 + 4.17497i 0.00131557 + 0.204941i
\(416\) 0 0
\(417\) −8.84274 + 21.3483i −0.433031 + 1.04543i
\(418\) 0 0
\(419\) −2.28049 2.28049i −0.111409 0.111409i 0.649205 0.760614i \(-0.275102\pi\)
−0.760614 + 0.649205i \(0.775102\pi\)
\(420\) 0 0
\(421\) −12.3379 29.7863i −0.601313 1.45170i −0.872231 0.489094i \(-0.837327\pi\)
0.270918 0.962602i \(-0.412673\pi\)
\(422\) 0 0
\(423\) −8.75719 3.62735i −0.425789 0.176368i
\(424\) 0 0
\(425\) 12.4929 + 29.0981i 0.605992 + 1.41146i
\(426\) 0 0
\(427\) −4.15504 + 1.72107i −0.201076 + 0.0832885i
\(428\) 0 0
\(429\) −0.572776 + 1.38280i −0.0276539 + 0.0667624i
\(430\) 0 0
\(431\) 9.43862 9.43862i 0.454642 0.454642i −0.442250 0.896892i \(-0.645820\pi\)
0.896892 + 0.442250i \(0.145820\pi\)
\(432\) 0 0
\(433\) 18.6791 18.6791i 0.897659 0.897659i −0.0975699 0.995229i \(-0.531107\pi\)
0.995229 + 0.0975699i \(0.0311070\pi\)
\(434\) 0 0
\(435\) 5.76015 5.83458i 0.276178 0.279747i
\(436\) 0 0
\(437\) 0.0868891 + 0.209769i 0.00415647 + 0.0100346i
\(438\) 0 0
\(439\) 3.16437 + 7.63947i 0.151027 + 0.364612i 0.981228 0.192853i \(-0.0617740\pi\)
−0.830200 + 0.557465i \(0.811774\pi\)
\(440\) 0 0
\(441\) 6.87835i 0.327540i
\(442\) 0 0
\(443\) 5.94830i 0.282612i −0.989966 0.141306i \(-0.954870\pi\)
0.989966 0.141306i \(-0.0451302\pi\)
\(444\) 0 0
\(445\) −5.19195 + 12.7656i −0.246122 + 0.605150i
\(446\) 0 0
\(447\) 18.6195 18.6195i 0.880671 0.880671i
\(448\) 0 0
\(449\) −23.5285 23.5285i −1.11038 1.11038i −0.993099 0.117280i \(-0.962582\pi\)
−0.117280 0.993099i \(-0.537418\pi\)
\(450\) 0 0
\(451\) −2.61519 1.79787i −0.123144 0.0846583i
\(452\) 0 0
\(453\) 10.1878i 0.478665i
\(454\) 0 0
\(455\) −2.36076 + 0.0151543i −0.110674 + 0.000710442i
\(456\) 0 0
\(457\) 3.90481 1.61743i 0.182659 0.0756600i −0.289479 0.957184i \(-0.593482\pi\)
0.472139 + 0.881524i \(0.343482\pi\)
\(458\) 0 0
\(459\) 25.3325 + 25.3325i 1.18242 + 1.18242i
\(460\) 0 0
\(461\) 8.14853 0.379515 0.189757 0.981831i \(-0.439230\pi\)
0.189757 + 0.981831i \(0.439230\pi\)
\(462\) 0 0
\(463\) 4.29904 10.3788i 0.199794 0.482344i −0.791949 0.610587i \(-0.790934\pi\)
0.991743 + 0.128243i \(0.0409336\pi\)
\(464\) 0 0
\(465\) 30.4682 12.8501i 1.41293 0.595908i
\(466\) 0 0
\(467\) 14.5791 14.5791i 0.674639 0.674639i −0.284143 0.958782i \(-0.591709\pi\)
0.958782 + 0.284143i \(0.0917089\pi\)
\(468\) 0 0
\(469\) 7.71430i 0.356213i
\(470\) 0 0
\(471\) 11.0922 + 11.0922i 0.511102 + 0.511102i
\(472\) 0 0
\(473\) −5.48687 + 2.27274i −0.252287 + 0.104501i
\(474\) 0 0
\(475\) 0.264472 + 0.105591i 0.0121348 + 0.00484484i
\(476\) 0 0
\(477\) 7.58732 3.14277i 0.347399 0.143898i
\(478\) 0 0
\(479\) 9.13378 3.78334i 0.417333 0.172865i −0.164128 0.986439i \(-0.552481\pi\)
0.581461 + 0.813574i \(0.302481\pi\)
\(480\) 0 0
\(481\) 12.7373 5.27598i 0.580773 0.240564i
\(482\) 0 0
\(483\) 2.76262i 0.125704i
\(484\) 0 0
\(485\) −10.3127 + 25.3562i −0.468276 + 1.15137i
\(486\) 0 0
\(487\) 17.5304 0.794379 0.397190 0.917737i \(-0.369986\pi\)
0.397190 + 0.917737i \(0.369986\pi\)
\(488\) 0 0
\(489\) 11.6179 4.81229i 0.525379 0.217619i
\(490\) 0 0
\(491\) 9.83918i 0.444036i −0.975043 0.222018i \(-0.928736\pi\)
0.975043 0.222018i \(-0.0712644\pi\)
\(492\) 0 0
\(493\) 11.6632 + 11.6632i 0.525283 + 0.525283i
\(494\) 0 0
\(495\) −1.03938 + 0.438363i −0.0467167 + 0.0197029i
\(496\) 0 0
\(497\) 3.04511i 0.136592i
\(498\) 0 0
\(499\) 3.52346 + 8.50639i 0.157732 + 0.380798i 0.982913 0.184069i \(-0.0589271\pi\)
−0.825181 + 0.564868i \(0.808927\pi\)
\(500\) 0 0
\(501\) −3.94421 + 3.94421i −0.176214 + 0.176214i
\(502\) 0 0
\(503\) 3.60463 8.70234i 0.160722 0.388018i −0.822918 0.568160i \(-0.807656\pi\)
0.983641 + 0.180142i \(0.0576556\pi\)
\(504\) 0 0
\(505\) −2.78896 6.61276i −0.124107 0.294264i
\(506\) 0 0
\(507\) 4.52524 + 10.9249i 0.200973 + 0.485191i
\(508\) 0 0
\(509\) −0.0578167 + 0.139582i −0.00256268 + 0.00618686i −0.925156 0.379588i \(-0.876066\pi\)
0.922593 + 0.385775i \(0.126066\pi\)
\(510\) 0 0
\(511\) 2.97312 + 1.23151i 0.131523 + 0.0544786i
\(512\) 0 0
\(513\) 0.322173 0.0142243
\(514\) 0 0
\(515\) −21.1728 20.9028i −0.932987 0.921085i
\(516\) 0 0
\(517\) −3.26367 3.26367i −0.143536 0.143536i
\(518\) 0 0
\(519\) 15.5500 + 6.44103i 0.682570 + 0.282730i
\(520\) 0 0
\(521\) −32.1222 + 13.3054i −1.40730 + 0.582922i −0.951635 0.307230i \(-0.900598\pi\)
−0.455663 + 0.890152i \(0.650598\pi\)
\(522\) 0 0
\(523\) 8.60500 8.60500i 0.376270 0.376270i −0.493484 0.869755i \(-0.664277\pi\)
0.869755 + 0.493484i \(0.164277\pi\)
\(524\) 0 0
\(525\) 2.48132 + 2.41841i 0.108294 + 0.105548i
\(526\) 0 0
\(527\) 25.4574 + 61.4595i 1.10894 + 2.67722i
\(528\) 0 0
\(529\) 7.10732i 0.309014i
\(530\) 0 0
\(531\) 6.99495 6.99495i 0.303555 0.303555i
\(532\) 0 0
\(533\) 13.5048 2.50116i 0.584960 0.108337i
\(534\) 0 0
\(535\) −0.145664 22.6917i −0.00629759 0.981050i
\(536\) 0 0
\(537\) −9.05996 9.05996i −0.390966 0.390966i
\(538\) 0 0
\(539\) 1.28173 3.09437i 0.0552079 0.133284i
\(540\) 0 0
\(541\) −12.9488 + 12.9488i −0.556712 + 0.556712i −0.928370 0.371658i \(-0.878789\pi\)
0.371658 + 0.928370i \(0.378789\pi\)
\(542\) 0 0
\(543\) 21.5509 + 21.5509i 0.924837 + 0.924837i
\(544\) 0 0
\(545\) −15.8130 37.4935i −0.677356 1.60604i
\(546\) 0 0
\(547\) 0.614192 0.254407i 0.0262610 0.0108776i −0.369514 0.929225i \(-0.620476\pi\)
0.395775 + 0.918347i \(0.370476\pi\)
\(548\) 0 0
\(549\) 9.30012i 0.396919i
\(550\) 0 0
\(551\) 0.148330 0.00631906
\(552\) 0 0
\(553\) 3.23090i 0.137392i
\(554\) 0 0
\(555\) −18.7437 7.62331i −0.795627 0.323592i
\(556\) 0 0
\(557\) 8.53239 + 20.5990i 0.361529 + 0.872808i 0.995077 + 0.0991045i \(0.0315978\pi\)
−0.633548 + 0.773703i \(0.718402\pi\)
\(558\) 0 0
\(559\) 9.83590 23.7460i 0.416014 1.00435i
\(560\) 0 0
\(561\) 1.69120 + 4.08291i 0.0714025 + 0.172381i
\(562\) 0 0
\(563\) 16.1470 + 6.68831i 0.680516 + 0.281879i 0.696042 0.718001i \(-0.254943\pi\)
−0.0155269 + 0.999879i \(0.504943\pi\)
\(564\) 0 0
\(565\) 24.5370 0.157509i 1.03228 0.00662644i
\(566\) 0 0
\(567\) 2.23301 + 0.924941i 0.0937774 + 0.0388439i
\(568\) 0 0
\(569\) −24.2186 + 24.2186i −1.01529 + 1.01529i −0.0154134 + 0.999881i \(0.504906\pi\)
−0.999881 + 0.0154134i \(0.995094\pi\)
\(570\) 0 0
\(571\) 4.32752 + 10.4476i 0.181101 + 0.437217i 0.988194 0.153208i \(-0.0489604\pi\)
−0.807093 + 0.590424i \(0.798960\pi\)
\(572\) 0 0
\(573\) 5.41013 5.41013i 0.226011 0.226011i
\(574\) 0 0
\(575\) −14.2744 13.9125i −0.595284 0.580192i
\(576\) 0 0
\(577\) −1.62569 + 3.92477i −0.0676786 + 0.163391i −0.954100 0.299489i \(-0.903184\pi\)
0.886421 + 0.462880i \(0.153184\pi\)
\(578\) 0 0
\(579\) −15.1804 15.1804i −0.630876 0.630876i
\(580\) 0 0
\(581\) −0.849078 + 0.351700i −0.0352257 + 0.0145910i
\(582\) 0 0
\(583\) 3.99894 0.165619
\(584\) 0 0
\(585\) 1.83923 4.52219i 0.0760430 0.186970i
\(586\) 0 0
\(587\) 2.75273 6.64568i 0.113617 0.274297i −0.856834 0.515592i \(-0.827572\pi\)
0.970452 + 0.241295i \(0.0775722\pi\)
\(588\) 0 0
\(589\) 0.552695 + 0.228934i 0.0227734 + 0.00943305i
\(590\) 0 0
\(591\) 22.7885 + 9.43931i 0.937394 + 0.388281i
\(592\) 0 0
\(593\) −9.95206 24.0264i −0.408682 0.986646i −0.985485 0.169762i \(-0.945700\pi\)
0.576803 0.816883i \(-0.304300\pi\)
\(594\) 0 0
\(595\) −4.89722 + 4.96050i −0.200766 + 0.203361i
\(596\) 0 0
\(597\) −11.6788 11.6788i −0.477981 0.477981i
\(598\) 0 0
\(599\) −28.7206 −1.17349 −0.586746 0.809771i \(-0.699591\pi\)
−0.586746 + 0.809771i \(0.699591\pi\)
\(600\) 0 0
\(601\) −3.20865 + 7.74638i −0.130884 + 0.315981i −0.975712 0.219056i \(-0.929702\pi\)
0.844829 + 0.535037i \(0.179702\pi\)
\(602\) 0 0
\(603\) −14.7381 6.10471i −0.600181 0.248603i
\(604\) 0 0
\(605\) 24.0470 0.154363i 0.977648 0.00627575i
\(606\) 0 0
\(607\) −27.2423 −1.10573 −0.552866 0.833270i \(-0.686466\pi\)
−0.552866 + 0.833270i \(0.686466\pi\)
\(608\) 0 0
\(609\) 1.66740 + 0.690659i 0.0675664 + 0.0279869i
\(610\) 0 0
\(611\) 19.9750 0.808102
\(612\) 0 0
\(613\) −13.4945 −0.545039 −0.272519 0.962150i \(-0.587857\pi\)
−0.272519 + 0.962150i \(0.587857\pi\)
\(614\) 0 0
\(615\) −16.6841 11.3129i −0.672769 0.456178i
\(616\) 0 0
\(617\) −42.6063 −1.71527 −0.857633 0.514262i \(-0.828066\pi\)
−0.857633 + 0.514262i \(0.828066\pi\)
\(618\) 0 0
\(619\) 6.13111 0.246430 0.123215 0.992380i \(-0.460679\pi\)
0.123215 + 0.992380i \(0.460679\pi\)
\(620\) 0 0
\(621\) −20.8342 8.62979i −0.836046 0.346302i
\(622\) 0 0
\(623\) −3.03356 −0.121537
\(624\) 0 0
\(625\) −24.9918 + 0.641844i −0.999670 + 0.0256738i
\(626\) 0 0
\(627\) 0.0367170 + 0.0152087i 0.00146633 + 0.000607375i
\(628\) 0 0
\(629\) 15.5781 37.6087i 0.621138 1.49956i
\(630\) 0 0
\(631\) 28.4846 1.13395 0.566977 0.823734i \(-0.308113\pi\)
0.566977 + 0.823734i \(0.308113\pi\)
\(632\) 0 0
\(633\) 18.4185 + 18.4185i 0.732070 + 0.732070i
\(634\) 0 0
\(635\) −0.0185036 2.88252i −0.000734291 0.114389i
\(636\) 0 0
\(637\) 5.54704 + 13.3917i 0.219782 + 0.530600i
\(638\) 0 0
\(639\) 5.81765 + 2.40975i 0.230143 + 0.0953282i
\(640\) 0 0
\(641\) 45.5367 + 18.8619i 1.79859 + 0.745002i 0.986988 + 0.160796i \(0.0514063\pi\)
0.811606 + 0.584205i \(0.198594\pi\)
\(642\) 0 0
\(643\) 1.47720 3.56628i 0.0582551 0.140640i −0.892072 0.451893i \(-0.850749\pi\)
0.950327 + 0.311253i \(0.100749\pi\)
\(644\) 0 0
\(645\) −34.7582 + 14.6594i −1.36860 + 0.577214i
\(646\) 0 0
\(647\) −15.9302 −0.626281 −0.313141 0.949707i \(-0.601381\pi\)
−0.313141 + 0.949707i \(0.601381\pi\)
\(648\) 0 0
\(649\) 4.45028 1.84337i 0.174689 0.0723585i
\(650\) 0 0
\(651\) 5.14696 + 5.14696i 0.201725 + 0.201725i
\(652\) 0 0
\(653\) −6.57203 + 15.8663i −0.257183 + 0.620896i −0.998750 0.0499835i \(-0.984083\pi\)
0.741567 + 0.670879i \(0.234083\pi\)
\(654\) 0 0
\(655\) 28.2801 0.181537i 1.10500 0.00709323i
\(656\) 0 0
\(657\) −4.70556 + 4.70556i −0.183581 + 0.183581i
\(658\) 0 0
\(659\) 16.3545 + 39.4832i 0.637079 + 1.53805i 0.830553 + 0.556940i \(0.188025\pi\)
−0.193474 + 0.981105i \(0.561975\pi\)
\(660\) 0 0
\(661\) 3.09190 3.09190i 0.120261 0.120261i −0.644415 0.764676i \(-0.722899\pi\)
0.764676 + 0.644415i \(0.222899\pi\)
\(662\) 0 0
\(663\) −17.6700 7.31913i −0.686244 0.284252i
\(664\) 0 0
\(665\) 0.000402384 0.0626841i 1.56038e−5 0.00243079i
\(666\) 0 0
\(667\) −9.59213 3.97319i −0.371409 0.153843i
\(668\) 0 0
\(669\) −4.46216 10.7726i −0.172517 0.416493i
\(670\) 0 0
\(671\) 1.73301 4.18385i 0.0669020 0.161516i
\(672\) 0 0
\(673\) 4.59408 + 11.0911i 0.177089 + 0.427530i 0.987354 0.158534i \(-0.0506767\pi\)
−0.810265 + 0.586064i \(0.800677\pi\)
\(674\) 0 0
\(675\) −25.9894 + 11.1582i −1.00033 + 0.429478i
\(676\) 0 0
\(677\) 21.3868i 0.821962i −0.911644 0.410981i \(-0.865186\pi\)
0.911644 0.410981i \(-0.134814\pi\)
\(678\) 0 0
\(679\) −6.02552 −0.231238
\(680\) 0 0
\(681\) 10.8176i 0.414531i
\(682\) 0 0
\(683\) −19.9368 + 8.25810i −0.762861 + 0.315987i −0.729977 0.683472i \(-0.760469\pi\)
−0.0328840 + 0.999459i \(0.510469\pi\)
\(684\) 0 0
\(685\) −0.788042 0.320507i −0.0301095 0.0122459i
\(686\) 0 0
\(687\) −5.72299 5.72299i −0.218346 0.218346i
\(688\) 0 0
\(689\) −12.2376 + 12.2376i −0.466214 + 0.466214i
\(690\) 0 0
\(691\) −10.3927 + 25.0902i −0.395357 + 0.954476i 0.593395 + 0.804912i \(0.297787\pi\)
−0.988752 + 0.149565i \(0.952213\pi\)
\(692\) 0 0
\(693\) −0.175582 0.175582i −0.00666979 0.00666979i
\(694\) 0 0
\(695\) 25.7836 26.1167i 0.978027 0.990664i
\(696\) 0 0
\(697\) 22.9738 33.4178i 0.870195 1.26579i
\(698\) 0 0
\(699\) −4.83940 + 4.83940i −0.183043 + 0.183043i
\(700\) 0 0
\(701\) 17.5094i 0.661321i −0.943750 0.330661i \(-0.892728\pi\)
0.943750 0.330661i \(-0.107272\pi\)
\(702\) 0 0
\(703\) −0.140091 0.338209i −0.00528362 0.0127558i
\(704\) 0 0
\(705\) −20.8629 20.5967i −0.785742 0.775718i
\(706\) 0 0
\(707\) 1.11709 1.11709i 0.0420124 0.0420124i
\(708\) 0 0
\(709\) −22.6567 + 9.38470i −0.850889 + 0.352450i −0.765138 0.643867i \(-0.777329\pi\)
−0.0857516 + 0.996317i \(0.527329\pi\)
\(710\) 0 0
\(711\) 6.17260 + 2.55677i 0.231491 + 0.0958865i
\(712\) 0 0
\(713\) −29.6092 29.6092i −1.10887 1.10887i
\(714\) 0 0
\(715\) 1.67009 1.69167i 0.0624580 0.0632650i
\(716\) 0 0
\(717\) 12.1521 0.453830
\(718\) 0 0
\(719\) 7.56563 + 3.13379i 0.282150 + 0.116871i 0.519271 0.854610i \(-0.326204\pi\)
−0.237120 + 0.971480i \(0.576204\pi\)
\(720\) 0 0
\(721\) 2.50630 6.05075i 0.0933396 0.225342i
\(722\) 0 0
\(723\) 9.26362 + 22.3644i 0.344518 + 0.831739i
\(724\) 0 0
\(725\) −11.9656 + 5.13727i −0.444392 + 0.190793i
\(726\) 0 0
\(727\) −16.1652 + 39.0262i −0.599533 + 1.44740i 0.274526 + 0.961580i \(0.411479\pi\)
−0.874059 + 0.485820i \(0.838521\pi\)
\(728\) 0 0
\(729\) −20.4283 + 20.4283i −0.756605 + 0.756605i
\(730\) 0 0
\(731\) −29.0418 70.1132i −1.07415 2.59323i
\(732\) 0 0
\(733\) 9.21987i 0.340544i −0.985397 0.170272i \(-0.945535\pi\)
0.985397 0.170272i \(-0.0544646\pi\)
\(734\) 0 0
\(735\) 8.01496 19.7067i 0.295636 0.726892i
\(736\) 0 0
\(737\) −5.49266 5.49266i −0.202325 0.202325i
\(738\) 0 0
\(739\) 53.4210i 1.96512i 0.185939 + 0.982561i \(0.440467\pi\)
−0.185939 + 0.982561i \(0.559533\pi\)
\(740\) 0 0
\(741\) −0.158903 + 0.0658197i −0.00583744 + 0.00241795i
\(742\) 0 0
\(743\) −18.6850 −0.685487 −0.342743 0.939429i \(-0.611356\pi\)
−0.342743 + 0.939429i \(0.611356\pi\)
\(744\) 0 0
\(745\) −38.5344 + 16.2521i −1.41179 + 0.595429i
\(746\) 0 0
\(747\) 1.90047i 0.0695346i
\(748\) 0 0
\(749\) 4.61489 1.91155i 0.168625 0.0698466i
\(750\) 0 0
\(751\) 43.6824 18.0939i 1.59399 0.660254i 0.603444 0.797405i \(-0.293795\pi\)
0.990550 + 0.137151i \(0.0437945\pi\)
\(752\) 0 0
\(753\) 9.77999 4.05101i 0.356403 0.147627i
\(754\) 0 0
\(755\) 6.09600 14.9884i 0.221856 0.545486i
\(756\) 0 0
\(757\) −39.9980 + 16.5677i −1.45375 + 0.602164i −0.963089 0.269185i \(-0.913246\pi\)
−0.490664 + 0.871349i \(0.663246\pi\)
\(758\) 0 0
\(759\) −1.96702 1.96702i −0.0713981 0.0713981i
\(760\) 0 0
\(761\) 20.3747i 0.738583i 0.929314 + 0.369292i \(0.120400\pi\)
−0.929314 + 0.369292i \(0.879600\pi\)
\(762\) 0 0
\(763\) 6.33374 6.33374i 0.229297 0.229297i
\(764\) 0 0
\(765\) −5.60156 13.2816i −0.202525 0.480196i
\(766\) 0 0
\(767\) −7.97769 + 19.2598i −0.288058 + 0.695433i
\(768\) 0 0
\(769\) −45.3351 −1.63482 −0.817412 0.576054i \(-0.804592\pi\)
−0.817412 + 0.576054i \(0.804592\pi\)
\(770\) 0 0
\(771\) −24.7054 24.7054i −0.889742 0.889742i
\(772\) 0 0
\(773\) 22.5290 9.33183i 0.810313 0.335643i 0.0612340 0.998123i \(-0.480496\pi\)
0.749079 + 0.662481i \(0.230496\pi\)
\(774\) 0 0
\(775\) −52.5143 + 0.674230i −1.88637 + 0.0242191i
\(776\) 0 0
\(777\) 4.45416i 0.159792i
\(778\) 0 0
\(779\) −0.0664121 0.358588i −0.00237946 0.0128477i
\(780\) 0 0
\(781\) 2.16815 + 2.16815i 0.0775826 + 0.0775826i
\(782\) 0 0
\(783\) −10.4171 + 10.4171i −0.372278 + 0.372278i
\(784\) 0 0
\(785\) −9.68186 22.9562i −0.345560 0.819341i
\(786\) 0 0
\(787\) 19.6523i 0.700530i −0.936651 0.350265i \(-0.886092\pi\)
0.936651 0.350265i \(-0.113908\pi\)
\(788\) 0 0
\(789\) 13.9629i 0.497092i
\(790\) 0 0
\(791\) 2.06700 + 4.99017i 0.0734939 + 0.177430i
\(792\) 0 0
\(793\) 7.50008 + 18.1068i 0.266335 + 0.642991i
\(794\) 0 0
\(795\) 25.4000 0.163049i 0.900845 0.00578274i
\(796\) 0 0
\(797\) −26.9802 + 26.9802i −0.955688 + 0.955688i −0.999059 0.0433713i \(-0.986190\pi\)
0.0433713 + 0.999059i \(0.486190\pi\)
\(798\) 0 0
\(799\) 41.7044 41.7044i 1.47540 1.47540i
\(800\) 0 0
\(801\) 2.40061 5.79558i 0.0848213 0.204777i
\(802\) 0 0
\(803\) −2.99374 + 1.24005i −0.105647 + 0.0437603i
\(804\) 0 0
\(805\) 1.65305 4.06441i 0.0582623 0.143252i
\(806\) 0 0
\(807\) −0.753841 0.312251i −0.0265365 0.0109918i
\(808\) 0 0
\(809\) −10.4186 25.1526i −0.366297 0.884319i −0.994350 0.106149i \(-0.966148\pi\)
0.628053 0.778170i \(-0.283852\pi\)
\(810\) 0 0
\(811\) −11.9717 11.9717i −0.420383 0.420383i 0.464952 0.885336i \(-0.346071\pi\)
−0.885336 + 0.464952i \(0.846071\pi\)
\(812\) 0 0
\(813\) −1.13756 + 2.74632i −0.0398961 + 0.0963176i
\(814\) 0 0
\(815\) −19.9719 + 0.128204i −0.699586 + 0.00449080i
\(816\) 0 0
\(817\) −0.630516 0.261168i −0.0220590 0.00913712i
\(818\) 0 0
\(819\) 1.07463 0.0375506
\(820\) 0 0
\(821\) 14.4027 0.502657 0.251328 0.967902i \(-0.419133\pi\)
0.251328 + 0.967902i \(0.419133\pi\)
\(822\) 0 0
\(823\) 46.7166 + 19.3507i 1.62844 + 0.674522i 0.995056 0.0993163i \(-0.0316656\pi\)
0.633384 + 0.773838i \(0.281666\pi\)
\(824\) 0 0
\(825\) −3.48866 + 0.0447909i −0.121459 + 0.00155942i
\(826\) 0 0
\(827\) −2.30520 + 5.56524i −0.0801596 + 0.193522i −0.958878 0.283818i \(-0.908399\pi\)
0.878719 + 0.477340i \(0.158399\pi\)
\(828\) 0 0
\(829\) −29.8583 29.8583i −1.03702 1.03702i −0.999288 0.0377321i \(-0.987987\pi\)
−0.0377321 0.999288i \(-0.512013\pi\)
\(830\) 0 0
\(831\) −3.29799 7.96205i −0.114406 0.276200i
\(832\) 0 0
\(833\) 39.5409 + 16.3784i 1.37001 + 0.567477i
\(834\) 0 0
\(835\) 8.16285 3.44272i 0.282487 0.119140i
\(836\) 0 0
\(837\) −54.8934 + 22.7376i −1.89740 + 0.785927i
\(838\) 0 0
\(839\) −7.88791 + 19.0431i −0.272321 + 0.657441i −0.999582 0.0289202i \(-0.990793\pi\)
0.727261 + 0.686361i \(0.240793\pi\)
\(840\) 0 0
\(841\) 15.7100 15.7100i 0.541724 0.541724i
\(842\) 0 0
\(843\) 11.4527 11.4527i 0.394452 0.394452i
\(844\) 0 0
\(845\) −0.120557 18.7806i −0.00414729 0.646072i
\(846\) 0 0
\(847\) 2.02572 + 4.89051i 0.0696044 + 0.168040i
\(848\) 0 0
\(849\) 10.8951 + 26.3032i 0.373921 + 0.902724i
\(850\) 0 0
\(851\) 25.6237i 0.878368i
\(852\) 0 0
\(853\) 16.7045i 0.571951i −0.958237 0.285976i \(-0.907682\pi\)
0.958237 0.285976i \(-0.0923176\pi\)
\(854\) 0 0
\(855\) −0.120076 0.0488363i −0.00410650 0.00167017i
\(856\) 0 0
\(857\) −8.21752 + 8.21752i −0.280705 + 0.280705i −0.833390 0.552685i \(-0.813603\pi\)
0.552685 + 0.833390i \(0.313603\pi\)
\(858\) 0 0
\(859\) −20.3198 20.3198i −0.693302 0.693302i 0.269655 0.962957i \(-0.413090\pi\)
−0.962957 + 0.269655i \(0.913090\pi\)
\(860\) 0 0
\(861\) 0.923122 4.34017i 0.0314599 0.147913i
\(862\) 0 0
\(863\) 11.7246i 0.399109i 0.979887 + 0.199555i \(0.0639495\pi\)
−0.979887 + 0.199555i \(0.936050\pi\)
\(864\) 0 0
\(865\) −19.0234 18.7807i −0.646814 0.638563i
\(866\) 0 0
\(867\) −30.0607 + 12.4515i −1.02091 + 0.422877i
\(868\) 0 0
\(869\) 2.30044 + 2.30044i 0.0780369 + 0.0780369i
\(870\) 0 0
\(871\) 33.6173 1.13908
\(872\) 0 0
\(873\) 4.76830 11.5117i 0.161382 0.389612i
\(874\) 0 0
\(875\) −2.20347 5.04273i −0.0744908 0.170475i
\(876\) 0 0
\(877\) 29.6735 29.6735i 1.00200 1.00200i 0.00200576 0.999998i \(-0.499362\pi\)
0.999998 0.00200576i \(-0.000638453\pi\)
\(878\) 0 0
\(879\) 6.67238i 0.225054i
\(880\) 0 0
\(881\) 14.6196 + 14.6196i 0.492548 + 0.492548i 0.909108 0.416560i \(-0.136765\pi\)
−0.416560 + 0.909108i \(0.636765\pi\)
\(882\) 0 0
\(883\) 19.5686 8.10559i 0.658537 0.272775i −0.0282859 0.999600i \(-0.509005\pi\)
0.686823 + 0.726825i \(0.259005\pi\)
\(884\) 0 0
\(885\) 28.1916 11.8899i 0.947651 0.399676i
\(886\) 0 0
\(887\) −16.8765 + 6.99048i −0.566658 + 0.234717i −0.647573 0.762004i \(-0.724216\pi\)
0.0809149 + 0.996721i \(0.474216\pi\)
\(888\) 0 0
\(889\) 0.586227 0.242823i 0.0196614 0.00814403i
\(890\) 0 0
\(891\) −2.24849 + 0.931355i −0.0753273 + 0.0312016i
\(892\) 0 0
\(893\) 0.530387i 0.0177487i
\(894\) 0 0
\(895\) 7.90802 + 18.7503i 0.264336 + 0.626753i
\(896\) 0 0
\(897\) 12.0389 0.401968
\(898\) 0 0
\(899\) −25.2732 + 10.4685i −0.842908 + 0.349144i
\(900\) 0 0
\(901\) 51.0999i 1.70239i
\(902\) 0 0
\(903\) −5.87167 5.87167i −0.195397 0.195397i
\(904\) 0 0
\(905\) −18.8108 44.6013i −0.625291 1.48260i
\(906\) 0 0
\(907\) 32.9754i 1.09493i 0.836828 + 0.547466i \(0.184407\pi\)
−0.836828 + 0.547466i \(0.815593\pi\)
\(908\) 0 0
\(909\) 1.25018 + 3.01819i 0.0414657 + 0.100107i
\(910\) 0 0
\(911\) 24.3773 24.3773i 0.807657 0.807657i −0.176622 0.984279i \(-0.556517\pi\)
0.984279 + 0.176622i \(0.0565170\pi\)
\(912\) 0 0
\(913\) 0.354138 0.854966i 0.0117203 0.0282952i
\(914\) 0 0
\(915\) 10.8369 26.6451i 0.358258 0.880861i
\(916\) 0 0
\(917\) 2.38232 + 5.75142i 0.0786710 + 0.189929i
\(918\) 0 0
\(919\) 6.05214 14.6111i 0.199642 0.481977i −0.792075 0.610424i \(-0.790999\pi\)
0.991716 + 0.128447i \(0.0409991\pi\)
\(920\) 0 0
\(921\) −18.7648 7.77262i −0.618320 0.256116i
\(922\) 0 0
\(923\) −13.2700 −0.436786
\(924\) 0 0
\(925\) 23.0145 + 22.4311i 0.756714 + 0.737529i
\(926\) 0 0
\(927\) 9.57652 + 9.57652i 0.314534 + 0.314534i
\(928\) 0 0
\(929\) 15.3041 + 6.33917i 0.502112 + 0.207981i 0.619339 0.785124i \(-0.287401\pi\)
−0.117227 + 0.993105i \(0.537401\pi\)
\(930\) 0 0
\(931\) 0.355585 0.147288i 0.0116538 0.00482717i
\(932\) 0 0
\(933\) −14.3957 + 14.3957i −0.471294 + 0.471294i
\(934\) 0 0
\(935\) −0.0450553 7.01880i −0.00147347 0.229539i
\(936\) 0 0
\(937\) −7.60698 18.3649i −0.248509 0.599955i 0.749569 0.661927i \(-0.230261\pi\)
−0.998078 + 0.0619722i \(0.980261\pi\)
\(938\) 0 0
\(939\) 21.5314i 0.702652i
\(940\) 0 0
\(941\) −30.0763 + 30.0763i −0.980459 + 0.980459i −0.999813 0.0193535i \(-0.993839\pi\)
0.0193535 + 0.999813i \(0.493839\pi\)
\(942\) 0 0
\(943\) −5.31050 + 24.9680i −0.172934 + 0.813068i
\(944\) 0 0
\(945\) −4.43054 4.37402i −0.144125 0.142287i
\(946\) 0 0
\(947\) −35.4467 35.4467i −1.15186 1.15186i −0.986179 0.165684i \(-0.947017\pi\)
−0.165684 0.986179i \(-0.552983\pi\)
\(948\) 0 0
\(949\) 5.36665 12.9562i 0.174209 0.420577i
\(950\) 0 0
\(951\) −11.3715 + 11.3715i −0.368748 + 0.368748i
\(952\) 0 0
\(953\) −29.9917 29.9917i −0.971527 0.971527i 0.0280786 0.999606i \(-0.491061\pi\)
−0.999606 + 0.0280786i \(0.991061\pi\)
\(954\) 0 0
\(955\) −11.1967 + 4.72225i −0.362316 + 0.152808i
\(956\) 0 0
\(957\) −1.67896 + 0.695449i −0.0542731 + 0.0224807i
\(958\) 0 0
\(959\) 0.187266i 0.00604714i
\(960\) 0 0
\(961\) −79.3282 −2.55897
\(962\) 0 0
\(963\) 10.3294i 0.332861i
\(964\) 0 0
\(965\) 13.2503 + 31.4170i 0.426541 + 1.01135i
\(966\) 0 0
\(967\) −11.8697 28.6559i −0.381703 0.921512i −0.991637 0.129060i \(-0.958804\pi\)
0.609934 0.792452i \(-0.291196\pi\)
\(968\) 0 0
\(969\) −0.194342 + 0.469182i −0.00624315 + 0.0150723i
\(970\) 0 0
\(971\) −19.7791 47.7510i −0.634742 1.53240i −0.833597 0.552373i \(-0.813722\pi\)
0.198855 0.980029i \(-0.436278\pi\)
\(972\) 0 0
\(973\) 7.46360 + 3.09153i 0.239272 + 0.0991098i
\(974\) 0 0
\(975\) 10.5389 10.8131i 0.337516 0.346295i
\(976\) 0 0
\(977\) −23.1937 9.60714i −0.742032 0.307360i −0.0205461 0.999789i \(-0.506540\pi\)
−0.721486 + 0.692429i \(0.756540\pi\)
\(978\) 0 0
\(979\) 2.15993 2.15993i 0.0690316 0.0690316i
\(980\) 0 0
\(981\) 7.08833 + 17.1127i 0.226313 + 0.546368i
\(982\) 0 0
\(983\) −29.7720 + 29.7720i −0.949579 + 0.949579i −0.998788 0.0492099i \(-0.984330\pi\)
0.0492099 + 0.998788i \(0.484330\pi\)
\(984\) 0 0
\(985\) −27.8787 27.5231i −0.888289 0.876957i
\(986\) 0 0
\(987\) 2.46961 5.96217i 0.0786086 0.189778i
\(988\) 0 0
\(989\) 33.7783 + 33.7783i 1.07409 + 1.07409i
\(990\) 0 0
\(991\) 19.1637 7.93785i 0.608754 0.252154i −0.0569418 0.998378i \(-0.518135\pi\)
0.665696 + 0.746223i \(0.268135\pi\)
\(992\) 0 0
\(993\) 19.8483 0.629866
\(994\) 0 0
\(995\) 10.1939 + 24.1702i 0.323167 + 0.766246i
\(996\) 0 0
\(997\) 8.91965 21.5340i 0.282488 0.681987i −0.717404 0.696657i \(-0.754670\pi\)
0.999892 + 0.0146702i \(0.00466985\pi\)
\(998\) 0 0
\(999\) 33.5908 + 13.9138i 1.06277 + 0.440212i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.6 84
5.2 odd 4 820.2.y.a.437.6 yes 84
41.38 odd 8 820.2.y.a.653.6 yes 84
205.202 even 8 inner 820.2.x.a.817.6 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.6 84 1.1 even 1 trivial
820.2.x.a.817.6 yes 84 205.202 even 8 inner
820.2.y.a.437.6 yes 84 5.2 odd 4
820.2.y.a.653.6 yes 84 41.38 odd 8