Properties

Label 820.2.x.a.273.3
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.3
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.53901 - 1.05169i) q^{3} +(-0.771074 + 2.09892i) q^{5} +(0.595144 - 1.43680i) q^{7} +(3.21921 + 3.21921i) q^{9} +(-2.33163 - 5.62905i) q^{11} +(5.44842 + 2.25681i) q^{13} +(4.16518 - 4.51824i) q^{15} +(-3.78859 + 1.56929i) q^{17} +(0.941956 - 2.27408i) q^{19} +(-3.02216 + 3.02216i) q^{21} +(-3.60761 + 3.60761i) q^{23} +(-3.81089 - 3.23684i) q^{25} +(-1.63291 - 3.94219i) q^{27} +(-1.53963 - 3.71699i) q^{29} +3.63486i q^{31} +16.7444i q^{33} +(2.55683 + 2.35704i) q^{35} +(-3.14703 + 3.14703i) q^{37} +(-11.4601 - 11.4601i) q^{39} +(-5.62080 + 3.06702i) q^{41} +8.27605i q^{43} +(-9.23909 + 4.27460i) q^{45} +(-9.41426 + 3.89951i) q^{47} +(3.23954 + 3.23954i) q^{49} +11.2697 q^{51} +(3.35740 - 8.10547i) q^{53} +(13.6128 - 0.553476i) q^{55} +(-4.78328 + 4.78328i) q^{57} +8.50003i q^{59} +(-6.25449 - 6.25449i) q^{61} +(6.54127 - 2.70948i) q^{63} +(-8.93799 + 9.69561i) q^{65} +(-6.79531 + 2.81471i) q^{67} +(12.9539 - 5.36567i) q^{69} +(2.31864 - 0.960413i) q^{71} +16.8505i q^{73} +(6.27174 + 12.2263i) q^{75} -9.47550 q^{77} +(-12.7201 + 5.26883i) q^{79} -1.93134i q^{81} +(0.0356030 + 0.0356030i) q^{83} +(-0.372513 - 9.16197i) q^{85} +11.0567i q^{87} +(-4.20305 - 10.1471i) q^{89} +(6.48519 - 6.48519i) q^{91} +(3.82276 - 9.22896i) q^{93} +(4.04679 + 3.73057i) q^{95} +(1.60089 + 3.86488i) q^{97} +(10.6151 - 25.6271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.53901 1.05169i −1.46590 0.607196i −0.499980 0.866037i \(-0.666659\pi\)
−0.965920 + 0.258841i \(0.916659\pi\)
\(4\) 0 0
\(5\) −0.771074 + 2.09892i −0.344835 + 0.938663i
\(6\) 0 0
\(7\) 0.595144 1.43680i 0.224943 0.543061i −0.770605 0.637313i \(-0.780046\pi\)
0.995548 + 0.0942518i \(0.0300459\pi\)
\(8\) 0 0
\(9\) 3.21921 + 3.21921i 1.07307 + 1.07307i
\(10\) 0 0
\(11\) −2.33163 5.62905i −0.703013 1.69722i −0.716763 0.697317i \(-0.754377\pi\)
0.0137503 0.999905i \(-0.495623\pi\)
\(12\) 0 0
\(13\) 5.44842 + 2.25681i 1.51112 + 0.625927i 0.975789 0.218715i \(-0.0701865\pi\)
0.535332 + 0.844642i \(0.320187\pi\)
\(14\) 0 0
\(15\) 4.16518 4.51824i 1.07545 1.16660i
\(16\) 0 0
\(17\) −3.78859 + 1.56929i −0.918869 + 0.380608i −0.791445 0.611240i \(-0.790671\pi\)
−0.127424 + 0.991848i \(0.540671\pi\)
\(18\) 0 0
\(19\) 0.941956 2.27408i 0.216099 0.521710i −0.778239 0.627968i \(-0.783887\pi\)
0.994339 + 0.106258i \(0.0338869\pi\)
\(20\) 0 0
\(21\) −3.02216 + 3.02216i −0.659489 + 0.659489i
\(22\) 0 0
\(23\) −3.60761 + 3.60761i −0.752239 + 0.752239i −0.974897 0.222658i \(-0.928527\pi\)
0.222658 + 0.974897i \(0.428527\pi\)
\(24\) 0 0
\(25\) −3.81089 3.23684i −0.762178 0.647368i
\(26\) 0 0
\(27\) −1.63291 3.94219i −0.314254 0.758676i
\(28\) 0 0
\(29\) −1.53963 3.71699i −0.285902 0.690228i 0.714050 0.700095i \(-0.246859\pi\)
−0.999951 + 0.00986733i \(0.996859\pi\)
\(30\) 0 0
\(31\) 3.63486i 0.652840i 0.945225 + 0.326420i \(0.105842\pi\)
−0.945225 + 0.326420i \(0.894158\pi\)
\(32\) 0 0
\(33\) 16.7444i 2.91482i
\(34\) 0 0
\(35\) 2.55683 + 2.35704i 0.432183 + 0.398412i
\(36\) 0 0
\(37\) −3.14703 + 3.14703i −0.517369 + 0.517369i −0.916774 0.399406i \(-0.869216\pi\)
0.399406 + 0.916774i \(0.369216\pi\)
\(38\) 0 0
\(39\) −11.4601 11.4601i −1.83509 1.83509i
\(40\) 0 0
\(41\) −5.62080 + 3.06702i −0.877821 + 0.478988i
\(42\) 0 0
\(43\) 8.27605i 1.26209i 0.775748 + 0.631043i \(0.217373\pi\)
−0.775748 + 0.631043i \(0.782627\pi\)
\(44\) 0 0
\(45\) −9.23909 + 4.27460i −1.37728 + 0.637219i
\(46\) 0 0
\(47\) −9.41426 + 3.89951i −1.37321 + 0.568802i −0.942657 0.333763i \(-0.891682\pi\)
−0.430553 + 0.902565i \(0.641682\pi\)
\(48\) 0 0
\(49\) 3.23954 + 3.23954i 0.462791 + 0.462791i
\(50\) 0 0
\(51\) 11.2697 1.57807
\(52\) 0 0
\(53\) 3.35740 8.10547i 0.461174 1.11337i −0.506742 0.862098i \(-0.669150\pi\)
0.967916 0.251275i \(-0.0808497\pi\)
\(54\) 0 0
\(55\) 13.6128 0.553476i 1.83554 0.0746307i
\(56\) 0 0
\(57\) −4.78328 + 4.78328i −0.633560 + 0.633560i
\(58\) 0 0
\(59\) 8.50003i 1.10661i 0.832979 + 0.553305i \(0.186634\pi\)
−0.832979 + 0.553305i \(0.813366\pi\)
\(60\) 0 0
\(61\) −6.25449 6.25449i −0.800806 0.800806i 0.182416 0.983221i \(-0.441608\pi\)
−0.983221 + 0.182416i \(0.941608\pi\)
\(62\) 0 0
\(63\) 6.54127 2.70948i 0.824122 0.341363i
\(64\) 0 0
\(65\) −8.93799 + 9.69561i −1.10862 + 1.20259i
\(66\) 0 0
\(67\) −6.79531 + 2.81471i −0.830179 + 0.343872i −0.756974 0.653445i \(-0.773323\pi\)
−0.0732056 + 0.997317i \(0.523323\pi\)
\(68\) 0 0
\(69\) 12.9539 5.36567i 1.55946 0.645951i
\(70\) 0 0
\(71\) 2.31864 0.960413i 0.275172 0.113980i −0.240830 0.970567i \(-0.577420\pi\)
0.516002 + 0.856587i \(0.327420\pi\)
\(72\) 0 0
\(73\) 16.8505i 1.97220i 0.166159 + 0.986099i \(0.446863\pi\)
−0.166159 + 0.986099i \(0.553137\pi\)
\(74\) 0 0
\(75\) 6.27174 + 12.2263i 0.724198 + 1.41177i
\(76\) 0 0
\(77\) −9.47550 −1.07983
\(78\) 0 0
\(79\) −12.7201 + 5.26883i −1.43112 + 0.592789i −0.957628 0.288009i \(-0.907007\pi\)
−0.473492 + 0.880798i \(0.657007\pi\)
\(80\) 0 0
\(81\) 1.93134i 0.214593i
\(82\) 0 0
\(83\) 0.0356030 + 0.0356030i 0.00390793 + 0.00390793i 0.709058 0.705150i \(-0.249120\pi\)
−0.705150 + 0.709058i \(0.749120\pi\)
\(84\) 0 0
\(85\) −0.372513 9.16197i −0.0404047 0.993755i
\(86\) 0 0
\(87\) 11.0567i 1.18540i
\(88\) 0 0
\(89\) −4.20305 10.1471i −0.445522 1.07559i −0.973982 0.226627i \(-0.927230\pi\)
0.528459 0.848959i \(-0.322770\pi\)
\(90\) 0 0
\(91\) 6.48519 6.48519i 0.679833 0.679833i
\(92\) 0 0
\(93\) 3.82276 9.22896i 0.396402 0.956999i
\(94\) 0 0
\(95\) 4.04679 + 3.73057i 0.415192 + 0.382748i
\(96\) 0 0
\(97\) 1.60089 + 3.86488i 0.162545 + 0.392419i 0.984077 0.177744i \(-0.0568800\pi\)
−0.821531 + 0.570163i \(0.806880\pi\)
\(98\) 0 0
\(99\) 10.6151 25.6271i 1.06686 2.57562i
\(100\) 0 0
\(101\) −1.05066 0.435196i −0.104544 0.0433036i 0.329798 0.944051i \(-0.393019\pi\)
−0.434342 + 0.900748i \(0.643019\pi\)
\(102\) 0 0
\(103\) −4.63000 −0.456208 −0.228104 0.973637i \(-0.573253\pi\)
−0.228104 + 0.973637i \(0.573253\pi\)
\(104\) 0 0
\(105\) −4.01294 8.67356i −0.391623 0.846453i
\(106\) 0 0
\(107\) −3.02910 3.02910i −0.292835 0.292835i 0.545364 0.838199i \(-0.316391\pi\)
−0.838199 + 0.545364i \(0.816391\pi\)
\(108\) 0 0
\(109\) 5.99561 + 2.48346i 0.574276 + 0.237873i 0.650870 0.759190i \(-0.274404\pi\)
−0.0765938 + 0.997062i \(0.524404\pi\)
\(110\) 0 0
\(111\) 11.3001 4.68064i 1.07255 0.444267i
\(112\) 0 0
\(113\) 5.26738 5.26738i 0.495513 0.495513i −0.414525 0.910038i \(-0.636052\pi\)
0.910038 + 0.414525i \(0.136052\pi\)
\(114\) 0 0
\(115\) −4.79033 10.3538i −0.446701 0.965497i
\(116\) 0 0
\(117\) 10.2745 + 24.8048i 0.949875 + 2.29320i
\(118\) 0 0
\(119\) 6.37742i 0.584617i
\(120\) 0 0
\(121\) −18.4715 + 18.4715i −1.67923 + 1.67923i
\(122\) 0 0
\(123\) 17.4969 1.87585i 1.57764 0.169140i
\(124\) 0 0
\(125\) 9.73233 5.50289i 0.870486 0.492194i
\(126\) 0 0
\(127\) −4.07898 4.07898i −0.361951 0.361951i 0.502580 0.864531i \(-0.332384\pi\)
−0.864531 + 0.502580i \(0.832384\pi\)
\(128\) 0 0
\(129\) 8.70387 21.0130i 0.766333 1.85009i
\(130\) 0 0
\(131\) 7.46398 7.46398i 0.652131 0.652131i −0.301375 0.953506i \(-0.597445\pi\)
0.953506 + 0.301375i \(0.0974454\pi\)
\(132\) 0 0
\(133\) −2.70681 2.70681i −0.234710 0.234710i
\(134\) 0 0
\(135\) 9.53343 0.387616i 0.820507 0.0333607i
\(136\) 0 0
\(137\) −20.2442 + 8.38542i −1.72958 + 0.716415i −0.730127 + 0.683312i \(0.760539\pi\)
−0.999452 + 0.0331030i \(0.989461\pi\)
\(138\) 0 0
\(139\) 13.0176i 1.10414i −0.833799 0.552068i \(-0.813839\pi\)
0.833799 0.552068i \(-0.186161\pi\)
\(140\) 0 0
\(141\) 28.0040 2.35836
\(142\) 0 0
\(143\) 35.9315i 3.00474i
\(144\) 0 0
\(145\) 8.98881 0.365473i 0.746480 0.0303509i
\(146\) 0 0
\(147\) −4.81823 11.6322i −0.397401 0.959410i
\(148\) 0 0
\(149\) −2.27929 + 5.50270i −0.186727 + 0.450798i −0.989326 0.145721i \(-0.953450\pi\)
0.802599 + 0.596519i \(0.203450\pi\)
\(150\) 0 0
\(151\) −1.40942 3.40263i −0.114697 0.276902i 0.856098 0.516813i \(-0.172882\pi\)
−0.970795 + 0.239911i \(0.922882\pi\)
\(152\) 0 0
\(153\) −17.2481 7.14441i −1.39443 0.577591i
\(154\) 0 0
\(155\) −7.62927 2.80275i −0.612797 0.225122i
\(156\) 0 0
\(157\) 0.589043 + 0.243990i 0.0470108 + 0.0194725i 0.406065 0.913844i \(-0.366901\pi\)
−0.359054 + 0.933317i \(0.616901\pi\)
\(158\) 0 0
\(159\) −17.0489 + 17.0489i −1.35207 + 1.35207i
\(160\) 0 0
\(161\) 3.03638 + 7.33048i 0.239301 + 0.577723i
\(162\) 0 0
\(163\) −2.02442 + 2.02442i −0.158565 + 0.158565i −0.781931 0.623366i \(-0.785765\pi\)
0.623366 + 0.781931i \(0.285765\pi\)
\(164\) 0 0
\(165\) −35.1451 12.9112i −2.73604 1.00513i
\(166\) 0 0
\(167\) 9.17706 22.1554i 0.710142 1.71444i 0.0104976 0.999945i \(-0.496658\pi\)
0.699645 0.714491i \(-0.253342\pi\)
\(168\) 0 0
\(169\) 15.3997 + 15.3997i 1.18459 + 1.18459i
\(170\) 0 0
\(171\) 10.3531 4.28839i 0.791721 0.327942i
\(172\) 0 0
\(173\) 3.56592 0.271112 0.135556 0.990770i \(-0.456718\pi\)
0.135556 + 0.990770i \(0.456718\pi\)
\(174\) 0 0
\(175\) −6.91873 + 3.54912i −0.523007 + 0.268288i
\(176\) 0 0
\(177\) 8.93943 21.5817i 0.671929 1.62218i
\(178\) 0 0
\(179\) 19.5164 + 8.08397i 1.45873 + 0.604224i 0.964257 0.264970i \(-0.0853622\pi\)
0.494470 + 0.869195i \(0.335362\pi\)
\(180\) 0 0
\(181\) −4.27893 1.77239i −0.318051 0.131741i 0.217946 0.975961i \(-0.430064\pi\)
−0.535997 + 0.844220i \(0.680064\pi\)
\(182\) 0 0
\(183\) 9.30243 + 22.4580i 0.687655 + 1.66015i
\(184\) 0 0
\(185\) −4.17876 9.03194i −0.307228 0.664042i
\(186\) 0 0
\(187\) 17.6672 + 17.6672i 1.29195 + 1.29195i
\(188\) 0 0
\(189\) −6.63598 −0.482697
\(190\) 0 0
\(191\) −5.07548 + 12.2533i −0.367249 + 0.886617i 0.626950 + 0.779059i \(0.284303\pi\)
−0.994199 + 0.107557i \(0.965697\pi\)
\(192\) 0 0
\(193\) 3.92371 + 1.62525i 0.282435 + 0.116988i 0.519404 0.854529i \(-0.326154\pi\)
−0.236969 + 0.971517i \(0.576154\pi\)
\(194\) 0 0
\(195\) 32.8905 15.2173i 2.35534 1.08973i
\(196\) 0 0
\(197\) −9.15299 −0.652124 −0.326062 0.945348i \(-0.605722\pi\)
−0.326062 + 0.945348i \(0.605722\pi\)
\(198\) 0 0
\(199\) 7.05505 + 2.92230i 0.500119 + 0.207156i 0.618459 0.785817i \(-0.287757\pi\)
−0.118340 + 0.992973i \(0.537757\pi\)
\(200\) 0 0
\(201\) 20.2136 1.42576
\(202\) 0 0
\(203\) −6.25689 −0.439148
\(204\) 0 0
\(205\) −2.10337 14.1625i −0.146906 0.989151i
\(206\) 0 0
\(207\) −23.2273 −1.61441
\(208\) 0 0
\(209\) −14.9972 −1.03738
\(210\) 0 0
\(211\) −15.9472 6.60554i −1.09785 0.454744i −0.241112 0.970497i \(-0.577512\pi\)
−0.856737 + 0.515753i \(0.827512\pi\)
\(212\) 0 0
\(213\) −6.89712 −0.472583
\(214\) 0 0
\(215\) −17.3707 6.38145i −1.18467 0.435211i
\(216\) 0 0
\(217\) 5.22259 + 2.16327i 0.354532 + 0.146852i
\(218\) 0 0
\(219\) 17.7215 42.7836i 1.19751 2.89104i
\(220\) 0 0
\(221\) −24.1834 −1.62675
\(222\) 0 0
\(223\) 3.22913 + 3.22913i 0.216238 + 0.216238i 0.806911 0.590673i \(-0.201138\pi\)
−0.590673 + 0.806911i \(0.701138\pi\)
\(224\) 0 0
\(225\) −1.84799 22.6881i −0.123199 1.51254i
\(226\) 0 0
\(227\) 3.76258 + 9.08367i 0.249731 + 0.602904i 0.998181 0.0602869i \(-0.0192016\pi\)
−0.748450 + 0.663191i \(0.769202\pi\)
\(228\) 0 0
\(229\) 0.978616 + 0.405356i 0.0646688 + 0.0267867i 0.414783 0.909920i \(-0.363857\pi\)
−0.350115 + 0.936707i \(0.613857\pi\)
\(230\) 0 0
\(231\) 24.0584 + 9.96532i 1.58293 + 0.655670i
\(232\) 0 0
\(233\) −1.45063 + 3.50214i −0.0950341 + 0.229433i −0.964247 0.265006i \(-0.914626\pi\)
0.869213 + 0.494438i \(0.164626\pi\)
\(234\) 0 0
\(235\) −0.925657 22.7665i −0.0603832 1.48513i
\(236\) 0 0
\(237\) 37.8376 2.45782
\(238\) 0 0
\(239\) −10.1731 + 4.21384i −0.658044 + 0.272571i −0.686615 0.727021i \(-0.740904\pi\)
0.0285713 + 0.999592i \(0.490904\pi\)
\(240\) 0 0
\(241\) 16.6240 + 16.6240i 1.07084 + 1.07084i 0.997291 + 0.0735522i \(0.0234336\pi\)
0.0735522 + 0.997291i \(0.476566\pi\)
\(242\) 0 0
\(243\) −6.92991 + 16.7303i −0.444554 + 1.07325i
\(244\) 0 0
\(245\) −9.29743 + 4.30159i −0.593991 + 0.274818i
\(246\) 0 0
\(247\) 10.2643 10.2643i 0.653105 0.653105i
\(248\) 0 0
\(249\) −0.0529530 0.127840i −0.00335576 0.00810152i
\(250\) 0 0
\(251\) −19.4996 + 19.4996i −1.23080 + 1.23080i −0.267148 + 0.963655i \(0.586081\pi\)
−0.963655 + 0.267148i \(0.913919\pi\)
\(252\) 0 0
\(253\) 28.7190 + 11.8958i 1.80555 + 0.747883i
\(254\) 0 0
\(255\) −8.68977 + 23.6541i −0.544175 + 1.48128i
\(256\) 0 0
\(257\) 9.60332 + 3.97783i 0.599039 + 0.248130i 0.661534 0.749915i \(-0.269906\pi\)
−0.0624951 + 0.998045i \(0.519906\pi\)
\(258\) 0 0
\(259\) 2.64873 + 6.39460i 0.164584 + 0.397341i
\(260\) 0 0
\(261\) 7.00938 16.9221i 0.433870 1.04745i
\(262\) 0 0
\(263\) 10.2656 + 24.7833i 0.633002 + 1.52820i 0.835831 + 0.548987i \(0.184986\pi\)
−0.202829 + 0.979214i \(0.565014\pi\)
\(264\) 0 0
\(265\) 14.4239 + 13.2968i 0.886053 + 0.816817i
\(266\) 0 0
\(267\) 30.1838i 1.84722i
\(268\) 0 0
\(269\) 20.5672 1.25401 0.627003 0.779017i \(-0.284281\pi\)
0.627003 + 0.779017i \(0.284281\pi\)
\(270\) 0 0
\(271\) 6.85930i 0.416673i −0.978057 0.208336i \(-0.933195\pi\)
0.978057 0.208336i \(-0.0668049\pi\)
\(272\) 0 0
\(273\) −23.2864 + 9.64555i −1.40936 + 0.583775i
\(274\) 0 0
\(275\) −9.33475 + 28.9988i −0.562906 + 1.74869i
\(276\) 0 0
\(277\) −12.2463 12.2463i −0.735810 0.735810i 0.235954 0.971764i \(-0.424178\pi\)
−0.971764 + 0.235954i \(0.924178\pi\)
\(278\) 0 0
\(279\) −11.7014 + 11.7014i −0.700543 + 0.700543i
\(280\) 0 0
\(281\) −3.51648 + 8.48952i −0.209775 + 0.506443i −0.993388 0.114808i \(-0.963375\pi\)
0.783612 + 0.621250i \(0.213375\pi\)
\(282\) 0 0
\(283\) −10.1308 10.1308i −0.602216 0.602216i 0.338684 0.940900i \(-0.390018\pi\)
−0.940900 + 0.338684i \(0.890018\pi\)
\(284\) 0 0
\(285\) −6.35143 13.7279i −0.376226 0.813174i
\(286\) 0 0
\(287\) 1.06153 + 9.90131i 0.0626600 + 0.584456i
\(288\) 0 0
\(289\) −0.130040 + 0.130040i −0.00764940 + 0.00764940i
\(290\) 0 0
\(291\) 11.4966i 0.673944i
\(292\) 0 0
\(293\) 2.11466 + 5.10525i 0.123540 + 0.298252i 0.973535 0.228539i \(-0.0733950\pi\)
−0.849995 + 0.526791i \(0.823395\pi\)
\(294\) 0 0
\(295\) −17.8409 6.55416i −1.03873 0.381598i
\(296\) 0 0
\(297\) −18.3835 + 18.3835i −1.06672 + 1.06672i
\(298\) 0 0
\(299\) −27.7975 + 11.5141i −1.60757 + 0.665877i
\(300\) 0 0
\(301\) 11.8911 + 4.92544i 0.685390 + 0.283898i
\(302\) 0 0
\(303\) 2.20994 + 2.20994i 0.126957 + 0.126957i
\(304\) 0 0
\(305\) 17.9503 8.30497i 1.02783 0.475541i
\(306\) 0 0
\(307\) 14.0870 0.803990 0.401995 0.915642i \(-0.368317\pi\)
0.401995 + 0.915642i \(0.368317\pi\)
\(308\) 0 0
\(309\) 11.7556 + 4.86935i 0.668755 + 0.277007i
\(310\) 0 0
\(311\) 2.66645 6.43737i 0.151200 0.365030i −0.830072 0.557656i \(-0.811701\pi\)
0.981272 + 0.192627i \(0.0617007\pi\)
\(312\) 0 0
\(313\) −12.5649 30.3344i −0.710212 1.71460i −0.699470 0.714662i \(-0.746580\pi\)
−0.0107425 0.999942i \(-0.503420\pi\)
\(314\) 0 0
\(315\) 0.643170 + 15.8188i 0.0362385 + 0.891287i
\(316\) 0 0
\(317\) −5.80082 + 14.0044i −0.325806 + 0.786566i 0.673088 + 0.739562i \(0.264967\pi\)
−0.998895 + 0.0470041i \(0.985033\pi\)
\(318\) 0 0
\(319\) −17.3333 + 17.3333i −0.970478 + 0.970478i
\(320\) 0 0
\(321\) 4.50525 + 10.8766i 0.251458 + 0.607074i
\(322\) 0 0
\(323\) 10.0938i 0.561632i
\(324\) 0 0
\(325\) −13.4584 26.2361i −0.746538 1.45532i
\(326\) 0 0
\(327\) −12.6111 12.6111i −0.697395 0.697395i
\(328\) 0 0
\(329\) 15.8472i 0.873686i
\(330\) 0 0
\(331\) 0.633412 0.262368i 0.0348155 0.0144210i −0.365208 0.930926i \(-0.619002\pi\)
0.400023 + 0.916505i \(0.369002\pi\)
\(332\) 0 0
\(333\) −20.2619 −1.11034
\(334\) 0 0
\(335\) −0.668149 16.4331i −0.0365049 0.897838i
\(336\) 0 0
\(337\) 22.8135i 1.24273i −0.783520 0.621366i \(-0.786578\pi\)
0.783520 0.621366i \(-0.213422\pi\)
\(338\) 0 0
\(339\) −18.9136 + 7.83428i −1.02725 + 0.425500i
\(340\) 0 0
\(341\) 20.4608 8.47515i 1.10802 0.458955i
\(342\) 0 0
\(343\) 16.6402 6.89260i 0.898487 0.372165i
\(344\) 0 0
\(345\) 1.27369 + 31.3264i 0.0685731 + 1.68656i
\(346\) 0 0
\(347\) −5.30546 + 2.19759i −0.284812 + 0.117973i −0.520516 0.853852i \(-0.674260\pi\)
0.235704 + 0.971825i \(0.424260\pi\)
\(348\) 0 0
\(349\) −7.14286 7.14286i −0.382348 0.382348i 0.489599 0.871948i \(-0.337143\pi\)
−0.871948 + 0.489599i \(0.837143\pi\)
\(350\) 0 0
\(351\) 25.1639i 1.34315i
\(352\) 0 0
\(353\) 1.12494 1.12494i 0.0598745 0.0598745i −0.676535 0.736410i \(-0.736519\pi\)
0.736410 + 0.676535i \(0.236519\pi\)
\(354\) 0 0
\(355\) 0.227980 + 5.60718i 0.0120999 + 0.297598i
\(356\) 0 0
\(357\) 6.70709 16.1924i 0.354977 0.856990i
\(358\) 0 0
\(359\) −12.6782 −0.669129 −0.334565 0.942373i \(-0.608589\pi\)
−0.334565 + 0.942373i \(0.608589\pi\)
\(360\) 0 0
\(361\) 9.15086 + 9.15086i 0.481624 + 0.481624i
\(362\) 0 0
\(363\) 66.3259 27.4731i 3.48121 1.44196i
\(364\) 0 0
\(365\) −35.3677 12.9930i −1.85123 0.680083i
\(366\) 0 0
\(367\) 5.67372i 0.296166i 0.988975 + 0.148083i \(0.0473102\pi\)
−0.988975 + 0.148083i \(0.952690\pi\)
\(368\) 0 0
\(369\) −27.9679 8.22114i −1.45595 0.427975i
\(370\) 0 0
\(371\) −9.64785 9.64785i −0.500891 0.500891i
\(372\) 0 0
\(373\) 16.6980 16.6980i 0.864592 0.864592i −0.127275 0.991867i \(-0.540623\pi\)
0.991867 + 0.127275i \(0.0406232\pi\)
\(374\) 0 0
\(375\) −30.4979 + 3.73649i −1.57490 + 0.192951i
\(376\) 0 0
\(377\) 23.7264i 1.22197i
\(378\) 0 0
\(379\) 34.8490i 1.79007i −0.445992 0.895037i \(-0.647149\pi\)
0.445992 0.895037i \(-0.352851\pi\)
\(380\) 0 0
\(381\) 6.06674 + 14.6464i 0.310809 + 0.750358i
\(382\) 0 0
\(383\) −4.36946 10.5488i −0.223269 0.539019i 0.772061 0.635548i \(-0.219226\pi\)
−0.995330 + 0.0965293i \(0.969226\pi\)
\(384\) 0 0
\(385\) 7.30631 19.8883i 0.372364 1.01360i
\(386\) 0 0
\(387\) −26.6423 + 26.6423i −1.35431 + 1.35431i
\(388\) 0 0
\(389\) −0.172107 + 0.172107i −0.00872615 + 0.00872615i −0.711456 0.702730i \(-0.751964\pi\)
0.702730 + 0.711456i \(0.251964\pi\)
\(390\) 0 0
\(391\) 8.00639 19.3291i 0.404901 0.977517i
\(392\) 0 0
\(393\) −26.8010 + 11.1013i −1.35193 + 0.559988i
\(394\) 0 0
\(395\) −1.25070 30.7610i −0.0629296 1.54775i
\(396\) 0 0
\(397\) −17.8073 7.37603i −0.893724 0.370193i −0.111920 0.993717i \(-0.535700\pi\)
−0.781804 + 0.623525i \(0.785700\pi\)
\(398\) 0 0
\(399\) 4.02589 + 9.71937i 0.201547 + 0.486577i
\(400\) 0 0
\(401\) −20.0793 20.0793i −1.00271 1.00271i −0.999996 0.00271719i \(-0.999135\pi\)
−0.00271719 0.999996i \(-0.500865\pi\)
\(402\) 0 0
\(403\) −8.20320 + 19.8043i −0.408630 + 0.986521i
\(404\) 0 0
\(405\) 4.05372 + 1.48921i 0.201431 + 0.0739992i
\(406\) 0 0
\(407\) 25.0525 + 10.3771i 1.24181 + 0.514373i
\(408\) 0 0
\(409\) 32.9769 1.63060 0.815301 0.579038i \(-0.196572\pi\)
0.815301 + 0.579038i \(0.196572\pi\)
\(410\) 0 0
\(411\) 60.2192 2.97039
\(412\) 0 0
\(413\) 12.2129 + 5.05874i 0.600957 + 0.248925i
\(414\) 0 0
\(415\) −0.102180 + 0.0472751i −0.00501583 + 0.00232064i
\(416\) 0 0
\(417\) −13.6905 + 33.0518i −0.670427 + 1.61855i
\(418\) 0 0
\(419\) −7.01049 7.01049i −0.342485 0.342485i 0.514816 0.857301i \(-0.327860\pi\)
−0.857301 + 0.514816i \(0.827860\pi\)
\(420\) 0 0
\(421\) −11.6357 28.0911i −0.567091 1.36908i −0.903997 0.427539i \(-0.859380\pi\)
0.336906 0.941538i \(-0.390620\pi\)
\(422\) 0 0
\(423\) −42.8598 17.7531i −2.08392 0.863186i
\(424\) 0 0
\(425\) 19.5174 + 6.28269i 0.946735 + 0.304755i
\(426\) 0 0
\(427\) −12.7088 + 5.26416i −0.615022 + 0.254751i
\(428\) 0 0
\(429\) −37.7889 + 91.2305i −1.82447 + 4.40465i
\(430\) 0 0
\(431\) −19.6109 + 19.6109i −0.944624 + 0.944624i −0.998545 0.0539216i \(-0.982828\pi\)
0.0539216 + 0.998545i \(0.482828\pi\)
\(432\) 0 0
\(433\) −13.1295 + 13.1295i −0.630965 + 0.630965i −0.948310 0.317345i \(-0.897209\pi\)
0.317345 + 0.948310i \(0.397209\pi\)
\(434\) 0 0
\(435\) −23.2071 8.52554i −1.11269 0.408768i
\(436\) 0 0
\(437\) 4.80579 + 11.6022i 0.229892 + 0.555009i
\(438\) 0 0
\(439\) 0.815559 + 1.96893i 0.0389245 + 0.0939720i 0.942146 0.335202i \(-0.108805\pi\)
−0.903222 + 0.429174i \(0.858805\pi\)
\(440\) 0 0
\(441\) 20.8575i 0.993214i
\(442\) 0 0
\(443\) 14.2660i 0.677796i 0.940823 + 0.338898i \(0.110054\pi\)
−0.940823 + 0.338898i \(0.889946\pi\)
\(444\) 0 0
\(445\) 24.5387 0.997709i 1.16324 0.0472959i
\(446\) 0 0
\(447\) 11.5743 11.5743i 0.547446 0.547446i
\(448\) 0 0
\(449\) −5.78673 5.78673i −0.273093 0.273093i 0.557251 0.830344i \(-0.311856\pi\)
−0.830344 + 0.557251i \(0.811856\pi\)
\(450\) 0 0
\(451\) 30.3700 + 24.4886i 1.43007 + 1.15312i
\(452\) 0 0
\(453\) 10.1216i 0.475554i
\(454\) 0 0
\(455\) 8.61130 + 18.6124i 0.403704 + 0.872564i
\(456\) 0 0
\(457\) 9.10762 3.77250i 0.426037 0.176470i −0.159354 0.987221i \(-0.550941\pi\)
0.585391 + 0.810751i \(0.300941\pi\)
\(458\) 0 0
\(459\) 12.3729 + 12.3729i 0.577516 + 0.577516i
\(460\) 0 0
\(461\) −10.3760 −0.483259 −0.241629 0.970369i \(-0.577682\pi\)
−0.241629 + 0.970369i \(0.577682\pi\)
\(462\) 0 0
\(463\) 7.36256 17.7748i 0.342167 0.826065i −0.655329 0.755344i \(-0.727470\pi\)
0.997496 0.0707211i \(-0.0225300\pi\)
\(464\) 0 0
\(465\) 16.4232 + 15.1399i 0.761607 + 0.702094i
\(466\) 0 0
\(467\) −1.50463 + 1.50463i −0.0696261 + 0.0696261i −0.741062 0.671436i \(-0.765678\pi\)
0.671436 + 0.741062i \(0.265678\pi\)
\(468\) 0 0
\(469\) 11.4387i 0.528190i
\(470\) 0 0
\(471\) −1.23899 1.23899i −0.0570895 0.0570895i
\(472\) 0 0
\(473\) 46.5863 19.2967i 2.14204 0.887263i
\(474\) 0 0
\(475\) −10.9505 + 5.61732i −0.502445 + 0.257740i
\(476\) 0 0
\(477\) 36.9014 15.2850i 1.68960 0.699854i
\(478\) 0 0
\(479\) 10.1085 4.18709i 0.461871 0.191313i −0.139600 0.990208i \(-0.544582\pi\)
0.601471 + 0.798895i \(0.294582\pi\)
\(480\) 0 0
\(481\) −24.2486 + 10.0441i −1.10564 + 0.457971i
\(482\) 0 0
\(483\) 21.8055i 0.992186i
\(484\) 0 0
\(485\) −9.34645 + 0.380014i −0.424401 + 0.0172556i
\(486\) 0 0
\(487\) −29.9270 −1.35612 −0.678060 0.735007i \(-0.737179\pi\)
−0.678060 + 0.735007i \(0.737179\pi\)
\(488\) 0 0
\(489\) 7.26910 3.01096i 0.328720 0.136160i
\(490\) 0 0
\(491\) 5.48110i 0.247358i 0.992322 + 0.123679i \(0.0394694\pi\)
−0.992322 + 0.123679i \(0.960531\pi\)
\(492\) 0 0
\(493\) 11.6660 + 11.6660i 0.525412 + 0.525412i
\(494\) 0 0
\(495\) 45.6041 + 42.0405i 2.04975 + 1.88958i
\(496\) 0 0
\(497\) 3.90302i 0.175074i
\(498\) 0 0
\(499\) −4.81613 11.6272i −0.215600 0.520504i 0.778666 0.627438i \(-0.215897\pi\)
−0.994266 + 0.106934i \(0.965897\pi\)
\(500\) 0 0
\(501\) −46.6014 + 46.6014i −2.08200 + 2.08200i
\(502\) 0 0
\(503\) 5.71607 13.7998i 0.254867 0.615303i −0.743718 0.668494i \(-0.766939\pi\)
0.998584 + 0.0531912i \(0.0169393\pi\)
\(504\) 0 0
\(505\) 1.72357 1.86967i 0.0766979 0.0831991i
\(506\) 0 0
\(507\) −22.9043 55.2959i −1.01722 2.45578i
\(508\) 0 0
\(509\) −9.64913 + 23.2950i −0.427690 + 1.03253i 0.552328 + 0.833627i \(0.313740\pi\)
−0.980018 + 0.198908i \(0.936260\pi\)
\(510\) 0 0
\(511\) 24.2108 + 10.0285i 1.07102 + 0.443633i
\(512\) 0 0
\(513\) −10.5030 −0.463719
\(514\) 0 0
\(515\) 3.57008 9.71798i 0.157316 0.428226i
\(516\) 0 0
\(517\) 43.9011 + 43.9011i 1.93077 + 1.93077i
\(518\) 0 0
\(519\) −9.05391 3.75025i −0.397423 0.164618i
\(520\) 0 0
\(521\) −0.462590 + 0.191611i −0.0202664 + 0.00839463i −0.392794 0.919627i \(-0.628491\pi\)
0.372527 + 0.928021i \(0.378491\pi\)
\(522\) 0 0
\(523\) −12.8634 + 12.8634i −0.562479 + 0.562479i −0.930011 0.367532i \(-0.880203\pi\)
0.367532 + 0.930011i \(0.380203\pi\)
\(524\) 0 0
\(525\) 21.2993 1.73487i 0.929579 0.0757160i
\(526\) 0 0
\(527\) −5.70414 13.7710i −0.248476 0.599875i
\(528\) 0 0
\(529\) 3.02972i 0.131727i
\(530\) 0 0
\(531\) −27.3634 + 27.3634i −1.18747 + 1.18747i
\(532\) 0 0
\(533\) −37.5462 + 4.02536i −1.62631 + 0.174358i
\(534\) 0 0
\(535\) 8.69350 4.02217i 0.375853 0.173894i
\(536\) 0 0
\(537\) −41.0506 41.0506i −1.77146 1.77146i
\(538\) 0 0
\(539\) 10.6821 25.7889i 0.460111 1.11081i
\(540\) 0 0
\(541\) 26.6195 26.6195i 1.14446 1.14446i 0.156838 0.987624i \(-0.449870\pi\)
0.987624 0.156838i \(-0.0501301\pi\)
\(542\) 0 0
\(543\) 9.00026 + 9.00026i 0.386238 + 0.386238i
\(544\) 0 0
\(545\) −9.83565 + 10.6694i −0.421313 + 0.457025i
\(546\) 0 0
\(547\) 6.58818 2.72891i 0.281690 0.116680i −0.237365 0.971420i \(-0.576284\pi\)
0.519055 + 0.854741i \(0.326284\pi\)
\(548\) 0 0
\(549\) 40.2690i 1.71864i
\(550\) 0 0
\(551\) −9.90300 −0.421882
\(552\) 0 0
\(553\) 21.4120i 0.910529i
\(554\) 0 0
\(555\) 1.11108 + 27.3270i 0.0471626 + 1.15997i
\(556\) 0 0
\(557\) −9.83885 23.7531i −0.416885 1.00645i −0.983245 0.182292i \(-0.941649\pi\)
0.566359 0.824158i \(-0.308351\pi\)
\(558\) 0 0
\(559\) −18.6775 + 45.0914i −0.789974 + 1.90716i
\(560\) 0 0
\(561\) −26.2768 63.4377i −1.10941 2.67834i
\(562\) 0 0
\(563\) −3.89605 1.61380i −0.164199 0.0680135i 0.299070 0.954231i \(-0.403324\pi\)
−0.463269 + 0.886218i \(0.653324\pi\)
\(564\) 0 0
\(565\) 6.99424 + 15.1173i 0.294250 + 0.635991i
\(566\) 0 0
\(567\) −2.77496 1.14942i −0.116537 0.0482713i
\(568\) 0 0
\(569\) 22.3777 22.3777i 0.938121 0.938121i −0.0600726 0.998194i \(-0.519133\pi\)
0.998194 + 0.0600726i \(0.0191332\pi\)
\(570\) 0 0
\(571\) 0.973313 + 2.34979i 0.0407319 + 0.0983355i 0.942936 0.332973i \(-0.108052\pi\)
−0.902204 + 0.431309i \(0.858052\pi\)
\(572\) 0 0
\(573\) 25.7734 25.7734i 1.07670 1.07670i
\(574\) 0 0
\(575\) 25.4255 2.07095i 1.06031 0.0863647i
\(576\) 0 0
\(577\) −8.20000 + 19.7965i −0.341370 + 0.824141i 0.656207 + 0.754581i \(0.272160\pi\)
−0.997578 + 0.0695603i \(0.977840\pi\)
\(578\) 0 0
\(579\) −8.25308 8.25308i −0.342986 0.342986i
\(580\) 0 0
\(581\) 0.0723434 0.0299656i 0.00300131 0.00124318i
\(582\) 0 0
\(583\) −53.4543 −2.21385
\(584\) 0 0
\(585\) −59.9854 + 2.43893i −2.48009 + 0.100837i
\(586\) 0 0
\(587\) 12.7299 30.7327i 0.525419 1.26847i −0.409077 0.912500i \(-0.634149\pi\)
0.934496 0.355974i \(-0.115851\pi\)
\(588\) 0 0
\(589\) 8.26597 + 3.42388i 0.340594 + 0.141078i
\(590\) 0 0
\(591\) 23.2396 + 9.62614i 0.955948 + 0.395967i
\(592\) 0 0
\(593\) 16.4790 + 39.7837i 0.676709 + 1.63372i 0.769971 + 0.638079i \(0.220271\pi\)
−0.0932611 + 0.995642i \(0.529729\pi\)
\(594\) 0 0
\(595\) −13.3857 4.91746i −0.548759 0.201596i
\(596\) 0 0
\(597\) −14.8395 14.8395i −0.607341 0.607341i
\(598\) 0 0
\(599\) 16.7678 0.685114 0.342557 0.939497i \(-0.388707\pi\)
0.342557 + 0.939497i \(0.388707\pi\)
\(600\) 0 0
\(601\) −6.12648 + 14.7906i −0.249904 + 0.603322i −0.998195 0.0600481i \(-0.980875\pi\)
0.748291 + 0.663370i \(0.230875\pi\)
\(602\) 0 0
\(603\) −30.9367 12.8144i −1.25984 0.521842i
\(604\) 0 0
\(605\) −24.5273 53.0131i −0.997175 2.15529i
\(606\) 0 0
\(607\) −25.4726 −1.03390 −0.516951 0.856015i \(-0.672933\pi\)
−0.516951 + 0.856015i \(0.672933\pi\)
\(608\) 0 0
\(609\) 15.8863 + 6.58033i 0.643746 + 0.266648i
\(610\) 0 0
\(611\) −60.0933 −2.43112
\(612\) 0 0
\(613\) −44.1630 −1.78372 −0.891862 0.452307i \(-0.850601\pi\)
−0.891862 + 0.452307i \(0.850601\pi\)
\(614\) 0 0
\(615\) −9.55412 + 38.1708i −0.385259 + 1.53920i
\(616\) 0 0
\(617\) 1.30787 0.0526528 0.0263264 0.999653i \(-0.491619\pi\)
0.0263264 + 0.999653i \(0.491619\pi\)
\(618\) 0 0
\(619\) −9.18340 −0.369112 −0.184556 0.982822i \(-0.559085\pi\)
−0.184556 + 0.982822i \(0.559085\pi\)
\(620\) 0 0
\(621\) 20.1128 + 8.33100i 0.807099 + 0.334311i
\(622\) 0 0
\(623\) −17.0808 −0.684326
\(624\) 0 0
\(625\) 4.04575 + 24.6705i 0.161830 + 0.986819i
\(626\) 0 0
\(627\) 38.0781 + 15.7725i 1.52069 + 0.629892i
\(628\) 0 0
\(629\) 6.98422 16.8614i 0.278479 0.672308i
\(630\) 0 0
\(631\) 12.0431 0.479429 0.239715 0.970843i \(-0.422946\pi\)
0.239715 + 0.970843i \(0.422946\pi\)
\(632\) 0 0
\(633\) 33.5431 + 33.5431i 1.33322 + 1.33322i
\(634\) 0 0
\(635\) 11.7066 5.41623i 0.464563 0.214937i
\(636\) 0 0
\(637\) 10.3393 + 24.9614i 0.409660 + 0.989006i
\(638\) 0 0
\(639\) 10.5560 + 4.37242i 0.417587 + 0.172970i
\(640\) 0 0
\(641\) −0.714431 0.295927i −0.0282183 0.0116884i 0.368530 0.929616i \(-0.379861\pi\)
−0.396748 + 0.917928i \(0.629861\pi\)
\(642\) 0 0
\(643\) −9.29811 + 22.4476i −0.366682 + 0.885248i 0.627608 + 0.778530i \(0.284034\pi\)
−0.994289 + 0.106718i \(0.965966\pi\)
\(644\) 0 0
\(645\) 37.3932 + 34.4713i 1.47236 + 1.35731i
\(646\) 0 0
\(647\) 39.0339 1.53458 0.767291 0.641299i \(-0.221604\pi\)
0.767291 + 0.641299i \(0.221604\pi\)
\(648\) 0 0
\(649\) 47.8471 19.8189i 1.87816 0.777961i
\(650\) 0 0
\(651\) −10.9851 10.9851i −0.430541 0.430541i
\(652\) 0 0
\(653\) −15.4677 + 37.3424i −0.605300 + 1.46132i 0.262759 + 0.964861i \(0.415367\pi\)
−0.868059 + 0.496461i \(0.834633\pi\)
\(654\) 0 0
\(655\) 9.91098 + 21.4216i 0.387254 + 0.837009i
\(656\) 0 0
\(657\) −54.2452 + 54.2452i −2.11631 + 2.11631i
\(658\) 0 0
\(659\) −11.7951 28.4759i −0.459472 1.10926i −0.968611 0.248580i \(-0.920036\pi\)
0.509139 0.860684i \(-0.329964\pi\)
\(660\) 0 0
\(661\) 14.7579 14.7579i 0.574014 0.574014i −0.359233 0.933248i \(-0.616962\pi\)
0.933248 + 0.359233i \(0.116962\pi\)
\(662\) 0 0
\(663\) 61.4021 + 25.4336i 2.38466 + 0.987758i
\(664\) 0 0
\(665\) 7.76852 3.59422i 0.301250 0.139378i
\(666\) 0 0
\(667\) 18.9638 + 7.85508i 0.734283 + 0.304150i
\(668\) 0 0
\(669\) −4.80275 11.5949i −0.185685 0.448283i
\(670\) 0 0
\(671\) −20.6237 + 49.7900i −0.796169 + 1.92212i
\(672\) 0 0
\(673\) 3.95671 + 9.55233i 0.152520 + 0.368215i 0.981609 0.190900i \(-0.0611407\pi\)
−0.829090 + 0.559116i \(0.811141\pi\)
\(674\) 0 0
\(675\) −6.53741 + 20.3087i −0.251625 + 0.781684i
\(676\) 0 0
\(677\) 26.2292i 1.00807i −0.863683 0.504036i \(-0.831848\pi\)
0.863683 0.504036i \(-0.168152\pi\)
\(678\) 0 0
\(679\) 6.50583 0.249671
\(680\) 0 0
\(681\) 27.0206i 1.03543i
\(682\) 0 0
\(683\) 4.74229 1.96432i 0.181459 0.0751627i −0.290104 0.956995i \(-0.593690\pi\)
0.471563 + 0.881832i \(0.343690\pi\)
\(684\) 0 0
\(685\) −1.99051 48.9566i −0.0760535 1.87054i
\(686\) 0 0
\(687\) −2.05841 2.05841i −0.0785332 0.0785332i
\(688\) 0 0
\(689\) 36.5850 36.5850i 1.39378 1.39378i
\(690\) 0 0
\(691\) 14.6694 35.4152i 0.558052 1.34726i −0.353254 0.935527i \(-0.614925\pi\)
0.911306 0.411730i \(-0.135075\pi\)
\(692\) 0 0
\(693\) −30.5036 30.5036i −1.15874 1.15874i
\(694\) 0 0
\(695\) 27.3228 + 10.0375i 1.03641 + 0.380745i
\(696\) 0 0
\(697\) 16.4819 20.4403i 0.624296 0.774233i
\(698\) 0 0
\(699\) 7.36635 7.36635i 0.278621 0.278621i
\(700\) 0 0
\(701\) 12.8764i 0.486333i 0.969985 + 0.243167i \(0.0781862\pi\)
−0.969985 + 0.243167i \(0.921814\pi\)
\(702\) 0 0
\(703\) 4.19224 + 10.1210i 0.158113 + 0.381719i
\(704\) 0 0
\(705\) −21.5932 + 58.7781i −0.813246 + 2.21371i
\(706\) 0 0
\(707\) −1.25058 + 1.25058i −0.0470330 + 0.0470330i
\(708\) 0 0
\(709\) −27.5745 + 11.4217i −1.03558 + 0.428952i −0.834724 0.550668i \(-0.814373\pi\)
−0.200858 + 0.979620i \(0.564373\pi\)
\(710\) 0 0
\(711\) −57.9100 23.9871i −2.17180 0.899587i
\(712\) 0 0
\(713\) −13.1132 13.1132i −0.491092 0.491092i
\(714\) 0 0
\(715\) 75.4172 + 27.7058i 2.82044 + 1.03614i
\(716\) 0 0
\(717\) 30.2613 1.13013
\(718\) 0 0
\(719\) 12.0241 + 4.98055i 0.448423 + 0.185743i 0.595455 0.803389i \(-0.296972\pi\)
−0.147031 + 0.989132i \(0.546972\pi\)
\(720\) 0 0
\(721\) −2.75552 + 6.65241i −0.102621 + 0.247749i
\(722\) 0 0
\(723\) −24.7251 59.6918i −0.919538 2.21996i
\(724\) 0 0
\(725\) −6.16395 + 19.1486i −0.228923 + 0.711160i
\(726\) 0 0
\(727\) 16.1188 38.9143i 0.597814 1.44325i −0.277989 0.960584i \(-0.589668\pi\)
0.875804 0.482667i \(-0.160332\pi\)
\(728\) 0 0
\(729\) 31.0933 31.0933i 1.15160 1.15160i
\(730\) 0 0
\(731\) −12.9875 31.3546i −0.480360 1.15969i
\(732\) 0 0
\(733\) 32.8312i 1.21265i −0.795218 0.606324i \(-0.792643\pi\)
0.795218 0.606324i \(-0.207357\pi\)
\(734\) 0 0
\(735\) 28.1303 1.14374i 1.03760 0.0421874i
\(736\) 0 0
\(737\) 31.6883 + 31.6883i 1.16725 + 1.16725i
\(738\) 0 0
\(739\) 13.9872i 0.514528i 0.966341 + 0.257264i \(0.0828209\pi\)
−0.966341 + 0.257264i \(0.917179\pi\)
\(740\) 0 0
\(741\) −36.8563 + 15.2664i −1.35395 + 0.560824i
\(742\) 0 0
\(743\) −7.89369 −0.289591 −0.144796 0.989462i \(-0.546253\pi\)
−0.144796 + 0.989462i \(0.546253\pi\)
\(744\) 0 0
\(745\) −9.79219 9.02703i −0.358758 0.330725i
\(746\) 0 0
\(747\) 0.229227i 0.00838697i
\(748\) 0 0
\(749\) −6.15498 + 2.54948i −0.224898 + 0.0931559i
\(750\) 0 0
\(751\) −42.9761 + 17.8013i −1.56822 + 0.649578i −0.986493 0.163805i \(-0.947623\pi\)
−0.581728 + 0.813383i \(0.697623\pi\)
\(752\) 0 0
\(753\) 70.0174 29.0021i 2.55157 1.05690i
\(754\) 0 0
\(755\) 8.22860 0.334563i 0.299469 0.0121760i
\(756\) 0 0
\(757\) 11.7631 4.87242i 0.427536 0.177091i −0.158531 0.987354i \(-0.550676\pi\)
0.586067 + 0.810263i \(0.300676\pi\)
\(758\) 0 0
\(759\) −60.4073 60.4073i −2.19264 2.19264i
\(760\) 0 0
\(761\) 34.1623i 1.23838i −0.785240 0.619192i \(-0.787460\pi\)
0.785240 0.619192i \(-0.212540\pi\)
\(762\) 0 0
\(763\) 7.13651 7.13651i 0.258359 0.258359i
\(764\) 0 0
\(765\) 28.2951 30.6935i 1.02301 1.10973i
\(766\) 0 0
\(767\) −19.1830 + 46.3118i −0.692657 + 1.67222i
\(768\) 0 0
\(769\) 40.7281 1.46869 0.734346 0.678775i \(-0.237489\pi\)
0.734346 + 0.678775i \(0.237489\pi\)
\(770\) 0 0
\(771\) −20.1995 20.1995i −0.727467 0.727467i
\(772\) 0 0
\(773\) −14.4533 + 5.98673i −0.519847 + 0.215328i −0.627150 0.778899i \(-0.715779\pi\)
0.107302 + 0.994226i \(0.465779\pi\)
\(774\) 0 0
\(775\) 11.7655 13.8521i 0.422628 0.497581i
\(776\) 0 0
\(777\) 19.0216i 0.682397i
\(778\) 0 0
\(779\) 1.68012 + 15.6712i 0.0601965 + 0.561477i
\(780\) 0 0
\(781\) −10.8124 10.8124i −0.386899 0.386899i
\(782\) 0 0
\(783\) −12.1390 + 12.1390i −0.433813 + 0.433813i
\(784\) 0 0
\(785\) −0.966310 + 1.04822i −0.0344891 + 0.0374125i
\(786\) 0 0
\(787\) 18.0808i 0.644510i 0.946653 + 0.322255i \(0.104441\pi\)
−0.946653 + 0.322255i \(0.895559\pi\)
\(788\) 0 0
\(789\) 73.7212i 2.62455i
\(790\) 0 0
\(791\) −4.43335 10.7030i −0.157632 0.380556i
\(792\) 0 0
\(793\) −19.9619 48.1923i −0.708868 1.71136i
\(794\) 0 0
\(795\) −22.6383 48.9303i −0.802898 1.73538i
\(796\) 0 0
\(797\) −35.4612 + 35.4612i −1.25610 + 1.25610i −0.303159 + 0.952940i \(0.598041\pi\)
−0.952940 + 0.303159i \(0.901959\pi\)
\(798\) 0 0
\(799\) 29.5473 29.5473i 1.04531 1.04531i
\(800\) 0 0
\(801\) 19.1350 46.1960i 0.676102 1.63225i
\(802\) 0 0
\(803\) 94.8521 39.2890i 3.34726 1.38648i
\(804\) 0 0
\(805\) −17.7273 + 0.720769i −0.624806 + 0.0254038i
\(806\) 0 0
\(807\) −52.2205 21.6304i −1.83825 0.761427i
\(808\) 0 0
\(809\) −1.74606 4.21536i −0.0613882 0.148204i 0.890209 0.455553i \(-0.150558\pi\)
−0.951597 + 0.307348i \(0.900558\pi\)
\(810\) 0 0
\(811\) 2.75780 + 2.75780i 0.0968395 + 0.0968395i 0.753867 0.657027i \(-0.228186\pi\)
−0.657027 + 0.753867i \(0.728186\pi\)
\(812\) 0 0
\(813\) −7.21388 + 17.4158i −0.253002 + 0.610801i
\(814\) 0 0
\(815\) −2.68811 5.81007i −0.0941604 0.203518i
\(816\) 0 0
\(817\) 18.8204 + 7.79568i 0.658443 + 0.272736i
\(818\) 0 0
\(819\) 41.7544 1.45902
\(820\) 0 0
\(821\) 38.3872 1.33972 0.669862 0.742486i \(-0.266353\pi\)
0.669862 + 0.742486i \(0.266353\pi\)
\(822\) 0 0
\(823\) 29.9685 + 12.4134i 1.04464 + 0.432703i 0.837975 0.545709i \(-0.183740\pi\)
0.206663 + 0.978412i \(0.433740\pi\)
\(824\) 0 0
\(825\) 54.1989 63.8110i 1.88696 2.22161i
\(826\) 0 0
\(827\) 10.5595 25.4929i 0.367189 0.886473i −0.627019 0.779004i \(-0.715725\pi\)
0.994208 0.107469i \(-0.0342748\pi\)
\(828\) 0 0
\(829\) −15.5952 15.5952i −0.541643 0.541643i 0.382368 0.924010i \(-0.375109\pi\)
−0.924010 + 0.382368i \(0.875109\pi\)
\(830\) 0 0
\(831\) 18.2142 + 43.9729i 0.631843 + 1.52540i
\(832\) 0 0
\(833\) −17.3570 7.18952i −0.601386 0.249102i
\(834\) 0 0
\(835\) 39.4261 + 36.3453i 1.36440 + 1.25778i
\(836\) 0 0
\(837\) 14.3293 5.93540i 0.495294 0.205158i
\(838\) 0 0
\(839\) −17.0443 + 41.1485i −0.588434 + 1.42061i 0.296565 + 0.955013i \(0.404159\pi\)
−0.884999 + 0.465593i \(0.845841\pi\)
\(840\) 0 0
\(841\) 9.06053 9.06053i 0.312432 0.312432i
\(842\) 0 0
\(843\) 17.8568 17.8568i 0.615019 0.615019i
\(844\) 0 0
\(845\) −44.1971 + 20.4484i −1.52043 + 0.703446i
\(846\) 0 0
\(847\) 15.5468 + 37.5332i 0.534193 + 1.28966i
\(848\) 0 0
\(849\) 15.0678 + 36.3769i 0.517125 + 1.24845i
\(850\) 0 0
\(851\) 22.7065i 0.778369i
\(852\) 0 0
\(853\) 14.7581i 0.505307i 0.967557 + 0.252653i \(0.0813032\pi\)
−0.967557 + 0.252653i \(0.918697\pi\)
\(854\) 0 0
\(855\) 1.01797 + 25.0369i 0.0348138 + 0.856245i
\(856\) 0 0
\(857\) 18.6904 18.6904i 0.638453 0.638453i −0.311720 0.950174i \(-0.600905\pi\)
0.950174 + 0.311720i \(0.100905\pi\)
\(858\) 0 0
\(859\) 2.76827 + 2.76827i 0.0944523 + 0.0944523i 0.752754 0.658302i \(-0.228725\pi\)
−0.658302 + 0.752754i \(0.728725\pi\)
\(860\) 0 0
\(861\) 7.71791 26.2560i 0.263026 0.894801i
\(862\) 0 0
\(863\) 38.7456i 1.31892i −0.751741 0.659458i \(-0.770786\pi\)
0.751741 0.659458i \(-0.229214\pi\)
\(864\) 0 0
\(865\) −2.74959 + 7.48456i −0.0934887 + 0.254483i
\(866\) 0 0
\(867\) 0.466935 0.193411i 0.0158579 0.00656857i
\(868\) 0 0
\(869\) 59.3170 + 59.3170i 2.01219 + 2.01219i
\(870\) 0 0
\(871\) −43.3760 −1.46974
\(872\) 0 0
\(873\) −7.28827 + 17.5954i −0.246671 + 0.595515i
\(874\) 0 0
\(875\) −2.11444 17.2585i −0.0714812 0.583443i
\(876\) 0 0
\(877\) 10.0697 10.0697i 0.340028 0.340028i −0.516350 0.856378i \(-0.672710\pi\)
0.856378 + 0.516350i \(0.172710\pi\)
\(878\) 0 0
\(879\) 15.1863i 0.512220i
\(880\) 0 0
\(881\) −23.0343 23.0343i −0.776045 0.776045i 0.203111 0.979156i \(-0.434895\pi\)
−0.979156 + 0.203111i \(0.934895\pi\)
\(882\) 0 0
\(883\) −22.6328 + 9.37481i −0.761655 + 0.315488i −0.729487 0.683995i \(-0.760241\pi\)
−0.0321677 + 0.999482i \(0.510241\pi\)
\(884\) 0 0
\(885\) 38.4052 + 35.4042i 1.29098 + 1.19010i
\(886\) 0 0
\(887\) 3.52337 1.45943i 0.118303 0.0490027i −0.322747 0.946485i \(-0.604606\pi\)
0.441050 + 0.897483i \(0.354606\pi\)
\(888\) 0 0
\(889\) −8.28827 + 3.43311i −0.277980 + 0.115143i
\(890\) 0 0
\(891\) −10.8716 + 4.50316i −0.364212 + 0.150862i
\(892\) 0 0
\(893\) 25.0820i 0.839336i
\(894\) 0 0
\(895\) −32.0162 + 34.7300i −1.07018 + 1.16090i
\(896\) 0 0
\(897\) 82.6875 2.76086
\(898\) 0 0
\(899\) 13.5107 5.59633i 0.450609 0.186648i
\(900\) 0 0
\(901\) 35.9771i 1.19857i
\(902\) 0 0
\(903\) −25.0115 25.0115i −0.832332 0.832332i
\(904\) 0 0
\(905\) 7.01948 7.61447i 0.233335 0.253114i
\(906\) 0 0
\(907\) 3.89068i 0.129188i −0.997912 0.0645940i \(-0.979425\pi\)
0.997912 0.0645940i \(-0.0205752\pi\)
\(908\) 0 0
\(909\) −1.98129 4.78326i −0.0657153 0.158651i
\(910\) 0 0
\(911\) −25.8414 + 25.8414i −0.856165 + 0.856165i −0.990884 0.134719i \(-0.956987\pi\)
0.134719 + 0.990884i \(0.456987\pi\)
\(912\) 0 0
\(913\) 0.117398 0.283424i 0.00388531 0.00937996i
\(914\) 0 0
\(915\) −54.3104 + 2.20819i −1.79545 + 0.0730004i
\(916\) 0 0
\(917\) −6.28214 15.1664i −0.207455 0.500840i
\(918\) 0 0
\(919\) 13.4174 32.3924i 0.442598 1.06853i −0.532436 0.846470i \(-0.678723\pi\)
0.975034 0.222056i \(-0.0712768\pi\)
\(920\) 0 0
\(921\) −35.7672 14.8153i −1.17857 0.488179i
\(922\) 0 0
\(923\) 14.8004 0.487162
\(924\) 0 0
\(925\) 22.1794 1.80656i 0.729254 0.0593992i
\(926\) 0 0
\(927\) −14.9049 14.9049i −0.489543 0.489543i
\(928\) 0 0
\(929\) −48.6863 20.1665i −1.59734 0.661642i −0.606308 0.795230i \(-0.707350\pi\)
−0.991037 + 0.133588i \(0.957350\pi\)
\(930\) 0 0
\(931\) 10.4185 4.31547i 0.341452 0.141434i
\(932\) 0 0
\(933\) −13.5403 + 13.5403i −0.443289 + 0.443289i
\(934\) 0 0
\(935\) −50.7046 + 23.4592i −1.65822 + 0.767198i
\(936\) 0 0
\(937\) −18.6802 45.0981i −0.610257 1.47329i −0.862719 0.505684i \(-0.831240\pi\)
0.252462 0.967607i \(-0.418760\pi\)
\(938\) 0 0
\(939\) 90.2340i 2.94468i
\(940\) 0 0
\(941\) 14.8009 14.8009i 0.482497 0.482497i −0.423431 0.905928i \(-0.639175\pi\)
0.905928 + 0.423431i \(0.139175\pi\)
\(942\) 0 0
\(943\) 9.21303 31.3423i 0.300018 1.02064i
\(944\) 0 0
\(945\) 5.11683 13.9284i 0.166451 0.453090i
\(946\) 0 0
\(947\) 28.2996 + 28.2996i 0.919614 + 0.919614i 0.997001 0.0773869i \(-0.0246577\pi\)
−0.0773869 + 0.997001i \(0.524658\pi\)
\(948\) 0 0
\(949\) −38.0283 + 91.8085i −1.23445 + 2.98023i
\(950\) 0 0
\(951\) 29.4567 29.4567i 0.955199 0.955199i
\(952\) 0 0
\(953\) 15.7361 + 15.7361i 0.509742 + 0.509742i 0.914447 0.404705i \(-0.132626\pi\)
−0.404705 + 0.914447i \(0.632626\pi\)
\(954\) 0 0
\(955\) −21.8050 20.1012i −0.705595 0.650459i
\(956\) 0 0
\(957\) 62.2387 25.7801i 2.01189 0.833353i
\(958\) 0 0
\(959\) 34.0775i 1.10042i
\(960\) 0 0
\(961\) 17.7878 0.573799
\(962\) 0 0
\(963\) 19.5026i 0.628464i
\(964\) 0 0
\(965\) −6.43674 + 6.98234i −0.207206 + 0.224770i
\(966\) 0 0
\(967\) −7.64058 18.4460i −0.245705 0.593183i 0.752126 0.659019i \(-0.229029\pi\)
−0.997830 + 0.0658362i \(0.979029\pi\)
\(968\) 0 0
\(969\) 10.6156 25.6282i 0.341021 0.823297i
\(970\) 0 0
\(971\) 18.9995 + 45.8688i 0.609722 + 1.47200i 0.863303 + 0.504686i \(0.168392\pi\)
−0.253581 + 0.967314i \(0.581608\pi\)
\(972\) 0 0
\(973\) −18.7037 7.74733i −0.599613 0.248368i
\(974\) 0 0
\(975\) 6.57871 + 80.7680i 0.210687 + 2.58665i
\(976\) 0 0
\(977\) −39.9839 16.5619i −1.27920 0.529862i −0.363451 0.931613i \(-0.618401\pi\)
−0.915749 + 0.401752i \(0.868401\pi\)
\(978\) 0 0
\(979\) −47.3183 + 47.3183i −1.51230 + 1.51230i
\(980\) 0 0
\(981\) 11.3063 + 27.2959i 0.360984 + 0.871492i
\(982\) 0 0
\(983\) −12.8617 + 12.8617i −0.410224 + 0.410224i −0.881816 0.471593i \(-0.843679\pi\)
0.471593 + 0.881816i \(0.343679\pi\)
\(984\) 0 0
\(985\) 7.05764 19.2114i 0.224875 0.612125i
\(986\) 0 0
\(987\) 16.6664 40.2363i 0.530498 1.28074i
\(988\) 0 0
\(989\) −29.8568 29.8568i −0.949391 0.949391i
\(990\) 0 0
\(991\) −44.0757 + 18.2567i −1.40011 + 0.579944i −0.949780 0.312918i \(-0.898693\pi\)
−0.450329 + 0.892863i \(0.648693\pi\)
\(992\) 0 0
\(993\) −1.88417 −0.0597924
\(994\) 0 0
\(995\) −11.5736 + 12.5546i −0.366909 + 0.398009i
\(996\) 0 0
\(997\) 10.5831 25.5499i 0.335170 0.809172i −0.662995 0.748624i \(-0.730715\pi\)
0.998165 0.0605485i \(-0.0192850\pi\)
\(998\) 0 0
\(999\) 17.5450 + 7.26739i 0.555100 + 0.229930i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.3 84
5.2 odd 4 820.2.y.a.437.3 yes 84
41.38 odd 8 820.2.y.a.653.3 yes 84
205.202 even 8 inner 820.2.x.a.817.3 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.3 84 1.1 even 1 trivial
820.2.x.a.817.3 yes 84 205.202 even 8 inner
820.2.y.a.437.3 yes 84 5.2 odd 4
820.2.y.a.653.3 yes 84 41.38 odd 8