Properties

Label 820.2.x.a.273.19
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.19
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.42535 + 1.00461i) q^{3} +(-1.21756 + 1.87551i) q^{5} +(1.20713 - 2.91427i) q^{7} +(2.75177 + 2.75177i) q^{9} +(0.413305 + 0.997808i) q^{11} +(5.08419 + 2.10594i) q^{13} +(-4.83719 + 3.32559i) q^{15} +(-0.984862 + 0.407943i) q^{17} +(-1.93434 + 4.66992i) q^{19} +(5.85543 - 5.85543i) q^{21} +(0.936242 - 0.936242i) q^{23} +(-2.03507 - 4.56711i) q^{25} +(0.895703 + 2.16242i) q^{27} +(1.58912 + 3.83648i) q^{29} +2.33421i q^{31} +2.83525i q^{33} +(3.99598 + 5.81229i) q^{35} +(8.08219 - 8.08219i) q^{37} +(10.2153 + 10.2153i) q^{39} +(-5.07254 - 3.90760i) q^{41} +0.648637i q^{43} +(-8.51143 + 1.81051i) q^{45} +(-4.54681 + 1.88335i) q^{47} +(-2.08604 - 2.08604i) q^{49} -2.79846 q^{51} +(-3.06923 + 7.40978i) q^{53} +(-2.37462 - 0.439737i) q^{55} +(-9.38293 + 9.38293i) q^{57} -2.33725i q^{59} +(0.848427 + 0.848427i) q^{61} +(11.3411 - 4.69765i) q^{63} +(-10.1400 + 6.97133i) q^{65} +(1.32747 - 0.549855i) q^{67} +(3.21128 - 1.33016i) q^{69} +(-2.87573 + 1.19117i) q^{71} -14.5992i q^{73} +(-0.347590 - 13.1213i) q^{75} +3.40679 q^{77} +(-3.00671 + 1.24542i) q^{79} -5.53030i q^{81} +(-12.4559 - 12.4559i) q^{83} +(0.434032 - 2.34382i) q^{85} +10.9013i q^{87} +(-1.68705 - 4.07290i) q^{89} +(12.2745 - 12.2745i) q^{91} +(-2.34498 + 5.66129i) q^{93} +(-6.40329 - 9.31381i) q^{95} +(3.12641 + 7.54783i) q^{97} +(-1.60842 + 3.88306i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.42535 + 1.00461i 1.40028 + 0.580014i 0.949824 0.312785i \(-0.101262\pi\)
0.450455 + 0.892799i \(0.351262\pi\)
\(4\) 0 0
\(5\) −1.21756 + 1.87551i −0.544511 + 0.838753i
\(6\) 0 0
\(7\) 1.20713 2.91427i 0.456252 1.10149i −0.513652 0.857999i \(-0.671708\pi\)
0.969903 0.243490i \(-0.0782923\pi\)
\(8\) 0 0
\(9\) 2.75177 + 2.75177i 0.917256 + 0.917256i
\(10\) 0 0
\(11\) 0.413305 + 0.997808i 0.124616 + 0.300850i 0.973859 0.227152i \(-0.0729413\pi\)
−0.849243 + 0.528002i \(0.822941\pi\)
\(12\) 0 0
\(13\) 5.08419 + 2.10594i 1.41010 + 0.584083i 0.952353 0.304999i \(-0.0986561\pi\)
0.457748 + 0.889082i \(0.348656\pi\)
\(14\) 0 0
\(15\) −4.83719 + 3.32559i −1.24896 + 0.858664i
\(16\) 0 0
\(17\) −0.984862 + 0.407943i −0.238864 + 0.0989408i −0.498904 0.866657i \(-0.666264\pi\)
0.260040 + 0.965598i \(0.416264\pi\)
\(18\) 0 0
\(19\) −1.93434 + 4.66992i −0.443769 + 1.07135i 0.530847 + 0.847468i \(0.321874\pi\)
−0.974616 + 0.223885i \(0.928126\pi\)
\(20\) 0 0
\(21\) 5.85543 5.85543i 1.27776 1.27776i
\(22\) 0 0
\(23\) 0.936242 0.936242i 0.195220 0.195220i −0.602727 0.797947i \(-0.705919\pi\)
0.797947 + 0.602727i \(0.205919\pi\)
\(24\) 0 0
\(25\) −2.03507 4.56711i −0.407015 0.913422i
\(26\) 0 0
\(27\) 0.895703 + 2.16242i 0.172378 + 0.416158i
\(28\) 0 0
\(29\) 1.58912 + 3.83648i 0.295092 + 0.712416i 0.999995 + 0.00311206i \(0.000990601\pi\)
−0.704903 + 0.709304i \(0.749009\pi\)
\(30\) 0 0
\(31\) 2.33421i 0.419237i 0.977783 + 0.209618i \(0.0672221\pi\)
−0.977783 + 0.209618i \(0.932778\pi\)
\(32\) 0 0
\(33\) 2.83525i 0.493553i
\(34\) 0 0
\(35\) 3.99598 + 5.81229i 0.675443 + 0.982456i
\(36\) 0 0
\(37\) 8.08219 8.08219i 1.32870 1.32870i 0.422202 0.906502i \(-0.361257\pi\)
0.906502 0.422202i \(-0.138743\pi\)
\(38\) 0 0
\(39\) 10.2153 + 10.2153i 1.63576 + 1.63576i
\(40\) 0 0
\(41\) −5.07254 3.90760i −0.792198 0.610265i
\(42\) 0 0
\(43\) 0.648637i 0.0989162i 0.998776 + 0.0494581i \(0.0157494\pi\)
−0.998776 + 0.0494581i \(0.984251\pi\)
\(44\) 0 0
\(45\) −8.51143 + 1.81051i −1.26881 + 0.269895i
\(46\) 0 0
\(47\) −4.54681 + 1.88335i −0.663221 + 0.274715i −0.688793 0.724958i \(-0.741859\pi\)
0.0255724 + 0.999673i \(0.491859\pi\)
\(48\) 0 0
\(49\) −2.08604 2.08604i −0.298005 0.298005i
\(50\) 0 0
\(51\) −2.79846 −0.391863
\(52\) 0 0
\(53\) −3.06923 + 7.40978i −0.421591 + 1.01781i 0.560287 + 0.828298i \(0.310691\pi\)
−0.981878 + 0.189513i \(0.939309\pi\)
\(54\) 0 0
\(55\) −2.37462 0.439737i −0.320194 0.0592941i
\(56\) 0 0
\(57\) −9.38293 + 9.38293i −1.24280 + 1.24280i
\(58\) 0 0
\(59\) 2.33725i 0.304283i −0.988359 0.152142i \(-0.951383\pi\)
0.988359 0.152142i \(-0.0486170\pi\)
\(60\) 0 0
\(61\) 0.848427 + 0.848427i 0.108630 + 0.108630i 0.759333 0.650703i \(-0.225526\pi\)
−0.650703 + 0.759333i \(0.725526\pi\)
\(62\) 0 0
\(63\) 11.3411 4.69765i 1.42885 0.591848i
\(64\) 0 0
\(65\) −10.1400 + 6.97133i −1.25772 + 0.864687i
\(66\) 0 0
\(67\) 1.32747 0.549855i 0.162176 0.0671755i −0.300119 0.953902i \(-0.597026\pi\)
0.462295 + 0.886726i \(0.347026\pi\)
\(68\) 0 0
\(69\) 3.21128 1.33016i 0.386593 0.160132i
\(70\) 0 0
\(71\) −2.87573 + 1.19117i −0.341287 + 0.141366i −0.546742 0.837301i \(-0.684132\pi\)
0.205456 + 0.978666i \(0.434132\pi\)
\(72\) 0 0
\(73\) 14.5992i 1.70871i −0.519692 0.854354i \(-0.673953\pi\)
0.519692 0.854354i \(-0.326047\pi\)
\(74\) 0 0
\(75\) −0.347590 13.1213i −0.0401363 1.51512i
\(76\) 0 0
\(77\) 3.40679 0.388240
\(78\) 0 0
\(79\) −3.00671 + 1.24542i −0.338281 + 0.140121i −0.545356 0.838204i \(-0.683606\pi\)
0.207075 + 0.978325i \(0.433606\pi\)
\(80\) 0 0
\(81\) 5.53030i 0.614478i
\(82\) 0 0
\(83\) −12.4559 12.4559i −1.36721 1.36721i −0.864387 0.502828i \(-0.832293\pi\)
−0.502828 0.864387i \(-0.667707\pi\)
\(84\) 0 0
\(85\) 0.434032 2.34382i 0.0470773 0.254222i
\(86\) 0 0
\(87\) 10.9013i 1.16874i
\(88\) 0 0
\(89\) −1.68705 4.07290i −0.178827 0.431727i 0.808894 0.587955i \(-0.200067\pi\)
−0.987721 + 0.156228i \(0.950067\pi\)
\(90\) 0 0
\(91\) 12.2745 12.2745i 1.28672 1.28672i
\(92\) 0 0
\(93\) −2.34498 + 5.66129i −0.243163 + 0.587048i
\(94\) 0 0
\(95\) −6.40329 9.31381i −0.656964 0.955576i
\(96\) 0 0
\(97\) 3.12641 + 7.54783i 0.317439 + 0.766366i 0.999388 + 0.0349665i \(0.0111325\pi\)
−0.681949 + 0.731399i \(0.738868\pi\)
\(98\) 0 0
\(99\) −1.60842 + 3.88306i −0.161652 + 0.390262i
\(100\) 0 0
\(101\) 5.29059 + 2.19144i 0.526434 + 0.218056i 0.630040 0.776562i \(-0.283038\pi\)
−0.103607 + 0.994618i \(0.533038\pi\)
\(102\) 0 0
\(103\) 4.51685 0.445059 0.222529 0.974926i \(-0.428569\pi\)
0.222529 + 0.974926i \(0.428569\pi\)
\(104\) 0 0
\(105\) 3.85255 + 18.1113i 0.375970 + 1.76748i
\(106\) 0 0
\(107\) −2.52187 2.52187i −0.243798 0.243798i 0.574621 0.818419i \(-0.305149\pi\)
−0.818419 + 0.574621i \(0.805149\pi\)
\(108\) 0 0
\(109\) −9.75628 4.04118i −0.934482 0.387075i −0.137105 0.990557i \(-0.543780\pi\)
−0.797377 + 0.603481i \(0.793780\pi\)
\(110\) 0 0
\(111\) 27.7217 11.4827i 2.63122 1.08989i
\(112\) 0 0
\(113\) −10.3650 + 10.3650i −0.975059 + 0.975059i −0.999696 0.0246374i \(-0.992157\pi\)
0.0246374 + 0.999696i \(0.492157\pi\)
\(114\) 0 0
\(115\) 0.615996 + 2.89587i 0.0574419 + 0.270041i
\(116\) 0 0
\(117\) 8.19546 + 19.7856i 0.757670 + 1.82918i
\(118\) 0 0
\(119\) 3.36259i 0.308248i
\(120\) 0 0
\(121\) 6.95338 6.95338i 0.632125 0.632125i
\(122\) 0 0
\(123\) −8.37707 14.5733i −0.755335 1.31403i
\(124\) 0 0
\(125\) 11.0435 + 1.74395i 0.987760 + 0.155983i
\(126\) 0 0
\(127\) −11.2518 11.2518i −0.998439 0.998439i 0.00156012 0.999999i \(-0.499503\pi\)
−0.999999 + 0.00156012i \(0.999503\pi\)
\(128\) 0 0
\(129\) −0.651630 + 1.57317i −0.0573728 + 0.138510i
\(130\) 0 0
\(131\) 6.50361 6.50361i 0.568223 0.568223i −0.363407 0.931630i \(-0.618387\pi\)
0.931630 + 0.363407i \(0.118387\pi\)
\(132\) 0 0
\(133\) 11.2744 + 11.2744i 0.977613 + 0.977613i
\(134\) 0 0
\(135\) −5.14621 0.952984i −0.442916 0.0820198i
\(136\) 0 0
\(137\) 11.4381 4.73781i 0.977221 0.404778i 0.163826 0.986489i \(-0.447617\pi\)
0.813395 + 0.581711i \(0.197617\pi\)
\(138\) 0 0
\(139\) 18.0108i 1.52766i −0.645420 0.763828i \(-0.723317\pi\)
0.645420 0.763828i \(-0.276683\pi\)
\(140\) 0 0
\(141\) −12.9197 −1.08803
\(142\) 0 0
\(143\) 5.94344i 0.497016i
\(144\) 0 0
\(145\) −9.13021 1.69075i −0.758223 0.140409i
\(146\) 0 0
\(147\) −2.96372 7.15504i −0.244443 0.590138i
\(148\) 0 0
\(149\) 3.69121 8.91136i 0.302395 0.730047i −0.697514 0.716571i \(-0.745710\pi\)
0.999909 0.0134756i \(-0.00428955\pi\)
\(150\) 0 0
\(151\) 7.35706 + 17.7615i 0.598709 + 1.44541i 0.874898 + 0.484308i \(0.160929\pi\)
−0.276189 + 0.961103i \(0.589071\pi\)
\(152\) 0 0
\(153\) −3.83268 1.58755i −0.309854 0.128346i
\(154\) 0 0
\(155\) −4.37784 2.84205i −0.351636 0.228279i
\(156\) 0 0
\(157\) 10.4512 + 4.32903i 0.834096 + 0.345494i 0.758523 0.651646i \(-0.225921\pi\)
0.0755733 + 0.997140i \(0.475921\pi\)
\(158\) 0 0
\(159\) −14.8879 + 14.8879i −1.18069 + 1.18069i
\(160\) 0 0
\(161\) −1.59829 3.85862i −0.125963 0.304102i
\(162\) 0 0
\(163\) 2.38920 2.38920i 0.187136 0.187136i −0.607321 0.794457i \(-0.707756\pi\)
0.794457 + 0.607321i \(0.207756\pi\)
\(164\) 0 0
\(165\) −5.31754 3.45210i −0.413970 0.268745i
\(166\) 0 0
\(167\) −3.00900 + 7.26437i −0.232843 + 0.562134i −0.996510 0.0834775i \(-0.973397\pi\)
0.763666 + 0.645611i \(0.223397\pi\)
\(168\) 0 0
\(169\) 12.2216 + 12.2216i 0.940125 + 0.940125i
\(170\) 0 0
\(171\) −18.1734 + 7.52767i −1.38975 + 0.575655i
\(172\) 0 0
\(173\) 20.7089 1.57446 0.787232 0.616656i \(-0.211513\pi\)
0.787232 + 0.616656i \(0.211513\pi\)
\(174\) 0 0
\(175\) −15.7664 + 0.417659i −1.19182 + 0.0315721i
\(176\) 0 0
\(177\) 2.34803 5.66865i 0.176489 0.426081i
\(178\) 0 0
\(179\) −21.2629 8.80738i −1.58926 0.658294i −0.599417 0.800437i \(-0.704601\pi\)
−0.989846 + 0.142143i \(0.954601\pi\)
\(180\) 0 0
\(181\) −6.37442 2.64037i −0.473807 0.196257i 0.132985 0.991118i \(-0.457544\pi\)
−0.606792 + 0.794861i \(0.707544\pi\)
\(182\) 0 0
\(183\) 1.20539 + 2.91008i 0.0891053 + 0.215119i
\(184\) 0 0
\(185\) 5.31764 + 24.9988i 0.390961 + 1.83795i
\(186\) 0 0
\(187\) −0.814098 0.814098i −0.0595327 0.0595327i
\(188\) 0 0
\(189\) 7.38309 0.537041
\(190\) 0 0
\(191\) 8.26712 19.9586i 0.598188 1.44415i −0.277239 0.960801i \(-0.589419\pi\)
0.875426 0.483352i \(-0.160581\pi\)
\(192\) 0 0
\(193\) −19.2549 7.97565i −1.38600 0.574100i −0.439921 0.898037i \(-0.644993\pi\)
−0.946079 + 0.323937i \(0.894993\pi\)
\(194\) 0 0
\(195\) −31.5967 + 6.72111i −2.26269 + 0.481309i
\(196\) 0 0
\(197\) 6.92491 0.493380 0.246690 0.969094i \(-0.420657\pi\)
0.246690 + 0.969094i \(0.420657\pi\)
\(198\) 0 0
\(199\) −2.59974 1.07685i −0.184291 0.0763357i 0.288630 0.957441i \(-0.406800\pi\)
−0.472921 + 0.881105i \(0.656800\pi\)
\(200\) 0 0
\(201\) 3.77197 0.266054
\(202\) 0 0
\(203\) 13.0988 0.919355
\(204\) 0 0
\(205\) 13.5049 4.75584i 0.943222 0.332163i
\(206\) 0 0
\(207\) 5.15265 0.358134
\(208\) 0 0
\(209\) −5.45915 −0.377618
\(210\) 0 0
\(211\) −17.2196 7.13257i −1.18544 0.491027i −0.299175 0.954198i \(-0.596711\pi\)
−0.886269 + 0.463172i \(0.846711\pi\)
\(212\) 0 0
\(213\) −8.17133 −0.559890
\(214\) 0 0
\(215\) −1.21652 0.789757i −0.0829663 0.0538610i
\(216\) 0 0
\(217\) 6.80251 + 2.81769i 0.461784 + 0.191277i
\(218\) 0 0
\(219\) 14.6666 35.4082i 0.991075 2.39267i
\(220\) 0 0
\(221\) −5.86633 −0.394612
\(222\) 0 0
\(223\) −12.8175 12.8175i −0.858326 0.858326i 0.132815 0.991141i \(-0.457598\pi\)
−0.991141 + 0.132815i \(0.957598\pi\)
\(224\) 0 0
\(225\) 6.96757 18.1677i 0.464505 1.21118i
\(226\) 0 0
\(227\) 9.58650 + 23.1438i 0.636278 + 1.53611i 0.831602 + 0.555372i \(0.187424\pi\)
−0.195324 + 0.980739i \(0.562576\pi\)
\(228\) 0 0
\(229\) −15.2243 6.30609i −1.00605 0.416718i −0.182036 0.983292i \(-0.558269\pi\)
−0.824011 + 0.566573i \(0.808269\pi\)
\(230\) 0 0
\(231\) 8.26267 + 3.42251i 0.543644 + 0.225185i
\(232\) 0 0
\(233\) −3.66880 + 8.85726i −0.240351 + 0.580258i −0.997318 0.0731950i \(-0.976680\pi\)
0.756967 + 0.653453i \(0.226680\pi\)
\(234\) 0 0
\(235\) 2.00379 10.8207i 0.130713 0.705864i
\(236\) 0 0
\(237\) −8.54350 −0.554960
\(238\) 0 0
\(239\) 5.67023 2.34869i 0.366777 0.151924i −0.191680 0.981457i \(-0.561394\pi\)
0.558457 + 0.829534i \(0.311394\pi\)
\(240\) 0 0
\(241\) −17.0474 17.0474i −1.09812 1.09812i −0.994631 0.103487i \(-0.967000\pi\)
−0.103487 0.994631i \(-0.533000\pi\)
\(242\) 0 0
\(243\) 8.24293 19.9002i 0.528784 1.27660i
\(244\) 0 0
\(245\) 6.45227 1.37250i 0.412220 0.0876857i
\(246\) 0 0
\(247\) −19.6691 + 19.6691i −1.25152 + 1.25152i
\(248\) 0 0
\(249\) −17.6966 42.7234i −1.12148 2.70748i
\(250\) 0 0
\(251\) −14.9325 + 14.9325i −0.942528 + 0.942528i −0.998436 0.0559078i \(-0.982195\pi\)
0.0559078 + 0.998436i \(0.482195\pi\)
\(252\) 0 0
\(253\) 1.32114 + 0.547236i 0.0830596 + 0.0344044i
\(254\) 0 0
\(255\) 3.40731 5.24855i 0.213374 0.328677i
\(256\) 0 0
\(257\) 19.1474 + 7.93109i 1.19438 + 0.494728i 0.889179 0.457560i \(-0.151276\pi\)
0.305201 + 0.952288i \(0.401276\pi\)
\(258\) 0 0
\(259\) −13.7974 33.3099i −0.857329 2.06978i
\(260\) 0 0
\(261\) −6.18421 + 14.9300i −0.382793 + 0.924143i
\(262\) 0 0
\(263\) −9.59106 23.1549i −0.591410 1.42779i −0.882141 0.470985i \(-0.843899\pi\)
0.290731 0.956805i \(-0.406101\pi\)
\(264\) 0 0
\(265\) −10.1601 14.7783i −0.624131 0.907821i
\(266\) 0 0
\(267\) 11.5731i 0.708260i
\(268\) 0 0
\(269\) 1.29173 0.0787579 0.0393789 0.999224i \(-0.487462\pi\)
0.0393789 + 0.999224i \(0.487462\pi\)
\(270\) 0 0
\(271\) 8.96242i 0.544428i −0.962237 0.272214i \(-0.912244\pi\)
0.962237 0.272214i \(-0.0877559\pi\)
\(272\) 0 0
\(273\) 42.1013 17.4389i 2.54809 1.05545i
\(274\) 0 0
\(275\) 3.71599 3.91822i 0.224083 0.236278i
\(276\) 0 0
\(277\) 16.8202 + 16.8202i 1.01063 + 1.01063i 0.999943 + 0.0106849i \(0.00340118\pi\)
0.0106849 + 0.999943i \(0.496599\pi\)
\(278\) 0 0
\(279\) −6.42321 + 6.42321i −0.384547 + 0.384547i
\(280\) 0 0
\(281\) −8.10684 + 19.5716i −0.483613 + 1.16755i 0.474268 + 0.880381i \(0.342713\pi\)
−0.957881 + 0.287165i \(0.907287\pi\)
\(282\) 0 0
\(283\) 16.2782 + 16.2782i 0.967636 + 0.967636i 0.999492 0.0318563i \(-0.0101419\pi\)
−0.0318563 + 0.999492i \(0.510142\pi\)
\(284\) 0 0
\(285\) −6.17346 29.0221i −0.365684 1.71912i
\(286\) 0 0
\(287\) −17.5110 + 10.0658i −1.03364 + 0.594163i
\(288\) 0 0
\(289\) −11.2173 + 11.2173i −0.659840 + 0.659840i
\(290\) 0 0
\(291\) 21.4470i 1.25725i
\(292\) 0 0
\(293\) 10.8524 + 26.2001i 0.634007 + 1.53063i 0.834544 + 0.550942i \(0.185731\pi\)
−0.200537 + 0.979686i \(0.564269\pi\)
\(294\) 0 0
\(295\) 4.38353 + 2.84575i 0.255219 + 0.165686i
\(296\) 0 0
\(297\) −1.78748 + 1.78748i −0.103720 + 0.103720i
\(298\) 0 0
\(299\) 6.73171 2.78836i 0.389305 0.161255i
\(300\) 0 0
\(301\) 1.89030 + 0.782988i 0.108955 + 0.0451307i
\(302\) 0 0
\(303\) 10.6300 + 10.6300i 0.610678 + 0.610678i
\(304\) 0 0
\(305\) −2.62425 + 0.558219i −0.150264 + 0.0319635i
\(306\) 0 0
\(307\) 7.70729 0.439878 0.219939 0.975514i \(-0.429414\pi\)
0.219939 + 0.975514i \(0.429414\pi\)
\(308\) 0 0
\(309\) 10.9550 + 4.53769i 0.623206 + 0.258140i
\(310\) 0 0
\(311\) −1.36919 + 3.30551i −0.0776395 + 0.187438i −0.957934 0.286990i \(-0.907345\pi\)
0.880294 + 0.474429i \(0.157345\pi\)
\(312\) 0 0
\(313\) 6.63323 + 16.0140i 0.374932 + 0.905167i 0.992899 + 0.118962i \(0.0379568\pi\)
−0.617966 + 0.786205i \(0.712043\pi\)
\(314\) 0 0
\(315\) −4.99807 + 26.9901i −0.281609 + 1.52072i
\(316\) 0 0
\(317\) −0.893597 + 2.15733i −0.0501894 + 0.121168i −0.946986 0.321276i \(-0.895888\pi\)
0.896796 + 0.442444i \(0.145888\pi\)
\(318\) 0 0
\(319\) −3.17127 + 3.17127i −0.177557 + 0.177557i
\(320\) 0 0
\(321\) −3.58292 8.64992i −0.199979 0.482792i
\(322\) 0 0
\(323\) 5.38833i 0.299814i
\(324\) 0 0
\(325\) −0.728643 27.5058i −0.0404178 1.52575i
\(326\) 0 0
\(327\) −19.6026 19.6026i −1.08403 1.08403i
\(328\) 0 0
\(329\) 15.5241i 0.855869i
\(330\) 0 0
\(331\) −0.290948 + 0.120514i −0.0159919 + 0.00662407i −0.390665 0.920533i \(-0.627755\pi\)
0.374673 + 0.927157i \(0.377755\pi\)
\(332\) 0 0
\(333\) 44.4806 2.43752
\(334\) 0 0
\(335\) −0.585019 + 3.15916i −0.0319630 + 0.172604i
\(336\) 0 0
\(337\) 12.4727i 0.679431i 0.940528 + 0.339715i \(0.110331\pi\)
−0.940528 + 0.339715i \(0.889669\pi\)
\(338\) 0 0
\(339\) −35.5517 + 14.7260i −1.93090 + 0.799806i
\(340\) 0 0
\(341\) −2.32909 + 0.964742i −0.126127 + 0.0522437i
\(342\) 0 0
\(343\) 11.8025 4.88875i 0.637274 0.263967i
\(344\) 0 0
\(345\) −1.41522 + 7.64234i −0.0761929 + 0.411450i
\(346\) 0 0
\(347\) −29.5407 + 12.2362i −1.58583 + 0.656871i −0.989323 0.145739i \(-0.953444\pi\)
−0.596504 + 0.802610i \(0.703444\pi\)
\(348\) 0 0
\(349\) −0.582286 0.582286i −0.0311691 0.0311691i 0.691350 0.722520i \(-0.257016\pi\)
−0.722520 + 0.691350i \(0.757016\pi\)
\(350\) 0 0
\(351\) 12.8804i 0.687507i
\(352\) 0 0
\(353\) −21.7080 + 21.7080i −1.15540 + 1.15540i −0.169944 + 0.985454i \(0.554359\pi\)
−0.985454 + 0.169944i \(0.945641\pi\)
\(354\) 0 0
\(355\) 1.26734 6.84378i 0.0672636 0.363230i
\(356\) 0 0
\(357\) −3.37811 + 8.15547i −0.178788 + 0.431633i
\(358\) 0 0
\(359\) 11.2307 0.592733 0.296367 0.955074i \(-0.404225\pi\)
0.296367 + 0.955074i \(0.404225\pi\)
\(360\) 0 0
\(361\) −4.63142 4.63142i −0.243759 0.243759i
\(362\) 0 0
\(363\) 23.8499 9.87893i 1.25179 0.518510i
\(364\) 0 0
\(365\) 27.3810 + 17.7755i 1.43318 + 0.930411i
\(366\) 0 0
\(367\) 28.7691i 1.50174i 0.660452 + 0.750868i \(0.270365\pi\)
−0.660452 + 0.750868i \(0.729635\pi\)
\(368\) 0 0
\(369\) −3.20565 24.7113i −0.166879 1.28642i
\(370\) 0 0
\(371\) 17.8891 + 17.8891i 0.928756 + 0.928756i
\(372\) 0 0
\(373\) −21.1337 + 21.1337i −1.09426 + 1.09426i −0.0991924 + 0.995068i \(0.531626\pi\)
−0.995068 + 0.0991924i \(0.968374\pi\)
\(374\) 0 0
\(375\) 25.0324 + 15.3241i 1.29267 + 0.791335i
\(376\) 0 0
\(377\) 22.8520i 1.17694i
\(378\) 0 0
\(379\) 16.7294i 0.859330i 0.902988 + 0.429665i \(0.141368\pi\)
−0.902988 + 0.429665i \(0.858632\pi\)
\(380\) 0 0
\(381\) −15.9859 38.5934i −0.818983 1.97720i
\(382\) 0 0
\(383\) −6.45033 15.5725i −0.329596 0.795716i −0.998622 0.0524769i \(-0.983288\pi\)
0.669026 0.743239i \(-0.266712\pi\)
\(384\) 0 0
\(385\) −4.14799 + 6.38947i −0.211401 + 0.325637i
\(386\) 0 0
\(387\) −1.78490 + 1.78490i −0.0907315 + 0.0907315i
\(388\) 0 0
\(389\) −17.8409 + 17.8409i −0.904569 + 0.904569i −0.995827 0.0912579i \(-0.970911\pi\)
0.0912579 + 0.995827i \(0.470911\pi\)
\(390\) 0 0
\(391\) −0.540136 + 1.30400i −0.0273158 + 0.0659463i
\(392\) 0 0
\(393\) 22.3072 9.23994i 1.12525 0.466093i
\(394\) 0 0
\(395\) 1.32507 7.15549i 0.0666713 0.360032i
\(396\) 0 0
\(397\) −14.0586 5.82325i −0.705579 0.292260i 0.000894877 1.00000i \(-0.499715\pi\)
−0.706474 + 0.707739i \(0.749715\pi\)
\(398\) 0 0
\(399\) 16.0180 + 38.6708i 0.801901 + 1.93596i
\(400\) 0 0
\(401\) −14.8032 14.8032i −0.739236 0.739236i 0.233194 0.972430i \(-0.425082\pi\)
−0.972430 + 0.233194i \(0.925082\pi\)
\(402\) 0 0
\(403\) −4.91571 + 11.8676i −0.244869 + 0.591166i
\(404\) 0 0
\(405\) 10.3721 + 6.73350i 0.515395 + 0.334590i
\(406\) 0 0
\(407\) 11.4049 + 4.72406i 0.565319 + 0.234163i
\(408\) 0 0
\(409\) 29.6137 1.46430 0.732151 0.681143i \(-0.238517\pi\)
0.732151 + 0.681143i \(0.238517\pi\)
\(410\) 0 0
\(411\) 32.5011 1.60316
\(412\) 0 0
\(413\) −6.81135 2.82135i −0.335165 0.138830i
\(414\) 0 0
\(415\) 38.5271 8.19531i 1.89122 0.402292i
\(416\) 0 0
\(417\) 18.0939 43.6826i 0.886063 2.13914i
\(418\) 0 0
\(419\) 23.2478 + 23.2478i 1.13573 + 1.13573i 0.989208 + 0.146520i \(0.0468073\pi\)
0.146520 + 0.989208i \(0.453193\pi\)
\(420\) 0 0
\(421\) 13.6203 + 32.8822i 0.663811 + 1.60258i 0.791783 + 0.610803i \(0.209153\pi\)
−0.127972 + 0.991778i \(0.540847\pi\)
\(422\) 0 0
\(423\) −17.6943 7.32923i −0.860327 0.356359i
\(424\) 0 0
\(425\) 3.86739 + 3.66778i 0.187596 + 0.177913i
\(426\) 0 0
\(427\) 3.49670 1.44838i 0.169217 0.0700921i
\(428\) 0 0
\(429\) −5.97087 + 14.4149i −0.288276 + 0.695960i
\(430\) 0 0
\(431\) 16.5082 16.5082i 0.795170 0.795170i −0.187159 0.982330i \(-0.559928\pi\)
0.982330 + 0.187159i \(0.0599280\pi\)
\(432\) 0 0
\(433\) −21.9194 + 21.9194i −1.05338 + 1.05338i −0.0548872 + 0.998493i \(0.517480\pi\)
−0.998493 + 0.0548872i \(0.982520\pi\)
\(434\) 0 0
\(435\) −20.4454 13.2730i −0.980283 0.636391i
\(436\) 0 0
\(437\) 2.56116 + 6.18319i 0.122517 + 0.295782i
\(438\) 0 0
\(439\) 1.09885 + 2.65286i 0.0524454 + 0.126614i 0.947931 0.318477i \(-0.103171\pi\)
−0.895485 + 0.445091i \(0.853171\pi\)
\(440\) 0 0
\(441\) 11.4806i 0.546695i
\(442\) 0 0
\(443\) 27.0162i 1.28358i −0.766882 0.641788i \(-0.778193\pi\)
0.766882 0.641788i \(-0.221807\pi\)
\(444\) 0 0
\(445\) 9.69286 + 1.79494i 0.459486 + 0.0850883i
\(446\) 0 0
\(447\) 17.9050 17.9050i 0.846875 0.846875i
\(448\) 0 0
\(449\) −10.6090 10.6090i −0.500670 0.500670i 0.410976 0.911646i \(-0.365188\pi\)
−0.911646 + 0.410976i \(0.865188\pi\)
\(450\) 0 0
\(451\) 1.80252 6.67645i 0.0848775 0.314382i
\(452\) 0 0
\(453\) 50.4689i 2.37124i
\(454\) 0 0
\(455\) 8.07598 + 37.9661i 0.378608 + 1.77988i
\(456\) 0 0
\(457\) 25.3967 10.5197i 1.18801 0.492089i 0.300902 0.953655i \(-0.402712\pi\)
0.887106 + 0.461566i \(0.152712\pi\)
\(458\) 0 0
\(459\) −1.76429 1.76429i −0.0823499 0.0823499i
\(460\) 0 0
\(461\) 28.3960 1.32253 0.661266 0.750151i \(-0.270019\pi\)
0.661266 + 0.750151i \(0.270019\pi\)
\(462\) 0 0
\(463\) 6.50003 15.6925i 0.302082 0.729291i −0.697833 0.716261i \(-0.745852\pi\)
0.999915 0.0130304i \(-0.00414781\pi\)
\(464\) 0 0
\(465\) −7.76263 11.2910i −0.359983 0.523608i
\(466\) 0 0
\(467\) 21.5157 21.5157i 0.995629 0.995629i −0.00436113 0.999990i \(-0.501388\pi\)
0.999990 + 0.00436113i \(0.00138820\pi\)
\(468\) 0 0
\(469\) 4.53234i 0.209284i
\(470\) 0 0
\(471\) 20.9988 + 20.9988i 0.967576 + 0.967576i
\(472\) 0 0
\(473\) −0.647215 + 0.268085i −0.0297590 + 0.0123266i
\(474\) 0 0
\(475\) 25.2645 0.669271i 1.15922 0.0307083i
\(476\) 0 0
\(477\) −28.8358 + 11.9442i −1.32030 + 0.546887i
\(478\) 0 0
\(479\) 1.85973 0.770327i 0.0849734 0.0351971i −0.339792 0.940501i \(-0.610357\pi\)
0.424765 + 0.905304i \(0.360357\pi\)
\(480\) 0 0
\(481\) 58.1120 24.0708i 2.64968 1.09753i
\(482\) 0 0
\(483\) 10.9642i 0.498888i
\(484\) 0 0
\(485\) −17.9626 3.32635i −0.815641 0.151042i
\(486\) 0 0
\(487\) −9.44274 −0.427891 −0.213946 0.976846i \(-0.568632\pi\)
−0.213946 + 0.976846i \(0.568632\pi\)
\(488\) 0 0
\(489\) 8.19486 3.39442i 0.370585 0.153501i
\(490\) 0 0
\(491\) 6.71474i 0.303032i 0.988455 + 0.151516i \(0.0484155\pi\)
−0.988455 + 0.151516i \(0.951585\pi\)
\(492\) 0 0
\(493\) −3.13013 3.13013i −0.140974 0.140974i
\(494\) 0 0
\(495\) −5.32436 7.74447i −0.239312 0.348088i
\(496\) 0 0
\(497\) 9.81854i 0.440422i
\(498\) 0 0
\(499\) −0.298130 0.719750i −0.0133462 0.0322205i 0.917066 0.398735i \(-0.130551\pi\)
−0.930412 + 0.366515i \(0.880551\pi\)
\(500\) 0 0
\(501\) −14.5958 + 14.5958i −0.652091 + 0.652091i
\(502\) 0 0
\(503\) −8.70608 + 21.0183i −0.388185 + 0.937161i 0.602140 + 0.798391i \(0.294315\pi\)
−0.990325 + 0.138771i \(0.955685\pi\)
\(504\) 0 0
\(505\) −10.5517 + 7.25435i −0.469544 + 0.322814i
\(506\) 0 0
\(507\) 17.3637 + 41.9198i 0.771151 + 1.86172i
\(508\) 0 0
\(509\) 5.46749 13.1997i 0.242342 0.585066i −0.755172 0.655526i \(-0.772447\pi\)
0.997515 + 0.0704605i \(0.0224469\pi\)
\(510\) 0 0
\(511\) −42.5460 17.6231i −1.88212 0.779601i
\(512\) 0 0
\(513\) −11.8309 −0.522348
\(514\) 0 0
\(515\) −5.49956 + 8.47140i −0.242339 + 0.373294i
\(516\) 0 0
\(517\) −3.75844 3.75844i −0.165296 0.165296i
\(518\) 0 0
\(519\) 50.2263 + 20.8044i 2.20469 + 0.913212i
\(520\) 0 0
\(521\) −6.59684 + 2.73250i −0.289013 + 0.119713i −0.522480 0.852652i \(-0.674993\pi\)
0.233467 + 0.972365i \(0.424993\pi\)
\(522\) 0 0
\(523\) −5.95182 + 5.95182i −0.260255 + 0.260255i −0.825158 0.564903i \(-0.808914\pi\)
0.564903 + 0.825158i \(0.308914\pi\)
\(524\) 0 0
\(525\) −38.6586 14.8261i −1.68720 0.647066i
\(526\) 0 0
\(527\) −0.952225 2.29888i −0.0414796 0.100141i
\(528\) 0 0
\(529\) 21.2469i 0.923778i
\(530\) 0 0
\(531\) 6.43156 6.43156i 0.279106 0.279106i
\(532\) 0 0
\(533\) −17.5606 30.5495i −0.760634 1.32324i
\(534\) 0 0
\(535\) 7.80032 1.65925i 0.337237 0.0717357i
\(536\) 0 0
\(537\) −42.7220 42.7220i −1.84359 1.84359i
\(538\) 0 0
\(539\) 1.21929 2.94364i 0.0525187 0.126791i
\(540\) 0 0
\(541\) −2.13184 + 2.13184i −0.0916548 + 0.0916548i −0.751448 0.659793i \(-0.770644\pi\)
0.659793 + 0.751448i \(0.270644\pi\)
\(542\) 0 0
\(543\) −12.8077 12.8077i −0.549630 0.549630i
\(544\) 0 0
\(545\) 19.4582 13.3776i 0.833497 0.573033i
\(546\) 0 0
\(547\) 4.09364 1.69564i 0.175031 0.0725003i −0.293447 0.955975i \(-0.594802\pi\)
0.468478 + 0.883475i \(0.344802\pi\)
\(548\) 0 0
\(549\) 4.66935i 0.199283i
\(550\) 0 0
\(551\) −20.9899 −0.894201
\(552\) 0 0
\(553\) 10.2657i 0.436543i
\(554\) 0 0
\(555\) −12.2170 + 65.9731i −0.518583 + 2.80040i
\(556\) 0 0
\(557\) −7.10001 17.1409i −0.300837 0.726285i −0.999937 0.0112607i \(-0.996416\pi\)
0.699099 0.715024i \(-0.253584\pi\)
\(558\) 0 0
\(559\) −1.36599 + 3.29779i −0.0577753 + 0.139482i
\(560\) 0 0
\(561\) −1.15662 2.79233i −0.0488326 0.117892i
\(562\) 0 0
\(563\) −4.19236 1.73653i −0.176687 0.0731860i 0.292586 0.956239i \(-0.405484\pi\)
−0.469273 + 0.883053i \(0.655484\pi\)
\(564\) 0 0
\(565\) −6.81962 32.0598i −0.286903 1.34876i
\(566\) 0 0
\(567\) −16.1168 6.67578i −0.676841 0.280357i
\(568\) 0 0
\(569\) −9.86128 + 9.86128i −0.413406 + 0.413406i −0.882923 0.469517i \(-0.844428\pi\)
0.469517 + 0.882923i \(0.344428\pi\)
\(570\) 0 0
\(571\) −11.0185 26.6010i −0.461110 1.11322i −0.967942 0.251174i \(-0.919183\pi\)
0.506832 0.862045i \(-0.330817\pi\)
\(572\) 0 0
\(573\) 40.1014 40.1014i 1.67526 1.67526i
\(574\) 0 0
\(575\) −6.18124 2.37060i −0.257776 0.0988608i
\(576\) 0 0
\(577\) −4.40714 + 10.6398i −0.183472 + 0.442940i −0.988678 0.150056i \(-0.952055\pi\)
0.805206 + 0.592995i \(0.202055\pi\)
\(578\) 0 0
\(579\) −38.6875 38.6875i −1.60780 1.60780i
\(580\) 0 0
\(581\) −51.3357 + 21.2640i −2.12977 + 0.882178i
\(582\) 0 0
\(583\) −8.66206 −0.358746
\(584\) 0 0
\(585\) −47.0865 8.71956i −1.94679 0.360510i
\(586\) 0 0
\(587\) −12.2649 + 29.6101i −0.506227 + 1.22214i 0.439812 + 0.898090i \(0.355045\pi\)
−0.946040 + 0.324051i \(0.894955\pi\)
\(588\) 0 0
\(589\) −10.9006 4.51516i −0.449150 0.186044i
\(590\) 0 0
\(591\) 16.7954 + 6.95687i 0.690869 + 0.286167i
\(592\) 0 0
\(593\) 3.17733 + 7.67076i 0.130477 + 0.315000i 0.975594 0.219581i \(-0.0704692\pi\)
−0.845117 + 0.534582i \(0.820469\pi\)
\(594\) 0 0
\(595\) −6.30657 4.09417i −0.258544 0.167845i
\(596\) 0 0
\(597\) −5.22348 5.22348i −0.213783 0.213783i
\(598\) 0 0
\(599\) 31.8779 1.30250 0.651249 0.758864i \(-0.274245\pi\)
0.651249 + 0.758864i \(0.274245\pi\)
\(600\) 0 0
\(601\) 12.2611 29.6008i 0.500139 1.20744i −0.449268 0.893397i \(-0.648315\pi\)
0.949408 0.314046i \(-0.101685\pi\)
\(602\) 0 0
\(603\) 5.16596 + 2.13981i 0.210374 + 0.0871399i
\(604\) 0 0
\(605\) 4.57494 + 21.5073i 0.185998 + 0.874396i
\(606\) 0 0
\(607\) 22.2182 0.901811 0.450905 0.892572i \(-0.351101\pi\)
0.450905 + 0.892572i \(0.351101\pi\)
\(608\) 0 0
\(609\) 31.7692 + 13.1592i 1.28735 + 0.533239i
\(610\) 0 0
\(611\) −27.0831 −1.09566
\(612\) 0 0
\(613\) −16.1325 −0.651586 −0.325793 0.945441i \(-0.605631\pi\)
−0.325793 + 0.945441i \(0.605631\pi\)
\(614\) 0 0
\(615\) 37.5319 + 2.03260i 1.51343 + 0.0819622i
\(616\) 0 0
\(617\) −36.3321 −1.46268 −0.731338 0.682015i \(-0.761104\pi\)
−0.731338 + 0.682015i \(0.761104\pi\)
\(618\) 0 0
\(619\) −9.70603 −0.390118 −0.195059 0.980791i \(-0.562490\pi\)
−0.195059 + 0.980791i \(0.562490\pi\)
\(620\) 0 0
\(621\) 2.86314 + 1.18595i 0.114894 + 0.0475906i
\(622\) 0 0
\(623\) −13.9060 −0.557132
\(624\) 0 0
\(625\) −16.7170 + 18.5888i −0.668678 + 0.743552i
\(626\) 0 0
\(627\) −13.2404 5.48434i −0.528770 0.219024i
\(628\) 0 0
\(629\) −4.66277 + 11.2569i −0.185917 + 0.448843i
\(630\) 0 0
\(631\) 7.91017 0.314899 0.157449 0.987527i \(-0.449673\pi\)
0.157449 + 0.987527i \(0.449673\pi\)
\(632\) 0 0
\(633\) −34.5980 34.5980i −1.37515 1.37515i
\(634\) 0 0
\(635\) 34.8028 7.40309i 1.38111 0.293783i
\(636\) 0 0
\(637\) −6.21274 14.9989i −0.246158 0.594278i
\(638\) 0 0
\(639\) −11.1912 4.63553i −0.442716 0.183379i
\(640\) 0 0
\(641\) 19.6921 + 8.15672i 0.777790 + 0.322171i 0.736023 0.676956i \(-0.236701\pi\)
0.0417665 + 0.999127i \(0.486701\pi\)
\(642\) 0 0
\(643\) −18.5428 + 44.7664i −0.731258 + 1.76541i −0.0928991 + 0.995676i \(0.529613\pi\)
−0.638359 + 0.769739i \(0.720387\pi\)
\(644\) 0 0
\(645\) −2.15710 3.13758i −0.0849358 0.123542i
\(646\) 0 0
\(647\) 34.5446 1.35809 0.679044 0.734098i \(-0.262395\pi\)
0.679044 + 0.734098i \(0.262395\pi\)
\(648\) 0 0
\(649\) 2.33212 0.965996i 0.0915438 0.0379187i
\(650\) 0 0
\(651\) 13.6678 + 13.6678i 0.535683 + 0.535683i
\(652\) 0 0
\(653\) −6.73311 + 16.2552i −0.263487 + 0.636113i −0.999149 0.0412346i \(-0.986871\pi\)
0.735663 + 0.677348i \(0.236871\pi\)
\(654\) 0 0
\(655\) 4.27902 + 20.1162i 0.167195 + 0.786003i
\(656\) 0 0
\(657\) 40.1736 40.1736i 1.56732 1.56732i
\(658\) 0 0
\(659\) −1.95543 4.72083i −0.0761728 0.183897i 0.881206 0.472732i \(-0.156732\pi\)
−0.957379 + 0.288835i \(0.906732\pi\)
\(660\) 0 0
\(661\) 20.1997 20.1997i 0.785679 0.785679i −0.195104 0.980783i \(-0.562504\pi\)
0.980783 + 0.195104i \(0.0625045\pi\)
\(662\) 0 0
\(663\) −14.2279 5.89340i −0.552567 0.228881i
\(664\) 0 0
\(665\) −34.8725 + 7.41792i −1.35230 + 0.287655i
\(666\) 0 0
\(667\) 5.07967 + 2.10407i 0.196686 + 0.0814699i
\(668\) 0 0
\(669\) −18.2104 43.9637i −0.704054 1.69974i
\(670\) 0 0
\(671\) −0.495907 + 1.19723i −0.0191443 + 0.0462184i
\(672\) 0 0
\(673\) 1.36122 + 3.28626i 0.0524710 + 0.126676i 0.947941 0.318445i \(-0.103161\pi\)
−0.895470 + 0.445121i \(0.853161\pi\)
\(674\) 0 0
\(675\) 8.05318 8.49145i 0.309967 0.326836i
\(676\) 0 0
\(677\) 19.9324i 0.766065i −0.923735 0.383033i \(-0.874880\pi\)
0.923735 0.383033i \(-0.125120\pi\)
\(678\) 0 0
\(679\) 25.7704 0.988976
\(680\) 0 0
\(681\) 65.7627i 2.52003i
\(682\) 0 0
\(683\) 8.07906 3.34646i 0.309137 0.128049i −0.222721 0.974882i \(-0.571494\pi\)
0.531858 + 0.846834i \(0.321494\pi\)
\(684\) 0 0
\(685\) −5.04079 + 27.2208i −0.192599 + 1.04005i
\(686\) 0 0
\(687\) −30.5890 30.5890i −1.16704 1.16704i
\(688\) 0 0
\(689\) −31.2091 + 31.2091i −1.18897 + 1.18897i
\(690\) 0 0
\(691\) 6.14263 14.8296i 0.233677 0.564146i −0.762928 0.646484i \(-0.776239\pi\)
0.996604 + 0.0823381i \(0.0262387\pi\)
\(692\) 0 0
\(693\) 9.37470 + 9.37470i 0.356115 + 0.356115i
\(694\) 0 0
\(695\) 33.7794 + 21.9293i 1.28133 + 0.831826i
\(696\) 0 0
\(697\) 6.58983 + 1.77914i 0.249608 + 0.0673897i
\(698\) 0 0
\(699\) −17.7963 + 17.7963i −0.673116 + 0.673116i
\(700\) 0 0
\(701\) 3.67898i 0.138953i 0.997584 + 0.0694765i \(0.0221329\pi\)
−0.997584 + 0.0694765i \(0.977867\pi\)
\(702\) 0 0
\(703\) 22.1094 + 53.3769i 0.833873 + 2.01315i
\(704\) 0 0
\(705\) 15.7305 24.2310i 0.592446 0.912591i
\(706\) 0 0
\(707\) 12.7729 12.7729i 0.480373 0.480373i
\(708\) 0 0
\(709\) 14.2608 5.90701i 0.535575 0.221842i −0.0984682 0.995140i \(-0.531394\pi\)
0.634043 + 0.773298i \(0.281394\pi\)
\(710\) 0 0
\(711\) −11.7009 4.84666i −0.438817 0.181764i
\(712\) 0 0
\(713\) 2.18539 + 2.18539i 0.0818434 + 0.0818434i
\(714\) 0 0
\(715\) −11.1470 7.23652i −0.416874 0.270631i
\(716\) 0 0
\(717\) 16.1118 0.601707
\(718\) 0 0
\(719\) −27.0695 11.2125i −1.00952 0.418157i −0.184241 0.982881i \(-0.558983\pi\)
−0.825280 + 0.564724i \(0.808983\pi\)
\(720\) 0 0
\(721\) 5.45242 13.1633i 0.203059 0.490227i
\(722\) 0 0
\(723\) −24.2199 58.4719i −0.900747 2.17459i
\(724\) 0 0
\(725\) 14.2876 15.0652i 0.530629 0.559508i
\(726\) 0 0
\(727\) 3.53627 8.53730i 0.131153 0.316631i −0.844638 0.535339i \(-0.820184\pi\)
0.975790 + 0.218707i \(0.0701840\pi\)
\(728\) 0 0
\(729\) 28.2525 28.2525i 1.04639 1.04639i
\(730\) 0 0
\(731\) −0.264607 0.638818i −0.00978684 0.0236275i
\(732\) 0 0
\(733\) 46.9842i 1.73540i −0.497086 0.867701i \(-0.665597\pi\)
0.497086 0.867701i \(-0.334403\pi\)
\(734\) 0 0
\(735\) 17.0279 + 3.15325i 0.628082 + 0.116309i
\(736\) 0 0
\(737\) 1.09730 + 1.09730i 0.0404196 + 0.0404196i
\(738\) 0 0
\(739\) 6.68838i 0.246036i −0.992404 0.123018i \(-0.960743\pi\)
0.992404 0.123018i \(-0.0392573\pi\)
\(740\) 0 0
\(741\) −67.4645 + 27.9447i −2.47837 + 1.02657i
\(742\) 0 0
\(743\) −7.11427 −0.260997 −0.130499 0.991448i \(-0.541658\pi\)
−0.130499 + 0.991448i \(0.541658\pi\)
\(744\) 0 0
\(745\) 12.2191 + 17.7730i 0.447672 + 0.651154i
\(746\) 0 0
\(747\) 68.5516i 2.50817i
\(748\) 0 0
\(749\) −10.3936 + 4.30517i −0.379774 + 0.157308i
\(750\) 0 0
\(751\) −39.3848 + 16.3137i −1.43717 + 0.595296i −0.959111 0.283030i \(-0.908660\pi\)
−0.478062 + 0.878326i \(0.658660\pi\)
\(752\) 0 0
\(753\) −51.2178 + 21.2151i −1.86648 + 0.773122i
\(754\) 0 0
\(755\) −42.2696 7.82755i −1.53835 0.284874i
\(756\) 0 0
\(757\) 17.2746 7.15536i 0.627855 0.260066i −0.0459865 0.998942i \(-0.514643\pi\)
0.673841 + 0.738876i \(0.264643\pi\)
\(758\) 0 0
\(759\) 2.65448 + 2.65448i 0.0963515 + 0.0963515i
\(760\) 0 0
\(761\) 44.2571i 1.60432i −0.597110 0.802159i \(-0.703684\pi\)
0.597110 0.802159i \(-0.296316\pi\)
\(762\) 0 0
\(763\) −23.5542 + 23.5542i −0.852718 + 0.852718i
\(764\) 0 0
\(765\) 7.64399 5.25528i 0.276369 0.190005i
\(766\) 0 0
\(767\) 4.92210 11.8830i 0.177727 0.429070i
\(768\) 0 0
\(769\) 47.0847 1.69792 0.848959 0.528459i \(-0.177230\pi\)
0.848959 + 0.528459i \(0.177230\pi\)
\(770\) 0 0
\(771\) 38.4714 + 38.4714i 1.38551 + 1.38551i
\(772\) 0 0
\(773\) 29.6236 12.2705i 1.06549 0.441338i 0.220090 0.975480i \(-0.429365\pi\)
0.845395 + 0.534141i \(0.179365\pi\)
\(774\) 0 0
\(775\) 10.6606 4.75029i 0.382940 0.170635i
\(776\) 0 0
\(777\) 94.6493i 3.39553i
\(778\) 0 0
\(779\) 28.0602 16.1297i 1.00536 0.577907i
\(780\) 0 0
\(781\) −2.37711 2.37711i −0.0850597 0.0850597i
\(782\) 0 0
\(783\) −6.87269 + 6.87269i −0.245610 + 0.245610i
\(784\) 0 0
\(785\) −20.8441 + 14.3305i −0.743959 + 0.511476i
\(786\) 0 0
\(787\) 5.15357i 0.183705i −0.995773 0.0918524i \(-0.970721\pi\)
0.995773 0.0918524i \(-0.0292788\pi\)
\(788\) 0 0
\(789\) 65.7940i 2.34233i
\(790\) 0 0
\(791\) 17.6945 + 42.7183i 0.629144 + 1.51889i
\(792\) 0 0
\(793\) 2.52683 + 6.10030i 0.0897303 + 0.216628i
\(794\) 0 0
\(795\) −9.79545 46.0495i −0.347409 1.63321i
\(796\) 0 0
\(797\) −8.69925 + 8.69925i −0.308143 + 0.308143i −0.844189 0.536046i \(-0.819917\pi\)
0.536046 + 0.844189i \(0.319917\pi\)
\(798\) 0 0
\(799\) 3.70968 3.70968i 0.131239 0.131239i
\(800\) 0 0
\(801\) 6.56531 15.8501i 0.231974 0.560034i
\(802\) 0 0
\(803\) 14.5672 6.03393i 0.514065 0.212933i
\(804\) 0 0
\(805\) 9.18291 + 1.70051i 0.323655 + 0.0599350i
\(806\) 0 0
\(807\) 3.13289 + 1.29769i 0.110283 + 0.0456807i
\(808\) 0 0
\(809\) 16.4043 + 39.6035i 0.576745 + 1.39238i 0.895719 + 0.444621i \(0.146662\pi\)
−0.318974 + 0.947763i \(0.603338\pi\)
\(810\) 0 0
\(811\) −29.7033 29.7033i −1.04302 1.04302i −0.999032 0.0439921i \(-0.985992\pi\)
−0.0439921 0.999032i \(-0.514008\pi\)
\(812\) 0 0
\(813\) 9.00377 21.7370i 0.315776 0.762351i
\(814\) 0 0
\(815\) 1.57196 + 7.38996i 0.0550634 + 0.258859i
\(816\) 0 0
\(817\) −3.02908 1.25469i −0.105974 0.0438959i
\(818\) 0 0
\(819\) 67.5534 2.36051
\(820\) 0 0
\(821\) −12.2996 −0.429257 −0.214629 0.976696i \(-0.568854\pi\)
−0.214629 + 0.976696i \(0.568854\pi\)
\(822\) 0 0
\(823\) 2.80571 + 1.16216i 0.0978009 + 0.0405105i 0.431047 0.902329i \(-0.358144\pi\)
−0.333247 + 0.942840i \(0.608144\pi\)
\(824\) 0 0
\(825\) 12.9489 5.76994i 0.450822 0.200884i
\(826\) 0 0
\(827\) −10.5196 + 25.3965i −0.365801 + 0.883123i 0.628627 + 0.777707i \(0.283617\pi\)
−0.994428 + 0.105416i \(0.966383\pi\)
\(828\) 0 0
\(829\) −16.1616 16.1616i −0.561316 0.561316i 0.368365 0.929681i \(-0.379918\pi\)
−0.929681 + 0.368365i \(0.879918\pi\)
\(830\) 0 0
\(831\) 23.8971 + 57.6927i 0.828982 + 2.00134i
\(832\) 0 0
\(833\) 2.90544 + 1.20347i 0.100668 + 0.0416979i
\(834\) 0 0
\(835\) −9.96074 14.4882i −0.344706 0.501387i
\(836\) 0 0
\(837\) −5.04754 + 2.09076i −0.174469 + 0.0722672i
\(838\) 0 0
\(839\) −15.7888 + 38.1175i −0.545089 + 1.31596i 0.376004 + 0.926618i \(0.377298\pi\)
−0.921093 + 0.389343i \(0.872702\pi\)
\(840\) 0 0
\(841\) 8.31284 8.31284i 0.286650 0.286650i
\(842\) 0 0
\(843\) −39.3239 + 39.3239i −1.35439 + 1.35439i
\(844\) 0 0
\(845\) −37.8024 + 8.04116i −1.30044 + 0.276624i
\(846\) 0 0
\(847\) −11.8704 28.6576i −0.407871 0.984687i
\(848\) 0 0
\(849\) 23.1270 + 55.8336i 0.793717 + 1.91620i
\(850\) 0 0
\(851\) 15.1338i 0.518779i
\(852\) 0 0
\(853\) 27.3739i 0.937265i 0.883393 + 0.468633i \(0.155253\pi\)
−0.883393 + 0.468633i \(0.844747\pi\)
\(854\) 0 0
\(855\) 8.00907 43.2498i 0.273904 1.47911i
\(856\) 0 0
\(857\) −18.1051 + 18.1051i −0.618458 + 0.618458i −0.945136 0.326678i \(-0.894071\pi\)
0.326678 + 0.945136i \(0.394071\pi\)
\(858\) 0 0
\(859\) 26.1459 + 26.1459i 0.892085 + 0.892085i 0.994719 0.102634i \(-0.0327270\pi\)
−0.102634 + 0.994719i \(0.532727\pi\)
\(860\) 0 0
\(861\) −52.5825 + 6.82123i −1.79201 + 0.232467i
\(862\) 0 0
\(863\) 4.77830i 0.162655i −0.996687 0.0813276i \(-0.974084\pi\)
0.996687 0.0813276i \(-0.0259160\pi\)
\(864\) 0 0
\(865\) −25.2144 + 38.8397i −0.857314 + 1.32059i
\(866\) 0 0
\(867\) −38.4749 + 15.9368i −1.30668 + 0.541243i
\(868\) 0 0
\(869\) −2.48538 2.48538i −0.0843107 0.0843107i
\(870\) 0 0
\(871\) 7.90707 0.267921
\(872\) 0 0
\(873\) −12.1667 + 29.3731i −0.411781 + 0.994127i
\(874\) 0 0
\(875\) 18.4132 30.0785i 0.622481 1.01684i
\(876\) 0 0
\(877\) 33.8137 33.8137i 1.14181 1.14181i 0.153686 0.988120i \(-0.450886\pi\)
0.988120 0.153686i \(-0.0491145\pi\)
\(878\) 0 0
\(879\) 74.4471i 2.51104i
\(880\) 0 0
\(881\) 41.3081 + 41.3081i 1.39171 + 1.39171i 0.821504 + 0.570202i \(0.193135\pi\)
0.570202 + 0.821504i \(0.306865\pi\)
\(882\) 0 0
\(883\) −25.9846 + 10.7632i −0.874451 + 0.362210i −0.774342 0.632767i \(-0.781919\pi\)
−0.100109 + 0.994976i \(0.531919\pi\)
\(884\) 0 0
\(885\) 7.77272 + 11.3057i 0.261277 + 0.380037i
\(886\) 0 0
\(887\) 30.9513 12.8204i 1.03924 0.430469i 0.203203 0.979137i \(-0.434865\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(888\) 0 0
\(889\) −46.3732 + 19.2084i −1.55531 + 0.644230i
\(890\) 0 0
\(891\) 5.51818 2.28570i 0.184866 0.0765740i
\(892\) 0 0
\(893\) 24.8763i 0.832453i
\(894\) 0 0
\(895\) 42.4073 29.1552i 1.41752 0.974551i
\(896\) 0 0
\(897\) 19.1280 0.638665
\(898\) 0 0
\(899\) −8.95515 + 3.70934i −0.298671 + 0.123714i
\(900\) 0 0
\(901\) 8.54968i 0.284831i
\(902\) 0 0
\(903\) 3.79805 + 3.79805i 0.126391 + 0.126391i
\(904\) 0 0
\(905\) 12.7133 8.74047i 0.422605 0.290543i
\(906\) 0 0
\(907\) 16.7397i 0.555833i −0.960605 0.277917i \(-0.910356\pi\)
0.960605 0.277917i \(-0.0896439\pi\)
\(908\) 0 0
\(909\) 8.52817 + 20.5888i 0.282861 + 0.682888i
\(910\) 0 0
\(911\) −15.2683 + 15.2683i −0.505863 + 0.505863i −0.913254 0.407391i \(-0.866439\pi\)
0.407391 + 0.913254i \(0.366439\pi\)
\(912\) 0 0
\(913\) 7.28051 17.5767i 0.240950 0.581704i
\(914\) 0 0
\(915\) −6.92552 1.28248i −0.228951 0.0423975i
\(916\) 0 0
\(917\) −11.1026 26.8040i −0.366639 0.885145i
\(918\) 0 0
\(919\) −2.15310 + 5.19803i −0.0710241 + 0.171467i −0.955405 0.295299i \(-0.904581\pi\)
0.884381 + 0.466766i \(0.154581\pi\)
\(920\) 0 0
\(921\) 18.6929 + 7.74286i 0.615952 + 0.255136i
\(922\) 0 0
\(923\) −17.1293 −0.563818
\(924\) 0 0
\(925\) −53.3601 20.4644i −1.75447 0.672865i
\(926\) 0 0
\(927\) 12.4293 + 12.4293i 0.408233 + 0.408233i
\(928\) 0 0
\(929\) 17.7404 + 7.34831i 0.582043 + 0.241090i 0.654223 0.756301i \(-0.272996\pi\)
−0.0721801 + 0.997392i \(0.522996\pi\)
\(930\) 0 0
\(931\) 13.7767 5.70651i 0.451514 0.187023i
\(932\) 0 0
\(933\) −6.64153 + 6.64153i −0.217434 + 0.217434i
\(934\) 0 0
\(935\) 2.51806 0.535632i 0.0823495 0.0175170i
\(936\) 0 0
\(937\) 4.89501 + 11.8176i 0.159913 + 0.386064i 0.983445 0.181205i \(-0.0579999\pi\)
−0.823532 + 0.567269i \(0.808000\pi\)
\(938\) 0 0
\(939\) 45.5035i 1.48495i
\(940\) 0 0
\(941\) 20.5071 20.5071i 0.668513 0.668513i −0.288859 0.957372i \(-0.593276\pi\)
0.957372 + 0.288859i \(0.0932759\pi\)
\(942\) 0 0
\(943\) −8.40759 + 1.09067i −0.273789 + 0.0355170i
\(944\) 0 0
\(945\) −8.98939 + 13.8471i −0.292425 + 0.450445i
\(946\) 0 0
\(947\) −23.2262 23.2262i −0.754749 0.754749i 0.220612 0.975362i \(-0.429194\pi\)
−0.975362 + 0.220612i \(0.929194\pi\)
\(948\) 0 0
\(949\) 30.7451 74.2251i 0.998027 2.40945i
\(950\) 0 0
\(951\) −4.33458 + 4.33458i −0.140558 + 0.140558i
\(952\) 0 0
\(953\) −25.5333 25.5333i −0.827104 0.827104i 0.160012 0.987115i \(-0.448847\pi\)
−0.987115 + 0.160012i \(0.948847\pi\)
\(954\) 0 0
\(955\) 27.3668 + 39.8059i 0.885568 + 1.28809i
\(956\) 0 0
\(957\) −10.8774 + 4.50555i −0.351615 + 0.145644i
\(958\) 0 0
\(959\) 39.0527i 1.26108i
\(960\) 0 0
\(961\) 25.5515 0.824241
\(962\) 0 0
\(963\) 13.8792i 0.447251i
\(964\) 0 0
\(965\) 38.4025 26.4019i 1.23622 0.849908i
\(966\) 0 0
\(967\) 0.519632 + 1.25450i 0.0167102 + 0.0403421i 0.932014 0.362421i \(-0.118050\pi\)
−0.915304 + 0.402763i \(0.868050\pi\)
\(968\) 0 0
\(969\) 5.41319 13.0686i 0.173897 0.419824i
\(970\) 0 0
\(971\) −8.05782 19.4533i −0.258588 0.624286i 0.740258 0.672323i \(-0.234703\pi\)
−0.998846 + 0.0480370i \(0.984703\pi\)
\(972\) 0 0
\(973\) −52.4883 21.7414i −1.68270 0.696996i
\(974\) 0 0
\(975\) 25.8655 67.4433i 0.828359 2.15991i
\(976\) 0 0
\(977\) 22.3075 + 9.24006i 0.713680 + 0.295616i 0.709826 0.704377i \(-0.248773\pi\)
0.00385348 + 0.999993i \(0.498773\pi\)
\(978\) 0 0
\(979\) 3.36671 3.36671i 0.107600 0.107600i
\(980\) 0 0
\(981\) −15.7266 37.9674i −0.502112 1.21221i
\(982\) 0 0
\(983\) 13.5591 13.5591i 0.432469 0.432469i −0.456999 0.889467i \(-0.651076\pi\)
0.889467 + 0.456999i \(0.151076\pi\)
\(984\) 0 0
\(985\) −8.43153 + 12.9877i −0.268651 + 0.413824i
\(986\) 0 0
\(987\) −15.5957 + 37.6513i −0.496417 + 1.19846i
\(988\) 0 0
\(989\) 0.607281 + 0.607281i 0.0193104 + 0.0193104i
\(990\) 0 0
\(991\) 4.51213 1.86899i 0.143333 0.0593703i −0.309864 0.950781i \(-0.600284\pi\)
0.453197 + 0.891411i \(0.350284\pi\)
\(992\) 0 0
\(993\) −0.826721 −0.0262352
\(994\) 0 0
\(995\) 5.18499 3.56471i 0.164375 0.113009i
\(996\) 0 0
\(997\) −20.1295 + 48.5969i −0.637507 + 1.53908i 0.192482 + 0.981300i \(0.438346\pi\)
−0.829990 + 0.557779i \(0.811654\pi\)
\(998\) 0 0
\(999\) 24.7163 + 10.2378i 0.781990 + 0.323911i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.19 84
5.2 odd 4 820.2.y.a.437.19 yes 84
41.38 odd 8 820.2.y.a.653.19 yes 84
205.202 even 8 inner 820.2.x.a.817.19 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.19 84 1.1 even 1 trivial
820.2.x.a.817.19 yes 84 205.202 even 8 inner
820.2.y.a.437.19 yes 84 5.2 odd 4
820.2.y.a.653.19 yes 84 41.38 odd 8