Properties

Label 820.2.x.a.273.17
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.17
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70683 + 0.706990i) q^{3} +(-1.61561 - 1.54590i) q^{5} +(0.839794 - 2.02744i) q^{7} +(0.292099 + 0.292099i) q^{9} +(0.586281 + 1.41541i) q^{11} +(-1.97247 - 0.817025i) q^{13} +(-1.66462 - 3.78080i) q^{15} +(5.04679 - 2.09045i) q^{17} +(1.32157 - 3.19056i) q^{19} +(2.86676 - 2.86676i) q^{21} +(3.85618 - 3.85618i) q^{23} +(0.220378 + 4.99514i) q^{25} +(-1.82892 - 4.41541i) q^{27} +(0.308258 + 0.744201i) q^{29} -3.52846i q^{31} +2.83035i q^{33} +(-4.49100 + 1.97731i) q^{35} +(0.0174564 - 0.0174564i) q^{37} +(-2.78904 - 2.78904i) q^{39} +(-4.42642 - 4.62675i) q^{41} -2.82587i q^{43} +(-0.0203612 - 0.923472i) q^{45} +(1.59565 - 0.660939i) q^{47} +(1.54448 + 1.54448i) q^{49} +10.0919 q^{51} +(0.328043 - 0.791967i) q^{53} +(1.24088 - 3.19308i) q^{55} +(4.51140 - 4.51140i) q^{57} +13.1291i q^{59} +(-1.70431 - 1.70431i) q^{61} +(0.837515 - 0.346910i) q^{63} +(1.92370 + 4.36924i) q^{65} +(-11.0250 + 4.56671i) q^{67} +(9.30812 - 3.85555i) q^{69} +(15.3613 - 6.36284i) q^{71} +13.5325i q^{73} +(-3.15537 + 8.68164i) q^{75} +3.36201 q^{77} +(-9.73933 + 4.03416i) q^{79} -10.0686i q^{81} +(5.60246 + 5.60246i) q^{83} +(-11.3853 - 4.42449i) q^{85} +1.48816i q^{87} +(3.26033 + 7.87112i) q^{89} +(-3.31294 + 3.31294i) q^{91} +(2.49459 - 6.02247i) q^{93} +(-7.06744 + 3.11168i) q^{95} +(6.06726 + 14.6477i) q^{97} +(-0.242187 + 0.584691i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.70683 + 0.706990i 0.985436 + 0.408181i 0.816437 0.577435i \(-0.195946\pi\)
0.169000 + 0.985616i \(0.445946\pi\)
\(4\) 0 0
\(5\) −1.61561 1.54590i −0.722522 0.691348i
\(6\) 0 0
\(7\) 0.839794 2.02744i 0.317412 0.766301i −0.681978 0.731373i \(-0.738880\pi\)
0.999390 0.0349277i \(-0.0111201\pi\)
\(8\) 0 0
\(9\) 0.292099 + 0.292099i 0.0973662 + 0.0973662i
\(10\) 0 0
\(11\) 0.586281 + 1.41541i 0.176770 + 0.426762i 0.987286 0.158956i \(-0.0508128\pi\)
−0.810515 + 0.585718i \(0.800813\pi\)
\(12\) 0 0
\(13\) −1.97247 0.817025i −0.547066 0.226602i 0.0919935 0.995760i \(-0.470676\pi\)
−0.639059 + 0.769158i \(0.720676\pi\)
\(14\) 0 0
\(15\) −1.66462 3.78080i −0.429804 0.976199i
\(16\) 0 0
\(17\) 5.04679 2.09045i 1.22403 0.507008i 0.325338 0.945598i \(-0.394522\pi\)
0.898687 + 0.438590i \(0.144522\pi\)
\(18\) 0 0
\(19\) 1.32157 3.19056i 0.303190 0.731966i −0.696703 0.717359i \(-0.745351\pi\)
0.999893 0.0146062i \(-0.00464945\pi\)
\(20\) 0 0
\(21\) 2.86676 2.86676i 0.625579 0.625579i
\(22\) 0 0
\(23\) 3.85618 3.85618i 0.804070 0.804070i −0.179659 0.983729i \(-0.557499\pi\)
0.983729 + 0.179659i \(0.0574995\pi\)
\(24\) 0 0
\(25\) 0.220378 + 4.99514i 0.0440756 + 0.999028i
\(26\) 0 0
\(27\) −1.82892 4.41541i −0.351976 0.849745i
\(28\) 0 0
\(29\) 0.308258 + 0.744201i 0.0572421 + 0.138195i 0.949913 0.312514i \(-0.101171\pi\)
−0.892671 + 0.450709i \(0.851171\pi\)
\(30\) 0 0
\(31\) 3.52846i 0.633731i −0.948471 0.316865i \(-0.897370\pi\)
0.948471 0.316865i \(-0.102630\pi\)
\(32\) 0 0
\(33\) 2.83035i 0.492701i
\(34\) 0 0
\(35\) −4.49100 + 1.97731i −0.759118 + 0.334227i
\(36\) 0 0
\(37\) 0.0174564 0.0174564i 0.00286981 0.00286981i −0.705670 0.708540i \(-0.749354\pi\)
0.708540 + 0.705670i \(0.249354\pi\)
\(38\) 0 0
\(39\) −2.78904 2.78904i −0.446604 0.446604i
\(40\) 0 0
\(41\) −4.42642 4.62675i −0.691291 0.722577i
\(42\) 0 0
\(43\) 2.82587i 0.430942i −0.976510 0.215471i \(-0.930871\pi\)
0.976510 0.215471i \(-0.0691286\pi\)
\(44\) 0 0
\(45\) −0.0203612 0.923472i −0.00303527 0.137663i
\(46\) 0 0
\(47\) 1.59565 0.660939i 0.232749 0.0964079i −0.263261 0.964725i \(-0.584798\pi\)
0.496010 + 0.868317i \(0.334798\pi\)
\(48\) 0 0
\(49\) 1.54448 + 1.54448i 0.220641 + 0.220641i
\(50\) 0 0
\(51\) 10.0919 1.41315
\(52\) 0 0
\(53\) 0.328043 0.791967i 0.0450602 0.108785i −0.899747 0.436412i \(-0.856249\pi\)
0.944807 + 0.327627i \(0.106249\pi\)
\(54\) 0 0
\(55\) 1.24088 3.19308i 0.167320 0.430555i
\(56\) 0 0
\(57\) 4.51140 4.51140i 0.597549 0.597549i
\(58\) 0 0
\(59\) 13.1291i 1.70926i 0.519238 + 0.854630i \(0.326216\pi\)
−0.519238 + 0.854630i \(0.673784\pi\)
\(60\) 0 0
\(61\) −1.70431 1.70431i −0.218215 0.218215i 0.589531 0.807746i \(-0.299313\pi\)
−0.807746 + 0.589531i \(0.799313\pi\)
\(62\) 0 0
\(63\) 0.837515 0.346910i 0.105517 0.0437066i
\(64\) 0 0
\(65\) 1.92370 + 4.36924i 0.238606 + 0.541938i
\(66\) 0 0
\(67\) −11.0250 + 4.56671i −1.34692 + 0.557912i −0.935433 0.353504i \(-0.884990\pi\)
−0.411486 + 0.911416i \(0.634990\pi\)
\(68\) 0 0
\(69\) 9.30812 3.85555i 1.12057 0.464153i
\(70\) 0 0
\(71\) 15.3613 6.36284i 1.82305 0.755130i 0.849144 0.528161i \(-0.177118\pi\)
0.973902 0.226969i \(-0.0728817\pi\)
\(72\) 0 0
\(73\) 13.5325i 1.58386i 0.610613 + 0.791929i \(0.290923\pi\)
−0.610613 + 0.791929i \(0.709077\pi\)
\(74\) 0 0
\(75\) −3.15537 + 8.68164i −0.364351 + 1.00247i
\(76\) 0 0
\(77\) 3.36201 0.383137
\(78\) 0 0
\(79\) −9.73933 + 4.03416i −1.09576 + 0.453879i −0.856012 0.516957i \(-0.827065\pi\)
−0.239748 + 0.970835i \(0.577065\pi\)
\(80\) 0 0
\(81\) 10.0686i 1.11874i
\(82\) 0 0
\(83\) 5.60246 + 5.60246i 0.614950 + 0.614950i 0.944232 0.329282i \(-0.106807\pi\)
−0.329282 + 0.944232i \(0.606807\pi\)
\(84\) 0 0
\(85\) −11.3853 4.42449i −1.23490 0.479903i
\(86\) 0 0
\(87\) 1.48816i 0.159547i
\(88\) 0 0
\(89\) 3.26033 + 7.87112i 0.345594 + 0.834338i 0.997129 + 0.0757192i \(0.0241253\pi\)
−0.651535 + 0.758618i \(0.725875\pi\)
\(90\) 0 0
\(91\) −3.31294 + 3.31294i −0.347291 + 0.347291i
\(92\) 0 0
\(93\) 2.49459 6.02247i 0.258677 0.624501i
\(94\) 0 0
\(95\) −7.06744 + 3.11168i −0.725105 + 0.319251i
\(96\) 0 0
\(97\) 6.06726 + 14.6477i 0.616037 + 1.48724i 0.856270 + 0.516529i \(0.172776\pi\)
−0.240233 + 0.970715i \(0.577224\pi\)
\(98\) 0 0
\(99\) −0.242187 + 0.584691i −0.0243407 + 0.0587636i
\(100\) 0 0
\(101\) −1.78406 0.738981i −0.177520 0.0735314i 0.292153 0.956372i \(-0.405628\pi\)
−0.469673 + 0.882840i \(0.655628\pi\)
\(102\) 0 0
\(103\) −11.7635 −1.15909 −0.579545 0.814940i \(-0.696770\pi\)
−0.579545 + 0.814940i \(0.696770\pi\)
\(104\) 0 0
\(105\) −9.06330 + 0.199832i −0.884487 + 0.0195016i
\(106\) 0 0
\(107\) 1.74549 + 1.74549i 0.168743 + 0.168743i 0.786427 0.617684i \(-0.211929\pi\)
−0.617684 + 0.786427i \(0.711929\pi\)
\(108\) 0 0
\(109\) −6.84842 2.83671i −0.655960 0.271708i 0.0297774 0.999557i \(-0.490520\pi\)
−0.685737 + 0.727849i \(0.740520\pi\)
\(110\) 0 0
\(111\) 0.0421365 0.0174535i 0.00399942 0.00165661i
\(112\) 0 0
\(113\) 11.4758 11.4758i 1.07956 1.07956i 0.0830063 0.996549i \(-0.473548\pi\)
0.996549 0.0830063i \(-0.0264521\pi\)
\(114\) 0 0
\(115\) −12.1914 + 0.268802i −1.13685 + 0.0250659i
\(116\) 0 0
\(117\) −0.337505 0.814808i −0.0312023 0.0753291i
\(118\) 0 0
\(119\) 11.9876i 1.09890i
\(120\) 0 0
\(121\) 6.11852 6.11852i 0.556229 0.556229i
\(122\) 0 0
\(123\) −4.28406 11.0265i −0.386281 0.994225i
\(124\) 0 0
\(125\) 7.36595 8.41087i 0.658831 0.752291i
\(126\) 0 0
\(127\) 8.98635 + 8.98635i 0.797409 + 0.797409i 0.982686 0.185277i \(-0.0593182\pi\)
−0.185277 + 0.982686i \(0.559318\pi\)
\(128\) 0 0
\(129\) 1.99786 4.82327i 0.175902 0.424665i
\(130\) 0 0
\(131\) −6.50969 + 6.50969i −0.568754 + 0.568754i −0.931779 0.363025i \(-0.881744\pi\)
0.363025 + 0.931779i \(0.381744\pi\)
\(132\) 0 0
\(133\) −5.35883 5.35883i −0.464670 0.464670i
\(134\) 0 0
\(135\) −3.87096 + 9.96089i −0.333159 + 0.857297i
\(136\) 0 0
\(137\) −7.68508 + 3.18326i −0.656580 + 0.271965i −0.685999 0.727603i \(-0.740634\pi\)
0.0294183 + 0.999567i \(0.490634\pi\)
\(138\) 0 0
\(139\) 3.46194i 0.293638i 0.989163 + 0.146819i \(0.0469035\pi\)
−0.989163 + 0.146819i \(0.953097\pi\)
\(140\) 0 0
\(141\) 3.19077 0.268711
\(142\) 0 0
\(143\) 3.27086i 0.273523i
\(144\) 0 0
\(145\) 0.652437 1.67887i 0.0541819 0.139423i
\(146\) 0 0
\(147\) 1.54423 + 3.72810i 0.127366 + 0.307488i
\(148\) 0 0
\(149\) 4.79620 11.5790i 0.392920 0.948592i −0.596381 0.802702i \(-0.703395\pi\)
0.989301 0.145891i \(-0.0466048\pi\)
\(150\) 0 0
\(151\) 0.694150 + 1.67583i 0.0564891 + 0.136377i 0.949604 0.313451i \(-0.101485\pi\)
−0.893115 + 0.449828i \(0.851485\pi\)
\(152\) 0 0
\(153\) 2.08478 + 0.863542i 0.168544 + 0.0698132i
\(154\) 0 0
\(155\) −5.45466 + 5.70061i −0.438128 + 0.457884i
\(156\) 0 0
\(157\) 8.67386 + 3.59283i 0.692249 + 0.286739i 0.700937 0.713223i \(-0.252765\pi\)
−0.00868785 + 0.999962i \(0.502765\pi\)
\(158\) 0 0
\(159\) 1.11983 1.11983i 0.0888080 0.0888080i
\(160\) 0 0
\(161\) −4.57979 11.0566i −0.360938 0.871381i
\(162\) 0 0
\(163\) −6.76379 + 6.76379i −0.529781 + 0.529781i −0.920507 0.390726i \(-0.872224\pi\)
0.390726 + 0.920507i \(0.372224\pi\)
\(164\) 0 0
\(165\) 4.37544 4.57274i 0.340628 0.355987i
\(166\) 0 0
\(167\) −3.68428 + 8.89463i −0.285098 + 0.688287i −0.999940 0.0109991i \(-0.996499\pi\)
0.714842 + 0.699286i \(0.246499\pi\)
\(168\) 0 0
\(169\) −5.96927 5.96927i −0.459174 0.459174i
\(170\) 0 0
\(171\) 1.31799 0.545929i 0.100789 0.0417482i
\(172\) 0 0
\(173\) −0.639686 −0.0486344 −0.0243172 0.999704i \(-0.507741\pi\)
−0.0243172 + 0.999704i \(0.507741\pi\)
\(174\) 0 0
\(175\) 10.3124 + 3.74808i 0.779546 + 0.283328i
\(176\) 0 0
\(177\) −9.28213 + 22.4090i −0.697688 + 1.68437i
\(178\) 0 0
\(179\) −1.17928 0.488474i −0.0881436 0.0365103i 0.338176 0.941083i \(-0.390190\pi\)
−0.426320 + 0.904573i \(0.640190\pi\)
\(180\) 0 0
\(181\) −8.11484 3.36128i −0.603172 0.249842i 0.0601342 0.998190i \(-0.480847\pi\)
−0.663306 + 0.748348i \(0.730847\pi\)
\(182\) 0 0
\(183\) −1.70403 4.11390i −0.125966 0.304108i
\(184\) 0 0
\(185\) −0.0551885 + 0.00121683i −0.00405754 + 8.94628e-5i
\(186\) 0 0
\(187\) 5.91767 + 5.91767i 0.432743 + 0.432743i
\(188\) 0 0
\(189\) −10.4879 −0.762882
\(190\) 0 0
\(191\) −1.66354 + 4.01614i −0.120370 + 0.290598i −0.972567 0.232622i \(-0.925269\pi\)
0.852198 + 0.523220i \(0.175269\pi\)
\(192\) 0 0
\(193\) 6.85045 + 2.83755i 0.493106 + 0.204251i 0.615358 0.788248i \(-0.289012\pi\)
−0.122252 + 0.992499i \(0.539012\pi\)
\(194\) 0 0
\(195\) 0.194415 + 8.81757i 0.0139223 + 0.631440i
\(196\) 0 0
\(197\) 10.6263 0.757090 0.378545 0.925583i \(-0.376425\pi\)
0.378545 + 0.925583i \(0.376425\pi\)
\(198\) 0 0
\(199\) −3.23900 1.34164i −0.229607 0.0951062i 0.264914 0.964272i \(-0.414656\pi\)
−0.494521 + 0.869166i \(0.664656\pi\)
\(200\) 0 0
\(201\) −22.0464 −1.55503
\(202\) 0 0
\(203\) 1.76770 0.124068
\(204\) 0 0
\(205\) −0.00113573 + 14.3178i −7.93230e−5 + 1.00000i
\(206\) 0 0
\(207\) 2.25277 0.156578
\(208\) 0 0
\(209\) 5.29077 0.365970
\(210\) 0 0
\(211\) 3.43096 + 1.42115i 0.236197 + 0.0978361i 0.497643 0.867382i \(-0.334199\pi\)
−0.261445 + 0.965218i \(0.584199\pi\)
\(212\) 0 0
\(213\) 30.7175 2.10473
\(214\) 0 0
\(215\) −4.36852 + 4.56550i −0.297931 + 0.311365i
\(216\) 0 0
\(217\) −7.15375 2.96318i −0.485628 0.201154i
\(218\) 0 0
\(219\) −9.56734 + 23.0976i −0.646501 + 1.56079i
\(220\) 0 0
\(221\) −11.6626 −0.784511
\(222\) 0 0
\(223\) 1.15589 + 1.15589i 0.0774043 + 0.0774043i 0.744749 0.667345i \(-0.232569\pi\)
−0.667345 + 0.744749i \(0.732569\pi\)
\(224\) 0 0
\(225\) −1.39470 + 1.52345i −0.0929801 + 0.101563i
\(226\) 0 0
\(227\) 7.40634 + 17.8805i 0.491576 + 1.18677i 0.953918 + 0.300068i \(0.0970094\pi\)
−0.462341 + 0.886702i \(0.652991\pi\)
\(228\) 0 0
\(229\) −16.4735 6.82354i −1.08860 0.450912i −0.235081 0.971976i \(-0.575536\pi\)
−0.853518 + 0.521063i \(0.825536\pi\)
\(230\) 0 0
\(231\) 5.73837 + 2.37691i 0.377557 + 0.156389i
\(232\) 0 0
\(233\) 4.34190 10.4823i 0.284447 0.686716i −0.715482 0.698631i \(-0.753793\pi\)
0.999929 + 0.0119150i \(0.00379276\pi\)
\(234\) 0 0
\(235\) −3.59969 1.39890i −0.234818 0.0912539i
\(236\) 0 0
\(237\) −19.4754 −1.26507
\(238\) 0 0
\(239\) −22.4413 + 9.29549i −1.45161 + 0.601276i −0.962581 0.270993i \(-0.912648\pi\)
−0.489026 + 0.872269i \(0.662648\pi\)
\(240\) 0 0
\(241\) −9.33424 9.33424i −0.601271 0.601271i 0.339379 0.940650i \(-0.389783\pi\)
−0.940650 + 0.339379i \(0.889783\pi\)
\(242\) 0 0
\(243\) 1.63166 3.93917i 0.104671 0.252698i
\(244\) 0 0
\(245\) −0.107661 4.88290i −0.00687819 0.311957i
\(246\) 0 0
\(247\) −5.21354 + 5.21354i −0.331730 + 0.331730i
\(248\) 0 0
\(249\) 5.60154 + 13.5233i 0.354983 + 0.857004i
\(250\) 0 0
\(251\) 6.18482 6.18482i 0.390382 0.390382i −0.484442 0.874824i \(-0.660977\pi\)
0.874824 + 0.484442i \(0.160977\pi\)
\(252\) 0 0
\(253\) 7.71888 + 3.19727i 0.485282 + 0.201010i
\(254\) 0 0
\(255\) −16.3046 15.6011i −1.02103 0.976979i
\(256\) 0 0
\(257\) 16.5885 + 6.87120i 1.03476 + 0.428614i 0.834430 0.551114i \(-0.185797\pi\)
0.200335 + 0.979728i \(0.435797\pi\)
\(258\) 0 0
\(259\) −0.0207320 0.0500515i −0.00128823 0.00311005i
\(260\) 0 0
\(261\) −0.127338 + 0.307422i −0.00788204 + 0.0190289i
\(262\) 0 0
\(263\) 5.63992 + 13.6160i 0.347772 + 0.839597i 0.996882 + 0.0789021i \(0.0251414\pi\)
−0.649110 + 0.760694i \(0.724859\pi\)
\(264\) 0 0
\(265\) −1.75429 + 0.772385i −0.107765 + 0.0474472i
\(266\) 0 0
\(267\) 15.7397i 0.963251i
\(268\) 0 0
\(269\) 17.7792 1.08402 0.542008 0.840373i \(-0.317664\pi\)
0.542008 + 0.840373i \(0.317664\pi\)
\(270\) 0 0
\(271\) 18.0311i 1.09531i 0.836704 + 0.547655i \(0.184479\pi\)
−0.836704 + 0.547655i \(0.815521\pi\)
\(272\) 0 0
\(273\) −7.99683 + 3.31240i −0.483990 + 0.200475i
\(274\) 0 0
\(275\) −6.94096 + 3.24048i −0.418556 + 0.195408i
\(276\) 0 0
\(277\) 17.6786 + 17.6786i 1.06220 + 1.06220i 0.997933 + 0.0642693i \(0.0204717\pi\)
0.0642693 + 0.997933i \(0.479528\pi\)
\(278\) 0 0
\(279\) 1.03066 1.03066i 0.0617039 0.0617039i
\(280\) 0 0
\(281\) 8.05724 19.4519i 0.480655 1.16040i −0.478644 0.878009i \(-0.658871\pi\)
0.959298 0.282394i \(-0.0911286\pi\)
\(282\) 0 0
\(283\) −5.24406 5.24406i −0.311727 0.311727i 0.533851 0.845578i \(-0.320744\pi\)
−0.845578 + 0.533851i \(0.820744\pi\)
\(284\) 0 0
\(285\) −14.2628 + 0.314474i −0.844857 + 0.0186278i
\(286\) 0 0
\(287\) −13.0977 + 5.08879i −0.773135 + 0.300382i
\(288\) 0 0
\(289\) 9.07926 9.07926i 0.534074 0.534074i
\(290\) 0 0
\(291\) 29.2905i 1.71704i
\(292\) 0 0
\(293\) 6.89817 + 16.6536i 0.402995 + 0.972917i 0.986935 + 0.161119i \(0.0515105\pi\)
−0.583940 + 0.811797i \(0.698490\pi\)
\(294\) 0 0
\(295\) 20.2963 21.2114i 1.18169 1.23498i
\(296\) 0 0
\(297\) 5.17734 5.17734i 0.300420 0.300420i
\(298\) 0 0
\(299\) −10.7568 + 4.45562i −0.622083 + 0.257675i
\(300\) 0 0
\(301\) −5.72929 2.37315i −0.330231 0.136786i
\(302\) 0 0
\(303\) −2.52262 2.52262i −0.144921 0.144921i
\(304\) 0 0
\(305\) 0.118802 + 5.38820i 0.00680257 + 0.308527i
\(306\) 0 0
\(307\) 3.56609 0.203528 0.101764 0.994809i \(-0.467551\pi\)
0.101764 + 0.994809i \(0.467551\pi\)
\(308\) 0 0
\(309\) −20.0782 8.31666i −1.14221 0.473118i
\(310\) 0 0
\(311\) 7.24586 17.4931i 0.410875 0.991940i −0.574028 0.818836i \(-0.694620\pi\)
0.984903 0.173105i \(-0.0553800\pi\)
\(312\) 0 0
\(313\) 3.01215 + 7.27197i 0.170257 + 0.411036i 0.985859 0.167577i \(-0.0535942\pi\)
−0.815602 + 0.578613i \(0.803594\pi\)
\(314\) 0 0
\(315\) −1.88938 0.734245i −0.106455 0.0413700i
\(316\) 0 0
\(317\) −1.30252 + 3.14456i −0.0731569 + 0.176616i −0.956228 0.292623i \(-0.905472\pi\)
0.883071 + 0.469239i \(0.155472\pi\)
\(318\) 0 0
\(319\) −0.872622 + 0.872622i −0.0488574 + 0.0488574i
\(320\) 0 0
\(321\) 1.74520 + 4.21329i 0.0974076 + 0.235163i
\(322\) 0 0
\(323\) 18.8648i 1.04966i
\(324\) 0 0
\(325\) 3.64647 10.0328i 0.202270 0.556522i
\(326\) 0 0
\(327\) −9.68354 9.68354i −0.535501 0.535501i
\(328\) 0 0
\(329\) 3.79014i 0.208957i
\(330\) 0 0
\(331\) 0.786048 0.325592i 0.0432051 0.0178961i −0.360976 0.932575i \(-0.617556\pi\)
0.404181 + 0.914679i \(0.367556\pi\)
\(332\) 0 0
\(333\) 0.0101980 0.000558845
\(334\) 0 0
\(335\) 24.8718 + 9.66557i 1.35889 + 0.528086i
\(336\) 0 0
\(337\) 10.7961i 0.588099i −0.955790 0.294049i \(-0.904997\pi\)
0.955790 0.294049i \(-0.0950030\pi\)
\(338\) 0 0
\(339\) 27.7005 11.4739i 1.50449 0.623179i
\(340\) 0 0
\(341\) 4.99422 2.06867i 0.270452 0.112025i
\(342\) 0 0
\(343\) 18.6205 7.71286i 1.00541 0.416455i
\(344\) 0 0
\(345\) −20.9986 8.16038i −1.13052 0.439340i
\(346\) 0 0
\(347\) −11.2734 + 4.66959i −0.605187 + 0.250677i −0.664169 0.747582i \(-0.731215\pi\)
0.0589820 + 0.998259i \(0.481215\pi\)
\(348\) 0 0
\(349\) −18.0059 18.0059i −0.963833 0.963833i 0.0355354 0.999368i \(-0.488686\pi\)
−0.999368 + 0.0355354i \(0.988686\pi\)
\(350\) 0 0
\(351\) 10.2035i 0.544625i
\(352\) 0 0
\(353\) 0.280814 0.280814i 0.0149462 0.0149462i −0.699594 0.714540i \(-0.746636\pi\)
0.714540 + 0.699594i \(0.246636\pi\)
\(354\) 0 0
\(355\) −34.6541 13.4671i −1.83925 0.714761i
\(356\) 0 0
\(357\) 8.47512 20.4608i 0.448551 1.08290i
\(358\) 0 0
\(359\) 16.5490 0.873421 0.436711 0.899602i \(-0.356143\pi\)
0.436711 + 0.899602i \(0.356143\pi\)
\(360\) 0 0
\(361\) 5.00189 + 5.00189i 0.263257 + 0.263257i
\(362\) 0 0
\(363\) 14.7690 6.11751i 0.775171 0.321086i
\(364\) 0 0
\(365\) 20.9199 21.8632i 1.09500 1.14437i
\(366\) 0 0
\(367\) 31.1563i 1.62634i −0.582024 0.813172i \(-0.697739\pi\)
0.582024 0.813172i \(-0.302261\pi\)
\(368\) 0 0
\(369\) 0.0585154 2.64442i 0.00304619 0.137663i
\(370\) 0 0
\(371\) −1.33018 1.33018i −0.0690594 0.0690594i
\(372\) 0 0
\(373\) 8.37971 8.37971i 0.433885 0.433885i −0.456063 0.889948i \(-0.650741\pi\)
0.889948 + 0.456063i \(0.150741\pi\)
\(374\) 0 0
\(375\) 18.5188 9.14824i 0.956307 0.472413i
\(376\) 0 0
\(377\) 1.71977i 0.0885727i
\(378\) 0 0
\(379\) 11.9437i 0.613505i −0.951789 0.306752i \(-0.900758\pi\)
0.951789 0.306752i \(-0.0992423\pi\)
\(380\) 0 0
\(381\) 8.98487 + 21.6914i 0.460309 + 1.11128i
\(382\) 0 0
\(383\) −6.96687 16.8195i −0.355990 0.859436i −0.995856 0.0909493i \(-0.971010\pi\)
0.639865 0.768487i \(-0.278990\pi\)
\(384\) 0 0
\(385\) −5.43169 5.19734i −0.276825 0.264881i
\(386\) 0 0
\(387\) 0.825433 0.825433i 0.0419591 0.0419591i
\(388\) 0 0
\(389\) 19.2200 19.2200i 0.974491 0.974491i −0.0251915 0.999683i \(-0.508020\pi\)
0.999683 + 0.0251915i \(0.00801956\pi\)
\(390\) 0 0
\(391\) 11.4002 27.5225i 0.576532 1.39187i
\(392\) 0 0
\(393\) −15.7132 + 6.50861i −0.792625 + 0.328316i
\(394\) 0 0
\(395\) 21.9713 + 8.53841i 1.10550 + 0.429614i
\(396\) 0 0
\(397\) 27.4971 + 11.3897i 1.38004 + 0.571631i 0.944492 0.328535i \(-0.106555\pi\)
0.435547 + 0.900166i \(0.356555\pi\)
\(398\) 0 0
\(399\) −5.35795 12.9352i −0.268233 0.647572i
\(400\) 0 0
\(401\) 8.65346 + 8.65346i 0.432133 + 0.432133i 0.889353 0.457220i \(-0.151155\pi\)
−0.457220 + 0.889353i \(0.651155\pi\)
\(402\) 0 0
\(403\) −2.88284 + 6.95980i −0.143605 + 0.346692i
\(404\) 0 0
\(405\) −15.5651 + 16.2670i −0.773436 + 0.808311i
\(406\) 0 0
\(407\) 0.0349423 + 0.0144736i 0.00173202 + 0.000717427i
\(408\) 0 0
\(409\) −23.3667 −1.15541 −0.577704 0.816247i \(-0.696051\pi\)
−0.577704 + 0.816247i \(0.696051\pi\)
\(410\) 0 0
\(411\) −15.3676 −0.758029
\(412\) 0 0
\(413\) 26.6184 + 11.0257i 1.30981 + 0.542540i
\(414\) 0 0
\(415\) −0.390528 17.7122i −0.0191703 0.869459i
\(416\) 0 0
\(417\) −2.44756 + 5.90893i −0.119857 + 0.289362i
\(418\) 0 0
\(419\) −20.5411 20.5411i −1.00350 1.00350i −0.999994 0.00350533i \(-0.998884\pi\)
−0.00350533 0.999994i \(-0.501116\pi\)
\(420\) 0 0
\(421\) −3.57901 8.64048i −0.174430 0.421111i 0.812351 0.583168i \(-0.198187\pi\)
−0.986781 + 0.162057i \(0.948187\pi\)
\(422\) 0 0
\(423\) 0.659146 + 0.273027i 0.0320488 + 0.0132750i
\(424\) 0 0
\(425\) 11.5543 + 24.7487i 0.560465 + 1.20049i
\(426\) 0 0
\(427\) −4.88666 + 2.02412i −0.236482 + 0.0979541i
\(428\) 0 0
\(429\) 2.31247 5.58279i 0.111647 0.269540i
\(430\) 0 0
\(431\) 5.47732 5.47732i 0.263833 0.263833i −0.562776 0.826609i \(-0.690267\pi\)
0.826609 + 0.562776i \(0.190267\pi\)
\(432\) 0 0
\(433\) −25.8241 + 25.8241i −1.24103 + 1.24103i −0.281454 + 0.959575i \(0.590817\pi\)
−0.959575 + 0.281454i \(0.909183\pi\)
\(434\) 0 0
\(435\) 2.30054 2.40428i 0.110303 0.115276i
\(436\) 0 0
\(437\) −7.20716 17.3996i −0.344765 0.832337i
\(438\) 0 0
\(439\) −2.97081 7.17216i −0.141789 0.342309i 0.836993 0.547214i \(-0.184311\pi\)
−0.978782 + 0.204905i \(0.934311\pi\)
\(440\) 0 0
\(441\) 0.902283i 0.0429658i
\(442\) 0 0
\(443\) 25.2161i 1.19805i −0.800729 0.599026i \(-0.795554\pi\)
0.800729 0.599026i \(-0.204446\pi\)
\(444\) 0 0
\(445\) 6.90057 17.7568i 0.327119 0.841753i
\(446\) 0 0
\(447\) 16.3725 16.3725i 0.774395 0.774395i
\(448\) 0 0
\(449\) 16.7231 + 16.7231i 0.789210 + 0.789210i 0.981365 0.192154i \(-0.0615474\pi\)
−0.192154 + 0.981365i \(0.561547\pi\)
\(450\) 0 0
\(451\) 3.95361 8.97777i 0.186168 0.422747i
\(452\) 0 0
\(453\) 3.35110i 0.157448i
\(454\) 0 0
\(455\) 10.4739 0.230934i 0.491024 0.0108264i
\(456\) 0 0
\(457\) 25.2997 10.4795i 1.18347 0.490209i 0.297846 0.954614i \(-0.403732\pi\)
0.885623 + 0.464405i \(0.153732\pi\)
\(458\) 0 0
\(459\) −18.4603 18.4603i −0.861655 0.861655i
\(460\) 0 0
\(461\) −17.6572 −0.822377 −0.411188 0.911550i \(-0.634886\pi\)
−0.411188 + 0.911550i \(0.634886\pi\)
\(462\) 0 0
\(463\) −9.23966 + 22.3065i −0.429404 + 1.03667i 0.550073 + 0.835116i \(0.314600\pi\)
−0.979477 + 0.201556i \(0.935400\pi\)
\(464\) 0 0
\(465\) −13.3404 + 5.87356i −0.618647 + 0.272380i
\(466\) 0 0
\(467\) −25.8871 + 25.8871i −1.19791 + 1.19791i −0.223124 + 0.974790i \(0.571626\pi\)
−0.974790 + 0.223124i \(0.928374\pi\)
\(468\) 0 0
\(469\) 26.1876i 1.20923i
\(470\) 0 0
\(471\) 12.2647 + 12.2647i 0.565126 + 0.565126i
\(472\) 0 0
\(473\) 3.99976 1.65676i 0.183909 0.0761777i
\(474\) 0 0
\(475\) 16.2286 + 5.89832i 0.744618 + 0.270634i
\(476\) 0 0
\(477\) 0.327153 0.135511i 0.0149793 0.00620464i
\(478\) 0 0
\(479\) −2.72007 + 1.12669i −0.124283 + 0.0514798i −0.443958 0.896047i \(-0.646426\pi\)
0.319675 + 0.947527i \(0.396426\pi\)
\(480\) 0 0
\(481\) −0.0486945 + 0.0201699i −0.00222028 + 0.000919670i
\(482\) 0 0
\(483\) 22.1095i 1.00602i
\(484\) 0 0
\(485\) 12.8415 33.0443i 0.583104 1.50046i
\(486\) 0 0
\(487\) 10.8202 0.490308 0.245154 0.969484i \(-0.421161\pi\)
0.245154 + 0.969484i \(0.421161\pi\)
\(488\) 0 0
\(489\) −16.3265 + 6.76267i −0.738312 + 0.305819i
\(490\) 0 0
\(491\) 25.9547i 1.17132i −0.810557 0.585660i \(-0.800835\pi\)
0.810557 0.585660i \(-0.199165\pi\)
\(492\) 0 0
\(493\) 3.11142 + 3.11142i 0.140131 + 0.140131i
\(494\) 0 0
\(495\) 1.29515 0.570234i 0.0582128 0.0256301i
\(496\) 0 0
\(497\) 36.4875i 1.63669i
\(498\) 0 0
\(499\) 10.2955 + 24.8555i 0.460890 + 1.11269i 0.968033 + 0.250824i \(0.0807017\pi\)
−0.507143 + 0.861862i \(0.669298\pi\)
\(500\) 0 0
\(501\) −12.5768 + 12.5768i −0.561892 + 0.561892i
\(502\) 0 0
\(503\) 3.88904 9.38898i 0.173404 0.418634i −0.813154 0.582049i \(-0.802251\pi\)
0.986557 + 0.163415i \(0.0522511\pi\)
\(504\) 0 0
\(505\) 1.73995 + 3.95188i 0.0774266 + 0.175856i
\(506\) 0 0
\(507\) −5.96828 14.4087i −0.265061 0.639913i
\(508\) 0 0
\(509\) −10.6238 + 25.6480i −0.470890 + 1.13683i 0.492881 + 0.870097i \(0.335944\pi\)
−0.963771 + 0.266731i \(0.914056\pi\)
\(510\) 0 0
\(511\) 27.4363 + 11.3645i 1.21371 + 0.502736i
\(512\) 0 0
\(513\) −16.5047 −0.728700
\(514\) 0 0
\(515\) 19.0052 + 18.1852i 0.837468 + 0.801334i
\(516\) 0 0
\(517\) 1.87100 + 1.87100i 0.0822864 + 0.0822864i
\(518\) 0 0
\(519\) −1.09183 0.452252i −0.0479261 0.0198517i
\(520\) 0 0
\(521\) 34.8534 14.4368i 1.52696 0.632486i 0.547986 0.836488i \(-0.315395\pi\)
0.978970 + 0.204002i \(0.0653949\pi\)
\(522\) 0 0
\(523\) −6.30411 + 6.30411i −0.275659 + 0.275659i −0.831373 0.555714i \(-0.812445\pi\)
0.555714 + 0.831373i \(0.312445\pi\)
\(524\) 0 0
\(525\) 14.9517 + 13.6881i 0.652544 + 0.597398i
\(526\) 0 0
\(527\) −7.37606 17.8074i −0.321306 0.775702i
\(528\) 0 0
\(529\) 6.74030i 0.293056i
\(530\) 0 0
\(531\) −3.83498 + 3.83498i −0.166424 + 0.166424i
\(532\) 0 0
\(533\) 4.95083 + 12.7426i 0.214444 + 0.551945i
\(534\) 0 0
\(535\) −0.121672 5.51838i −0.00526034 0.238580i
\(536\) 0 0
\(537\) −1.66748 1.66748i −0.0719571 0.0719571i
\(538\) 0 0
\(539\) −1.28057 + 3.09158i −0.0551582 + 0.133164i
\(540\) 0 0
\(541\) −7.11334 + 7.11334i −0.305826 + 0.305826i −0.843288 0.537462i \(-0.819383\pi\)
0.537462 + 0.843288i \(0.319383\pi\)
\(542\) 0 0
\(543\) −11.4742 11.4742i −0.492407 0.492407i
\(544\) 0 0
\(545\) 6.67909 + 15.1700i 0.286101 + 0.649811i
\(546\) 0 0
\(547\) −6.24325 + 2.58604i −0.266942 + 0.110571i −0.512140 0.858902i \(-0.671147\pi\)
0.245198 + 0.969473i \(0.421147\pi\)
\(548\) 0 0
\(549\) 0.995654i 0.0424935i
\(550\) 0 0
\(551\) 2.78181 0.118509
\(552\) 0 0
\(553\) 23.1338i 0.983748i
\(554\) 0 0
\(555\) −0.0950574 0.0369408i −0.00403496 0.00156805i
\(556\) 0 0
\(557\) 9.49237 + 22.9166i 0.402205 + 0.971008i 0.987130 + 0.159921i \(0.0511238\pi\)
−0.584925 + 0.811087i \(0.698876\pi\)
\(558\) 0 0
\(559\) −2.30881 + 5.57396i −0.0976522 + 0.235753i
\(560\) 0 0
\(561\) 5.91670 + 14.2842i 0.249803 + 0.603078i
\(562\) 0 0
\(563\) −2.00314 0.829727i −0.0844222 0.0349688i 0.340073 0.940399i \(-0.389548\pi\)
−0.424495 + 0.905430i \(0.639548\pi\)
\(564\) 0 0
\(565\) −36.2809 + 0.799942i −1.52635 + 0.0336538i
\(566\) 0 0
\(567\) −20.4135 8.45557i −0.857288 0.355100i
\(568\) 0 0
\(569\) 2.95151 2.95151i 0.123734 0.123734i −0.642528 0.766262i \(-0.722114\pi\)
0.766262 + 0.642528i \(0.222114\pi\)
\(570\) 0 0
\(571\) −12.5534 30.3066i −0.525344 1.26829i −0.934544 0.355848i \(-0.884192\pi\)
0.409200 0.912445i \(-0.365808\pi\)
\(572\) 0 0
\(573\) −5.67875 + 5.67875i −0.237233 + 0.237233i
\(574\) 0 0
\(575\) 20.1120 + 18.4124i 0.838728 + 0.767848i
\(576\) 0 0
\(577\) −0.781835 + 1.88752i −0.0325482 + 0.0785783i −0.939318 0.343048i \(-0.888541\pi\)
0.906770 + 0.421626i \(0.138541\pi\)
\(578\) 0 0
\(579\) 9.68640 + 9.68640i 0.402553 + 0.402553i
\(580\) 0 0
\(581\) 16.0636 6.65374i 0.666429 0.276044i
\(582\) 0 0
\(583\) 1.31328 0.0543906
\(584\) 0 0
\(585\) −0.714338 + 1.83816i −0.0295342 + 0.0759986i
\(586\) 0 0
\(587\) −16.8394 + 40.6539i −0.695035 + 1.67796i 0.0393446 + 0.999226i \(0.487473\pi\)
−0.734380 + 0.678738i \(0.762527\pi\)
\(588\) 0 0
\(589\) −11.2578 4.66313i −0.463869 0.192141i
\(590\) 0 0
\(591\) 18.1372 + 7.51266i 0.746064 + 0.309030i
\(592\) 0 0
\(593\) −0.545871 1.31785i −0.0224162 0.0541176i 0.912275 0.409578i \(-0.134324\pi\)
−0.934691 + 0.355460i \(0.884324\pi\)
\(594\) 0 0
\(595\) −18.5317 + 19.3673i −0.759724 + 0.793981i
\(596\) 0 0
\(597\) −4.57988 4.57988i −0.187442 0.187442i
\(598\) 0 0
\(599\) 31.1989 1.27475 0.637376 0.770553i \(-0.280020\pi\)
0.637376 + 0.770553i \(0.280020\pi\)
\(600\) 0 0
\(601\) 15.4848 37.3836i 0.631638 1.52491i −0.205925 0.978568i \(-0.566020\pi\)
0.837563 0.546341i \(-0.183980\pi\)
\(602\) 0 0
\(603\) −4.55432 1.88646i −0.185466 0.0768226i
\(604\) 0 0
\(605\) −19.3438 + 0.426501i −0.786436 + 0.0173397i
\(606\) 0 0
\(607\) 13.1173 0.532416 0.266208 0.963916i \(-0.414229\pi\)
0.266208 + 0.963916i \(0.414229\pi\)
\(608\) 0 0
\(609\) 3.01715 + 1.24974i 0.122261 + 0.0506422i
\(610\) 0 0
\(611\) −3.68738 −0.149175
\(612\) 0 0
\(613\) −41.4090 −1.67249 −0.836246 0.548354i \(-0.815255\pi\)
−0.836246 + 0.548354i \(0.815255\pi\)
\(614\) 0 0
\(615\) −10.1245 + 24.4372i −0.408259 + 0.985404i
\(616\) 0 0
\(617\) 35.6217 1.43407 0.717037 0.697035i \(-0.245498\pi\)
0.717037 + 0.697035i \(0.245498\pi\)
\(618\) 0 0
\(619\) 43.1362 1.73379 0.866896 0.498490i \(-0.166112\pi\)
0.866896 + 0.498490i \(0.166112\pi\)
\(620\) 0 0
\(621\) −24.0793 9.97396i −0.966268 0.400241i
\(622\) 0 0
\(623\) 18.6962 0.749049
\(624\) 0 0
\(625\) −24.9029 + 2.20164i −0.996115 + 0.0880656i
\(626\) 0 0
\(627\) 9.03042 + 3.74052i 0.360640 + 0.149382i
\(628\) 0 0
\(629\) 0.0516070 0.124590i 0.00205770 0.00496774i
\(630\) 0 0
\(631\) −21.0721 −0.838869 −0.419434 0.907786i \(-0.637772\pi\)
−0.419434 + 0.907786i \(0.637772\pi\)
\(632\) 0 0
\(633\) 4.85131 + 4.85131i 0.192822 + 0.192822i
\(634\) 0 0
\(635\) −0.626408 28.4104i −0.0248582 1.12743i
\(636\) 0 0
\(637\) −1.78457 4.30834i −0.0707073 0.170702i
\(638\) 0 0
\(639\) 6.34558 + 2.62842i 0.251027 + 0.103979i
\(640\) 0 0
\(641\) −13.7244 5.68483i −0.542081 0.224537i 0.0948041 0.995496i \(-0.469778\pi\)
−0.636885 + 0.770959i \(0.719778\pi\)
\(642\) 0 0
\(643\) 3.08761 7.45415i 0.121763 0.293963i −0.851231 0.524791i \(-0.824143\pi\)
0.972995 + 0.230828i \(0.0741435\pi\)
\(644\) 0 0
\(645\) −10.6841 + 4.70402i −0.420685 + 0.185220i
\(646\) 0 0
\(647\) −30.7649 −1.20949 −0.604747 0.796418i \(-0.706726\pi\)
−0.604747 + 0.796418i \(0.706726\pi\)
\(648\) 0 0
\(649\) −18.5830 + 7.69733i −0.729447 + 0.302147i
\(650\) 0 0
\(651\) −10.1153 10.1153i −0.396448 0.396448i
\(652\) 0 0
\(653\) −17.3828 + 41.9657i −0.680240 + 1.64225i 0.0833314 + 0.996522i \(0.473444\pi\)
−0.763572 + 0.645723i \(0.776556\pi\)
\(654\) 0 0
\(655\) 20.5804 0.453768i 0.804144 0.0177302i
\(656\) 0 0
\(657\) −3.95282 + 3.95282i −0.154214 + 0.154214i
\(658\) 0 0
\(659\) 13.8053 + 33.3290i 0.537779 + 1.29831i 0.926270 + 0.376861i \(0.122997\pi\)
−0.388491 + 0.921453i \(0.627003\pi\)
\(660\) 0 0
\(661\) −1.38851 + 1.38851i −0.0540066 + 0.0540066i −0.733594 0.679588i \(-0.762159\pi\)
0.679588 + 0.733594i \(0.262159\pi\)
\(662\) 0 0
\(663\) −19.9060 8.24535i −0.773086 0.320223i
\(664\) 0 0
\(665\) 0.373546 + 16.9420i 0.0144855 + 0.656982i
\(666\) 0 0
\(667\) 4.05847 + 1.68107i 0.157145 + 0.0650915i
\(668\) 0 0
\(669\) 1.15570 + 2.79011i 0.0446820 + 0.107872i
\(670\) 0 0
\(671\) 1.41309 3.41150i 0.0545518 0.131700i
\(672\) 0 0
\(673\) −8.80234 21.2507i −0.339305 0.819155i −0.997783 0.0665550i \(-0.978799\pi\)
0.658477 0.752600i \(-0.271201\pi\)
\(674\) 0 0
\(675\) 21.6525 10.1088i 0.833406 0.389087i
\(676\) 0 0
\(677\) 40.5460i 1.55831i −0.626831 0.779155i \(-0.715648\pi\)
0.626831 0.779155i \(-0.284352\pi\)
\(678\) 0 0
\(679\) 34.7925 1.33521
\(680\) 0 0
\(681\) 35.7551i 1.37014i
\(682\) 0 0
\(683\) 6.61730 2.74098i 0.253204 0.104881i −0.252471 0.967604i \(-0.581243\pi\)
0.505675 + 0.862724i \(0.331243\pi\)
\(684\) 0 0
\(685\) 17.3371 + 6.73747i 0.662416 + 0.257425i
\(686\) 0 0
\(687\) −23.2932 23.2932i −0.888691 0.888691i
\(688\) 0 0
\(689\) −1.29411 + 1.29411i −0.0493018 + 0.0493018i
\(690\) 0 0
\(691\) −16.9315 + 40.8763i −0.644105 + 1.55501i 0.176987 + 0.984213i \(0.443365\pi\)
−0.821093 + 0.570795i \(0.806635\pi\)
\(692\) 0 0
\(693\) 0.982039 + 0.982039i 0.0373046 + 0.0373046i
\(694\) 0 0
\(695\) 5.35182 5.59314i 0.203006 0.212160i
\(696\) 0 0
\(697\) −32.0112 14.0970i −1.21251 0.533962i
\(698\) 0 0
\(699\) 14.8217 14.8217i 0.560609 0.560609i
\(700\) 0 0
\(701\) 45.5000i 1.71851i 0.511547 + 0.859255i \(0.329072\pi\)
−0.511547 + 0.859255i \(0.670928\pi\)
\(702\) 0 0
\(703\) −0.0326258 0.0787656i −0.00123050 0.00297070i
\(704\) 0 0
\(705\) −5.15504 4.93262i −0.194150 0.185773i
\(706\) 0 0
\(707\) −2.99648 + 2.99648i −0.112694 + 0.112694i
\(708\) 0 0
\(709\) 33.8133 14.0059i 1.26989 0.526004i 0.356956 0.934121i \(-0.383815\pi\)
0.912929 + 0.408117i \(0.133815\pi\)
\(710\) 0 0
\(711\) −4.02321 1.66647i −0.150882 0.0624975i
\(712\) 0 0
\(713\) −13.6064 13.6064i −0.509564 0.509564i
\(714\) 0 0
\(715\) −5.05643 + 5.28443i −0.189100 + 0.197626i
\(716\) 0 0
\(717\) −44.8752 −1.67590
\(718\) 0 0
\(719\) 6.34398 + 2.62776i 0.236591 + 0.0979991i 0.497829 0.867275i \(-0.334131\pi\)
−0.261238 + 0.965274i \(0.584131\pi\)
\(720\) 0 0
\(721\) −9.87889 + 23.8497i −0.367909 + 0.888211i
\(722\) 0 0
\(723\) −9.33270 22.5311i −0.347087 0.837942i
\(724\) 0 0
\(725\) −3.64945 + 1.70380i −0.135537 + 0.0632775i
\(726\) 0 0
\(727\) 12.6052 30.4317i 0.467502 1.12865i −0.497748 0.867322i \(-0.665840\pi\)
0.965250 0.261328i \(-0.0841604\pi\)
\(728\) 0 0
\(729\) −15.7889 + 15.7889i −0.584773 + 0.584773i
\(730\) 0 0
\(731\) −5.90734 14.2616i −0.218491 0.527483i
\(732\) 0 0
\(733\) 18.6732i 0.689711i 0.938656 + 0.344855i \(0.112072\pi\)
−0.938656 + 0.344855i \(0.887928\pi\)
\(734\) 0 0
\(735\) 3.26840 8.41037i 0.120557 0.310221i
\(736\) 0 0
\(737\) −12.9275 12.9275i −0.476191 0.476191i
\(738\) 0 0
\(739\) 19.1830i 0.705659i 0.935688 + 0.352829i \(0.114780\pi\)
−0.935688 + 0.352829i \(0.885220\pi\)
\(740\) 0 0
\(741\) −12.5845 + 5.21268i −0.462304 + 0.191493i
\(742\) 0 0
\(743\) −33.0297 −1.21174 −0.605871 0.795563i \(-0.707175\pi\)
−0.605871 + 0.795563i \(0.707175\pi\)
\(744\) 0 0
\(745\) −25.6488 + 11.2928i −0.939701 + 0.413734i
\(746\) 0 0
\(747\) 3.27294i 0.119751i
\(748\) 0 0
\(749\) 5.00472 2.07302i 0.182869 0.0757467i
\(750\) 0 0
\(751\) −33.5347 + 13.8905i −1.22370 + 0.506872i −0.898583 0.438803i \(-0.855403\pi\)
−0.325114 + 0.945675i \(0.605403\pi\)
\(752\) 0 0
\(753\) 14.9290 6.18380i 0.544043 0.225350i
\(754\) 0 0
\(755\) 1.46919 3.78057i 0.0534692 0.137589i
\(756\) 0 0
\(757\) −10.3527 + 4.28824i −0.376276 + 0.155859i −0.562803 0.826591i \(-0.690277\pi\)
0.186527 + 0.982450i \(0.440277\pi\)
\(758\) 0 0
\(759\) 10.9143 + 10.9143i 0.396166 + 0.396166i
\(760\) 0 0
\(761\) 19.6909i 0.713796i 0.934143 + 0.356898i \(0.116166\pi\)
−0.934143 + 0.356898i \(0.883834\pi\)
\(762\) 0 0
\(763\) −11.5025 + 11.5025i −0.416419 + 0.416419i
\(764\) 0 0
\(765\) −2.03323 4.61800i −0.0735115 0.166964i
\(766\) 0 0
\(767\) 10.7268 25.8967i 0.387322 0.935077i
\(768\) 0 0
\(769\) 38.1078 1.37420 0.687102 0.726561i \(-0.258883\pi\)
0.687102 + 0.726561i \(0.258883\pi\)
\(770\) 0 0
\(771\) 23.4559 + 23.4559i 0.844743 + 0.844743i
\(772\) 0 0
\(773\) 15.8079 6.54786i 0.568572 0.235510i −0.0798298 0.996809i \(-0.525438\pi\)
0.648402 + 0.761298i \(0.275438\pi\)
\(774\) 0 0
\(775\) 17.6252 0.777596i 0.633115 0.0279321i
\(776\) 0 0
\(777\) 0.100087i 0.00359059i
\(778\) 0 0
\(779\) −20.6118 + 8.00818i −0.738494 + 0.286923i
\(780\) 0 0
\(781\) 18.0120 + 18.0120i 0.644521 + 0.644521i
\(782\) 0 0
\(783\) 2.72217 2.72217i 0.0972823 0.0972823i
\(784\) 0 0
\(785\) −8.45939 19.2135i −0.301929 0.685760i
\(786\) 0 0
\(787\) 29.1395i 1.03871i 0.854559 + 0.519355i \(0.173828\pi\)
−0.854559 + 0.519355i \(0.826172\pi\)
\(788\) 0 0
\(789\) 27.2275i 0.969323i
\(790\) 0 0
\(791\) −13.6292 32.9039i −0.484600 1.16993i
\(792\) 0 0
\(793\) 1.96924 + 4.75418i 0.0699299 + 0.168826i
\(794\) 0 0
\(795\) −3.54034 + 0.0780593i −0.125563 + 0.00276848i
\(796\) 0 0
\(797\) 8.40058 8.40058i 0.297564 0.297564i −0.542495 0.840059i \(-0.682520\pi\)
0.840059 + 0.542495i \(0.182520\pi\)
\(798\) 0 0
\(799\) 6.67124 6.67124i 0.236011 0.236011i
\(800\) 0 0
\(801\) −1.34681 + 3.25148i −0.0475871 + 0.114885i
\(802\) 0 0
\(803\) −19.1540 + 7.93385i −0.675930 + 0.279979i
\(804\) 0 0
\(805\) −9.69325 + 24.9430i −0.341642 + 0.879125i
\(806\) 0 0
\(807\) 30.3460 + 12.5697i 1.06823 + 0.442475i
\(808\) 0 0
\(809\) 3.26868 + 7.89129i 0.114921 + 0.277443i 0.970866 0.239623i \(-0.0770240\pi\)
−0.855945 + 0.517066i \(0.827024\pi\)
\(810\) 0 0
\(811\) −27.3262 27.3262i −0.959553 0.959553i 0.0396598 0.999213i \(-0.487373\pi\)
−0.999213 + 0.0396598i \(0.987373\pi\)
\(812\) 0 0
\(813\) −12.7478 + 30.7759i −0.447085 + 1.07936i
\(814\) 0 0
\(815\) 21.3838 0.471481i 0.749041 0.0165153i
\(816\) 0 0
\(817\) −9.01613 3.73460i −0.315434 0.130657i
\(818\) 0 0
\(819\) −1.93541 −0.0676287
\(820\) 0 0
\(821\) −16.0691 −0.560816 −0.280408 0.959881i \(-0.590470\pi\)
−0.280408 + 0.959881i \(0.590470\pi\)
\(822\) 0 0
\(823\) −23.1536 9.59055i −0.807085 0.334306i −0.0592949 0.998241i \(-0.518885\pi\)
−0.747790 + 0.663935i \(0.768885\pi\)
\(824\) 0 0
\(825\) −14.1380 + 0.623747i −0.492222 + 0.0217161i
\(826\) 0 0
\(827\) 17.4959 42.2388i 0.608391 1.46879i −0.256358 0.966582i \(-0.582523\pi\)
0.864749 0.502204i \(-0.167477\pi\)
\(828\) 0 0
\(829\) 20.0332 + 20.0332i 0.695782 + 0.695782i 0.963498 0.267716i \(-0.0862688\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(830\) 0 0
\(831\) 17.6757 + 42.6728i 0.613162 + 1.48030i
\(832\) 0 0
\(833\) 11.0233 + 4.56602i 0.381936 + 0.158203i
\(834\) 0 0
\(835\) 19.7026 8.67471i 0.681836 0.300201i
\(836\) 0 0
\(837\) −15.5796 + 6.45328i −0.538510 + 0.223058i
\(838\) 0 0
\(839\) −8.16794 + 19.7191i −0.281989 + 0.680781i −0.999882 0.0153726i \(-0.995107\pi\)
0.717893 + 0.696153i \(0.245107\pi\)
\(840\) 0 0
\(841\) 20.0473 20.0473i 0.691286 0.691286i
\(842\) 0 0
\(843\) 27.5046 27.5046i 0.947310 0.947310i
\(844\) 0 0
\(845\) 0.416098 + 18.8719i 0.0143142 + 0.649213i
\(846\) 0 0
\(847\) −7.26664 17.5432i −0.249685 0.602793i
\(848\) 0 0
\(849\) −5.24320 12.6582i −0.179946 0.434428i
\(850\) 0 0
\(851\) 0.134630i 0.00461506i
\(852\) 0 0
\(853\) 41.9999i 1.43805i 0.694985 + 0.719024i \(0.255411\pi\)
−0.694985 + 0.719024i \(0.744589\pi\)
\(854\) 0 0
\(855\) −2.97331 1.15547i −0.101685 0.0395164i
\(856\) 0 0
\(857\) 29.6838 29.6838i 1.01398 1.01398i 0.0140787 0.999901i \(-0.495518\pi\)
0.999901 0.0140787i \(-0.00448153\pi\)
\(858\) 0 0
\(859\) −16.7773 16.7773i −0.572435 0.572435i 0.360373 0.932808i \(-0.382649\pi\)
−0.932808 + 0.360373i \(0.882649\pi\)
\(860\) 0 0
\(861\) −25.9533 0.574292i −0.884486 0.0195718i
\(862\) 0 0
\(863\) 6.88230i 0.234276i −0.993116 0.117138i \(-0.962628\pi\)
0.993116 0.117138i \(-0.0373720\pi\)
\(864\) 0 0
\(865\) 1.03348 + 0.988891i 0.0351394 + 0.0336233i
\(866\) 0 0
\(867\) 21.9157 9.07777i 0.744295 0.308297i
\(868\) 0 0
\(869\) −11.4200 11.4200i −0.387396 0.387396i
\(870\) 0 0
\(871\) 25.4777 0.863277
\(872\) 0 0
\(873\) −2.50632 + 6.05080i −0.0848262 + 0.204788i
\(874\) 0 0
\(875\) −10.8667 21.9974i −0.367360 0.743649i
\(876\) 0 0
\(877\) −9.35790 + 9.35790i −0.315994 + 0.315994i −0.847226 0.531232i \(-0.821729\pi\)
0.531232 + 0.847226i \(0.321729\pi\)
\(878\) 0 0
\(879\) 33.3018i 1.12324i
\(880\) 0 0
\(881\) −1.08279 1.08279i −0.0364803 0.0364803i 0.688631 0.725112i \(-0.258212\pi\)
−0.725112 + 0.688631i \(0.758212\pi\)
\(882\) 0 0
\(883\) 0.562341 0.232929i 0.0189243 0.00783869i −0.373201 0.927750i \(-0.621740\pi\)
0.392125 + 0.919912i \(0.371740\pi\)
\(884\) 0 0
\(885\) 49.6384 21.8550i 1.66858 0.734647i
\(886\) 0 0
\(887\) −42.7964 + 17.7269i −1.43696 + 0.595210i −0.959060 0.283202i \(-0.908603\pi\)
−0.477904 + 0.878412i \(0.658603\pi\)
\(888\) 0 0
\(889\) 25.7660 10.6726i 0.864163 0.357948i
\(890\) 0 0
\(891\) 14.2512 5.90305i 0.477434 0.197760i
\(892\) 0 0
\(893\) 5.96450i 0.199594i
\(894\) 0 0
\(895\) 1.15012 + 2.61224i 0.0384444 + 0.0873174i
\(896\) 0 0
\(897\) −21.5101 −0.718201
\(898\) 0 0
\(899\) 2.62588 1.08768i 0.0875781 0.0362760i
\(900\) 0 0
\(901\) 4.68264i 0.156001i
\(902\) 0 0
\(903\) −8.10111 8.10111i −0.269588 0.269588i
\(904\) 0 0
\(905\) 7.91420 + 17.9753i 0.263077 + 0.597518i
\(906\) 0 0
\(907\) 41.5613i 1.38002i 0.723800 + 0.690009i \(0.242394\pi\)
−0.723800 + 0.690009i \(0.757606\pi\)
\(908\) 0 0
\(909\) −0.305266 0.736976i −0.0101250 0.0244440i
\(910\) 0 0
\(911\) −24.1303 + 24.1303i −0.799472 + 0.799472i −0.983012 0.183540i \(-0.941244\pi\)
0.183540 + 0.983012i \(0.441244\pi\)
\(912\) 0 0
\(913\) −4.64515 + 11.2144i −0.153732 + 0.371142i
\(914\) 0 0
\(915\) −3.60663 + 9.28071i −0.119232 + 0.306811i
\(916\) 0 0
\(917\) 7.73121 + 18.6648i 0.255307 + 0.616366i
\(918\) 0 0
\(919\) −3.34841 + 8.08377i −0.110454 + 0.266659i −0.969435 0.245348i \(-0.921098\pi\)
0.858981 + 0.512007i \(0.171098\pi\)
\(920\) 0 0
\(921\) 6.08670 + 2.52119i 0.200564 + 0.0830762i
\(922\) 0 0
\(923\) −35.4983 −1.16844
\(924\) 0 0
\(925\) 0.0910441 + 0.0833501i 0.00299351 + 0.00274053i
\(926\) 0 0
\(927\) −3.43609 3.43609i −0.112856 0.112856i
\(928\) 0 0
\(929\) −20.2055 8.36941i −0.662922 0.274591i 0.0257455 0.999669i \(-0.491804\pi\)
−0.688668 + 0.725077i \(0.741804\pi\)
\(930\) 0 0
\(931\) 6.96893 2.88662i 0.228397 0.0946053i
\(932\) 0 0
\(933\) 24.7349 24.7349i 0.809783 0.809783i
\(934\) 0 0
\(935\) −0.412501 18.7088i −0.0134902 0.611842i
\(936\) 0 0
\(937\) −20.3564 49.1446i −0.665013 1.60548i −0.789845 0.613306i \(-0.789839\pi\)
0.124832 0.992178i \(-0.460161\pi\)
\(938\) 0 0
\(939\) 14.5416i 0.474546i
\(940\) 0 0
\(941\) −32.0022 + 32.0022i −1.04324 + 1.04324i −0.0442201 + 0.999022i \(0.514080\pi\)
−0.999022 + 0.0442201i \(0.985920\pi\)
\(942\) 0 0
\(943\) −34.9107 0.772500i −1.13685 0.0251561i
\(944\) 0 0
\(945\) 16.9443 + 16.2132i 0.551199 + 0.527417i
\(946\) 0 0
\(947\) −9.41121 9.41121i −0.305823 0.305823i 0.537464 0.843287i \(-0.319383\pi\)
−0.843287 + 0.537464i \(0.819383\pi\)
\(948\) 0 0
\(949\) 11.0564 26.6925i 0.358906 0.866475i
\(950\) 0 0
\(951\) −4.44635 + 4.44635i −0.144183 + 0.144183i
\(952\) 0 0
\(953\) 2.23847 + 2.23847i 0.0725111 + 0.0725111i 0.742432 0.669921i \(-0.233672\pi\)
−0.669921 + 0.742432i \(0.733672\pi\)
\(954\) 0 0
\(955\) 8.89619 3.91684i 0.287874 0.126746i
\(956\) 0 0
\(957\) −2.10635 + 0.872478i −0.0680886 + 0.0282032i
\(958\) 0 0
\(959\) 18.2543i 0.589463i
\(960\) 0 0
\(961\) 18.5500 0.598386
\(962\) 0 0
\(963\) 1.01971i 0.0328597i
\(964\) 0 0
\(965\) −6.68107 15.1745i −0.215071 0.488484i
\(966\) 0 0
\(967\) −20.6775 49.9199i −0.664944 1.60532i −0.789958 0.613161i \(-0.789898\pi\)
0.125014 0.992155i \(-0.460102\pi\)
\(968\) 0 0
\(969\) 13.3372 32.1989i 0.428453 1.03438i
\(970\) 0 0
\(971\) 19.7535 + 47.6892i 0.633921 + 1.53042i 0.834654 + 0.550774i \(0.185667\pi\)
−0.200734 + 0.979646i \(0.564333\pi\)
\(972\) 0 0
\(973\) 7.01888 + 2.90732i 0.225015 + 0.0932043i
\(974\) 0 0
\(975\) 13.3170 14.5463i 0.426485 0.465854i
\(976\) 0 0
\(977\) 41.8857 + 17.3496i 1.34004 + 0.555063i 0.933503 0.358570i \(-0.116736\pi\)
0.406538 + 0.913634i \(0.366736\pi\)
\(978\) 0 0
\(979\) −9.22939 + 9.22939i −0.294972 + 0.294972i
\(980\) 0 0
\(981\) −1.17182 2.82901i −0.0374132 0.0903234i
\(982\) 0 0
\(983\) 36.1887 36.1887i 1.15424 1.15424i 0.168548 0.985693i \(-0.446092\pi\)
0.985693 0.168548i \(-0.0539079\pi\)
\(984\) 0 0
\(985\) −17.1679 16.4272i −0.547014 0.523413i
\(986\) 0 0
\(987\) 2.67959 6.46910i 0.0852923 0.205914i
\(988\) 0 0
\(989\) −10.8971 10.8971i −0.346507 0.346507i
\(990\) 0 0
\(991\) −13.6566 + 5.65675i −0.433816 + 0.179692i −0.588895 0.808210i \(-0.700437\pi\)
0.155079 + 0.987902i \(0.450437\pi\)
\(992\) 0 0
\(993\) 1.57184 0.0498808
\(994\) 0 0
\(995\) 3.15892 + 7.17474i 0.100144 + 0.227454i
\(996\) 0 0
\(997\) −23.7745 + 57.3967i −0.752945 + 1.81777i −0.210699 + 0.977551i \(0.567574\pi\)
−0.542246 + 0.840220i \(0.682426\pi\)
\(998\) 0 0
\(999\) −0.109003 0.0451507i −0.00344871 0.00142850i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.17 84
5.2 odd 4 820.2.y.a.437.17 yes 84
41.38 odd 8 820.2.y.a.653.17 yes 84
205.202 even 8 inner 820.2.x.a.817.17 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.17 84 1.1 even 1 trivial
820.2.x.a.817.17 yes 84 205.202 even 8 inner
820.2.y.a.437.17 yes 84 5.2 odd 4
820.2.y.a.653.17 yes 84 41.38 odd 8