Properties

Label 820.2.x.a.273.10
Level $820$
Weight $2$
Character 820.273
Analytic conductor $6.548$
Analytic rank $0$
Dimension $84$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(273,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 6, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.x (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(84\)
Relative dimension: \(21\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 273.10
Character \(\chi\) \(=\) 820.273
Dual form 820.2.x.a.817.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.637865 - 0.264212i) q^{3} +(-2.14189 - 0.642112i) q^{5} +(0.168176 - 0.406013i) q^{7} +(-1.78426 - 1.78426i) q^{9} +(1.19622 + 2.88794i) q^{11} +(1.79249 + 0.742475i) q^{13} +(1.19658 + 0.975494i) q^{15} +(-4.05499 + 1.67963i) q^{17} +(0.814358 - 1.96603i) q^{19} +(-0.214547 + 0.214547i) q^{21} +(-2.36438 + 2.36438i) q^{23} +(4.17538 + 2.75067i) q^{25} +(1.45933 + 3.52313i) q^{27} +(1.80369 + 4.35449i) q^{29} +5.50299i q^{31} -2.15817i q^{33} +(-0.620921 + 0.761647i) q^{35} +(-0.0126253 + 0.0126253i) q^{37} +(-0.947197 - 0.947197i) q^{39} +(-1.75818 + 6.15701i) q^{41} +4.32764i q^{43} +(2.67599 + 4.96737i) q^{45} +(1.90172 - 0.787719i) q^{47} +(4.81318 + 4.81318i) q^{49} +3.03032 q^{51} +(-5.24054 + 12.6518i) q^{53} +(-0.707799 - 6.95376i) q^{55} +(-1.03890 + 1.03890i) q^{57} -12.1357i q^{59} +(-6.28769 - 6.28769i) q^{61} +(-1.02450 + 0.424362i) q^{63} +(-3.36257 - 2.74128i) q^{65} +(-8.59787 + 3.56135i) q^{67} +(2.13286 - 0.883458i) q^{69} +(-2.16557 + 0.897008i) q^{71} +1.86878i q^{73} +(-1.93657 - 2.85774i) q^{75} +1.37372 q^{77} +(8.05498 - 3.33648i) q^{79} +4.93711i q^{81} +(0.444700 + 0.444700i) q^{83} +(9.76385 - 0.993828i) q^{85} -3.25413i q^{87} +(6.20741 + 14.9860i) q^{89} +(0.602909 - 0.602909i) q^{91} +(1.45396 - 3.51016i) q^{93} +(-3.00668 + 3.68812i) q^{95} +(-2.87104 - 6.93130i) q^{97} +(3.01846 - 7.28720i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 8 q^{9} + 20 q^{15} - 12 q^{17} - 8 q^{21} + 12 q^{27} - 28 q^{29} + 20 q^{35} + 24 q^{37} + 16 q^{39} + 20 q^{45} - 4 q^{47} + 24 q^{49} + 28 q^{53} + 16 q^{55} - 8 q^{57} + 4 q^{61} + 72 q^{63}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.637865 0.264212i −0.368271 0.152543i 0.190870 0.981615i \(-0.438869\pi\)
−0.559141 + 0.829072i \(0.688869\pi\)
\(4\) 0 0
\(5\) −2.14189 0.642112i −0.957882 0.287161i
\(6\) 0 0
\(7\) 0.168176 0.406013i 0.0635646 0.153459i −0.888905 0.458091i \(-0.848534\pi\)
0.952470 + 0.304632i \(0.0985335\pi\)
\(8\) 0 0
\(9\) −1.78426 1.78426i −0.594752 0.594752i
\(10\) 0 0
\(11\) 1.19622 + 2.88794i 0.360675 + 0.870747i 0.995202 + 0.0978456i \(0.0311951\pi\)
−0.634526 + 0.772901i \(0.718805\pi\)
\(12\) 0 0
\(13\) 1.79249 + 0.742475i 0.497148 + 0.205925i 0.617146 0.786849i \(-0.288289\pi\)
−0.119998 + 0.992774i \(0.538289\pi\)
\(14\) 0 0
\(15\) 1.19658 + 0.975494i 0.308956 + 0.251872i
\(16\) 0 0
\(17\) −4.05499 + 1.67963i −0.983479 + 0.407371i −0.815713 0.578456i \(-0.803655\pi\)
−0.167766 + 0.985827i \(0.553655\pi\)
\(18\) 0 0
\(19\) 0.814358 1.96603i 0.186827 0.451039i −0.802519 0.596627i \(-0.796507\pi\)
0.989345 + 0.145588i \(0.0465073\pi\)
\(20\) 0 0
\(21\) −0.214547 + 0.214547i −0.0468181 + 0.0468181i
\(22\) 0 0
\(23\) −2.36438 + 2.36438i −0.493008 + 0.493008i −0.909253 0.416245i \(-0.863346\pi\)
0.416245 + 0.909253i \(0.363346\pi\)
\(24\) 0 0
\(25\) 4.17538 + 2.75067i 0.835077 + 0.550133i
\(26\) 0 0
\(27\) 1.45933 + 3.52313i 0.280848 + 0.678027i
\(28\) 0 0
\(29\) 1.80369 + 4.35449i 0.334937 + 0.808609i 0.998186 + 0.0602099i \(0.0191770\pi\)
−0.663249 + 0.748399i \(0.730823\pi\)
\(30\) 0 0
\(31\) 5.50299i 0.988366i 0.869358 + 0.494183i \(0.164533\pi\)
−0.869358 + 0.494183i \(0.835467\pi\)
\(32\) 0 0
\(33\) 2.15817i 0.375690i
\(34\) 0 0
\(35\) −0.620921 + 0.761647i −0.104955 + 0.128742i
\(36\) 0 0
\(37\) −0.0126253 + 0.0126253i −0.00207559 + 0.00207559i −0.708144 0.706068i \(-0.750467\pi\)
0.706068 + 0.708144i \(0.250467\pi\)
\(38\) 0 0
\(39\) −0.947197 0.947197i −0.151673 0.151673i
\(40\) 0 0
\(41\) −1.75818 + 6.15701i −0.274582 + 0.961564i
\(42\) 0 0
\(43\) 4.32764i 0.659958i 0.943988 + 0.329979i \(0.107042\pi\)
−0.943988 + 0.329979i \(0.892958\pi\)
\(44\) 0 0
\(45\) 2.67599 + 4.96737i 0.398913 + 0.740492i
\(46\) 0 0
\(47\) 1.90172 0.787719i 0.277395 0.114901i −0.239649 0.970860i \(-0.577032\pi\)
0.517044 + 0.855959i \(0.327032\pi\)
\(48\) 0 0
\(49\) 4.81318 + 4.81318i 0.687598 + 0.687598i
\(50\) 0 0
\(51\) 3.03032 0.424329
\(52\) 0 0
\(53\) −5.24054 + 12.6518i −0.719844 + 1.73786i −0.0460470 + 0.998939i \(0.514662\pi\)
−0.673797 + 0.738917i \(0.735338\pi\)
\(54\) 0 0
\(55\) −0.707799 6.95376i −0.0954396 0.937645i
\(56\) 0 0
\(57\) −1.03890 + 1.03890i −0.137606 + 0.137606i
\(58\) 0 0
\(59\) 12.1357i 1.57993i −0.613149 0.789967i \(-0.710098\pi\)
0.613149 0.789967i \(-0.289902\pi\)
\(60\) 0 0
\(61\) −6.28769 6.28769i −0.805057 0.805057i 0.178824 0.983881i \(-0.442771\pi\)
−0.983881 + 0.178824i \(0.942771\pi\)
\(62\) 0 0
\(63\) −1.02450 + 0.424362i −0.129075 + 0.0534646i
\(64\) 0 0
\(65\) −3.36257 2.74128i −0.417075 0.340014i
\(66\) 0 0
\(67\) −8.59787 + 3.56135i −1.05040 + 0.435088i −0.840033 0.542535i \(-0.817465\pi\)
−0.210363 + 0.977623i \(0.567465\pi\)
\(68\) 0 0
\(69\) 2.13286 0.883458i 0.256766 0.106356i
\(70\) 0 0
\(71\) −2.16557 + 0.897008i −0.257006 + 0.106455i −0.507467 0.861671i \(-0.669418\pi\)
0.250461 + 0.968127i \(0.419418\pi\)
\(72\) 0 0
\(73\) 1.86878i 0.218724i 0.994002 + 0.109362i \(0.0348807\pi\)
−0.994002 + 0.109362i \(0.965119\pi\)
\(74\) 0 0
\(75\) −1.93657 2.85774i −0.223616 0.329984i
\(76\) 0 0
\(77\) 1.37372 0.156550
\(78\) 0 0
\(79\) 8.05498 3.33648i 0.906256 0.375384i 0.119634 0.992818i \(-0.461828\pi\)
0.786622 + 0.617434i \(0.211828\pi\)
\(80\) 0 0
\(81\) 4.93711i 0.548567i
\(82\) 0 0
\(83\) 0.444700 + 0.444700i 0.0488122 + 0.0488122i 0.731092 0.682279i \(-0.239011\pi\)
−0.682279 + 0.731092i \(0.739011\pi\)
\(84\) 0 0
\(85\) 9.76385 0.993828i 1.05904 0.107796i
\(86\) 0 0
\(87\) 3.25413i 0.348880i
\(88\) 0 0
\(89\) 6.20741 + 14.9860i 0.657984 + 1.58851i 0.800913 + 0.598781i \(0.204348\pi\)
−0.142929 + 0.989733i \(0.545652\pi\)
\(90\) 0 0
\(91\) 0.602909 0.602909i 0.0632020 0.0632020i
\(92\) 0 0
\(93\) 1.45396 3.51016i 0.150768 0.363987i
\(94\) 0 0
\(95\) −3.00668 + 3.68812i −0.308479 + 0.378393i
\(96\) 0 0
\(97\) −2.87104 6.93130i −0.291510 0.703767i 0.708488 0.705722i \(-0.249377\pi\)
−0.999998 + 0.00195584i \(0.999377\pi\)
\(98\) 0 0
\(99\) 3.01846 7.28720i 0.303366 0.732391i
\(100\) 0 0
\(101\) 15.3944 + 6.37657i 1.53180 + 0.634493i 0.979913 0.199426i \(-0.0639077\pi\)
0.551888 + 0.833918i \(0.313908\pi\)
\(102\) 0 0
\(103\) −10.4872 −1.03334 −0.516669 0.856185i \(-0.672828\pi\)
−0.516669 + 0.856185i \(0.672828\pi\)
\(104\) 0 0
\(105\) 0.597300 0.321773i 0.0582905 0.0314019i
\(106\) 0 0
\(107\) −13.3166 13.3166i −1.28737 1.28737i −0.936380 0.350987i \(-0.885846\pi\)
−0.350987 0.936380i \(-0.614154\pi\)
\(108\) 0 0
\(109\) −3.76907 1.56120i −0.361012 0.149536i 0.194803 0.980842i \(-0.437593\pi\)
−0.555814 + 0.831307i \(0.687593\pi\)
\(110\) 0 0
\(111\) 0.0113890 0.00471749i 0.00108100 0.000447764i
\(112\) 0 0
\(113\) −3.88371 + 3.88371i −0.365348 + 0.365348i −0.865777 0.500429i \(-0.833176\pi\)
0.500429 + 0.865777i \(0.333176\pi\)
\(114\) 0 0
\(115\) 6.58245 3.54605i 0.613816 0.330671i
\(116\) 0 0
\(117\) −1.87350 4.52303i −0.173205 0.418155i
\(118\) 0 0
\(119\) 1.92885i 0.176818i
\(120\) 0 0
\(121\) 0.868928 0.868928i 0.0789934 0.0789934i
\(122\) 0 0
\(123\) 2.74824 3.46281i 0.247800 0.312231i
\(124\) 0 0
\(125\) −7.17698 8.57269i −0.641928 0.766765i
\(126\) 0 0
\(127\) 5.45426 + 5.45426i 0.483987 + 0.483987i 0.906402 0.422415i \(-0.138818\pi\)
−0.422415 + 0.906402i \(0.638818\pi\)
\(128\) 0 0
\(129\) 1.14341 2.76045i 0.100672 0.243044i
\(130\) 0 0
\(131\) 11.6288 11.6288i 1.01601 1.01601i 0.0161437 0.999870i \(-0.494861\pi\)
0.999870 0.0161437i \(-0.00513892\pi\)
\(132\) 0 0
\(133\) −0.661280 0.661280i −0.0573402 0.0573402i
\(134\) 0 0
\(135\) −0.863476 8.48321i −0.0743162 0.730119i
\(136\) 0 0
\(137\) −16.8836 + 6.99342i −1.44246 + 0.597488i −0.960394 0.278644i \(-0.910115\pi\)
−0.482070 + 0.876133i \(0.660115\pi\)
\(138\) 0 0
\(139\) 7.21533i 0.611996i −0.952032 0.305998i \(-0.901010\pi\)
0.952032 0.305998i \(-0.0989901\pi\)
\(140\) 0 0
\(141\) −1.42117 −0.119684
\(142\) 0 0
\(143\) 6.06478i 0.507162i
\(144\) 0 0
\(145\) −1.06723 10.4850i −0.0886288 0.870733i
\(146\) 0 0
\(147\) −1.79846 4.34186i −0.148334 0.358111i
\(148\) 0 0
\(149\) −3.86029 + 9.31957i −0.316248 + 0.763489i 0.683199 + 0.730232i \(0.260588\pi\)
−0.999447 + 0.0332571i \(0.989412\pi\)
\(150\) 0 0
\(151\) −0.734324 1.77282i −0.0597585 0.144270i 0.891180 0.453650i \(-0.149878\pi\)
−0.950938 + 0.309380i \(0.899878\pi\)
\(152\) 0 0
\(153\) 10.2320 + 4.23825i 0.827211 + 0.342642i
\(154\) 0 0
\(155\) 3.53354 11.7868i 0.283820 0.946738i
\(156\) 0 0
\(157\) −7.76327 3.21565i −0.619577 0.256637i 0.0507404 0.998712i \(-0.483842\pi\)
−0.670317 + 0.742075i \(0.733842\pi\)
\(158\) 0 0
\(159\) 6.68551 6.68551i 0.530196 0.530196i
\(160\) 0 0
\(161\) 0.562338 + 1.35760i 0.0443184 + 0.106994i
\(162\) 0 0
\(163\) 13.6495 13.6495i 1.06911 1.06911i 0.0716813 0.997428i \(-0.477164\pi\)
0.997428 0.0716813i \(-0.0228364\pi\)
\(164\) 0 0
\(165\) −1.38579 + 4.62257i −0.107884 + 0.359866i
\(166\) 0 0
\(167\) −5.76385 + 13.9152i −0.446020 + 1.07679i 0.527780 + 0.849381i \(0.323024\pi\)
−0.973800 + 0.227406i \(0.926976\pi\)
\(168\) 0 0
\(169\) −6.53063 6.53063i −0.502356 0.502356i
\(170\) 0 0
\(171\) −4.96093 + 2.05489i −0.379372 + 0.157141i
\(172\) 0 0
\(173\) 4.40027 0.334546 0.167273 0.985911i \(-0.446504\pi\)
0.167273 + 0.985911i \(0.446504\pi\)
\(174\) 0 0
\(175\) 1.81901 1.23266i 0.137504 0.0931806i
\(176\) 0 0
\(177\) −3.20640 + 7.74094i −0.241008 + 0.581845i
\(178\) 0 0
\(179\) −8.17546 3.38639i −0.611063 0.253111i 0.0556200 0.998452i \(-0.482286\pi\)
−0.666683 + 0.745341i \(0.732286\pi\)
\(180\) 0 0
\(181\) 5.91042 + 2.44818i 0.439318 + 0.181972i 0.591369 0.806401i \(-0.298588\pi\)
−0.152051 + 0.988373i \(0.548588\pi\)
\(182\) 0 0
\(183\) 2.34941 + 5.67199i 0.173674 + 0.419285i
\(184\) 0 0
\(185\) 0.0351489 0.0189352i 0.00258420 0.00139214i
\(186\) 0 0
\(187\) −9.70135 9.70135i −0.709433 0.709433i
\(188\) 0 0
\(189\) 1.67586 0.121901
\(190\) 0 0
\(191\) 2.01711 4.86973i 0.145953 0.352361i −0.833949 0.551841i \(-0.813925\pi\)
0.979902 + 0.199480i \(0.0639253\pi\)
\(192\) 0 0
\(193\) 3.59081 + 1.48736i 0.258472 + 0.107063i 0.508157 0.861265i \(-0.330327\pi\)
−0.249685 + 0.968327i \(0.580327\pi\)
\(194\) 0 0
\(195\) 1.42059 + 2.63700i 0.101730 + 0.188839i
\(196\) 0 0
\(197\) −11.1945 −0.797574 −0.398787 0.917044i \(-0.630569\pi\)
−0.398787 + 0.917044i \(0.630569\pi\)
\(198\) 0 0
\(199\) −6.45683 2.67451i −0.457712 0.189591i 0.141900 0.989881i \(-0.454679\pi\)
−0.599613 + 0.800290i \(0.704679\pi\)
\(200\) 0 0
\(201\) 6.42523 0.453201
\(202\) 0 0
\(203\) 2.07132 0.145378
\(204\) 0 0
\(205\) 7.71932 12.0587i 0.539141 0.842216i
\(206\) 0 0
\(207\) 8.43733 0.586435
\(208\) 0 0
\(209\) 6.65194 0.460125
\(210\) 0 0
\(211\) 9.37099 + 3.88159i 0.645126 + 0.267220i 0.681164 0.732131i \(-0.261474\pi\)
−0.0360387 + 0.999350i \(0.511474\pi\)
\(212\) 0 0
\(213\) 1.61834 0.110887
\(214\) 0 0
\(215\) 2.77883 9.26932i 0.189514 0.632162i
\(216\) 0 0
\(217\) 2.23429 + 0.925471i 0.151673 + 0.0628251i
\(218\) 0 0
\(219\) 0.493754 1.19203i 0.0333648 0.0805497i
\(220\) 0 0
\(221\) −8.51562 −0.572823
\(222\) 0 0
\(223\) 9.85576 + 9.85576i 0.659990 + 0.659990i 0.955378 0.295387i \(-0.0954487\pi\)
−0.295387 + 0.955378i \(0.595449\pi\)
\(224\) 0 0
\(225\) −2.54206 12.3579i −0.169471 0.823857i
\(226\) 0 0
\(227\) −10.0400 24.2388i −0.666381 1.60878i −0.787620 0.616162i \(-0.788687\pi\)
0.121239 0.992623i \(-0.461313\pi\)
\(228\) 0 0
\(229\) 15.5003 + 6.42042i 1.02429 + 0.424273i 0.830647 0.556800i \(-0.187971\pi\)
0.193639 + 0.981073i \(0.437971\pi\)
\(230\) 0 0
\(231\) −0.876246 0.362953i −0.0576528 0.0238806i
\(232\) 0 0
\(233\) −7.28855 + 17.5961i −0.477489 + 1.15276i 0.483294 + 0.875458i \(0.339440\pi\)
−0.960783 + 0.277302i \(0.910560\pi\)
\(234\) 0 0
\(235\) −4.57908 + 0.466089i −0.298707 + 0.0304043i
\(236\) 0 0
\(237\) −6.01953 −0.391011
\(238\) 0 0
\(239\) −9.63251 + 3.98992i −0.623075 + 0.258086i −0.671808 0.740726i \(-0.734482\pi\)
0.0487323 + 0.998812i \(0.484482\pi\)
\(240\) 0 0
\(241\) −2.63706 2.63706i −0.169868 0.169868i 0.617053 0.786921i \(-0.288326\pi\)
−0.786921 + 0.617053i \(0.788326\pi\)
\(242\) 0 0
\(243\) 5.68243 13.7186i 0.364528 0.880049i
\(244\) 0 0
\(245\) −7.21871 13.3999i −0.461186 0.856089i
\(246\) 0 0
\(247\) 2.91946 2.91946i 0.185761 0.185761i
\(248\) 0 0
\(249\) −0.166163 0.401154i −0.0105302 0.0254221i
\(250\) 0 0
\(251\) 1.35640 1.35640i 0.0856154 0.0856154i −0.663002 0.748618i \(-0.730718\pi\)
0.748618 + 0.663002i \(0.230718\pi\)
\(252\) 0 0
\(253\) −9.65653 3.99987i −0.607101 0.251469i
\(254\) 0 0
\(255\) −6.49060 1.94580i −0.406457 0.121851i
\(256\) 0 0
\(257\) 8.53709 + 3.53618i 0.532529 + 0.220581i 0.632710 0.774388i \(-0.281942\pi\)
−0.100181 + 0.994969i \(0.531942\pi\)
\(258\) 0 0
\(259\) 0.00300277 + 0.00724933i 0.000186583 + 0.000450451i
\(260\) 0 0
\(261\) 4.55128 10.9878i 0.281717 0.680126i
\(262\) 0 0
\(263\) 5.96221 + 14.3940i 0.367646 + 0.887575i 0.994135 + 0.108145i \(0.0344911\pi\)
−0.626490 + 0.779430i \(0.715509\pi\)
\(264\) 0 0
\(265\) 19.3485 23.7337i 1.18857 1.45795i
\(266\) 0 0
\(267\) 11.1991i 0.685375i
\(268\) 0 0
\(269\) −16.3914 −0.999402 −0.499701 0.866198i \(-0.666557\pi\)
−0.499701 + 0.866198i \(0.666557\pi\)
\(270\) 0 0
\(271\) 22.3878i 1.35996i 0.733231 + 0.679980i \(0.238011\pi\)
−0.733231 + 0.679980i \(0.761989\pi\)
\(272\) 0 0
\(273\) −0.543870 + 0.225278i −0.0329165 + 0.0136345i
\(274\) 0 0
\(275\) −2.94907 + 15.3487i −0.177835 + 0.925560i
\(276\) 0 0
\(277\) 0.0892857 + 0.0892857i 0.00536466 + 0.00536466i 0.709784 0.704419i \(-0.248793\pi\)
−0.704419 + 0.709784i \(0.748793\pi\)
\(278\) 0 0
\(279\) 9.81875 9.81875i 0.587833 0.587833i
\(280\) 0 0
\(281\) 5.03535 12.1564i 0.300384 0.725190i −0.699560 0.714574i \(-0.746621\pi\)
0.999944 0.0106163i \(-0.00337934\pi\)
\(282\) 0 0
\(283\) −8.89353 8.89353i −0.528665 0.528665i 0.391509 0.920174i \(-0.371953\pi\)
−0.920174 + 0.391509i \(0.871953\pi\)
\(284\) 0 0
\(285\) 2.89230 1.55812i 0.171325 0.0922951i
\(286\) 0 0
\(287\) 2.20414 + 1.74931i 0.130106 + 0.103258i
\(288\) 0 0
\(289\) 1.60096 1.60096i 0.0941743 0.0941743i
\(290\) 0 0
\(291\) 5.17979i 0.303645i
\(292\) 0 0
\(293\) −1.88308 4.54615i −0.110010 0.265589i 0.859281 0.511504i \(-0.170911\pi\)
−0.969291 + 0.245915i \(0.920911\pi\)
\(294\) 0 0
\(295\) −7.79248 + 25.9933i −0.453696 + 1.51339i
\(296\) 0 0
\(297\) −8.42891 + 8.42891i −0.489095 + 0.489095i
\(298\) 0 0
\(299\) −5.99363 + 2.48264i −0.346621 + 0.143575i
\(300\) 0 0
\(301\) 1.75708 + 0.727805i 0.101276 + 0.0419500i
\(302\) 0 0
\(303\) −8.13478 8.13478i −0.467331 0.467331i
\(304\) 0 0
\(305\) 9.43014 + 17.5050i 0.539968 + 1.00233i
\(306\) 0 0
\(307\) −22.5322 −1.28598 −0.642991 0.765874i \(-0.722307\pi\)
−0.642991 + 0.765874i \(0.722307\pi\)
\(308\) 0 0
\(309\) 6.68944 + 2.77086i 0.380549 + 0.157629i
\(310\) 0 0
\(311\) −8.07417 + 19.4928i −0.457844 + 1.10533i 0.511424 + 0.859328i \(0.329118\pi\)
−0.969268 + 0.246006i \(0.920882\pi\)
\(312\) 0 0
\(313\) −2.54574 6.14596i −0.143894 0.347390i 0.835458 0.549554i \(-0.185202\pi\)
−0.979352 + 0.202164i \(0.935202\pi\)
\(314\) 0 0
\(315\) 2.46686 0.251093i 0.138992 0.0141475i
\(316\) 0 0
\(317\) −2.88993 + 6.97690i −0.162314 + 0.391862i −0.984022 0.178048i \(-0.943022\pi\)
0.821707 + 0.569910i \(0.193022\pi\)
\(318\) 0 0
\(319\) −10.4179 + 10.4179i −0.583290 + 0.583290i
\(320\) 0 0
\(321\) 4.97579 + 12.0126i 0.277722 + 0.670480i
\(322\) 0 0
\(323\) 9.34007i 0.519695i
\(324\) 0 0
\(325\) 5.44204 + 8.03067i 0.301870 + 0.445461i
\(326\) 0 0
\(327\) 1.99167 + 1.99167i 0.110140 + 0.110140i
\(328\) 0 0
\(329\) 0.904600i 0.0498722i
\(330\) 0 0
\(331\) −0.507515 + 0.210220i −0.0278956 + 0.0115547i −0.396588 0.917997i \(-0.629806\pi\)
0.368692 + 0.929552i \(0.379806\pi\)
\(332\) 0 0
\(333\) 0.0450537 0.00246893
\(334\) 0 0
\(335\) 20.7025 2.10723i 1.13110 0.115130i
\(336\) 0 0
\(337\) 10.5990i 0.577363i 0.957425 + 0.288682i \(0.0932169\pi\)
−0.957425 + 0.288682i \(0.906783\pi\)
\(338\) 0 0
\(339\) 3.50340 1.45116i 0.190279 0.0788160i
\(340\) 0 0
\(341\) −15.8923 + 6.58281i −0.860617 + 0.356479i
\(342\) 0 0
\(343\) 5.60577 2.32199i 0.302683 0.125375i
\(344\) 0 0
\(345\) −5.13562 + 0.522737i −0.276493 + 0.0281432i
\(346\) 0 0
\(347\) 27.6044 11.4341i 1.48188 0.613815i 0.512348 0.858778i \(-0.328776\pi\)
0.969533 + 0.244962i \(0.0787756\pi\)
\(348\) 0 0
\(349\) 3.21380 + 3.21380i 0.172031 + 0.172031i 0.787871 0.615840i \(-0.211183\pi\)
−0.615840 + 0.787871i \(0.711183\pi\)
\(350\) 0 0
\(351\) 7.39870i 0.394914i
\(352\) 0 0
\(353\) 5.60431 5.60431i 0.298287 0.298287i −0.542055 0.840343i \(-0.682354\pi\)
0.840343 + 0.542055i \(0.182354\pi\)
\(354\) 0 0
\(355\) 5.21439 0.530755i 0.276751 0.0281695i
\(356\) 0 0
\(357\) 0.509627 1.23035i 0.0269723 0.0651169i
\(358\) 0 0
\(359\) 2.83601 0.149679 0.0748394 0.997196i \(-0.476156\pi\)
0.0748394 + 0.997196i \(0.476156\pi\)
\(360\) 0 0
\(361\) 10.2329 + 10.2329i 0.538575 + 0.538575i
\(362\) 0 0
\(363\) −0.783840 + 0.324677i −0.0411409 + 0.0170411i
\(364\) 0 0
\(365\) 1.19996 4.00271i 0.0628090 0.209512i
\(366\) 0 0
\(367\) 24.2208i 1.26432i 0.774840 + 0.632158i \(0.217831\pi\)
−0.774840 + 0.632158i \(0.782169\pi\)
\(368\) 0 0
\(369\) 14.1227 7.84865i 0.735200 0.408584i
\(370\) 0 0
\(371\) 4.25546 + 4.25546i 0.220932 + 0.220932i
\(372\) 0 0
\(373\) −22.1572 + 22.1572i −1.14725 + 1.14725i −0.160164 + 0.987090i \(0.551202\pi\)
−0.987090 + 0.160164i \(0.948798\pi\)
\(374\) 0 0
\(375\) 2.31293 + 7.36446i 0.119439 + 0.380299i
\(376\) 0 0
\(377\) 9.14459i 0.470970i
\(378\) 0 0
\(379\) 3.00889i 0.154556i 0.997010 + 0.0772781i \(0.0246229\pi\)
−0.997010 + 0.0772781i \(0.975377\pi\)
\(380\) 0 0
\(381\) −2.03800 4.92016i −0.104410 0.252068i
\(382\) 0 0
\(383\) −0.317298 0.766025i −0.0162132 0.0391421i 0.915566 0.402169i \(-0.131743\pi\)
−0.931779 + 0.363027i \(0.881743\pi\)
\(384\) 0 0
\(385\) −2.94235 0.882081i −0.149956 0.0449550i
\(386\) 0 0
\(387\) 7.72161 7.72161i 0.392512 0.392512i
\(388\) 0 0
\(389\) −7.05525 + 7.05525i −0.357715 + 0.357715i −0.862970 0.505255i \(-0.831399\pi\)
0.505255 + 0.862970i \(0.331399\pi\)
\(390\) 0 0
\(391\) 5.61626 13.5588i 0.284026 0.685700i
\(392\) 0 0
\(393\) −10.4901 + 4.34513i −0.529155 + 0.219183i
\(394\) 0 0
\(395\) −19.3953 + 1.97418i −0.975882 + 0.0993316i
\(396\) 0 0
\(397\) 11.1319 + 4.61100i 0.558696 + 0.231419i 0.644119 0.764925i \(-0.277224\pi\)
−0.0854231 + 0.996345i \(0.527224\pi\)
\(398\) 0 0
\(399\) 0.247089 + 0.596526i 0.0123699 + 0.0298636i
\(400\) 0 0
\(401\) −1.65326 1.65326i −0.0825598 0.0825598i 0.664621 0.747181i \(-0.268593\pi\)
−0.747181 + 0.664621i \(0.768593\pi\)
\(402\) 0 0
\(403\) −4.08583 + 9.86407i −0.203530 + 0.491364i
\(404\) 0 0
\(405\) 3.17018 10.5747i 0.157527 0.525463i
\(406\) 0 0
\(407\) −0.0515639 0.0213585i −0.00255593 0.00105870i
\(408\) 0 0
\(409\) 13.0459 0.645080 0.322540 0.946556i \(-0.395463\pi\)
0.322540 + 0.946556i \(0.395463\pi\)
\(410\) 0 0
\(411\) 12.6172 0.622361
\(412\) 0 0
\(413\) −4.92725 2.04094i −0.242454 0.100428i
\(414\) 0 0
\(415\) −0.666951 1.23805i −0.0327393 0.0607733i
\(416\) 0 0
\(417\) −1.90638 + 4.60240i −0.0933558 + 0.225381i
\(418\) 0 0
\(419\) 0.0309078 + 0.0309078i 0.00150994 + 0.00150994i 0.707861 0.706351i \(-0.249660\pi\)
−0.706351 + 0.707861i \(0.749660\pi\)
\(420\) 0 0
\(421\) 14.9057 + 35.9856i 0.726460 + 1.75383i 0.654045 + 0.756456i \(0.273071\pi\)
0.0724158 + 0.997375i \(0.476929\pi\)
\(422\) 0 0
\(423\) −4.79865 1.98767i −0.233319 0.0966437i
\(424\) 0 0
\(425\) −21.5512 4.14082i −1.04539 0.200859i
\(426\) 0 0
\(427\) −3.61033 + 1.49545i −0.174716 + 0.0723697i
\(428\) 0 0
\(429\) 1.60239 3.86851i 0.0773641 0.186773i
\(430\) 0 0
\(431\) −17.7613 + 17.7613i −0.855532 + 0.855532i −0.990808 0.135276i \(-0.956808\pi\)
0.135276 + 0.990808i \(0.456808\pi\)
\(432\) 0 0
\(433\) −3.58110 + 3.58110i −0.172097 + 0.172097i −0.787900 0.615803i \(-0.788832\pi\)
0.615803 + 0.787900i \(0.288832\pi\)
\(434\) 0 0
\(435\) −2.08952 + 6.97000i −0.100185 + 0.334186i
\(436\) 0 0
\(437\) 2.72300 + 6.57391i 0.130259 + 0.314473i
\(438\) 0 0
\(439\) −6.16436 14.8821i −0.294209 0.710283i −0.999998 0.00186116i \(-0.999408\pi\)
0.705790 0.708422i \(-0.250592\pi\)
\(440\) 0 0
\(441\) 17.1759i 0.817901i
\(442\) 0 0
\(443\) 36.4638i 1.73245i 0.499658 + 0.866223i \(0.333459\pi\)
−0.499658 + 0.866223i \(0.666541\pi\)
\(444\) 0 0
\(445\) −3.67289 36.0842i −0.174112 1.71056i
\(446\) 0 0
\(447\) 4.92469 4.92469i 0.232930 0.232930i
\(448\) 0 0
\(449\) 0.594882 + 0.594882i 0.0280742 + 0.0280742i 0.721005 0.692930i \(-0.243681\pi\)
−0.692930 + 0.721005i \(0.743681\pi\)
\(450\) 0 0
\(451\) −19.8843 + 2.28765i −0.936313 + 0.107721i
\(452\) 0 0
\(453\) 1.32483i 0.0622461i
\(454\) 0 0
\(455\) −1.67850 + 0.904229i −0.0786893 + 0.0423909i
\(456\) 0 0
\(457\) −9.62088 + 3.98510i −0.450046 + 0.186415i −0.596182 0.802849i \(-0.703316\pi\)
0.146136 + 0.989265i \(0.453316\pi\)
\(458\) 0 0
\(459\) −11.8351 11.8351i −0.552417 0.552417i
\(460\) 0 0
\(461\) −21.2047 −0.987602 −0.493801 0.869575i \(-0.664393\pi\)
−0.493801 + 0.869575i \(0.664393\pi\)
\(462\) 0 0
\(463\) 5.00277 12.0777i 0.232498 0.561301i −0.763972 0.645250i \(-0.776753\pi\)
0.996470 + 0.0839492i \(0.0267533\pi\)
\(464\) 0 0
\(465\) −5.36814 + 6.58478i −0.248941 + 0.305362i
\(466\) 0 0
\(467\) −3.78983 + 3.78983i −0.175372 + 0.175372i −0.789335 0.613963i \(-0.789575\pi\)
0.613963 + 0.789335i \(0.289575\pi\)
\(468\) 0 0
\(469\) 4.08978i 0.188848i
\(470\) 0 0
\(471\) 4.10230 + 4.10230i 0.189024 + 0.189024i
\(472\) 0 0
\(473\) −12.4980 + 5.17682i −0.574657 + 0.238031i
\(474\) 0 0
\(475\) 8.80816 5.96892i 0.404146 0.273873i
\(476\) 0 0
\(477\) 31.9245 13.2236i 1.46172 0.605465i
\(478\) 0 0
\(479\) −6.53738 + 2.70787i −0.298700 + 0.123726i −0.527000 0.849865i \(-0.676683\pi\)
0.228300 + 0.973591i \(0.426683\pi\)
\(480\) 0 0
\(481\) −0.0320048 + 0.0132568i −0.00145929 + 0.000604459i
\(482\) 0 0
\(483\) 1.01454i 0.0461633i
\(484\) 0 0
\(485\) 1.69878 + 16.6896i 0.0771374 + 0.757836i
\(486\) 0 0
\(487\) 41.5271 1.88177 0.940887 0.338720i \(-0.109994\pi\)
0.940887 + 0.338720i \(0.109994\pi\)
\(488\) 0 0
\(489\) −12.3129 + 5.10016i −0.556807 + 0.230637i
\(490\) 0 0
\(491\) 17.5416i 0.791639i −0.918328 0.395820i \(-0.870461\pi\)
0.918328 0.395820i \(-0.129539\pi\)
\(492\) 0 0
\(493\) −14.6279 14.6279i −0.658807 0.658807i
\(494\) 0 0
\(495\) −11.1444 + 13.6702i −0.500903 + 0.614429i
\(496\) 0 0
\(497\) 1.03010i 0.0462065i
\(498\) 0 0
\(499\) 4.83152 + 11.6643i 0.216288 + 0.522166i 0.994366 0.106002i \(-0.0338050\pi\)
−0.778078 + 0.628168i \(0.783805\pi\)
\(500\) 0 0
\(501\) 7.35311 7.35311i 0.328513 0.328513i
\(502\) 0 0
\(503\) 3.19128 7.70444i 0.142292 0.343524i −0.836627 0.547774i \(-0.815475\pi\)
0.978919 + 0.204250i \(0.0654755\pi\)
\(504\) 0 0
\(505\) −28.8787 23.5429i −1.28508 1.04764i
\(506\) 0 0
\(507\) 2.44019 + 5.89113i 0.108372 + 0.261634i
\(508\) 0 0
\(509\) 11.9012 28.7322i 0.527514 1.27353i −0.405634 0.914036i \(-0.632949\pi\)
0.933147 0.359495i \(-0.117051\pi\)
\(510\) 0 0
\(511\) 0.758747 + 0.314283i 0.0335650 + 0.0139031i
\(512\) 0 0
\(513\) 8.11502 0.358287
\(514\) 0 0
\(515\) 22.4625 + 6.73398i 0.989816 + 0.296735i
\(516\) 0 0
\(517\) 4.54977 + 4.54977i 0.200099 + 0.200099i
\(518\) 0 0
\(519\) −2.80678 1.16261i −0.123204 0.0510327i
\(520\) 0 0
\(521\) 11.7454 4.86512i 0.514577 0.213145i −0.110256 0.993903i \(-0.535167\pi\)
0.624833 + 0.780759i \(0.285167\pi\)
\(522\) 0 0
\(523\) 28.5810 28.5810i 1.24976 1.24976i 0.293933 0.955826i \(-0.405036\pi\)
0.955826 0.293933i \(-0.0949643\pi\)
\(524\) 0 0
\(525\) −1.48597 + 0.305669i −0.0648528 + 0.0133405i
\(526\) 0 0
\(527\) −9.24300 22.3146i −0.402631 0.972038i
\(528\) 0 0
\(529\) 11.8194i 0.513886i
\(530\) 0 0
\(531\) −21.6532 + 21.6532i −0.939669 + 0.939669i
\(532\) 0 0
\(533\) −7.72295 + 9.73100i −0.334518 + 0.421496i
\(534\) 0 0
\(535\) 19.9720 + 37.0735i 0.863464 + 1.60283i
\(536\) 0 0
\(537\) 4.32012 + 4.32012i 0.186427 + 0.186427i
\(538\) 0 0
\(539\) −8.14254 + 19.6578i −0.350724 + 0.846723i
\(540\) 0 0
\(541\) 9.24860 9.24860i 0.397629 0.397629i −0.479767 0.877396i \(-0.659279\pi\)
0.877396 + 0.479767i \(0.159279\pi\)
\(542\) 0 0
\(543\) −3.12321 3.12321i −0.134030 0.134030i
\(544\) 0 0
\(545\) 7.07047 + 5.76409i 0.302866 + 0.246906i
\(546\) 0 0
\(547\) −36.9122 + 15.2895i −1.57825 + 0.653734i −0.988136 0.153584i \(-0.950918\pi\)
−0.590117 + 0.807318i \(0.700918\pi\)
\(548\) 0 0
\(549\) 22.4377i 0.957619i
\(550\) 0 0
\(551\) 10.0299 0.427289
\(552\) 0 0
\(553\) 3.83154i 0.162934i
\(554\) 0 0
\(555\) −0.0274232 + 0.00279131i −0.00116405 + 0.000118485i
\(556\) 0 0
\(557\) −6.09753 14.7207i −0.258361 0.623738i 0.740470 0.672090i \(-0.234603\pi\)
−0.998830 + 0.0483517i \(0.984603\pi\)
\(558\) 0 0
\(559\) −3.21316 + 7.75726i −0.135902 + 0.328097i
\(560\) 0 0
\(561\) 3.62494 + 8.75137i 0.153045 + 0.369483i
\(562\) 0 0
\(563\) 35.0595 + 14.5221i 1.47758 + 0.612034i 0.968573 0.248729i \(-0.0800128\pi\)
0.509007 + 0.860763i \(0.330013\pi\)
\(564\) 0 0
\(565\) 10.8122 5.82469i 0.454874 0.245047i
\(566\) 0 0
\(567\) 2.00453 + 0.830303i 0.0841823 + 0.0348695i
\(568\) 0 0
\(569\) 7.55847 7.55847i 0.316868 0.316868i −0.530695 0.847563i \(-0.678069\pi\)
0.847563 + 0.530695i \(0.178069\pi\)
\(570\) 0 0
\(571\) −2.05414 4.95914i −0.0859633 0.207534i 0.875052 0.484029i \(-0.160827\pi\)
−0.961015 + 0.276495i \(0.910827\pi\)
\(572\) 0 0
\(573\) −2.57329 + 2.57329i −0.107501 + 0.107501i
\(574\) 0 0
\(575\) −16.3758 + 3.36858i −0.682920 + 0.140479i
\(576\) 0 0
\(577\) 2.18694 5.27973i 0.0910433 0.219798i −0.871798 0.489865i \(-0.837046\pi\)
0.962841 + 0.270067i \(0.0870459\pi\)
\(578\) 0 0
\(579\) −1.89747 1.89747i −0.0788562 0.0788562i
\(580\) 0 0
\(581\) 0.255342 0.105766i 0.0105934 0.00438792i
\(582\) 0 0
\(583\) −42.8065 −1.77286
\(584\) 0 0
\(585\) 1.10854 + 10.8908i 0.0458325 + 0.450281i
\(586\) 0 0
\(587\) −14.7454 + 35.5986i −0.608610 + 1.46931i 0.255903 + 0.966702i \(0.417627\pi\)
−0.864513 + 0.502611i \(0.832373\pi\)
\(588\) 0 0
\(589\) 10.8191 + 4.48140i 0.445792 + 0.184653i
\(590\) 0 0
\(591\) 7.14057 + 2.95772i 0.293724 + 0.121664i
\(592\) 0 0
\(593\) 5.23223 + 12.6317i 0.214862 + 0.518723i 0.994158 0.107933i \(-0.0344232\pi\)
−0.779296 + 0.626656i \(0.784423\pi\)
\(594\) 0 0
\(595\) 1.23854 4.13139i 0.0507752 0.169370i
\(596\) 0 0
\(597\) 3.41195 + 3.41195i 0.139642 + 0.139642i
\(598\) 0 0
\(599\) −26.5128 −1.08328 −0.541641 0.840610i \(-0.682197\pi\)
−0.541641 + 0.840610i \(0.682197\pi\)
\(600\) 0 0
\(601\) 12.8800 31.0950i 0.525385 1.26839i −0.409133 0.912475i \(-0.634169\pi\)
0.934518 0.355917i \(-0.115831\pi\)
\(602\) 0 0
\(603\) 21.6952 + 8.98643i 0.883496 + 0.365956i
\(604\) 0 0
\(605\) −2.41910 + 1.30320i −0.0983502 + 0.0529825i
\(606\) 0 0
\(607\) 38.8891 1.57846 0.789230 0.614098i \(-0.210480\pi\)
0.789230 + 0.614098i \(0.210480\pi\)
\(608\) 0 0
\(609\) −1.32122 0.547268i −0.0535386 0.0221764i
\(610\) 0 0
\(611\) 3.99368 0.161567
\(612\) 0 0
\(613\) −3.57635 −0.144447 −0.0722237 0.997388i \(-0.523010\pi\)
−0.0722237 + 0.997388i \(0.523010\pi\)
\(614\) 0 0
\(615\) −8.10994 + 5.65228i −0.327024 + 0.227922i
\(616\) 0 0
\(617\) 12.2844 0.494551 0.247276 0.968945i \(-0.420465\pi\)
0.247276 + 0.968945i \(0.420465\pi\)
\(618\) 0 0
\(619\) 27.7804 1.11659 0.558295 0.829642i \(-0.311456\pi\)
0.558295 + 0.829642i \(0.311456\pi\)
\(620\) 0 0
\(621\) −11.7804 4.87962i −0.472733 0.195812i
\(622\) 0 0
\(623\) 7.12845 0.285595
\(624\) 0 0
\(625\) 9.86766 + 22.9702i 0.394707 + 0.918807i
\(626\) 0 0
\(627\) −4.24304 1.75753i −0.169451 0.0701888i
\(628\) 0 0
\(629\) 0.0299897 0.0724015i 0.00119577 0.00288684i
\(630\) 0 0
\(631\) −38.8717 −1.54746 −0.773728 0.633518i \(-0.781610\pi\)
−0.773728 + 0.633518i \(0.781610\pi\)
\(632\) 0 0
\(633\) −4.95186 4.95186i −0.196819 0.196819i
\(634\) 0 0
\(635\) −8.18018 15.1847i −0.324620 0.602585i
\(636\) 0 0
\(637\) 5.05393 + 12.2013i 0.200244 + 0.483432i
\(638\) 0 0
\(639\) 5.46443 + 2.26344i 0.216169 + 0.0895403i
\(640\) 0 0
\(641\) −33.0923 13.7073i −1.30707 0.541404i −0.383039 0.923732i \(-0.625123\pi\)
−0.924027 + 0.382328i \(0.875123\pi\)
\(642\) 0 0
\(643\) 10.3797 25.0588i 0.409335 0.988221i −0.575979 0.817465i \(-0.695379\pi\)
0.985313 0.170757i \(-0.0546212\pi\)
\(644\) 0 0
\(645\) −4.22159 + 5.17837i −0.166225 + 0.203898i
\(646\) 0 0
\(647\) −23.6754 −0.930775 −0.465388 0.885107i \(-0.654085\pi\)
−0.465388 + 0.885107i \(0.654085\pi\)
\(648\) 0 0
\(649\) 35.0472 14.5170i 1.37572 0.569843i
\(650\) 0 0
\(651\) −1.18065 1.18065i −0.0462734 0.0462734i
\(652\) 0 0
\(653\) 7.32319 17.6797i 0.286579 0.691862i −0.713382 0.700776i \(-0.752837\pi\)
0.999960 + 0.00891373i \(0.00283736\pi\)
\(654\) 0 0
\(655\) −32.3746 + 17.4406i −1.26498 + 0.681462i
\(656\) 0 0
\(657\) 3.33438 3.33438i 0.130086 0.130086i
\(658\) 0 0
\(659\) −12.2728 29.6293i −0.478082 1.15419i −0.960507 0.278255i \(-0.910244\pi\)
0.482425 0.875937i \(-0.339756\pi\)
\(660\) 0 0
\(661\) 11.0238 11.0238i 0.428775 0.428775i −0.459436 0.888211i \(-0.651948\pi\)
0.888211 + 0.459436i \(0.151948\pi\)
\(662\) 0 0
\(663\) 5.43182 + 2.24993i 0.210954 + 0.0873801i
\(664\) 0 0
\(665\) 0.991773 + 1.84100i 0.0384593 + 0.0713911i
\(666\) 0 0
\(667\) −14.5603 6.03107i −0.563777 0.233524i
\(668\) 0 0
\(669\) −3.68263 8.89065i −0.142379 0.343733i
\(670\) 0 0
\(671\) 10.6370 25.6800i 0.410637 0.991365i
\(672\) 0 0
\(673\) −17.0648 41.1981i −0.657800 1.58807i −0.801195 0.598404i \(-0.795802\pi\)
0.143395 0.989666i \(-0.454198\pi\)
\(674\) 0 0
\(675\) −3.59770 + 18.7246i −0.138476 + 0.720709i
\(676\) 0 0
\(677\) 29.5570i 1.13597i 0.823040 + 0.567983i \(0.192276\pi\)
−0.823040 + 0.567983i \(0.807724\pi\)
\(678\) 0 0
\(679\) −3.29704 −0.126529
\(680\) 0 0
\(681\) 18.1138i 0.694121i
\(682\) 0 0
\(683\) 29.1178 12.0610i 1.11416 0.461502i 0.251794 0.967781i \(-0.418980\pi\)
0.862370 + 0.506279i \(0.168980\pi\)
\(684\) 0 0
\(685\) 40.6534 4.13797i 1.55329 0.158104i
\(686\) 0 0
\(687\) −8.19072 8.19072i −0.312495 0.312495i
\(688\) 0 0
\(689\) −18.7873 + 18.7873i −0.715738 + 0.715738i
\(690\) 0 0
\(691\) 17.0029 41.0486i 0.646820 1.56156i −0.170488 0.985360i \(-0.554534\pi\)
0.817308 0.576201i \(-0.195466\pi\)
\(692\) 0 0
\(693\) −2.45107 2.45107i −0.0931083 0.0931083i
\(694\) 0 0
\(695\) −4.63305 + 15.4544i −0.175742 + 0.586220i
\(696\) 0 0
\(697\) −3.21211 27.9197i −0.121667 1.05753i
\(698\) 0 0
\(699\) 9.29822 9.29822i 0.351691 0.351691i
\(700\) 0 0
\(701\) 15.0696i 0.569169i 0.958651 + 0.284585i \(0.0918557\pi\)
−0.958651 + 0.284585i \(0.908144\pi\)
\(702\) 0 0
\(703\) 0.0145403 + 0.0351034i 0.000548398 + 0.00132395i
\(704\) 0 0
\(705\) 3.04398 + 0.912549i 0.114643 + 0.0343686i
\(706\) 0 0
\(707\) 5.17794 5.17794i 0.194737 0.194737i
\(708\) 0 0
\(709\) −28.9790 + 12.0035i −1.08833 + 0.450800i −0.853424 0.521218i \(-0.825478\pi\)
−0.234905 + 0.972018i \(0.575478\pi\)
\(710\) 0 0
\(711\) −20.3253 8.41901i −0.762258 0.315738i
\(712\) 0 0
\(713\) −13.0112 13.0112i −0.487272 0.487272i
\(714\) 0 0
\(715\) 3.89427 12.9901i 0.145637 0.485802i
\(716\) 0 0
\(717\) 7.19843 0.268830
\(718\) 0 0
\(719\) −2.22581 0.921963i −0.0830089 0.0343834i 0.340793 0.940138i \(-0.389305\pi\)
−0.423802 + 0.905755i \(0.639305\pi\)
\(720\) 0 0
\(721\) −1.76370 + 4.25795i −0.0656837 + 0.158574i
\(722\) 0 0
\(723\) 0.985343 + 2.37883i 0.0366453 + 0.0884696i
\(724\) 0 0
\(725\) −4.44666 + 23.1430i −0.165145 + 0.859510i
\(726\) 0 0
\(727\) 4.80468 11.5995i 0.178196 0.430203i −0.809392 0.587268i \(-0.800203\pi\)
0.987588 + 0.157066i \(0.0502034\pi\)
\(728\) 0 0
\(729\) 3.22393 3.22393i 0.119405 0.119405i
\(730\) 0 0
\(731\) −7.26884 17.5485i −0.268848 0.649055i
\(732\) 0 0
\(733\) 18.4110i 0.680025i −0.940421 0.340012i \(-0.889569\pi\)
0.940421 0.340012i \(-0.110431\pi\)
\(734\) 0 0
\(735\) 1.06414 + 10.4546i 0.0392513 + 0.385624i
\(736\) 0 0
\(737\) −20.5699 20.5699i −0.757704 0.757704i
\(738\) 0 0
\(739\) 22.9210i 0.843161i 0.906791 + 0.421580i \(0.138524\pi\)
−0.906791 + 0.421580i \(0.861476\pi\)
\(740\) 0 0
\(741\) −2.63358 + 1.09086i −0.0967470 + 0.0400739i
\(742\) 0 0
\(743\) 45.6996 1.67656 0.838279 0.545242i \(-0.183562\pi\)
0.838279 + 0.545242i \(0.183562\pi\)
\(744\) 0 0
\(745\) 14.2525 17.4828i 0.522172 0.640519i
\(746\) 0 0
\(747\) 1.58692i 0.0580623i
\(748\) 0 0
\(749\) −7.64626 + 3.16719i −0.279388 + 0.115726i
\(750\) 0 0
\(751\) 22.3986 9.27781i 0.817337 0.338552i 0.0654600 0.997855i \(-0.479149\pi\)
0.751877 + 0.659303i \(0.229149\pi\)
\(752\) 0 0
\(753\) −1.22358 + 0.506824i −0.0445898 + 0.0184697i
\(754\) 0 0
\(755\) 0.434495 + 4.26869i 0.0158129 + 0.155354i
\(756\) 0 0
\(757\) 15.7922 6.54132i 0.573976 0.237748i −0.0767642 0.997049i \(-0.524459\pi\)
0.650740 + 0.759301i \(0.274459\pi\)
\(758\) 0 0
\(759\) 5.10275 + 5.10275i 0.185218 + 0.185218i
\(760\) 0 0
\(761\) 3.59028i 0.130148i 0.997880 + 0.0650739i \(0.0207283\pi\)
−0.997880 + 0.0650739i \(0.979272\pi\)
\(762\) 0 0
\(763\) −1.26774 + 1.26774i −0.0458951 + 0.0458951i
\(764\) 0 0
\(765\) −19.1945 15.6480i −0.693977 0.565754i
\(766\) 0 0
\(767\) 9.01045 21.7532i 0.325349 0.785461i
\(768\) 0 0
\(769\) −21.9885 −0.792925 −0.396463 0.918051i \(-0.629762\pi\)
−0.396463 + 0.918051i \(0.629762\pi\)
\(770\) 0 0
\(771\) −4.51121 4.51121i −0.162467 0.162467i
\(772\) 0 0
\(773\) 27.5281 11.4025i 0.990117 0.410120i 0.171953 0.985105i \(-0.444992\pi\)
0.818164 + 0.574985i \(0.194992\pi\)
\(774\) 0 0
\(775\) −15.1369 + 22.9771i −0.543733 + 0.825362i
\(776\) 0 0
\(777\) 0.00541746i 0.000194350i
\(778\) 0 0
\(779\) 10.6731 + 8.47065i 0.382404 + 0.303493i
\(780\) 0 0
\(781\) −5.18101 5.18101i −0.185391 0.185391i
\(782\) 0 0
\(783\) −12.7093 + 12.7093i −0.454192 + 0.454192i
\(784\) 0 0
\(785\) 14.5633 + 11.8725i 0.519785 + 0.423746i
\(786\) 0 0
\(787\) 29.7477i 1.06039i −0.847875 0.530196i \(-0.822118\pi\)
0.847875 0.530196i \(-0.177882\pi\)
\(788\) 0 0
\(789\) 10.7567i 0.382950i
\(790\) 0 0
\(791\) 0.923688 + 2.22998i 0.0328426 + 0.0792890i
\(792\) 0 0
\(793\) −6.60219 15.9391i −0.234451 0.566014i
\(794\) 0 0
\(795\) −18.6125 + 10.0268i −0.660117 + 0.355613i
\(796\) 0 0
\(797\) 31.5824 31.5824i 1.11870 1.11870i 0.126773 0.991932i \(-0.459538\pi\)
0.991932 0.126773i \(-0.0404621\pi\)
\(798\) 0 0
\(799\) −6.38839 + 6.38839i −0.226005 + 0.226005i
\(800\) 0 0
\(801\) 15.6633 37.8145i 0.553435 1.33611i
\(802\) 0 0
\(803\) −5.39691 + 2.23547i −0.190453 + 0.0788882i
\(804\) 0 0
\(805\) −0.332732 3.26892i −0.0117273 0.115214i
\(806\) 0 0
\(807\) 10.4555 + 4.33081i 0.368051 + 0.152452i
\(808\) 0 0
\(809\) −4.74737 11.4612i −0.166909 0.402953i 0.818189 0.574950i \(-0.194978\pi\)
−0.985098 + 0.171996i \(0.944978\pi\)
\(810\) 0 0
\(811\) −28.9469 28.9469i −1.01646 1.01646i −0.999862 0.0165993i \(-0.994716\pi\)
−0.0165993 0.999862i \(-0.505284\pi\)
\(812\) 0 0
\(813\) 5.91512 14.2804i 0.207452 0.500834i
\(814\) 0 0
\(815\) −38.0001 + 20.4712i −1.33109 + 0.717074i
\(816\) 0 0
\(817\) 8.50828 + 3.52425i 0.297667 + 0.123298i
\(818\) 0 0
\(819\) −2.15149 −0.0751791
\(820\) 0 0
\(821\) 9.91600 0.346071 0.173035 0.984916i \(-0.444642\pi\)
0.173035 + 0.984916i \(0.444642\pi\)
\(822\) 0 0
\(823\) −14.9048 6.17377i −0.519549 0.215204i 0.107470 0.994208i \(-0.465725\pi\)
−0.627019 + 0.779004i \(0.715725\pi\)
\(824\) 0 0
\(825\) 5.93641 9.01120i 0.206679 0.313730i
\(826\) 0 0
\(827\) 12.3321 29.7724i 0.428831 1.03529i −0.550828 0.834619i \(-0.685688\pi\)
0.979659 0.200670i \(-0.0643120\pi\)
\(828\) 0 0
\(829\) 4.97528 + 4.97528i 0.172799 + 0.172799i 0.788208 0.615409i \(-0.211009\pi\)
−0.615409 + 0.788208i \(0.711009\pi\)
\(830\) 0 0
\(831\) −0.0333618 0.0805426i −0.00115731 0.00279399i
\(832\) 0 0
\(833\) −27.6018 11.4330i −0.956345 0.396131i
\(834\) 0 0
\(835\) 21.2806 26.1037i 0.736446 0.903356i
\(836\) 0 0
\(837\) −19.3878 + 8.03067i −0.670139 + 0.277581i
\(838\) 0 0
\(839\) 11.4347 27.6057i 0.394768 0.953055i −0.594117 0.804378i \(-0.702499\pi\)
0.988886 0.148677i \(-0.0475014\pi\)
\(840\) 0 0
\(841\) 4.79780 4.79780i 0.165441 0.165441i
\(842\) 0 0
\(843\) −6.42374 + 6.42374i −0.221245 + 0.221245i
\(844\) 0 0
\(845\) 9.79449 + 18.1813i 0.336941 + 0.625455i
\(846\) 0 0
\(847\) −0.206663 0.498929i −0.00710103 0.0171434i
\(848\) 0 0
\(849\) 3.32309 + 8.02265i 0.114048 + 0.275337i
\(850\) 0 0
\(851\) 0.0597022i 0.00204657i
\(852\) 0 0
\(853\) 17.7973i 0.609369i −0.952453 0.304684i \(-0.901449\pi\)
0.952453 0.304684i \(-0.0985510\pi\)
\(854\) 0 0
\(855\) 11.9452 1.21586i 0.408519 0.0415817i
\(856\) 0 0
\(857\) 21.7356 21.7356i 0.742475 0.742475i −0.230579 0.973054i \(-0.574062\pi\)
0.973054 + 0.230579i \(0.0740619\pi\)
\(858\) 0 0
\(859\) 4.82290 + 4.82290i 0.164555 + 0.164555i 0.784581 0.620026i \(-0.212878\pi\)
−0.620026 + 0.784581i \(0.712878\pi\)
\(860\) 0 0
\(861\) −0.943758 1.69818i −0.0321632 0.0578739i
\(862\) 0 0
\(863\) 26.8228i 0.913057i 0.889709 + 0.456529i \(0.150907\pi\)
−0.889709 + 0.456529i \(0.849093\pi\)
\(864\) 0 0
\(865\) −9.42490 2.82547i −0.320456 0.0960688i
\(866\) 0 0
\(867\) −1.44419 + 0.598204i −0.0490473 + 0.0203161i
\(868\) 0 0
\(869\) 19.2711 + 19.2711i 0.653728 + 0.653728i
\(870\) 0 0
\(871\) −18.0558 −0.611798
\(872\) 0 0
\(873\) −7.24455 + 17.4899i −0.245191 + 0.591943i
\(874\) 0 0
\(875\) −4.68762 + 1.47222i −0.158470 + 0.0497703i
\(876\) 0 0
\(877\) −20.0017 + 20.0017i −0.675411 + 0.675411i −0.958958 0.283547i \(-0.908489\pi\)
0.283547 + 0.958958i \(0.408489\pi\)
\(878\) 0 0
\(879\) 3.39736i 0.114590i
\(880\) 0 0
\(881\) −36.1967 36.1967i −1.21950 1.21950i −0.967808 0.251690i \(-0.919014\pi\)
−0.251690 0.967808i \(-0.580986\pi\)
\(882\) 0 0
\(883\) 25.5553 10.5854i 0.860005 0.356226i 0.0912957 0.995824i \(-0.470899\pi\)
0.768710 + 0.639598i \(0.220899\pi\)
\(884\) 0 0
\(885\) 11.8383 14.5214i 0.397940 0.488131i
\(886\) 0 0
\(887\) 22.2352 9.21013i 0.746585 0.309246i 0.0232379 0.999730i \(-0.492602\pi\)
0.723348 + 0.690484i \(0.242602\pi\)
\(888\) 0 0
\(889\) 3.13178 1.29722i 0.105036 0.0435075i
\(890\) 0 0
\(891\) −14.2581 + 5.90588i −0.477663 + 0.197855i
\(892\) 0 0
\(893\) 4.38034i 0.146582i
\(894\) 0 0
\(895\) 15.3365 + 12.5028i 0.512643 + 0.417924i
\(896\) 0 0
\(897\) 4.47907 0.149552
\(898\) 0 0
\(899\) −23.9627 + 9.92568i −0.799201 + 0.331040i
\(900\) 0 0
\(901\) 60.1050i 2.00239i
\(902\) 0 0
\(903\) −0.928483 0.928483i −0.0308980 0.0308980i
\(904\) 0 0
\(905\) −11.0875 9.03888i −0.368560 0.300462i
\(906\) 0 0
\(907\) 20.7839i 0.690116i 0.938581 + 0.345058i \(0.112141\pi\)
−0.938581 + 0.345058i \(0.887859\pi\)
\(908\) 0 0
\(909\) −16.0901 38.8450i −0.533676 1.28841i
\(910\) 0 0
\(911\) −15.3593 + 15.3593i −0.508878 + 0.508878i −0.914182 0.405304i \(-0.867166\pi\)
0.405304 + 0.914182i \(0.367166\pi\)
\(912\) 0 0
\(913\) −0.752306 + 1.81623i −0.0248977 + 0.0601084i
\(914\) 0 0
\(915\) −1.39013 13.6574i −0.0459564 0.451498i
\(916\) 0 0
\(917\) −2.76576 6.67713i −0.0913334 0.220498i
\(918\) 0 0
\(919\) −18.4524 + 44.5479i −0.608687 + 1.46950i 0.255742 + 0.966745i \(0.417680\pi\)
−0.864429 + 0.502755i \(0.832320\pi\)
\(920\) 0 0
\(921\) 14.3725 + 5.95329i 0.473590 + 0.196168i
\(922\) 0 0
\(923\) −4.54777 −0.149692
\(924\) 0 0
\(925\) −0.0874437 + 0.0179875i −0.00287513 + 0.000591426i
\(926\) 0 0
\(927\) 18.7119 + 18.7119i 0.614580 + 0.614580i
\(928\) 0 0
\(929\) −7.47775 3.09738i −0.245337 0.101622i 0.256627 0.966511i \(-0.417389\pi\)
−0.501964 + 0.864889i \(0.667389\pi\)
\(930\) 0 0
\(931\) 13.3825 5.54323i 0.438595 0.181672i
\(932\) 0 0
\(933\) 10.3005 10.3005i 0.337222 0.337222i
\(934\) 0 0
\(935\) 14.5499 + 27.0086i 0.475832 + 0.883275i
\(936\) 0 0
\(937\) −0.843767 2.03703i −0.0275647 0.0665470i 0.909498 0.415709i \(-0.136466\pi\)
−0.937062 + 0.349162i \(0.886466\pi\)
\(938\) 0 0
\(939\) 4.59290i 0.149884i
\(940\) 0 0
\(941\) −34.7556 + 34.7556i −1.13300 + 1.13300i −0.143325 + 0.989676i \(0.545779\pi\)
−0.989676 + 0.143325i \(0.954221\pi\)
\(942\) 0 0
\(943\) −10.4005 18.7145i −0.338688 0.609430i
\(944\) 0 0
\(945\) −3.58951 1.07609i −0.116767 0.0350052i
\(946\) 0 0
\(947\) 11.1861 + 11.1861i 0.363498 + 0.363498i 0.865099 0.501601i \(-0.167255\pi\)
−0.501601 + 0.865099i \(0.667255\pi\)
\(948\) 0 0
\(949\) −1.38752 + 3.34977i −0.0450408 + 0.108738i
\(950\) 0 0
\(951\) 3.68677 3.68677i 0.119552 0.119552i
\(952\) 0 0
\(953\) −33.1071 33.1071i −1.07244 1.07244i −0.997162 0.0752810i \(-0.976015\pi\)
−0.0752810 0.997162i \(-0.523985\pi\)
\(954\) 0 0
\(955\) −7.44734 + 9.13522i −0.240990 + 0.295609i
\(956\) 0 0
\(957\) 9.39774 3.89267i 0.303786 0.125832i
\(958\) 0 0
\(959\) 8.03109i 0.259338i
\(960\) 0 0
\(961\) 0.717106 0.0231325
\(962\) 0 0
\(963\) 47.5206i 1.53133i
\(964\) 0 0
\(965\) −6.73606 5.49146i −0.216841 0.176777i
\(966\) 0 0
\(967\) 5.26445 + 12.7095i 0.169293 + 0.408710i 0.985642 0.168849i \(-0.0540051\pi\)
−0.816349 + 0.577560i \(0.804005\pi\)
\(968\) 0 0
\(969\) 2.46776 5.95770i 0.0792759 0.191389i
\(970\) 0 0
\(971\) −14.6957 35.4785i −0.471606 1.13856i −0.963453 0.267877i \(-0.913678\pi\)
0.491847 0.870682i \(-0.336322\pi\)
\(972\) 0 0
\(973\) −2.92952 1.21345i −0.0939160 0.0389013i
\(974\) 0 0
\(975\) −1.34949 6.56034i −0.0432182 0.210099i
\(976\) 0 0
\(977\) 27.3693 + 11.3367i 0.875621 + 0.362694i 0.774797 0.632210i \(-0.217852\pi\)
0.100824 + 0.994904i \(0.467852\pi\)
\(978\) 0 0
\(979\) −35.8532 + 35.8532i −1.14587 + 1.14587i
\(980\) 0 0
\(981\) 3.93941 + 9.51057i 0.125776 + 0.303649i
\(982\) 0 0
\(983\) 30.3986 30.3986i 0.969564 0.969564i −0.0299866 0.999550i \(-0.509546\pi\)
0.999550 + 0.0299866i \(0.00954648\pi\)
\(984\) 0 0
\(985\) 23.9774 + 7.18812i 0.763982 + 0.229032i
\(986\) 0 0
\(987\) −0.239006 + 0.577012i −0.00760766 + 0.0183665i
\(988\) 0 0
\(989\) −10.2322 10.2322i −0.325365 0.325365i
\(990\) 0 0
\(991\) −14.6254 + 6.05805i −0.464592 + 0.192440i −0.602685 0.797979i \(-0.705903\pi\)
0.138093 + 0.990419i \(0.455903\pi\)
\(992\) 0 0
\(993\) 0.379269 0.0120357
\(994\) 0 0
\(995\) 12.1125 + 9.87450i 0.383991 + 0.313043i
\(996\) 0 0
\(997\) −19.3818 + 46.7917i −0.613826 + 1.48191i 0.244939 + 0.969538i \(0.421232\pi\)
−0.858765 + 0.512369i \(0.828768\pi\)
\(998\) 0 0
\(999\) −0.0629052 0.0260562i −0.00199023 0.000824382i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.x.a.273.10 84
5.2 odd 4 820.2.y.a.437.10 yes 84
41.38 odd 8 820.2.y.a.653.10 yes 84
205.202 even 8 inner 820.2.x.a.817.10 yes 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.x.a.273.10 84 1.1 even 1 trivial
820.2.x.a.817.10 yes 84 205.202 even 8 inner
820.2.y.a.437.10 yes 84 5.2 odd 4
820.2.y.a.653.10 yes 84 41.38 odd 8