Properties

Label 820.2.w.b.79.1
Level $820$
Weight $2$
Character 820.79
Analytic conductor $6.548$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(79,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 4, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{8}]$

Embedding invariants

Embedding label 79.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 820.79
Dual form 820.2.w.b.519.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(-2.12132 - 0.707107i) q^{5} +(-2.00000 + 2.00000i) q^{8} +(-2.12132 - 2.12132i) q^{9} +(-1.41421 - 2.82843i) q^{10} +(-2.70711 + 6.53553i) q^{13} -4.00000 q^{16} +(-3.12132 - 7.53553i) q^{17} -4.24264i q^{18} +(1.41421 - 4.24264i) q^{20} +(4.00000 + 3.00000i) q^{25} +(-9.24264 + 3.82843i) q^{26} +(-9.94975 - 4.12132i) q^{29} +(-4.00000 - 4.00000i) q^{32} +(4.41421 - 10.6569i) q^{34} +(4.24264 - 4.24264i) q^{36} +7.07107i q^{37} +(5.65685 - 2.82843i) q^{40} +(-5.00000 + 4.00000i) q^{41} +(3.00000 + 6.00000i) q^{45} +(-4.94975 - 4.94975i) q^{49} +(1.00000 + 7.00000i) q^{50} +(-13.0711 - 5.41421i) q^{52} +(13.3640 + 5.53553i) q^{53} +(-5.82843 - 14.0711i) q^{58} +(1.00000 - 1.00000i) q^{61} -8.00000i q^{64} +(10.3640 - 11.9497i) q^{65} +(15.0711 - 6.24264i) q^{68} +8.48528 q^{72} +(4.24264 + 4.24264i) q^{73} +(-7.07107 + 7.07107i) q^{74} +(8.48528 + 2.82843i) q^{80} +9.00000i q^{81} +(-9.00000 - 1.00000i) q^{82} +(1.29289 + 18.1924i) q^{85} +(10.1213 + 4.19239i) q^{89} +(-3.00000 + 9.00000i) q^{90} +(-12.5355 + 5.19239i) q^{97} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 8 q^{13} - 16 q^{16} - 4 q^{17} + 16 q^{25} - 20 q^{26} - 20 q^{29} - 16 q^{32} + 12 q^{34} - 20 q^{41} + 12 q^{45} + 4 q^{50} - 24 q^{52} + 28 q^{53} - 12 q^{58} + 4 q^{61} + 16 q^{65}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −2.12132 0.707107i −0.948683 0.316228i
\(6\) 0 0
\(7\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −2.12132 2.12132i −0.707107 0.707107i
\(10\) −1.41421 2.82843i −0.447214 0.894427i
\(11\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(12\) 0 0
\(13\) −2.70711 + 6.53553i −0.750816 + 1.81263i −0.196116 + 0.980581i \(0.562833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.12132 7.53553i −0.757031 1.82764i −0.514496 0.857493i \(-0.672021\pi\)
−0.242536 0.970143i \(-0.577979\pi\)
\(18\) 4.24264i 1.00000i
\(19\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(20\) 1.41421 4.24264i 0.316228 0.948683i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 4.00000 + 3.00000i 0.800000 + 0.600000i
\(26\) −9.24264 + 3.82843i −1.81263 + 0.750816i
\(27\) 0 0
\(28\) 0 0
\(29\) −9.94975 4.12132i −1.84762 0.765310i −0.928477 0.371391i \(-0.878881\pi\)
−0.919145 0.393919i \(-0.871119\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 4.41421 10.6569i 0.757031 1.82764i
\(35\) 0 0
\(36\) 4.24264 4.24264i 0.707107 0.707107i
\(37\) 7.07107i 1.16248i 0.813733 + 0.581238i \(0.197432\pi\)
−0.813733 + 0.581238i \(0.802568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 5.65685 2.82843i 0.894427 0.447214i
\(41\) −5.00000 + 4.00000i −0.780869 + 0.624695i
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 3.00000 + 6.00000i 0.447214 + 0.894427i
\(46\) 0 0
\(47\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(48\) 0 0
\(49\) −4.94975 4.94975i −0.707107 0.707107i
\(50\) 1.00000 + 7.00000i 0.141421 + 0.989949i
\(51\) 0 0
\(52\) −13.0711 5.41421i −1.81263 0.750816i
\(53\) 13.3640 + 5.53553i 1.83568 + 0.760364i 0.961524 + 0.274721i \(0.0885855\pi\)
0.874157 + 0.485643i \(0.161414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −5.82843 14.0711i −0.765310 1.84762i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 10.3640 11.9497i 1.28549 1.48218i
\(66\) 0 0
\(67\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(68\) 15.0711 6.24264i 1.82764 0.757031i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(72\) 8.48528 1.00000
\(73\) 4.24264 + 4.24264i 0.496564 + 0.496564i 0.910366 0.413803i \(-0.135800\pi\)
−0.413803 + 0.910366i \(0.635800\pi\)
\(74\) −7.07107 + 7.07107i −0.821995 + 0.821995i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(80\) 8.48528 + 2.82843i 0.948683 + 0.316228i
\(81\) 9.00000i 1.00000i
\(82\) −9.00000 1.00000i −0.993884 0.110432i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 1.29289 + 18.1924i 0.140234 + 1.97324i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.1213 + 4.19239i 1.07286 + 0.444392i 0.847998 0.529999i \(-0.177808\pi\)
0.224860 + 0.974391i \(0.427808\pi\)
\(90\) −3.00000 + 9.00000i −0.316228 + 0.948683i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −12.5355 + 5.19239i −1.27279 + 0.527207i −0.913812 0.406138i \(-0.866875\pi\)
−0.358979 + 0.933346i \(0.616875\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −6.00000 + 8.00000i −0.600000 + 0.800000i
\(101\) −17.7782 + 7.36396i −1.76899 + 0.732742i −0.773957 + 0.633238i \(0.781726\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) −7.65685 18.4853i −0.750816 1.81263i
\(105\) 0 0
\(106\) 7.82843 + 18.8995i 0.760364 + 1.83568i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 5.05025 + 12.1924i 0.483726 + 1.16782i 0.957826 + 0.287348i \(0.0927736\pi\)
−0.474100 + 0.880471i \(0.657226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.41421 0.133038 0.0665190 0.997785i \(-0.478811\pi\)
0.0665190 + 0.997785i \(0.478811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 8.24264 19.8995i 0.765310 1.84762i
\(117\) 19.6066 8.12132i 1.81263 0.750816i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.77817 7.77817i −0.707107 0.707107i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 0 0
\(125\) −6.36396 9.19239i −0.569210 0.822192i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) 22.3137 1.58579i 1.95704 0.139083i
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 21.3137 + 8.82843i 1.82764 + 0.757031i
\(137\) 0.393398 + 0.949747i 0.0336103 + 0.0811424i 0.939793 0.341743i \(-0.111017\pi\)
−0.906183 + 0.422885i \(0.861017\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 8.48528 + 8.48528i 0.707107 + 0.707107i
\(145\) 18.1924 + 15.7782i 1.51080 + 1.31031i
\(146\) 8.48528i 0.702247i
\(147\) 0 0
\(148\) −14.1421 −1.16248
\(149\) 19.0208 7.87868i 1.55825 0.645447i 0.573462 0.819232i \(-0.305600\pi\)
0.984784 + 0.173785i \(0.0555999\pi\)
\(150\) 0 0
\(151\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(152\) 0 0
\(153\) −9.36396 + 22.6066i −0.757031 + 1.82764i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0208 7.46447i −1.43822 0.595729i −0.478852 0.877896i \(-0.658947\pi\)
−0.959366 + 0.282166i \(0.908947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 5.65685 + 11.3137i 0.447214 + 0.894427i
\(161\) 0 0
\(162\) −9.00000 + 9.00000i −0.707107 + 0.707107i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −8.00000 10.0000i −0.624695 0.780869i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(168\) 0 0
\(169\) −26.1924 26.1924i −2.01480 2.01480i
\(170\) −16.8995 + 19.4853i −1.29613 + 1.49445i
\(171\) 0 0
\(172\) 0 0
\(173\) −11.0000 + 11.0000i −0.836315 + 0.836315i −0.988372 0.152057i \(-0.951410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 5.92893 + 14.3137i 0.444392 + 1.07286i
\(179\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(180\) −12.0000 + 6.00000i −0.894427 + 0.447214i
\(181\) 22.4350 9.29289i 1.66758 0.690735i 0.668965 0.743294i \(-0.266738\pi\)
0.998618 + 0.0525588i \(0.0167377\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.00000 15.0000i 0.367607 1.10282i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(192\) 0 0
\(193\) −8.46447 + 20.4350i −0.609286 + 1.47095i 0.254493 + 0.967075i \(0.418091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) −17.7279 7.34315i −1.27279 0.527207i
\(195\) 0 0
\(196\) 9.89949 9.89949i 0.707107 0.707107i
\(197\) 15.0000 + 15.0000i 1.06871 + 1.06871i 0.997459 + 0.0712470i \(0.0226979\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(200\) −14.0000 + 2.00000i −0.989949 + 0.141421i
\(201\) 0 0
\(202\) −25.1421 10.4142i −1.76899 0.732742i
\(203\) 0 0
\(204\) 0 0
\(205\) 13.4350 4.94975i 0.938343 0.345705i
\(206\) 0 0
\(207\) 0 0
\(208\) 10.8284 26.1421i 0.750816 1.81263i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(212\) −11.0711 + 26.7279i −0.760364 + 1.83568i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −7.14214 + 17.2426i −0.483726 + 1.16782i
\(219\) 0 0
\(220\) 0 0
\(221\) 57.6985 3.88122
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −2.12132 14.8492i −0.141421 0.989949i
\(226\) 1.41421 + 1.41421i 0.0940721 + 0.0940721i
\(227\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(228\) 0 0
\(229\) −10.0208 24.1924i −0.662194 1.59868i −0.794358 0.607450i \(-0.792192\pi\)
0.132164 0.991228i \(-0.457808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 28.1421 11.6569i 1.84762 0.765310i
\(233\) −16.5355 6.84924i −1.08328 0.448709i −0.231621 0.972806i \(-0.574403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 27.7279 + 11.4853i 1.81263 + 0.750816i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(240\) 0 0
\(241\) −11.0000 + 11.0000i −0.708572 + 0.708572i −0.966235 0.257663i \(-0.917048\pi\)
0.257663 + 0.966235i \(0.417048\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 0 0
\(244\) 2.00000 + 2.00000i 0.128037 + 0.128037i
\(245\) 7.00000 + 14.0000i 0.447214 + 0.894427i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 2.82843 15.5563i 0.178885 0.983870i
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −28.0208 11.6066i −1.74789 0.724000i −0.998053 0.0623783i \(-0.980131\pi\)
−0.749838 0.661622i \(-0.769869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 23.8995 + 20.7279i 1.48218 + 1.28549i
\(261\) 12.3640 + 29.8492i 0.765310 + 1.84762i
\(262\) 0 0
\(263\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(264\) 0 0
\(265\) −24.4350 21.1924i −1.50103 1.30184i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.0000i 1.58525i −0.609711 0.792624i \(-0.708714\pi\)
0.609711 0.792624i \(-0.291286\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 12.4853 + 30.1421i 0.757031 + 1.82764i
\(273\) 0 0
\(274\) −0.556349 + 1.34315i −0.0336103 + 0.0811424i
\(275\) 0 0
\(276\) 0 0
\(277\) 7.07107 0.424859 0.212430 0.977176i \(-0.431862\pi\)
0.212430 + 0.977176i \(0.431862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −9.84924 23.7782i −0.587557 1.41849i −0.885832 0.464007i \(-0.846411\pi\)
0.298275 0.954480i \(-0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.9706i 1.00000i
\(289\) −35.0208 + 35.0208i −2.06005 + 2.06005i
\(290\) 2.41421 + 33.9706i 0.141768 + 1.99482i
\(291\) 0 0
\(292\) −8.48528 + 8.48528i −0.496564 + 0.496564i
\(293\) −3.56497 8.60660i −0.208268 0.502803i 0.784883 0.619644i \(-0.212723\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −14.1421 14.1421i −0.821995 0.821995i
\(297\) 0 0
\(298\) 26.8995 + 11.1421i 1.55825 + 0.645447i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.82843 + 1.41421i −0.161955 + 0.0809776i
\(306\) −31.9706 + 13.2426i −1.82764 + 0.757031i
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(312\) 0 0
\(313\) 5.67767 + 13.7071i 0.320921 + 0.774771i 0.999201 + 0.0399680i \(0.0127256\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) −10.5563 25.4853i −0.595729 1.43822i
\(315\) 0 0
\(316\) 0 0
\(317\) −3.67767 + 8.87868i −0.206558 + 0.498676i −0.992877 0.119145i \(-0.961985\pi\)
0.786318 + 0.617822i \(0.211985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −5.65685 + 16.9706i −0.316228 + 0.948683i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −18.0000 −1.00000
\(325\) −30.4350 + 18.0208i −1.68823 + 0.999615i
\(326\) 0 0
\(327\) 0 0
\(328\) 2.00000 18.0000i 0.110432 0.993884i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(332\) 0 0
\(333\) 15.0000 15.0000i 0.821995 0.821995i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.6274 22.6274i 1.23259 1.23259i 0.269630 0.962964i \(-0.413099\pi\)
0.962964 0.269630i \(-0.0869014\pi\)
\(338\) 52.3848i 2.84936i
\(339\) 0 0
\(340\) −36.3848 + 2.58579i −1.97324 + 0.140234i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(348\) 0 0
\(349\) 7.07107 + 7.07107i 0.378506 + 0.378506i 0.870563 0.492057i \(-0.163755\pi\)
−0.492057 + 0.870563i \(0.663755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.7279 0.677439 0.338719 0.940887i \(-0.390006\pi\)
0.338719 + 0.940887i \(0.390006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8.38478 + 20.2426i −0.444392 + 1.07286i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −18.0000 6.00000i −0.948683 0.316228i
\(361\) 13.4350 13.4350i 0.707107 0.707107i
\(362\) 31.7279 + 13.1421i 1.66758 + 0.690735i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 19.0919 + 2.12132i 0.993884 + 0.110432i
\(370\) 20.0000 10.0000i 1.03975 0.519875i
\(371\) 0 0
\(372\) 0 0
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 53.8701 53.8701i 2.77445 2.77445i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −28.8995 + 11.9706i −1.47095 + 0.609286i
\(387\) 0 0
\(388\) −10.3848 25.0711i −0.527207 1.27279i
\(389\) 7.00000 7.00000i 0.354914 0.354914i −0.507020 0.861934i \(-0.669253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.7990 1.00000
\(393\) 0 0
\(394\) 30.0000i 1.51138i
\(395\) 0 0
\(396\) 0 0
\(397\) 3.19239 + 1.32233i 0.160221 + 0.0663659i 0.461353 0.887217i \(-0.347364\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.0000 12.0000i −0.800000 0.600000i
\(401\) 1.41421 1.41421i 0.0706225 0.0706225i −0.670913 0.741536i \(-0.734098\pi\)
0.741536 + 0.670913i \(0.234098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −14.7279 35.5563i −0.732742 1.76899i
\(405\) 6.36396 19.0919i 0.316228 0.948683i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 24.0416i 1.18878i −0.804176 0.594391i \(-0.797393\pi\)
0.804176 0.594391i \(-0.202607\pi\)
\(410\) 18.3848 + 8.48528i 0.907959 + 0.419058i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 36.9706 15.3137i 1.81263 0.750816i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(420\) 0 0
\(421\) 5.50610 13.2929i 0.268351 0.647856i −0.731055 0.682318i \(-0.760972\pi\)
0.999406 + 0.0344623i \(0.0109719\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −37.7990 + 15.6569i −1.83568 + 0.760364i
\(425\) 10.1213 39.5061i 0.490956 1.91633i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −24.3848 + 10.1005i −1.16782 + 0.483726i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) 57.6985 + 57.6985i 2.74444 + 2.74444i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −18.5061 16.0503i −0.877273 0.760855i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.0000 + 27.0000i 1.27421 + 1.27421i 0.943858 + 0.330350i \(0.107167\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 12.7279 16.9706i 0.600000 0.800000i
\(451\) 0 0
\(452\) 2.82843i 0.133038i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.97918 21.6777i −0.420029 1.01404i −0.982339 0.187112i \(-0.940087\pi\)
0.562310 0.826927i \(-0.309913\pi\)
\(458\) 14.1716 34.2132i 0.662194 1.59868i
\(459\) 0 0
\(460\) 0 0
\(461\) −41.0122 −1.91013 −0.955064 0.296399i \(-0.904214\pi\)
−0.955064 + 0.296399i \(0.904214\pi\)
\(462\) 0 0
\(463\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(464\) 39.7990 + 16.4853i 1.84762 + 0.765310i
\(465\) 0 0
\(466\) −9.68629 23.3848i −0.448709 1.08328i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 16.2426 + 39.2132i 0.750816 + 1.81263i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.6066 40.0919i −0.760364 1.83568i
\(478\) 0 0
\(479\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(480\) 0 0
\(481\) −46.2132 19.1421i −2.10714 0.872806i
\(482\) −22.0000 −1.00207
\(483\) 0 0
\(484\) 15.5563 15.5563i 0.707107 0.707107i
\(485\) 30.2635 2.15076i 1.37419 0.0976609i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 4.00000i 0.181071i
\(489\) 0 0
\(490\) −7.00000 + 21.0000i −0.316228 + 0.948683i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 87.8406i 3.95614i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(500\) 18.3848 12.7279i 0.822192 0.569210i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(504\) 0 0
\(505\) 42.9203 3.05025i 1.90993 0.135734i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −41.0919 + 17.0208i −1.82137 + 0.754434i −0.846233 + 0.532813i \(0.821135\pi\)
−0.975133 + 0.221621i \(0.928865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) −16.4142 39.6274i −0.724000 1.74789i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 3.17157 + 44.6274i 0.139083 + 1.95704i
\(521\) −41.9203 17.3640i −1.83656 0.760729i −0.960346 0.278810i \(-0.910060\pi\)
−0.876216 0.481919i \(-0.839940\pi\)
\(522\) −17.4853 + 42.2132i −0.765310 + 1.84762i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) −3.24264 45.6274i −0.140851 1.98193i
\(531\) 0 0
\(532\) 0 0
\(533\) −12.6066 43.5061i −0.546053 1.88446i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 26.0000 26.0000i 1.12094 1.12094i
\(539\) 0 0
\(540\) 0 0
\(541\) 29.6985 + 29.6985i 1.27684 + 1.27684i 0.942428 + 0.334410i \(0.108537\pi\)
0.334410 + 0.942428i \(0.391463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −17.6569 + 42.6274i −0.757031 + 1.82764i
\(545\) −2.09188 29.4350i −0.0896064 1.26086i
\(546\) 0 0
\(547\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(548\) −1.89949 + 0.786797i −0.0811424 + 0.0336103i
\(549\) −4.24264 −0.181071
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 7.07107 + 7.07107i 0.300421 + 0.300421i
\(555\) 0 0
\(556\) 0 0
\(557\) −42.3345 + 17.5355i −1.79377 + 0.743004i −0.805056 + 0.593199i \(0.797865\pi\)
−0.988716 + 0.149805i \(0.952135\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 13.9289 33.6274i 0.587557 1.41849i
\(563\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(564\) 0 0
\(565\) −3.00000 1.00000i −0.126211 0.0420703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.2843 28.2843i 1.18574 1.18574i 0.207504 0.978234i \(-0.433466\pi\)
0.978234 0.207504i \(-0.0665341\pi\)
\(570\) 0 0
\(571\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −16.9706 + 16.9706i −0.707107 + 0.707107i
\(577\) −17.2635 + 41.6777i −0.718687 + 1.73506i −0.0416305 + 0.999133i \(0.513255\pi\)
−0.677057 + 0.735931i \(0.736745\pi\)
\(578\) −70.0416 −2.91335
\(579\) 0 0
\(580\) −31.5563 + 36.3848i −1.31031 + 1.51080i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −16.9706 −0.702247
\(585\) −47.3345 + 3.36396i −1.95704 + 0.139083i
\(586\) 5.04163 12.1716i 0.208268 0.502803i
\(587\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 28.2843i 1.16248i
\(593\) −18.6066 44.9203i −0.764082 1.84466i −0.435561 0.900159i \(-0.643450\pi\)
−0.328521 0.944497i \(-0.606550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 15.7574 + 38.0416i 0.645447 + 1.55825i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −18.4350 44.5061i −0.751981 1.81544i −0.548026 0.836461i \(-0.684621\pi\)
−0.203954 0.978980i \(-0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0000 + 22.0000i 0.447214 + 0.894427i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −4.24264 1.41421i −0.171780 0.0572598i
\(611\) 0 0
\(612\) −45.2132 18.7279i −1.82764 0.757031i
\(613\) −24.0416 + 24.0416i −0.971032 + 0.971032i −0.999592 0.0285598i \(-0.990908\pi\)
0.0285598 + 0.999592i \(0.490908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.0000 + 35.0000i 1.40905 + 1.40905i 0.764911 + 0.644136i \(0.222783\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) −8.02944 + 19.3848i −0.320921 + 0.774771i
\(627\) 0 0
\(628\) 14.9289 36.0416i 0.595729 1.43822i
\(629\) 53.2843 22.0711i 2.12458 0.880031i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −12.5563 + 5.20101i −0.498676 + 0.206558i
\(635\) 0 0
\(636\) 0 0
\(637\) 45.7487 18.9497i 1.81263 0.750816i
\(638\) 0 0
\(639\) 0 0
\(640\) −22.6274 + 11.3137i −0.894427 + 0.447214i
\(641\) −24.5061 + 10.1508i −0.967933 + 0.400931i −0.809942 0.586510i \(-0.800502\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −18.0000 18.0000i −0.707107 0.707107i
\(649\) 0 0
\(650\) −48.4558 12.4142i −1.90059 0.486926i
\(651\) 0 0
\(652\) 0 0
\(653\) 46.7487 + 19.3640i 1.82942 + 0.757770i 0.968493 + 0.249041i \(0.0801154\pi\)
0.860927 + 0.508729i \(0.169885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 20.0000 16.0000i 0.780869 0.624695i
\(657\) 18.0000i 0.702247i
\(658\) 0 0
\(659\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(660\) 0 0
\(661\) 35.3553 + 35.3553i 1.37516 + 1.37516i 0.852601 + 0.522562i \(0.175024\pi\)
0.522562 + 0.852601i \(0.324976\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 12.7487 + 30.7782i 0.491428 + 1.18641i 0.953994 + 0.299827i \(0.0969288\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 45.2548 1.74315
\(675\) 0 0
\(676\) 52.3848 52.3848i 2.01480 2.01480i
\(677\) −36.7696 + 36.7696i −1.41317 + 1.41317i −0.679408 + 0.733761i \(0.737763\pi\)
−0.733761 + 0.679408i \(0.762237\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −38.9706 33.7990i −1.49445 1.29613i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(684\) 0 0
\(685\) −0.162951 2.29289i −0.00622603 0.0876069i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −72.3553 + 72.3553i −2.75652 + 2.75652i
\(690\) 0 0
\(691\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(692\) −22.0000 22.0000i −0.836315 0.836315i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 45.7487 + 25.1924i 1.73286 + 0.954230i
\(698\) 14.1421i 0.535288i
\(699\) 0 0
\(700\) 0 0
\(701\) 43.8406i 1.65584i 0.560848 + 0.827919i \(0.310475\pi\)
−0.560848 + 0.827919i \(0.689525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 12.7279 + 12.7279i 0.479022 + 0.479022i
\(707\) 0 0
\(708\) 0 0
\(709\) −17.0503 + 41.1630i −0.640336 + 1.54591i 0.185892 + 0.982570i \(0.440483\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −28.6274 + 11.8579i −1.07286 + 0.444392i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(720\) −12.0000 24.0000i −0.447214 0.894427i
\(721\) 0 0
\(722\) 26.8701 1.00000
\(723\) 0 0
\(724\) 18.5858 + 44.8701i 0.690735 + 1.66758i
\(725\) −27.4350 46.3345i −1.01891 1.72082i
\(726\) 0 0
\(727\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(728\) 0 0
\(729\) 19.0919 19.0919i 0.707107 0.707107i
\(730\) 6.00000 18.0000i 0.222070 0.666210i
\(731\) 0 0
\(732\) 0 0
\(733\) 29.0000 + 29.0000i 1.07114 + 1.07114i 0.997268 + 0.0738717i \(0.0235355\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 16.9706 + 21.2132i 0.624695 + 0.780869i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 30.0000 + 10.0000i 1.10282 + 0.367607i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) −45.9203 + 3.26346i −1.68239 + 0.119564i
\(746\) −36.0000 36.0000i −1.31805 1.31805i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 107.740 3.92366
\(755\) 0 0
\(756\) 0 0
\(757\) 13.9792 + 33.7487i 0.508082 + 1.22662i 0.944986 + 0.327111i \(0.106075\pi\)
−0.436904 + 0.899508i \(0.643925\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421i 0.0512652i −0.999671 0.0256326i \(-0.991840\pi\)
0.999671 0.0256326i \(-0.00816000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 35.8492 41.3345i 1.29613 1.49445i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −40.8701 16.9289i −1.47095 0.609286i
\(773\) −13.4645 + 5.57716i −0.484283 + 0.200597i −0.611448 0.791285i \(-0.709412\pi\)
0.127164 + 0.991882i \(0.459412\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14.6863 35.4558i 0.527207 1.27279i
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 19.7990 + 19.7990i 0.707107 + 0.707107i
\(785\) 32.9497 + 28.5772i 1.17603 + 1.01996i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −30.0000 + 30.0000i −1.06871 + 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.82843 + 9.24264i 0.135951 + 0.328216i
\(794\) 1.87006 + 4.51472i 0.0663659 + 0.160221i
\(795\) 0 0
\(796\) 0 0
\(797\) 52.0000i 1.84193i −0.389640 0.920967i \(-0.627401\pi\)
0.389640 0.920967i \(-0.372599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 28.0000i −0.141421 0.989949i
\(801\) −12.5772 30.3640i −0.444392 1.07286i
\(802\) 2.82843 0.0998752
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 20.8284 50.2843i 0.732742 1.76899i
\(809\) 11.2635 + 4.66548i 0.396002 + 0.164029i 0.571793 0.820398i \(-0.306248\pi\)
−0.175791 + 0.984428i \(0.556248\pi\)
\(810\) 25.4558 12.7279i 0.894427 0.447214i
\(811\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 24.0416 24.0416i 0.840596 0.840596i
\(819\) 0 0
\(820\) 9.89949 + 26.8701i 0.345705 + 0.938343i
\(821\) 15.5563 0.542920 0.271460 0.962450i \(-0.412493\pi\)
0.271460 + 0.962450i \(0.412493\pi\)
\(822\) 0 0
\(823\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(828\) 0 0
\(829\) 14.1421 + 14.1421i 0.491177 + 0.491177i 0.908677 0.417500i \(-0.137094\pi\)
−0.417500 + 0.908677i \(0.637094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 52.2843 + 21.6569i 1.81263 + 0.750816i
\(833\) −21.8492 + 52.7487i −0.757031 + 1.82764i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(840\) 0 0
\(841\) 61.5061 + 61.5061i 2.12090 + 2.12090i
\(842\) 18.7990 7.78680i 0.647856 0.268351i
\(843\) 0 0
\(844\) 0 0
\(845\) 37.0416 + 74.0833i 1.27427 + 2.54854i
\(846\) 0 0
\(847\) 0 0
\(848\) −53.4558 22.1421i −1.83568 0.760364i
\(849\) 0 0
\(850\) 49.6274 29.3848i 1.70221 1.00789i
\(851\) 0 0
\(852\) 0 0
\(853\) −5.00000 5.00000i −0.171197 0.171197i 0.616308 0.787505i \(-0.288628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35.3553i 1.20772i 0.797092 + 0.603858i \(0.206370\pi\)
−0.797092 + 0.603858i \(0.793630\pi\)
\(858\) 0 0
\(859\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 31.1127 15.5563i 1.05786 0.528932i
\(866\) −24.0000 24.0000i −0.815553 0.815553i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −34.4853 14.2843i −1.16782 0.483726i
\(873\) 37.6066 + 15.5772i 1.27279 + 0.527207i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.0000i 0.405211i −0.979260 0.202606i \(-0.935059\pi\)
0.979260 0.202606i \(-0.0649409\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.0000 41.0000i 1.38133 1.38133i 0.539054 0.842271i \(-0.318782\pi\)
0.842271 0.539054i \(-0.181218\pi\)
\(882\) −21.0000 + 21.0000i −0.707107 + 0.707107i
\(883\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(884\) 115.397i 3.88122i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.45584 34.5563i −0.0823201 1.15833i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000i 1.80200i
\(899\) 0 0
\(900\) 29.6985 4.24264i 0.989949 0.141421i
\(901\) 117.983i 3.93058i
\(902\) 0 0
\(903\) 0 0
\(904\) −2.82843 + 2.82843i −0.0940721 + 0.0940721i
\(905\) −54.1630 + 3.84924i −1.80044 + 0.127953i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 53.3345 + 22.0919i 1.76899 + 0.732742i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 12.6985 30.6569i 0.420029 1.01404i
\(915\) 0 0
\(916\) 48.3848 20.0416i 1.59868 0.662194i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −41.0122 41.0122i −1.35066 1.35066i
\(923\) 0 0
\(924\) 0 0
\(925\) −21.2132 + 28.2843i −0.697486 + 0.929981i
\(926\) 0 0
\(927\) 0 0
\(928\) 23.3137 + 56.2843i 0.765310 + 1.84762i
\(929\) −10.4056 25.1213i −0.341396 0.824204i −0.997575 0.0695983i \(-0.977828\pi\)
0.656179 0.754606i \(-0.272172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13.6985 33.0711i 0.448709 1.08328i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −22.9706 + 55.4558i −0.750816 + 1.81263i
\(937\) −27.5355 + 11.4056i −0.899547 + 0.372604i −0.784046 0.620703i \(-0.786847\pi\)
−0.115501 + 0.993307i \(0.536847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39.0000 + 39.0000i 1.27136 + 1.27136i 0.945373 + 0.325991i \(0.105698\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −39.2132 + 16.2426i −1.27291 + 0.527258i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.2132i 0.687163i −0.939123 0.343582i \(-0.888360\pi\)
0.939123 0.343582i \(-0.111640\pi\)
\(954\) 23.4853 56.6985i 0.760364 1.83568i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −27.0711 65.3553i −0.872806 2.10714i
\(963\) 0 0
\(964\) −22.0000 22.0000i −0.708572 0.708572i
\(965\) 32.4056 37.3640i 1.04317 1.20279i
\(966\) 0 0
\(967\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(968\) 31.1127 1.00000
\(969\) 0 0
\(970\) 32.4142 + 28.1127i 1.04076 + 0.902644i
\(971\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −4.00000 + 4.00000i −0.128037 + 0.128037i
\(977\) −28.7487 11.9081i −0.919754 0.380974i −0.127971 0.991778i \(-0.540847\pi\)
−0.791782 + 0.610803i \(0.790847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −28.0000 + 14.0000i −0.894427 + 0.447214i
\(981\) 15.1508 36.5772i 0.483726 1.16782i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) −21.2132 42.4264i −0.675909 1.35182i
\(986\) −87.8406 + 87.8406i −2.79742 + 2.79742i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −13.3223 + 32.1630i −0.421922 + 1.01861i 0.559857 + 0.828589i \(0.310856\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.w.b.79.1 yes 4
4.3 odd 2 CM 820.2.w.b.79.1 yes 4
5.4 even 2 820.2.w.a.79.1 4
20.19 odd 2 820.2.w.a.79.1 4
41.27 odd 8 820.2.w.a.519.1 yes 4
164.27 even 8 820.2.w.a.519.1 yes 4
205.109 odd 8 inner 820.2.w.b.519.1 yes 4
820.519 even 8 inner 820.2.w.b.519.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.w.a.79.1 4 5.4 even 2
820.2.w.a.79.1 4 20.19 odd 2
820.2.w.a.519.1 yes 4 41.27 odd 8
820.2.w.a.519.1 yes 4 164.27 even 8
820.2.w.b.79.1 yes 4 1.1 even 1 trivial
820.2.w.b.79.1 yes 4 4.3 odd 2 CM
820.2.w.b.519.1 yes 4 205.109 odd 8 inner
820.2.w.b.519.1 yes 4 820.519 even 8 inner