Properties

Label 820.2.w.b.659.1
Level $820$
Weight $2$
Character 820.659
Analytic conductor $6.548$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(79,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 4, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{8}]$

Embedding invariants

Embedding label 659.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 820.659
Dual form 820.2.w.b.219.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(2.12132 + 0.707107i) q^{5} +(-2.00000 + 2.00000i) q^{8} +(2.12132 + 2.12132i) q^{9} +(1.41421 + 2.82843i) q^{10} +(-1.29289 - 0.535534i) q^{13} -4.00000 q^{16} +(1.12132 - 0.464466i) q^{17} +4.24264i q^{18} +(-1.41421 + 4.24264i) q^{20} +(4.00000 + 3.00000i) q^{25} +(-0.757359 - 1.82843i) q^{26} +(-0.0502525 + 0.121320i) q^{29} +(-4.00000 - 4.00000i) q^{32} +(1.58579 + 0.656854i) q^{34} +(-4.24264 + 4.24264i) q^{36} -7.07107i q^{37} +(-5.65685 + 2.82843i) q^{40} +(-5.00000 + 4.00000i) q^{41} +(3.00000 + 6.00000i) q^{45} +(4.94975 + 4.94975i) q^{49} +(1.00000 + 7.00000i) q^{50} +(1.07107 - 2.58579i) q^{52} +(0.636039 - 1.53553i) q^{53} +(-0.171573 + 0.0710678i) q^{58} +(1.00000 - 1.00000i) q^{61} -8.00000i q^{64} +(-2.36396 - 2.05025i) q^{65} +(0.928932 + 2.24264i) q^{68} -8.48528 q^{72} +(-4.24264 - 4.24264i) q^{73} +(7.07107 - 7.07107i) q^{74} +(-8.48528 - 2.82843i) q^{80} +9.00000i q^{81} +(-9.00000 - 1.00000i) q^{82} +(2.70711 - 0.192388i) q^{85} +(5.87868 - 14.1924i) q^{89} +(-3.00000 + 9.00000i) q^{90} +(-5.46447 - 13.1924i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8} - 8 q^{13} - 16 q^{16} - 4 q^{17} + 16 q^{25} - 20 q^{26} - 20 q^{29} - 16 q^{32} + 12 q^{34} - 20 q^{41} + 12 q^{45} + 4 q^{50} - 24 q^{52} + 28 q^{53} - 12 q^{58} + 4 q^{61} + 16 q^{65}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 2.12132 + 0.707107i 0.948683 + 0.316228i
\(6\) 0 0
\(7\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 2.12132 + 2.12132i 0.707107 + 0.707107i
\(10\) 1.41421 + 2.82843i 0.447214 + 0.894427i
\(11\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(12\) 0 0
\(13\) −1.29289 0.535534i −0.358584 0.148530i 0.196116 0.980581i \(-0.437167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 1.12132 0.464466i 0.271960 0.112650i −0.242536 0.970143i \(-0.577979\pi\)
0.514496 + 0.857493i \(0.327979\pi\)
\(18\) 4.24264i 1.00000i
\(19\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(20\) −1.41421 + 4.24264i −0.316228 + 0.948683i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 4.00000 + 3.00000i 0.800000 + 0.600000i
\(26\) −0.757359 1.82843i −0.148530 0.358584i
\(27\) 0 0
\(28\) 0 0
\(29\) −0.0502525 + 0.121320i −0.00933166 + 0.0225286i −0.928477 0.371391i \(-0.878881\pi\)
0.919145 + 0.393919i \(0.128881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 1.58579 + 0.656854i 0.271960 + 0.112650i
\(35\) 0 0
\(36\) −4.24264 + 4.24264i −0.707107 + 0.707107i
\(37\) 7.07107i 1.16248i −0.813733 0.581238i \(-0.802568\pi\)
0.813733 0.581238i \(-0.197432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −5.65685 + 2.82843i −0.894427 + 0.447214i
\(41\) −5.00000 + 4.00000i −0.780869 + 0.624695i
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 3.00000 + 6.00000i 0.447214 + 0.894427i
\(46\) 0 0
\(47\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(48\) 0 0
\(49\) 4.94975 + 4.94975i 0.707107 + 0.707107i
\(50\) 1.00000 + 7.00000i 0.141421 + 0.989949i
\(51\) 0 0
\(52\) 1.07107 2.58579i 0.148530 0.358584i
\(53\) 0.636039 1.53553i 0.0873667 0.210922i −0.874157 0.485643i \(-0.838586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −0.171573 + 0.0710678i −0.0225286 + 0.00933166i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 1.00000 1.00000i 0.128037 0.128037i −0.640184 0.768221i \(-0.721142\pi\)
0.768221 + 0.640184i \(0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −2.36396 2.05025i −0.293213 0.254303i
\(66\) 0 0
\(67\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(68\) 0.928932 + 2.24264i 0.112650 + 0.271960i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(72\) −8.48528 −1.00000
\(73\) −4.24264 4.24264i −0.496564 0.496564i 0.413803 0.910366i \(-0.364200\pi\)
−0.910366 + 0.413803i \(0.864200\pi\)
\(74\) 7.07107 7.07107i 0.821995 0.821995i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(80\) −8.48528 2.82843i −0.948683 0.316228i
\(81\) 9.00000i 1.00000i
\(82\) −9.00000 1.00000i −0.993884 0.110432i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 2.70711 0.192388i 0.293627 0.0208674i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.87868 14.1924i 0.623139 1.50439i −0.224860 0.974391i \(-0.572192\pi\)
0.847998 0.529999i \(-0.177808\pi\)
\(90\) −3.00000 + 9.00000i −0.316228 + 0.948683i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.46447 13.1924i −0.554832 1.33948i −0.913812 0.406138i \(-0.866875\pi\)
0.358979 0.933346i \(-0.383125\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −6.00000 + 8.00000i −0.600000 + 0.800000i
\(101\) −2.22183 5.36396i −0.221080 0.533734i 0.773957 0.633238i \(-0.218274\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 3.65685 1.51472i 0.358584 0.148530i
\(105\) 0 0
\(106\) 2.17157 0.899495i 0.210922 0.0873667i
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 14.9497 6.19239i 1.43193 0.593123i 0.474100 0.880471i \(-0.342774\pi\)
0.957826 + 0.287348i \(0.0927736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.41421 −0.133038 −0.0665190 0.997785i \(-0.521189\pi\)
−0.0665190 + 0.997785i \(0.521189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −0.242641 0.100505i −0.0225286 0.00933166i
\(117\) −1.60660 3.87868i −0.148530 0.358584i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.77817 + 7.77817i 0.707107 + 0.707107i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) 0 0
\(125\) 6.36396 + 9.19239i 0.569210 + 0.822192i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) −0.313708 4.41421i −0.0275141 0.387152i
\(131\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −1.31371 + 3.17157i −0.112650 + 0.271960i
\(137\) 21.6066 8.94975i 1.84598 0.764629i 0.906183 0.422885i \(-0.138983\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −8.48528 8.48528i −0.707107 0.707107i
\(145\) −0.192388 + 0.221825i −0.0159770 + 0.0184216i
\(146\) 8.48528i 0.702247i
\(147\) 0 0
\(148\) 14.1421 1.16248
\(149\) −5.02082 12.1213i −0.411321 0.993017i −0.984784 0.173785i \(-0.944400\pi\)
0.573462 0.819232i \(-0.305600\pi\)
\(150\) 0 0
\(151\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(152\) 0 0
\(153\) 3.36396 + 1.39340i 0.271960 + 0.112650i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.02082 14.5355i 0.480513 1.16006i −0.478852 0.877896i \(-0.658947\pi\)
0.959366 0.282166i \(-0.0910530\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −5.65685 11.3137i −0.447214 0.894427i
\(161\) 0 0
\(162\) −9.00000 + 9.00000i −0.707107 + 0.707107i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −8.00000 10.0000i −0.624695 0.780869i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(168\) 0 0
\(169\) −7.80761 7.80761i −0.600586 0.600586i
\(170\) 2.89949 + 2.51472i 0.222381 + 0.192870i
\(171\) 0 0
\(172\) 0 0
\(173\) −11.0000 + 11.0000i −0.836315 + 0.836315i −0.988372 0.152057i \(-0.951410\pi\)
0.152057 + 0.988372i \(0.451410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 20.0711 8.31371i 1.50439 0.623139i
\(179\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(180\) −12.0000 + 6.00000i −0.894427 + 0.447214i
\(181\) −4.43503 10.7071i −0.329653 0.795853i −0.998618 0.0525588i \(-0.983262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.00000 15.0000i 0.367607 1.10282i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(192\) 0 0
\(193\) −15.5355 6.43503i −1.11827 0.463204i −0.254493 0.967075i \(-0.581909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 7.72792 18.6569i 0.554832 1.33948i
\(195\) 0 0
\(196\) −9.89949 + 9.89949i −0.707107 + 0.707107i
\(197\) 15.0000 + 15.0000i 1.06871 + 1.06871i 0.997459 + 0.0712470i \(0.0226979\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(200\) −14.0000 + 2.00000i −0.989949 + 0.141421i
\(201\) 0 0
\(202\) 3.14214 7.58579i 0.221080 0.533734i
\(203\) 0 0
\(204\) 0 0
\(205\) −13.4350 + 4.94975i −0.938343 + 0.345705i
\(206\) 0 0
\(207\) 0 0
\(208\) 5.17157 + 2.14214i 0.358584 + 0.148530i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(212\) 3.07107 + 1.27208i 0.210922 + 0.0873667i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 21.1421 + 8.75736i 1.43193 + 0.593123i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.69848 −0.114252
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 2.12132 + 14.8492i 0.141421 + 0.989949i
\(226\) −1.41421 1.41421i −0.0940721 0.0940721i
\(227\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(228\) 0 0
\(229\) 14.0208 5.80761i 0.926522 0.383778i 0.132164 0.991228i \(-0.457808\pi\)
0.794358 + 0.607450i \(0.207808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −0.142136 0.343146i −0.00933166 0.0225286i
\(233\) −9.46447 + 22.8492i −0.620038 + 1.49690i 0.231621 + 0.972806i \(0.425597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 2.27208 5.48528i 0.148530 0.358584i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(240\) 0 0
\(241\) −11.0000 + 11.0000i −0.708572 + 0.708572i −0.966235 0.257663i \(-0.917048\pi\)
0.257663 + 0.966235i \(0.417048\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 0 0
\(244\) 2.00000 + 2.00000i 0.128037 + 0.128037i
\(245\) 7.00000 + 14.0000i 0.447214 + 0.894427i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −2.82843 + 15.5563i −0.178885 + 0.983870i
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −3.97918 + 9.60660i −0.248215 + 0.599243i −0.998053 0.0623783i \(-0.980131\pi\)
0.749838 + 0.661622i \(0.230131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.10051 4.72792i 0.254303 0.293213i
\(261\) −0.363961 + 0.150758i −0.0225286 + 0.00933166i
\(262\) 0 0
\(263\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(264\) 0 0
\(265\) 2.43503 2.80761i 0.149583 0.172470i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.0000i 1.58525i −0.609711 0.792624i \(-0.708714\pi\)
0.609711 0.792624i \(-0.291286\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −4.48528 + 1.85786i −0.271960 + 0.112650i
\(273\) 0 0
\(274\) 30.5563 + 12.6569i 1.84598 + 0.764629i
\(275\) 0 0
\(276\) 0 0
\(277\) −7.07107 −0.424859 −0.212430 0.977176i \(-0.568138\pi\)
−0.212430 + 0.977176i \(0.568138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.8492 8.22183i 1.18411 0.490473i 0.298275 0.954480i \(-0.403589\pi\)
0.885832 + 0.464007i \(0.153589\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.9706i 1.00000i
\(289\) −10.9792 + 10.9792i −0.645834 + 0.645834i
\(290\) −0.414214 + 0.0294373i −0.0243235 + 0.00172861i
\(291\) 0 0
\(292\) 8.48528 8.48528i 0.496564 0.496564i
\(293\) −30.4350 + 12.6066i −1.77803 + 0.736486i −0.784883 + 0.619644i \(0.787277\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 14.1421 + 14.1421i 0.821995 + 0.821995i
\(297\) 0 0
\(298\) 7.10051 17.1421i 0.411321 0.993017i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.82843 1.41421i 0.161955 0.0809776i
\(306\) 1.97056 + 4.75736i 0.112650 + 0.271960i
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(312\) 0 0
\(313\) −29.6777 + 12.2929i −1.67748 + 0.694835i −0.999201 0.0399680i \(-0.987274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 20.5563 8.51472i 1.16006 0.480513i
\(315\) 0 0
\(316\) 0 0
\(317\) 31.6777 + 13.1213i 1.77920 + 0.736967i 0.992877 + 0.119145i \(0.0380154\pi\)
0.786318 + 0.617822i \(0.211985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 5.65685 16.9706i 0.316228 0.948683i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −18.0000 −1.00000
\(325\) −3.56497 6.02082i −0.197749 0.333975i
\(326\) 0 0
\(327\) 0 0
\(328\) 2.00000 18.0000i 0.110432 0.993884i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(332\) 0 0
\(333\) 15.0000 15.0000i 0.821995 0.821995i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.6274 + 22.6274i −1.23259 + 1.23259i −0.269630 + 0.962964i \(0.586901\pi\)
−0.962964 + 0.269630i \(0.913099\pi\)
\(338\) 15.6152i 0.849356i
\(339\) 0 0
\(340\) 0.384776 + 5.41421i 0.0208674 + 0.293627i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −22.0000 −1.18273
\(347\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(348\) 0 0
\(349\) −7.07107 7.07107i −0.378506 0.378506i 0.492057 0.870563i \(-0.336245\pi\)
−0.870563 + 0.492057i \(0.836245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.7279 −0.677439 −0.338719 0.940887i \(-0.609994\pi\)
−0.338719 + 0.940887i \(0.609994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 28.3848 + 11.7574i 1.50439 + 0.623139i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −18.0000 6.00000i −0.948683 0.316228i
\(361\) −13.4350 + 13.4350i −0.707107 + 0.707107i
\(362\) 6.27208 15.1421i 0.329653 0.795853i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) −19.0919 2.12132i −0.993884 0.110432i
\(370\) 20.0000 10.0000i 1.03975 0.519875i
\(371\) 0 0
\(372\) 0 0
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.129942 0.129942i 0.00669237 0.00669237i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −9.10051 21.9706i −0.463204 1.11827i
\(387\) 0 0
\(388\) 26.3848 10.9289i 1.33948 0.554832i
\(389\) 7.00000 7.00000i 0.354914 0.354914i −0.507020 0.861934i \(-0.669253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.7990 −1.00000
\(393\) 0 0
\(394\) 30.0000i 1.51138i
\(395\) 0 0
\(396\) 0 0
\(397\) −15.1924 + 36.6777i −0.762484 + 1.84080i −0.301131 + 0.953583i \(0.597364\pi\)
−0.461353 + 0.887217i \(0.652636\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −16.0000 12.0000i −0.800000 0.600000i
\(401\) −1.41421 + 1.41421i −0.0706225 + 0.0706225i −0.741536 0.670913i \(-0.765902\pi\)
0.670913 + 0.741536i \(0.265902\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 10.7279 4.44365i 0.533734 0.221080i
\(405\) −6.36396 + 19.0919i −0.316228 + 0.948683i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 24.0416i 1.18878i 0.804176 + 0.594391i \(0.202607\pi\)
−0.804176 + 0.594391i \(0.797393\pi\)
\(410\) −18.3848 8.48528i −0.907959 0.419058i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 3.02944 + 7.31371i 0.148530 + 0.358584i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(420\) 0 0
\(421\) −35.5061 14.7071i −1.73046 0.716781i −0.999406 0.0344623i \(-0.989028\pi\)
−0.731055 0.682318i \(-0.760972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 1.79899 + 4.34315i 0.0873667 + 0.210922i
\(425\) 5.87868 + 1.50610i 0.285158 + 0.0730564i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.3848 + 29.8995i 0.593123 + 1.43193i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) −1.69848 1.69848i −0.0807887 0.0807887i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 22.5061 25.9497i 1.06689 1.23014i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.0000 + 27.0000i 1.27421 + 1.27421i 0.943858 + 0.330350i \(0.107167\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) −12.7279 + 16.9706i −0.600000 + 0.800000i
\(451\) 0 0
\(452\) 2.82843i 0.133038i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −33.0208 + 13.6777i −1.54465 + 0.639814i −0.982339 0.187112i \(-0.940087\pi\)
−0.562310 + 0.826927i \(0.690087\pi\)
\(458\) 19.8284 + 8.21320i 0.926522 + 0.383778i
\(459\) 0 0
\(460\) 0 0
\(461\) 41.0122 1.91013 0.955064 0.296399i \(-0.0957859\pi\)
0.955064 + 0.296399i \(0.0957859\pi\)
\(462\) 0 0
\(463\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(464\) 0.201010 0.485281i 0.00933166 0.0225286i
\(465\) 0 0
\(466\) −32.3137 + 13.3848i −1.49690 + 0.620038i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 7.75736 3.21320i 0.358584 0.148530i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.60660 1.90812i 0.210922 0.0873667i
\(478\) 0 0
\(479\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(480\) 0 0
\(481\) −3.78680 + 9.14214i −0.172663 + 0.416846i
\(482\) −22.0000 −1.00207
\(483\) 0 0
\(484\) −15.5563 + 15.5563i −0.707107 + 0.707107i
\(485\) −2.26346 31.8492i −0.102778 1.44620i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 4.00000i 0.181071i
\(489\) 0 0
\(490\) −7.00000 + 21.0000i −0.316228 + 0.948683i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0.159380i 0.00717809i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(500\) −18.3848 + 12.7279i −0.822192 + 0.569210i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(504\) 0 0
\(505\) −0.920310 12.9497i −0.0409533 0.576256i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.90812 7.02082i −0.128900 0.311192i 0.846233 0.532813i \(-0.178865\pi\)
−0.975133 + 0.221621i \(0.928865\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) −13.5858 + 5.62742i −0.599243 + 0.248215i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 8.82843 0.627417i 0.387152 0.0275141i
\(521\) 1.92031 4.63604i 0.0841303 0.203109i −0.876216 0.481919i \(-0.839940\pi\)
0.960346 + 0.278810i \(0.0899400\pi\)
\(522\) −0.514719 0.213203i −0.0225286 0.00933166i
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 5.24264 0.372583i 0.227726 0.0161840i
\(531\) 0 0
\(532\) 0 0
\(533\) 8.60660 2.49390i 0.372793 0.108023i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 26.0000 26.0000i 1.12094 1.12094i
\(539\) 0 0
\(540\) 0 0
\(541\) −29.6985 29.6985i −1.27684 1.27684i −0.942428 0.334410i \(-0.891463\pi\)
−0.334410 0.942428i \(-0.608537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −6.34315 2.62742i −0.271960 0.112650i
\(545\) 36.0919 2.56497i 1.54601 0.109871i
\(546\) 0 0
\(547\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(548\) 17.8995 + 43.2132i 0.764629 + 1.84598i
\(549\) 4.24264 0.181071
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −7.07107 7.07107i −0.300421 0.300421i
\(555\) 0 0
\(556\) 0 0
\(557\) 4.33452 + 10.4645i 0.183660 + 0.443394i 0.988716 0.149805i \(-0.0478647\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 28.0711 + 11.6274i 1.18411 + 0.490473i
\(563\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(564\) 0 0
\(565\) −3.00000 1.00000i −0.126211 0.0420703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −28.2843 + 28.2843i −1.18574 + 1.18574i −0.207504 + 0.978234i \(0.566534\pi\)
−0.978234 + 0.207504i \(0.933466\pi\)
\(570\) 0 0
\(571\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 16.9706 16.9706i 0.707107 0.707107i
\(577\) 15.2635 + 6.32233i 0.635426 + 0.263202i 0.677057 0.735931i \(-0.263255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) −21.9584 −0.913348
\(579\) 0 0
\(580\) −0.443651 0.384776i −0.0184216 0.0159770i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 16.9706 0.702247
\(585\) −0.665476 9.36396i −0.0275141 0.387152i
\(586\) −43.0416 17.8284i −1.77803 0.736486i
\(587\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 28.2843i 1.16248i
\(593\) 2.60660 1.07969i 0.107040 0.0443375i −0.328521 0.944497i \(-0.606550\pi\)
0.435561 + 0.900159i \(0.356550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 24.2426 10.0416i 0.993017 0.411321i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 8.43503 3.49390i 0.344072 0.142519i −0.203954 0.978980i \(-0.565379\pi\)
0.548026 + 0.836461i \(0.315379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0000 + 22.0000i 0.447214 + 0.894427i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 4.24264 + 1.41421i 0.171780 + 0.0572598i
\(611\) 0 0
\(612\) −2.78680 + 6.72792i −0.112650 + 0.271960i
\(613\) 24.0416 24.0416i 0.971032 0.971032i −0.0285598 0.999592i \(-0.509092\pi\)
0.999592 + 0.0285598i \(0.00909209\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.0000 + 35.0000i 1.40905 + 1.40905i 0.764911 + 0.644136i \(0.222783\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) −41.9706 17.3848i −1.67748 0.694835i
\(627\) 0 0
\(628\) 29.0711 + 12.0416i 1.16006 + 0.480513i
\(629\) −3.28427 7.92893i −0.130952 0.316147i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 18.5563 + 44.7990i 0.736967 + 1.77920i
\(635\) 0 0
\(636\) 0 0
\(637\) −3.74874 9.05025i −0.148530 0.358584i
\(638\) 0 0
\(639\) 0 0
\(640\) 22.6274 11.3137i 0.894427 0.447214i
\(641\) 16.5061 + 39.8492i 0.651952 + 1.57395i 0.809942 + 0.586510i \(0.199498\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −18.0000 18.0000i −0.707107 0.707107i
\(649\) 0 0
\(650\) 2.45584 9.58579i 0.0963261 0.375985i
\(651\) 0 0
\(652\) 0 0
\(653\) −2.74874 + 6.63604i −0.107566 + 0.259688i −0.968493 0.249041i \(-0.919885\pi\)
0.860927 + 0.508729i \(0.169885\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 20.0000 16.0000i 0.780869 0.624695i
\(657\) 18.0000i 0.702247i
\(658\) 0 0
\(659\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(660\) 0 0
\(661\) −35.3553 35.3553i −1.37516 1.37516i −0.852601 0.522562i \(-0.824976\pi\)
−0.522562 0.852601i \(-0.675024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 30.0000 1.16248
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −36.7487 + 15.2218i −1.41656 + 0.586758i −0.953994 0.299827i \(-0.903071\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) −45.2548 −1.74315
\(675\) 0 0
\(676\) 15.6152 15.6152i 0.600586 0.600586i
\(677\) 36.7696 36.7696i 1.41317 1.41317i 0.679408 0.733761i \(-0.262237\pi\)
0.733761 0.679408i \(-0.237763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −5.02944 + 5.79899i −0.192870 + 0.222381i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(684\) 0 0
\(685\) 52.1630 3.70711i 1.99304 0.141641i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.64466 + 1.64466i −0.0626566 + 0.0626566i
\(690\) 0 0
\(691\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(692\) −22.0000 22.0000i −0.836315 0.836315i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −3.74874 + 6.80761i −0.141994 + 0.257857i
\(698\) 14.1421i 0.535288i
\(699\) 0 0
\(700\) 0 0
\(701\) 43.8406i 1.65584i −0.560848 0.827919i \(-0.689525\pi\)
0.560848 0.827919i \(-0.310475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −12.7279 12.7279i −0.479022 0.479022i
\(707\) 0 0
\(708\) 0 0
\(709\) −26.9497 11.1630i −1.01212 0.419233i −0.185892 0.982570i \(-0.559517\pi\)
−0.826227 + 0.563337i \(0.809517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 16.6274 + 40.1421i 0.623139 + 1.50439i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(720\) −12.0000 24.0000i −0.447214 0.894427i
\(721\) 0 0
\(722\) −26.8701 −1.00000
\(723\) 0 0
\(724\) 21.4142 8.87006i 0.795853 0.329653i
\(725\) −0.564971 + 0.334524i −0.0209825 + 0.0124239i
\(726\) 0 0
\(727\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(728\) 0 0
\(729\) −19.0919 + 19.0919i −0.707107 + 0.707107i
\(730\) 6.00000 18.0000i 0.222070 0.666210i
\(731\) 0 0
\(732\) 0 0
\(733\) 29.0000 + 29.0000i 1.07114 + 1.07114i 0.997268 + 0.0738717i \(0.0235355\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −16.9706 21.2132i −0.624695 0.780869i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 30.0000 + 10.0000i 1.10282 + 0.367607i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) −2.07969 29.2635i −0.0761939 1.07213i
\(746\) −36.0000 36.0000i −1.31805 1.31805i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0.259885 0.00946444
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0208 15.7487i 1.38189 0.572398i 0.436904 0.899508i \(-0.356075\pi\)
0.944986 + 0.327111i \(0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.41421i 0.0512652i 0.999671 + 0.0256326i \(0.00816000\pi\)
−0.999671 + 0.0256326i \(0.991840\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 6.15076 + 5.33452i 0.222381 + 0.192870i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 24.0000i 0.865462i 0.901523 + 0.432731i \(0.142450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12.8701 31.0711i 0.463204 1.11827i
\(773\) −20.5355 49.5772i −0.738612 1.78317i −0.611448 0.791285i \(-0.709412\pi\)
−0.127164 0.991882i \(-0.540588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 37.3137 + 15.4558i 1.33948 + 0.554832i
\(777\) 0 0
\(778\) 14.0000 0.501924
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −19.7990 19.7990i −0.707107 0.707107i
\(785\) 23.0503 26.5772i 0.822699 0.948580i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) −30.0000 + 30.0000i −1.06871 + 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.82843 + 0.757359i −0.0649294 + 0.0268946i
\(794\) −51.8701 + 21.4853i −1.84080 + 0.762484i
\(795\) 0 0
\(796\) 0 0
\(797\) 52.0000i 1.84193i −0.389640 0.920967i \(-0.627401\pi\)
0.389640 0.920967i \(-0.372599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 28.0000i −0.141421 0.989949i
\(801\) 42.5772 17.6360i 1.50439 0.623139i
\(802\) −2.82843 −0.0998752
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 15.1716 + 6.28427i 0.533734 + 0.221080i
\(809\) −21.2635 + 51.3345i −0.747583 + 1.80483i −0.175791 + 0.984428i \(0.556248\pi\)
−0.571793 + 0.820398i \(0.693752\pi\)
\(810\) −25.4558 + 12.7279i −0.894427 + 0.447214i
\(811\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −24.0416 + 24.0416i −0.840596 + 0.840596i
\(819\) 0 0
\(820\) −9.89949 26.8701i −0.345705 0.938343i
\(821\) −15.5563 −0.542920 −0.271460 0.962450i \(-0.587507\pi\)
−0.271460 + 0.962450i \(0.587507\pi\)
\(822\) 0 0
\(823\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(828\) 0 0
\(829\) −14.1421 14.1421i −0.491177 0.491177i 0.417500 0.908677i \(-0.362906\pi\)
−0.908677 + 0.417500i \(0.862906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.28427 + 10.3431i −0.148530 + 0.358584i
\(833\) 7.84924 + 3.25126i 0.271960 + 0.112650i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(840\) 0 0
\(841\) 20.4939 + 20.4939i 0.706686 + 0.706686i
\(842\) −20.7990 50.2132i −0.716781 1.73046i
\(843\) 0 0
\(844\) 0 0
\(845\) −11.0416 22.0833i −0.379844 0.759687i
\(846\) 0 0
\(847\) 0 0
\(848\) −2.54416 + 6.14214i −0.0873667 + 0.210922i
\(849\) 0 0
\(850\) 4.37258 + 7.38478i 0.149978 + 0.253296i
\(851\) 0 0
\(852\) 0 0
\(853\) −5.00000 5.00000i −0.171197 0.171197i 0.616308 0.787505i \(-0.288628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35.3553i 1.20772i −0.797092 0.603858i \(-0.793630\pi\)
0.797092 0.603858i \(-0.206370\pi\)
\(858\) 0 0
\(859\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) −31.1127 + 15.5563i −1.05786 + 0.528932i
\(866\) −24.0000 24.0000i −0.815553 0.815553i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −17.5147 + 42.2843i −0.593123 + 1.43193i
\(873\) 16.3934 39.5772i 0.554832 1.33948i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.0000i 0.405211i −0.979260 0.202606i \(-0.935059\pi\)
0.979260 0.202606i \(-0.0649409\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.0000 41.0000i 1.38133 1.38133i 0.539054 0.842271i \(-0.318782\pi\)
0.842271 0.539054i \(-0.181218\pi\)
\(882\) −21.0000 + 21.0000i −0.707107 + 0.707107i
\(883\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(884\) 3.39697i 0.114252i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 48.4558 3.44365i 1.62424 0.115431i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000i 1.80200i
\(899\) 0 0
\(900\) −29.6985 + 4.24264i −0.989949 + 0.141421i
\(901\) 2.01724i 0.0672041i
\(902\) 0 0
\(903\) 0 0
\(904\) 2.82843 2.82843i 0.0940721 0.0940721i
\(905\) −1.83705 25.8492i −0.0610656 0.859258i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 6.66548 16.0919i 0.221080 0.533734i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −46.6985 19.3431i −1.54465 0.639814i
\(915\) 0 0
\(916\) 11.6152 + 28.0416i 0.383778 + 0.926522i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 41.0122 + 41.0122i 1.35066 + 1.35066i
\(923\) 0 0
\(924\) 0 0
\(925\) 21.2132 28.2843i 0.697486 0.929981i
\(926\) 0 0
\(927\) 0 0
\(928\) 0.686292 0.284271i 0.0225286 0.00933166i
\(929\) 50.4056 20.8787i 1.65375 0.685007i 0.656179 0.754606i \(-0.272172\pi\)
0.997575 + 0.0695983i \(0.0221717\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −45.6985 18.9289i −1.49690 0.620038i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 10.9706 + 4.54416i 0.358584 + 0.148530i
\(937\) −20.4645 49.4056i −0.668545 1.61401i −0.784046 0.620703i \(-0.786847\pi\)
0.115501 0.993307i \(-0.463153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 39.0000 + 39.0000i 1.27136 + 1.27136i 0.945373 + 0.325991i \(0.105698\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 3.21320 + 7.75736i 0.104305 + 0.251815i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.2132i 0.687163i 0.939123 + 0.343582i \(0.111640\pi\)
−0.939123 + 0.343582i \(0.888360\pi\)
\(954\) 6.51472 + 2.69848i 0.210922 + 0.0873667i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) −12.9289 + 5.35534i −0.416846 + 0.172663i
\(963\) 0 0
\(964\) −22.0000 22.0000i −0.708572 0.708572i
\(965\) −28.4056 24.6360i −0.914408 0.793062i
\(966\) 0 0
\(967\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(968\) −31.1127 −1.00000
\(969\) 0 0
\(970\) 29.5858 34.1127i 0.949942 1.09529i
\(971\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −4.00000 + 4.00000i −0.128037 + 0.128037i
\(977\) 20.7487 50.0919i 0.663811 1.60258i −0.127971 0.991778i \(-0.540847\pi\)
0.791782 0.610803i \(-0.209153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −28.0000 + 14.0000i −0.894427 + 0.447214i
\(981\) 44.8492 + 18.5772i 1.43193 + 0.593123i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 21.2132 + 42.4264i 0.675909 + 1.35182i
\(986\) −0.159380 + 0.159380i −0.00507568 + 0.00507568i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −48.6777 20.1630i −1.54164 0.638567i −0.559857 0.828589i \(-0.689144\pi\)
−0.981780 + 0.190022i \(0.939144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.w.b.659.1 yes 4
4.3 odd 2 CM 820.2.w.b.659.1 yes 4
5.4 even 2 820.2.w.a.659.1 yes 4
20.19 odd 2 820.2.w.a.659.1 yes 4
41.14 odd 8 820.2.w.a.219.1 4
164.55 even 8 820.2.w.a.219.1 4
205.14 odd 8 inner 820.2.w.b.219.1 yes 4
820.219 even 8 inner 820.2.w.b.219.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.w.a.219.1 4 41.14 odd 8
820.2.w.a.219.1 4 164.55 even 8
820.2.w.a.659.1 yes 4 5.4 even 2
820.2.w.a.659.1 yes 4 20.19 odd 2
820.2.w.b.219.1 yes 4 205.14 odd 8 inner
820.2.w.b.219.1 yes 4 820.219 even 8 inner
820.2.w.b.659.1 yes 4 1.1 even 1 trivial
820.2.w.b.659.1 yes 4 4.3 odd 2 CM