Properties

Label 820.2.cc.f.719.1
Level $820$
Weight $2$
Character 820.719
Analytic conductor $6.548$
Analytic rank $0$
Dimension $16$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(19,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 20, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.cc (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{40}]$

Embedding invariants

Embedding label 719.1
Root \(0.987688 - 0.156434i\) of defining polynomial
Character \(\chi\) \(=\) 820.719
Dual form 820.2.cc.f.479.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26007 + 0.642040i) q^{2} +(2.64054 - 1.09375i) q^{3} +(1.17557 - 1.61803i) q^{4} +(2.20854 - 0.349798i) q^{5} +(-2.62505 + 3.07353i) q^{6} +(-0.842968 - 0.986988i) q^{7} +(-0.442463 + 2.79360i) q^{8} +(3.65485 - 3.65485i) q^{9} +(-2.55834 + 1.85874i) q^{10} +(1.33442 - 5.55826i) q^{12} +(1.69589 + 0.702459i) q^{14} +(5.44914 - 3.33924i) q^{15} +(-1.23607 - 3.80423i) q^{16} +(-2.25882 + 6.95194i) q^{18} +(2.03031 - 3.98470i) q^{20} +(-3.30541 - 1.68419i) q^{21} +(-1.50894 - 0.490285i) q^{23} +(1.88716 + 7.86057i) q^{24} +(4.75528 - 1.54508i) q^{25} +(2.37206 - 5.72665i) q^{27} +(-2.58795 + 0.203676i) q^{28} +(9.81881 + 2.35729i) q^{29} +(-4.72240 + 7.70625i) q^{30} +(4.00000 + 4.00000i) q^{32} +(-2.20697 - 1.88493i) q^{35} +(-1.61714 - 10.2102i) q^{36} +6.32456i q^{40} +(-4.33089 - 4.71629i) q^{41} +5.24637 q^{42} +(-11.6418 + 5.93180i) q^{43} +(6.79342 - 9.35034i) q^{45} +(2.21616 - 0.351005i) q^{46} +(-0.887425 + 1.03904i) q^{47} +(-7.42475 - 8.69327i) q^{48} +(0.831490 - 5.24982i) q^{49} +(-5.00000 + 5.00000i) q^{50} +(0.687770 + 8.73895i) q^{54} +(3.13024 - 1.91821i) q^{56} +(-13.8859 + 3.33371i) q^{58} +(1.00285 - 12.7424i) q^{60} +(-4.67048 + 9.16634i) q^{61} +(-6.68822 - 0.526374i) q^{63} +(-7.60845 - 2.47214i) q^{64} +(-4.08412 - 6.66467i) q^{67} +(-4.52067 + 0.355785i) q^{69} +(3.99115 + 0.958190i) q^{70} +(8.59307 + 11.8273i) q^{72} +(10.8666 - 9.28094i) q^{75} +(-4.06061 - 7.96940i) q^{80} -2.20966i q^{81} +(8.48528 + 3.16228i) q^{82} -1.46878 q^{83} +(-6.61081 + 3.36838i) q^{84} +(10.8611 - 14.9490i) q^{86} +(28.5052 - 4.51479i) q^{87} +(-4.79619 - 5.61562i) q^{89} +(-2.55692 + 16.1438i) q^{90} +(-2.56717 + 1.86515i) q^{92} +(0.451115 - 1.87903i) q^{94} +(14.9372 + 6.18717i) q^{96} +(2.32285 + 7.14901i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 12 q^{3} + 20 q^{6} - 16 q^{7} - 8 q^{8} + 12 q^{9} + 16 q^{12} - 20 q^{15} + 16 q^{16} - 4 q^{18} + 4 q^{21} + 8 q^{24} + 48 q^{27} - 8 q^{28} - 80 q^{30} + 64 q^{32} + 20 q^{35} + 24 q^{36}+ \cdots + 104 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{40}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26007 + 0.642040i −0.891007 + 0.453990i
\(3\) 2.64054 1.09375i 1.52452 0.631476i 0.546027 0.837768i \(-0.316140\pi\)
0.978490 + 0.206292i \(0.0661398\pi\)
\(4\) 1.17557 1.61803i 0.587785 0.809017i
\(5\) 2.20854 0.349798i 0.987688 0.156434i
\(6\) −2.62505 + 3.07353i −1.07167 + 1.25477i
\(7\) −0.842968 0.986988i −0.318612 0.373046i 0.577869 0.816130i \(-0.303885\pi\)
−0.896480 + 0.443083i \(0.853885\pi\)
\(8\) −0.442463 + 2.79360i −0.156434 + 0.987688i
\(9\) 3.65485 3.65485i 1.21828 1.21828i
\(10\) −2.55834 + 1.85874i −0.809017 + 0.587785i
\(11\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(12\) 1.33442 5.55826i 0.385214 1.60453i
\(13\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(14\) 1.69589 + 0.702459i 0.453245 + 0.187740i
\(15\) 5.44914 3.33924i 1.40696 0.862188i
\(16\) −1.23607 3.80423i −0.309017 0.951057i
\(17\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(18\) −2.25882 + 6.95194i −0.532410 + 1.63859i
\(19\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(20\) 2.03031 3.98470i 0.453990 0.891007i
\(21\) −3.30541 1.68419i −0.721299 0.367520i
\(22\) 0 0
\(23\) −1.50894 0.490285i −0.314636 0.102231i 0.147442 0.989071i \(-0.452896\pi\)
−0.462078 + 0.886839i \(0.652896\pi\)
\(24\) 1.88716 + 7.86057i 0.385214 + 1.60453i
\(25\) 4.75528 1.54508i 0.951057 0.309017i
\(26\) 0 0
\(27\) 2.37206 5.72665i 0.456502 1.10209i
\(28\) −2.58795 + 0.203676i −0.489076 + 0.0384911i
\(29\) 9.81881 + 2.35729i 1.82331 + 0.437737i 0.992852 0.119349i \(-0.0380806\pi\)
0.830455 + 0.557086i \(0.188081\pi\)
\(30\) −4.72240 + 7.70625i −0.862188 + 1.40696i
\(31\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 0 0
\(35\) −2.20697 1.88493i −0.373046 0.318612i
\(36\) −1.61714 10.2102i −0.269523 1.70170i
\(37\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.32456i 1.00000i
\(41\) −4.33089 4.71629i −0.676371 0.736561i
\(42\) 5.24637 0.809533
\(43\) −11.6418 + 5.93180i −1.77536 + 0.904591i −0.848485 + 0.529220i \(0.822485\pi\)
−0.926875 + 0.375371i \(0.877515\pi\)
\(44\) 0 0
\(45\) 6.79342 9.35034i 1.01270 1.39387i
\(46\) 2.21616 0.351005i 0.326755 0.0517529i
\(47\) −0.887425 + 1.03904i −0.129444 + 0.151560i −0.821343 0.570435i \(-0.806775\pi\)
0.691898 + 0.721995i \(0.256775\pi\)
\(48\) −7.42475 8.69327i −1.07167 1.25477i
\(49\) 0.831490 5.24982i 0.118784 0.749974i
\(50\) −5.00000 + 5.00000i −0.707107 + 0.707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.233445 0.972370i \(-0.425000\pi\)
−0.233445 + 0.972370i \(0.575000\pi\)
\(54\) 0.687770 + 8.73895i 0.0935937 + 1.18922i
\(55\) 0 0
\(56\) 3.13024 1.91821i 0.418296 0.256332i
\(57\) 0 0
\(58\) −13.8859 + 3.33371i −1.82331 + 0.437737i
\(59\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(60\) 1.00285 12.7424i 0.129467 1.64504i
\(61\) −4.67048 + 9.16634i −0.597994 + 1.17363i 0.371481 + 0.928441i \(0.378850\pi\)
−0.969475 + 0.245189i \(0.921150\pi\)
\(62\) 0 0
\(63\) −6.68822 0.526374i −0.842636 0.0663169i
\(64\) −7.60845 2.47214i −0.951057 0.309017i
\(65\) 0 0
\(66\) 0 0
\(67\) −4.08412 6.66467i −0.498954 0.814219i 0.499694 0.866202i \(-0.333446\pi\)
−0.998648 + 0.0519829i \(0.983446\pi\)
\(68\) 0 0
\(69\) −4.52067 + 0.355785i −0.544225 + 0.0428314i
\(70\) 3.99115 + 0.958190i 0.477034 + 0.114526i
\(71\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(72\) 8.59307 + 11.8273i 1.01270 + 1.39387i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 10.8666 9.28094i 1.25477 1.07167i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(80\) −4.06061 7.96940i −0.453990 0.891007i
\(81\) 2.20966i 0.245517i
\(82\) 8.48528 + 3.16228i 0.937043 + 0.349215i
\(83\) −1.46878 −0.161220 −0.0806100 0.996746i \(-0.525687\pi\)
−0.0806100 + 0.996746i \(0.525687\pi\)
\(84\) −6.61081 + 3.36838i −0.721299 + 0.367520i
\(85\) 0 0
\(86\) 10.8611 14.9490i 1.17118 1.61199i
\(87\) 28.5052 4.51479i 3.05608 0.484036i
\(88\) 0 0
\(89\) −4.79619 5.61562i −0.508395 0.595254i 0.445542 0.895261i \(-0.353011\pi\)
−0.953937 + 0.300007i \(0.903011\pi\)
\(90\) −2.55692 + 16.1438i −0.269523 + 1.70170i
\(91\) 0 0
\(92\) −2.56717 + 1.86515i −0.267646 + 0.194456i
\(93\) 0 0
\(94\) 0.451115 1.87903i 0.0465290 0.193807i
\(95\) 0 0
\(96\) 14.9372 + 6.18717i 1.52452 + 0.631476i
\(97\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(98\) 2.32285 + 7.14901i 0.234644 + 0.722159i
\(99\) 0 0
\(100\) 3.09017 9.51057i 0.309017 0.951057i
\(101\) −1.52965 + 19.4360i −0.152206 + 1.93396i 0.166374 + 0.986063i \(0.446794\pi\)
−0.318579 + 0.947896i \(0.603206\pi\)
\(102\) 0 0
\(103\) 18.0633 + 9.20373i 1.77983 + 0.906871i 0.912360 + 0.409389i \(0.134258\pi\)
0.867475 + 0.497482i \(0.165742\pi\)
\(104\) 0 0
\(105\) −7.88924 2.56337i −0.769911 0.250159i
\(106\) 0 0
\(107\) 19.6754 6.39291i 1.90209 0.618026i 0.949456 0.313900i \(-0.101636\pi\)
0.952632 0.304125i \(-0.0983642\pi\)
\(108\) −6.47739 10.5701i −0.623287 1.01711i
\(109\) −5.70123 + 13.7640i −0.546079 + 1.31835i 0.374294 + 0.927310i \(0.377885\pi\)
−0.920373 + 0.391041i \(0.872115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −2.71276 + 4.42682i −0.256332 + 0.418296i
\(113\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(114\) 0 0
\(115\) −3.50406 0.554988i −0.326755 0.0517529i
\(116\) 15.3569 13.1160i 1.42585 1.21779i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 6.91747 + 16.7002i 0.631476 + 1.52452i
\(121\) 4.99390 + 9.80107i 0.453990 + 0.891007i
\(122\) 14.5489i 1.31720i
\(123\) −16.5943 7.71667i −1.49626 0.695789i
\(124\) 0 0
\(125\) 9.96176 5.07577i 0.891007 0.453990i
\(126\) 8.76560 3.63083i 0.780901 0.323460i
\(127\) −8.12891 + 11.1885i −0.721324 + 0.992818i 0.278155 + 0.960536i \(0.410277\pi\)
−0.999479 + 0.0322812i \(0.989723\pi\)
\(128\) 11.1744 1.76985i 0.987688 0.156434i
\(129\) −24.2528 + 28.3964i −2.13534 + 2.50016i
\(130\) 0 0
\(131\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 9.42527 + 5.77581i 0.814219 + 0.498954i
\(135\) 3.23560 13.4773i 0.278476 1.15994i
\(136\) 0 0
\(137\) 0 0 −0.923880 0.382683i \(-0.875000\pi\)
0.923880 + 0.382683i \(0.125000\pi\)
\(138\) 5.46795 3.35076i 0.465463 0.285236i
\(139\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(140\) −5.64434 + 1.35509i −0.477034 + 0.114526i
\(141\) −1.20683 + 3.71425i −0.101634 + 0.312796i
\(142\) 0 0
\(143\) 0 0
\(144\) −18.4215 9.38624i −1.53513 0.782186i
\(145\) 22.5098 + 1.77156i 1.86934 + 0.147120i
\(146\) 0 0
\(147\) −3.54640 14.7718i −0.292502 1.21836i
\(148\) 0 0
\(149\) −12.4796 20.3649i −1.02237 1.66836i −0.687653 0.726039i \(-0.741359\pi\)
−0.334718 0.942318i \(-0.608641\pi\)
\(150\) −7.73397 + 18.6714i −0.631476 + 1.52452i
\(151\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 10.2333 + 7.43496i 0.809017 + 0.587785i
\(161\) 0.788084 + 1.90260i 0.0621097 + 0.149946i
\(162\) 1.41869 + 2.78433i 0.111463 + 0.218757i
\(163\) 6.65248i 0.521062i −0.965465 0.260531i \(-0.916102\pi\)
0.965465 0.260531i \(-0.0838976\pi\)
\(164\) −12.7224 + 1.46318i −0.993451 + 0.114255i
\(165\) 0 0
\(166\) 1.85078 0.943017i 0.143648 0.0731923i
\(167\) 21.0900 8.73576i 1.63199 0.675993i 0.636539 0.771245i \(-0.280366\pi\)
0.995453 + 0.0952515i \(0.0303655\pi\)
\(168\) 6.16748 8.48881i 0.475831 0.654926i
\(169\) −12.8399 + 2.03365i −0.987688 + 0.156434i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.08792 + 25.8101i −0.311701 + 1.96800i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) −33.0200 + 23.9905i −2.50324 + 1.81871i
\(175\) −5.53353 3.39095i −0.418296 0.256332i
\(176\) 0 0
\(177\) 0 0
\(178\) 9.64900 + 3.99675i 0.723223 + 0.299569i
\(179\) 0 0 0.852640 0.522499i \(-0.175000\pi\)
−0.852640 + 0.522499i \(0.825000\pi\)
\(180\) −7.14302 21.9840i −0.532410 1.63859i
\(181\) −25.8584 + 6.20805i −1.92204 + 0.461441i −0.925457 + 0.378854i \(0.876318\pi\)
−0.996584 + 0.0825874i \(0.973682\pi\)
\(182\) 0 0
\(183\) −2.30694 + 29.3124i −0.170534 + 2.16684i
\(184\) 2.03731 3.99845i 0.150193 0.294770i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.637973 + 2.65735i 0.0465290 + 0.193807i
\(189\) −7.65170 + 2.48619i −0.556579 + 0.180844i
\(190\) 0 0
\(191\) 0 0 0.382683 0.923880i \(-0.375000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(192\) −22.7943 + 1.79395i −1.64504 + 0.129467i
\(193\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −7.51691 7.51691i −0.536922 0.536922i
\(197\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(200\) 2.21232 + 13.9680i 0.156434 + 0.987688i
\(201\) −18.0737 13.1313i −1.27482 0.926214i
\(202\) −10.5512 25.4729i −0.742383 1.79227i
\(203\) −5.95032 11.6782i −0.417631 0.819647i
\(204\) 0 0
\(205\) −11.2147 8.90118i −0.783267 0.621685i
\(206\) −28.6703 −1.99755
\(207\) −7.30688 + 3.72304i −0.507863 + 0.258769i
\(208\) 0 0
\(209\) 0 0
\(210\) 11.5868 1.83517i 0.799566 0.126639i
\(211\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −20.6879 + 20.6879i −1.41419 + 1.41419i
\(215\) −23.6365 + 17.1729i −1.61199 + 1.17118i
\(216\) 14.9484 + 9.16042i 1.01711 + 0.623287i
\(217\) 0 0
\(218\) −1.65306 21.0041i −0.111959 1.42257i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.99900 + 24.6184i −0.535653 + 1.64857i 0.206581 + 0.978429i \(0.433766\pi\)
−0.742234 + 0.670141i \(0.766234\pi\)
\(224\) 0.576083 7.31982i 0.0384911 0.489076i
\(225\) 11.7328 23.0269i 0.782186 1.53513i
\(226\) 0 0
\(227\) −25.2850 1.98997i −1.67822 0.132079i −0.796748 0.604312i \(-0.793448\pi\)
−0.881474 + 0.472233i \(0.843448\pi\)
\(228\) 0 0
\(229\) 2.64063 + 10.9990i 0.174498 + 0.726836i 0.989153 + 0.146890i \(0.0469263\pi\)
−0.814655 + 0.579946i \(0.803074\pi\)
\(230\) 4.77169 1.55042i 0.314636 0.102231i
\(231\) 0 0
\(232\) −10.9298 + 26.3869i −0.717576 + 1.73238i
\(233\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(234\) 0 0
\(235\) −1.59646 + 2.60518i −0.104141 + 0.169943i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(240\) −19.4387 16.6023i −1.25477 1.07167i
\(241\) 3.99792 + 25.2418i 0.257528 + 1.62597i 0.689642 + 0.724151i \(0.257768\pi\)
−0.432113 + 0.901819i \(0.642232\pi\)
\(242\) −12.5854 9.14379i −0.809017 0.587785i
\(243\) 4.69936 + 11.3453i 0.301464 + 0.727799i
\(244\) 9.34097 + 18.3327i 0.597994 + 1.17363i
\(245\) 11.8853i 0.759323i
\(246\) 25.8645 0.930635i 1.64906 0.0593351i
\(247\) 0 0
\(248\) 0 0
\(249\) −3.87838 + 1.60648i −0.245783 + 0.101806i
\(250\) −9.29370 + 12.7917i −0.587785 + 0.809017i
\(251\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(252\) −8.71416 + 10.2030i −0.548941 + 0.642727i
\(253\) 0 0
\(254\) 3.05957 19.3174i 0.191975 1.21208i
\(255\) 0 0
\(256\) −12.9443 + 9.40456i −0.809017 + 0.587785i
\(257\) 0 0 −0.852640 0.522499i \(-0.825000\pi\)
0.852640 + 0.522499i \(0.175000\pi\)
\(258\) 12.3287 51.3527i 0.767552 3.19708i
\(259\) 0 0
\(260\) 0 0
\(261\) 44.5018 27.2708i 2.75459 1.68802i
\(262\) 0 0
\(263\) 8.24818 1.98021i 0.508605 0.122105i 0.0289818 0.999580i \(-0.490774\pi\)
0.479623 + 0.877475i \(0.340774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −18.8066 9.58244i −1.15095 0.586436i
\(268\) −15.5848 1.22655i −0.951995 0.0749236i
\(269\) 28.2798 + 9.18868i 1.72425 + 0.560244i 0.992600 0.121434i \(-0.0387492\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 4.57583 + 19.0597i 0.278476 + 1.15994i
\(271\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −4.73870 + 7.73285i −0.285236 + 0.465463i
\(277\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 6.24226 5.33139i 0.373046 0.318612i
\(281\) −15.5289 13.2629i −0.926377 0.791201i 0.0518675 0.998654i \(-0.483483\pi\)
−0.978245 + 0.207453i \(0.933483\pi\)
\(282\) −0.863997 5.45506i −0.0514503 0.324844i
\(283\) −16.3928 11.9101i −0.974450 0.707979i −0.0179883 0.999838i \(-0.505726\pi\)
−0.956461 + 0.291859i \(0.905726\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.00413 + 8.25022i −0.0592720 + 0.486995i
\(288\) 29.2388 1.72291
\(289\) 15.1471 7.71784i 0.891007 0.453990i
\(290\) −29.5014 + 12.2199i −1.73238 + 0.717576i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(294\) 13.9528 + 16.3366i 0.813744 + 0.952772i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 28.8003 + 17.6489i 1.66836 + 1.02237i
\(299\) 0 0
\(300\) −2.24244 28.4929i −0.129467 1.64504i
\(301\) 15.6683 + 6.49002i 0.903105 + 0.374078i
\(302\) 0 0
\(303\) 17.2190 + 52.9947i 0.989207 + 3.04447i
\(304\) 0 0
\(305\) −7.10857 + 21.8779i −0.407036 + 1.25273i
\(306\) 0 0
\(307\) 15.2963 30.0208i 0.873009 1.71338i 0.191599 0.981473i \(-0.438633\pi\)
0.681409 0.731903i \(-0.261367\pi\)
\(308\) 0 0
\(309\) 57.7636 + 4.54609i 3.28605 + 0.258618i
\(310\) 0 0
\(311\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(312\) 0 0
\(313\) 0 0 −0.522499 0.852640i \(-0.675000\pi\)
0.522499 + 0.852640i \(0.325000\pi\)
\(314\) 0 0
\(315\) −14.9553 + 1.17701i −0.842636 + 0.0663169i
\(316\) 0 0
\(317\) 0 0 0.522499 0.852640i \(-0.325000\pi\)
−0.522499 + 0.852640i \(0.675000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −17.6683 2.79838i −0.987688 0.156434i
\(321\) 44.9613 38.4006i 2.50950 2.14331i
\(322\) −2.21459 1.89144i −0.123414 0.105406i
\(323\) 0 0
\(324\) −3.57530 2.59761i −0.198628 0.144311i
\(325\) 0 0
\(326\) 4.27115 + 8.38261i 0.236557 + 0.464270i
\(327\) 42.5801i 2.35468i
\(328\) 15.0917 10.0120i 0.833301 0.552820i
\(329\) 1.77359 0.0977813
\(330\) 0 0
\(331\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(332\) −1.72666 + 2.37654i −0.0947627 + 0.130430i
\(333\) 0 0
\(334\) −20.9662 + 24.5483i −1.14722 + 1.34322i
\(335\) −11.3512 13.2906i −0.620183 0.726141i
\(336\) −2.32133 + 14.6563i −0.126639 + 0.799566i
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 14.8736 10.8063i 0.809017 0.587785i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −13.6294 + 8.35209i −0.735917 + 0.450970i
\(344\) −11.4200 35.1472i −0.615726 1.89501i
\(345\) −9.85962 + 2.36709i −0.530824 + 0.127440i
\(346\) 0 0
\(347\) −2.05567 + 26.1197i −0.110354 + 1.40218i 0.653566 + 0.756870i \(0.273272\pi\)
−0.763920 + 0.645311i \(0.776728\pi\)
\(348\) 26.2048 51.4299i 1.40473 2.75693i
\(349\) −26.6210 13.5641i −1.42499 0.726069i −0.439891 0.898051i \(-0.644983\pi\)
−0.985100 + 0.171982i \(0.944983\pi\)
\(350\) 9.14978 + 0.720103i 0.489076 + 0.0384911i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −14.7245 + 1.15884i −0.780398 + 0.0614186i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) 23.1153 + 23.1153i 1.21828 + 1.21828i
\(361\) −18.7661 2.97225i −0.987688 0.156434i
\(362\) 28.5977 24.4247i 1.50306 1.28374i
\(363\) 23.9065 + 20.4181i 1.25477 + 1.07167i
\(364\) 0 0
\(365\) 0 0
\(366\) −15.9128 38.4170i −0.831777 2.00809i
\(367\) −16.9303 33.2275i −0.883753 1.73446i −0.646333 0.763055i \(-0.723698\pi\)
−0.237419 0.971407i \(-0.576302\pi\)
\(368\) 6.34638i 0.330828i
\(369\) −33.0661 1.40861i −1.72135 0.0733294i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(374\) 0 0
\(375\) 20.7528 24.2984i 1.07167 1.25477i
\(376\) −2.51002 2.93885i −0.129444 0.151560i
\(377\) 0 0
\(378\) 8.04547 8.04547i 0.413814 0.413814i
\(379\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(380\) 0 0
\(381\) −9.22734 + 38.4346i −0.472731 + 1.96907i
\(382\) 0 0
\(383\) 28.1607 + 11.6646i 1.43895 + 0.596031i 0.959543 0.281563i \(-0.0908529\pi\)
0.479404 + 0.877594i \(0.340853\pi\)
\(384\) 27.5707 16.8954i 1.40696 0.862188i
\(385\) 0 0
\(386\) 0 0
\(387\) −20.8692 + 64.2289i −1.06084 + 3.26494i
\(388\) 0 0
\(389\) 5.09350 9.99655i 0.258251 0.506845i −0.725082 0.688663i \(-0.758198\pi\)
0.983332 + 0.181818i \(0.0581980\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.2980 + 4.64571i 0.722159 + 0.234644i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −11.7557 16.1803i −0.587785 0.809017i
\(401\) −26.9778 26.9778i −1.34721 1.34721i −0.888679 0.458531i \(-0.848376\pi\)
−0.458531 0.888679i \(-0.651624\pi\)
\(402\) 31.2051 + 4.94240i 1.55637 + 0.246505i
\(403\) 0 0
\(404\) 29.6500 + 25.3235i 1.47514 + 1.25989i
\(405\) −0.772933 4.88011i −0.0384074 0.242495i
\(406\) 14.9957 + 10.8950i 0.744224 + 0.540710i
\(407\) 0 0
\(408\) 0 0
\(409\) 14.7087i 0.727300i 0.931536 + 0.363650i \(0.118470\pi\)
−0.931536 + 0.363650i \(0.881530\pi\)
\(410\) 19.8462 + 4.01588i 0.980135 + 0.198330i
\(411\) 0 0
\(412\) 36.1267 18.4075i 1.77983 0.906871i
\(413\) 0 0
\(414\) 6.81686 9.38261i 0.335031 0.461130i
\(415\) −3.24386 + 0.513778i −0.159235 + 0.0252204i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) −13.4220 + 9.75164i −0.654926 + 0.475831i
\(421\) 32.8250 + 20.1152i 1.59979 + 0.980355i 0.980814 + 0.194948i \(0.0624538\pi\)
0.618980 + 0.785407i \(0.287546\pi\)
\(422\) 0 0
\(423\) 0.554135 + 7.04095i 0.0269430 + 0.342343i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.9841 3.11722i 0.628346 0.150853i
\(428\) 12.7858 39.3507i 0.618026 1.90209i
\(429\) 0 0
\(430\) 18.7580 36.8146i 0.904591 1.77536i
\(431\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(432\) −24.7175 1.94531i −1.18922 0.0935937i
\(433\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(434\) 0 0
\(435\) 61.3757 19.9422i 2.94274 0.956153i
\(436\) 15.5684 + 25.4053i 0.745591 + 1.21669i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.972370 0.233445i \(-0.925000\pi\)
0.972370 + 0.233445i \(0.0750000\pi\)
\(440\) 0 0
\(441\) −16.1483 22.2263i −0.768969 1.05839i
\(442\) 0 0
\(443\) −15.5914 2.46944i −0.740770 0.117326i −0.225367 0.974274i \(-0.572358\pi\)
−0.515404 + 0.856948i \(0.672358\pi\)
\(444\) 0 0
\(445\) −12.5569 10.7246i −0.595254 0.508395i
\(446\) −5.72665 36.1567i −0.271165 1.71207i
\(447\) −55.2270 40.1248i −2.61215 1.89784i
\(448\) 3.97371 + 9.59338i 0.187740 + 0.453245i
\(449\) 7.25537 + 14.2395i 0.342402 + 0.672002i 0.996426 0.0844719i \(-0.0269203\pi\)
−0.654024 + 0.756474i \(0.726920\pi\)
\(450\) 36.5485i 1.72291i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 33.1385 13.7264i 1.55527 0.644213i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.649448 0.760406i \(-0.275000\pi\)
−0.649448 + 0.760406i \(0.725000\pi\)
\(458\) −10.3892 12.1642i −0.485455 0.568395i
\(459\) 0 0
\(460\) −5.01726 + 5.01726i −0.233931 + 0.233931i
\(461\) 14.1181 10.2574i 0.657545 0.477734i −0.208288 0.978068i \(-0.566789\pi\)
0.865833 + 0.500333i \(0.166789\pi\)
\(462\) 0 0
\(463\) 9.33414 38.8795i 0.433794 1.80688i −0.142681 0.989769i \(-0.545572\pi\)
0.576475 0.817115i \(-0.304428\pi\)
\(464\) −3.16906 40.2667i −0.147120 1.86934i
\(465\) 0 0
\(466\) 0 0
\(467\) 12.3994 + 38.1615i 0.573777 + 1.76590i 0.640306 + 0.768120i \(0.278808\pi\)
−0.0665285 + 0.997785i \(0.521192\pi\)
\(468\) 0 0
\(469\) −3.13517 + 9.64908i −0.144769 + 0.445553i
\(470\) 0.339024 4.30771i 0.0156380 0.198700i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(480\) 35.1535 + 8.43962i 1.60453 + 0.385214i
\(481\) 0 0
\(482\) −21.2439 29.2398i −0.967634 1.33183i
\(483\) 4.16193 + 4.16193i 0.189375 + 0.189375i
\(484\) 21.7291 + 3.44156i 0.987688 + 0.156434i
\(485\) 0 0
\(486\) −13.2056 11.2787i −0.599020 0.511611i
\(487\) −5.79720 36.6021i −0.262696 1.65860i −0.667809 0.744332i \(-0.732768\pi\)
0.405113 0.914267i \(-0.367232\pi\)
\(488\) −23.5406 17.1033i −1.06563 0.774228i
\(489\) −7.27613 17.5661i −0.329038 0.794368i
\(490\) 7.63082 + 14.9763i 0.344725 + 0.676562i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) −31.9936 + 17.7787i −1.44238 + 0.801525i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 3.85562 4.51436i 0.172775 0.202293i
\(499\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(500\) 3.49798 22.0854i 0.156434 0.987688i
\(501\) 46.1342 46.1342i 2.06113 2.06113i
\(502\) 0 0
\(503\) 34.4591 + 21.1166i 1.53646 + 0.941542i 0.994899 + 0.100879i \(0.0321657\pi\)
0.541559 + 0.840663i \(0.317834\pi\)
\(504\) 4.42977 18.4513i 0.197318 0.821888i
\(505\) 3.42040 + 43.4603i 0.152206 + 1.93396i
\(506\) 0 0
\(507\) −31.6801 + 19.4136i −1.40696 + 0.862188i
\(508\) 8.54724 + 26.3057i 0.379223 + 1.16713i
\(509\) −11.2511 + 2.70116i −0.498698 + 0.119727i −0.474988 0.879992i \(-0.657548\pi\)
−0.0237097 + 0.999719i \(0.507548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 10.2726 20.1612i 0.453990 0.891007i
\(513\) 0 0
\(514\) 0 0
\(515\) 43.1130 + 14.0083i 1.89979 + 0.617278i
\(516\) 17.4354 + 72.6238i 0.767552 + 3.19708i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.50754 1.56232i −0.285100 0.0684465i 0.0883730 0.996087i \(-0.471833\pi\)
−0.373473 + 0.927641i \(0.621833\pi\)
\(522\) −38.5667 + 62.9351i −1.68802 + 2.75459i
\(523\) −26.8011 36.8885i −1.17193 1.61302i −0.649584 0.760290i \(-0.725057\pi\)
−0.522346 0.852734i \(-0.674943\pi\)
\(524\) 0 0
\(525\) −18.3204 2.90166i −0.799566 0.126639i
\(526\) −9.12194 + 7.79087i −0.397735 + 0.339698i
\(527\) 0 0
\(528\) 0 0
\(529\) −16.5709 12.0394i −0.720472 0.523454i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 29.8500 1.29174
\(535\) 41.2175 21.0014i 1.78199 0.907969i
\(536\) 20.4255 8.46053i 0.882248 0.365439i
\(537\) 0 0
\(538\) −41.5342 + 6.57837i −1.79067 + 0.283614i
\(539\) 0 0
\(540\) −18.0030 21.0788i −0.774725 0.907087i
\(541\) −6.89001 + 43.5018i −0.296225 + 1.87029i 0.169746 + 0.985488i \(0.445705\pi\)
−0.465971 + 0.884800i \(0.654295\pi\)
\(542\) 0 0
\(543\) −61.4901 + 44.6752i −2.63879 + 1.91720i
\(544\) 0 0
\(545\) −7.77677 + 32.3926i −0.333120 + 1.38755i
\(546\) 0 0
\(547\) 30.2236 + 12.5190i 1.29227 + 0.535274i 0.919660 0.392716i \(-0.128464\pi\)
0.372606 + 0.927990i \(0.378464\pi\)
\(548\) 0 0
\(549\) 16.4317 + 50.5715i 0.701287 + 2.15834i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.00631 12.7864i 0.0428314 0.544225i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.233445 0.972370i \(-0.575000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −4.44274 + 10.7257i −0.187740 + 0.453245i
\(561\) 0 0
\(562\) 28.0829 + 6.74211i 1.18461 + 0.284399i
\(563\) −2.68120 + 4.37532i −0.112999 + 0.184398i −0.904140 0.427236i \(-0.859487\pi\)
0.791141 + 0.611634i \(0.209487\pi\)
\(564\) 4.59107 + 6.31906i 0.193319 + 0.266080i
\(565\) 0 0
\(566\) 28.3028 + 4.48273i 1.18966 + 0.188423i
\(567\) −2.18090 + 1.86267i −0.0915894 + 0.0782247i
\(568\) 0 0
\(569\) −6.39776 40.3939i −0.268208 1.69340i −0.642659 0.766153i \(-0.722169\pi\)
0.374451 0.927247i \(-0.377831\pi\)
\(570\) 0 0
\(571\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −4.03169 11.0406i −0.168279 0.460824i
\(575\) −7.93298 −0.330828
\(576\) −36.8431 + 18.7725i −1.53513 + 0.782186i
\(577\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(578\) −14.1313 + 19.4501i −0.587785 + 0.809017i
\(579\) 0 0
\(580\) 29.3283 34.3390i 1.21779 1.42585i
\(581\) 1.23814 + 1.44967i 0.0513666 + 0.0601425i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.76739 35.1631i −0.114223 1.45134i −0.740669 0.671871i \(-0.765491\pi\)
0.626446 0.779465i \(-0.284509\pi\)
\(588\) −28.0703 11.6271i −1.15760 0.479494i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −47.6218 3.74792i −1.95066 0.153521i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(600\) 21.1192 + 34.4634i 0.862188 + 1.40696i
\(601\) 18.3308 44.2544i 0.747727 1.80517i 0.176655 0.984273i \(-0.443472\pi\)
0.571072 0.820900i \(-0.306528\pi\)
\(602\) −23.9100 + 1.88176i −0.974500 + 0.0766948i
\(603\) −39.2852 9.43155i −1.59982 0.384082i
\(604\) 0 0
\(605\) 14.4576 + 19.8992i 0.587785 + 0.809017i
\(606\) −55.7220 55.7220i −2.26355 2.26355i
\(607\) −33.9806 5.38200i −1.37923 0.218449i −0.577626 0.816302i \(-0.696021\pi\)
−0.801606 + 0.597853i \(0.796021\pi\)
\(608\) 0 0
\(609\) −28.4850 24.3285i −1.15427 0.985841i
\(610\) −5.08918 32.1318i −0.206055 1.30098i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(614\) 47.6492i 1.92297i
\(615\) −39.3485 11.2379i −1.58668 0.453156i
\(616\) 0 0
\(617\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(618\) −75.7051 + 31.3581i −3.04531 + 1.26141i
\(619\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(620\) 0 0
\(621\) −6.38698 + 7.47820i −0.256301 + 0.300090i
\(622\) 0 0
\(623\) −1.49951 + 9.46756i −0.0600768 + 0.379310i
\(624\) 0 0
\(625\) 20.2254 14.6946i 0.809017 0.587785i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 18.0891 11.0850i 0.720687 0.441638i
\(631\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.0393 + 27.5537i −0.557133 + 1.09343i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 24.0600 7.81758i 0.951057 0.309017i
\(641\) −15.4731 25.2498i −0.611150 0.997307i −0.997197 0.0748272i \(-0.976159\pi\)
0.386046 0.922479i \(-0.373841\pi\)
\(642\) −31.9999 + 77.2545i −1.26293 + 3.04899i
\(643\) −26.3002 + 2.06987i −1.03718 + 0.0816277i −0.585597 0.810602i \(-0.699140\pi\)
−0.451581 + 0.892230i \(0.649140\pi\)
\(644\) 4.00492 + 0.961497i 0.157816 + 0.0378883i
\(645\) −43.6302 + 71.1980i −1.71794 + 2.80342i
\(646\) 0 0
\(647\) 9.19770 + 9.19770i 0.361599 + 0.361599i 0.864401 0.502803i \(-0.167698\pi\)
−0.502803 + 0.864401i \(0.667698\pi\)
\(648\) 6.17290 + 0.977692i 0.242495 + 0.0384074i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −10.7639 7.82045i −0.421548 0.306273i
\(653\) 0 0 −0.382683 0.923880i \(-0.625000\pi\)
0.382683 + 0.923880i \(0.375000\pi\)
\(654\) −27.3381 53.6540i −1.06900 2.09804i
\(655\) 0 0
\(656\) −12.5886 + 22.3053i −0.491501 + 0.870877i
\(657\) 0 0
\(658\) −2.23486 + 1.13872i −0.0871238 + 0.0443918i
\(659\) 0 0 0.923880 0.382683i \(-0.125000\pi\)
−0.923880 + 0.382683i \(0.875000\pi\)
\(660\) 0 0
\(661\) 2.20318 0.348950i 0.0856938 0.0135726i −0.113440 0.993545i \(-0.536187\pi\)
0.199134 + 0.979972i \(0.436187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.649883 4.10320i 0.0252204 0.159235i
\(665\) 0 0
\(666\) 0 0
\(667\) −13.6603 8.37103i −0.528928 0.324127i
\(668\) 10.6580 44.3938i 0.412371 1.71765i
\(669\) 5.80463 + 73.7548i 0.224420 + 2.85152i
\(670\) 22.8364 + 9.45916i 0.882248 + 0.365439i
\(671\) 0 0
\(672\) −6.48487 19.9584i −0.250159 0.769911i
\(673\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(674\) 0 0
\(675\) 2.43164 30.8969i 0.0935937 1.18922i
\(676\) −11.8038 + 23.1662i −0.453990 + 0.891007i
\(677\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −68.9425 + 22.4008i −2.64188 + 0.858399i
\(682\) 0 0
\(683\) −2.61399 + 6.31072i −0.100021 + 0.241473i −0.965967 0.258665i \(-0.916717\pi\)
0.865946 + 0.500138i \(0.166717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 11.8116 19.2748i 0.450970 0.735917i
\(687\) 19.0029 + 26.1552i 0.725004 + 0.997882i
\(688\) 36.9560 + 36.9560i 1.40893 + 1.40893i
\(689\) 0 0
\(690\) 10.9041 9.31297i 0.415111 0.354539i
\(691\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −14.1796 34.2326i −0.538251 1.29945i
\(695\) 0 0
\(696\) 81.6300i 3.09418i
\(697\) 0 0
\(698\) 42.2531 1.59930
\(699\) 0 0
\(700\) −11.9917 + 4.96714i −0.453245 + 0.187740i
\(701\) −10.6564 + 14.6673i −0.402486 + 0.553975i −0.961366 0.275274i \(-0.911231\pi\)
0.558879 + 0.829249i \(0.311231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −1.36610 + 8.62521i −0.0514503 + 0.324844i
\(706\) 0 0
\(707\) 20.4726 14.8742i 0.769951 0.559402i
\(708\) 0 0
\(709\) 9.89662 41.2224i 0.371675 1.54814i −0.402652 0.915353i \(-0.631911\pi\)
0.774327 0.632786i \(-0.218089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 17.8099 10.9139i 0.667456 0.409018i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.996917 0.0784591i \(-0.975000\pi\)
0.996917 + 0.0784591i \(0.0250000\pi\)
\(720\) −43.9679 14.2860i −1.63859 0.532410i
\(721\) −6.14284 25.5868i −0.228771 0.952901i
\(722\) 25.5549 8.30330i 0.951057 0.309017i
\(723\) 38.1649 + 62.2794i 1.41937 + 2.31620i
\(724\) −20.3535 + 49.1378i −0.756433 + 1.82619i
\(725\) 50.3334 3.96133i 1.86934 0.147120i
\(726\) −43.2331 10.3794i −1.60453 0.385214i
\(727\) 25.1079 40.9724i 0.931202 1.51958i 0.0786754 0.996900i \(-0.474931\pi\)
0.852527 0.522684i \(-0.175069\pi\)
\(728\) 0 0
\(729\) 29.5051 + 29.5051i 1.09278 + 1.09278i
\(730\) 0 0
\(731\) 0 0
\(732\) 44.7165 + 38.1915i 1.65277 + 1.41160i
\(733\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(734\) 42.6668 + 30.9992i 1.57486 + 1.14420i
\(735\) −12.9995 31.3836i −0.479494 1.15760i
\(736\) −4.07463 7.99691i −0.150193 0.294770i
\(737\) 0 0
\(738\) 42.5701 19.4548i 1.56703 0.716141i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.1217 + 6.67142i −1.54530 + 0.244751i −0.870095 0.492883i \(-0.835943\pi\)
−0.675201 + 0.737634i \(0.735943\pi\)
\(744\) 0 0
\(745\) −34.6853 40.6113i −1.27077 1.48788i
\(746\) 0 0
\(747\) −5.36819 + 5.36819i −0.196412 + 0.196412i
\(748\) 0 0
\(749\) −22.8954 14.0303i −0.836580 0.512657i
\(750\) −10.5495 + 43.9419i −0.385214 + 1.60453i
\(751\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(752\) 5.04967 + 2.09164i 0.184142 + 0.0762743i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −4.97238 + 15.3034i −0.180844 + 0.556579i
\(757\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.0382 + 16.5833i 1.85013 + 0.601145i 0.996815 + 0.0797547i \(0.0254137\pi\)
0.853319 + 0.521390i \(0.174586\pi\)
\(762\) −13.0494 54.3548i −0.472731 1.96907i
\(763\) 18.3909 5.97555i 0.665794 0.216329i
\(764\) 0 0
\(765\) 0 0
\(766\) −42.9737 + 3.38210i −1.55270 + 0.122200i
\(767\) 0 0
\(768\) −23.8937 + 38.9909i −0.862188 + 1.40696i
\(769\) −29.8682 41.1101i −1.07708 1.48247i −0.862700 0.505715i \(-0.831229\pi\)
−0.214375 0.976751i \(-0.568771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(774\) −14.9407 94.3321i −0.537033 3.39070i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 15.8666i 0.568846i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 36.7901 50.6372i 1.31477 1.80963i
\(784\) −20.9993 + 3.32596i −0.749974 + 0.118784i
\(785\) 0 0
\(786\) 0 0
\(787\) 8.61249 54.3771i 0.307002 1.93834i −0.0368739 0.999320i \(-0.511740\pi\)
0.343876 0.939015i \(-0.388260\pi\)
\(788\) 0 0
\(789\) 19.6138 14.2503i 0.698270 0.507323i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 25.2015 + 12.8408i 0.891007 + 0.453990i
\(801\) −38.0536 2.99488i −1.34456 0.105819i
\(802\) 51.3149 + 16.6732i 1.81199 + 0.588752i
\(803\) 0 0
\(804\) −42.4939 + 13.8071i −1.49865 + 0.486939i
\(805\) 2.40604 + 3.92630i 0.0848018 + 0.138384i
\(806\) 0 0
\(807\) 84.7242 6.66794i 2.98243 0.234723i
\(808\) −53.6198 12.8730i −1.88634 0.452870i
\(809\) 29.6173 48.3310i 1.04129 1.69923i 0.448875 0.893594i \(-0.351825\pi\)
0.592413 0.805634i \(-0.298175\pi\)
\(810\) 4.10718 + 5.65304i 0.144311 + 0.198628i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) −25.8907 4.10068i −0.908585 0.143906i
\(813\) 0 0
\(814\) 0 0
\(815\) −2.32702 14.6922i −0.0815121 0.514647i
\(816\) 0 0
\(817\) 0 0
\(818\) −9.44359 18.5341i −0.330187 0.648029i
\(819\) 0 0
\(820\) −27.5861 + 7.68176i −0.963347 + 0.268259i
\(821\) 57.2334 1.99746 0.998730 0.0503864i \(-0.0160453\pi\)
0.998730 + 0.0503864i \(0.0160453\pi\)
\(822\) 0 0
\(823\) −29.2602 + 12.1200i −1.01995 + 0.422476i −0.829074 0.559139i \(-0.811132\pi\)
−0.190872 + 0.981615i \(0.561132\pi\)
\(824\) −33.7040 + 46.3895i −1.17413 + 1.61606i
\(825\) 0 0
\(826\) 0 0
\(827\) 29.0536 + 34.0175i 1.01029 + 1.18290i 0.983062 + 0.183274i \(0.0586694\pi\)
0.0272324 + 0.999629i \(0.491331\pi\)
\(828\) −2.56574 + 16.1995i −0.0891658 + 0.562971i
\(829\) 30.9751 30.9751i 1.07581 1.07581i 0.0789305 0.996880i \(-0.474849\pi\)
0.996880 0.0789305i \(-0.0251505\pi\)
\(830\) 3.75764 2.73009i 0.130430 0.0947627i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 43.5223 26.6705i 1.50615 0.922970i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.0784591 0.996917i \(-0.475000\pi\)
−0.0784591 + 0.996917i \(0.525000\pi\)
\(840\) 10.6517 20.9052i 0.367520 0.721299i
\(841\) 65.0130 + 33.1258i 2.24183 + 1.14227i
\(842\) −54.2767 4.27167i −1.87050 0.147211i
\(843\) −55.5111 18.0366i −1.91190 0.621215i
\(844\) 0 0
\(845\) −27.6462 + 8.98278i −0.951057 + 0.309017i
\(846\) −5.21882 8.51634i −0.179427 0.292798i
\(847\) 5.46385 13.1909i 0.187740 0.453245i
\(848\) 0 0
\(849\) −56.3124 13.5194i −1.93264 0.463985i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(854\) −14.3596 + 12.2643i −0.491375 + 0.419674i
\(855\) 0 0
\(856\) 9.15363 + 57.7938i 0.312865 + 1.97535i
\(857\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(858\) 0 0
\(859\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(860\) 58.4325i 1.99253i
\(861\) 6.37221 + 22.8833i 0.217164 + 0.779861i
\(862\) 0 0
\(863\) −8.45283 + 4.30693i −0.287738 + 0.146610i −0.591902 0.806010i \(-0.701623\pi\)
0.304164 + 0.952620i \(0.401623\pi\)
\(864\) 32.3948 13.4184i 1.10209 0.456502i
\(865\) 0 0
\(866\) 0 0
\(867\) 31.5552 36.9464i 1.07167 1.25477i
\(868\) 0 0
\(869\) 0 0
\(870\) −64.5342 + 64.5342i −2.18791 + 2.18791i
\(871\) 0 0
\(872\) −35.9286 22.0171i −1.21669 0.745591i
\(873\) 0 0
\(874\) 0 0
\(875\) −13.4072 5.55343i −0.453245 0.187740i
\(876\) 0 0
\(877\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.25188 2.45696i 0.0421770 0.0827771i −0.868956 0.494889i \(-0.835209\pi\)
0.911133 + 0.412112i \(0.135209\pi\)
\(882\) 34.6183 + 17.6389i 1.16566 + 0.593932i
\(883\) 42.3539 + 3.33333i 1.42532 + 0.112175i 0.767525 0.641019i \(-0.221488\pi\)
0.657798 + 0.753194i \(0.271488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 21.2318 6.89863i 0.713296 0.231764i
\(887\) 1.60597 + 2.62071i 0.0539234 + 0.0879949i 0.878466 0.477805i \(-0.158567\pi\)
−0.824543 + 0.565800i \(0.808567\pi\)
\(888\) 0 0
\(889\) 17.8953 1.40839i 0.600189 0.0472359i
\(890\) 22.7082 + 5.45176i 0.761182 + 0.182744i
\(891\) 0 0
\(892\) 30.4300 + 41.8833i 1.01887 + 1.40236i
\(893\) 0 0
\(894\) 95.3518 + 15.1022i 3.18904 + 0.505095i
\(895\) 0 0
\(896\) −11.1665 9.53709i −0.373046 0.318612i
\(897\) 0 0
\(898\) −18.2846 13.2845i −0.610165 0.443311i
\(899\) 0 0
\(900\) −23.4656 46.0538i −0.782186 1.53513i
\(901\) 0 0
\(902\) 0 0
\(903\) 48.4712 1.61302
\(904\) 0 0
\(905\) −54.9377 + 22.7559i −1.82619 + 0.756433i
\(906\) 0 0
\(907\) 54.7779 8.67597i 1.81887 0.288081i 0.848410 0.529340i \(-0.177561\pi\)
0.970461 + 0.241260i \(0.0775605\pi\)
\(908\) −32.9441 + 38.5726i −1.09329 + 1.28008i
\(909\) 65.4452 + 76.6265i 2.17068 + 2.54154i
\(910\) 0 0
\(911\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 5.15847 + 65.5446i 0.170534 + 2.16684i
\(916\) 20.9010 + 8.65749i 0.690590 + 0.286052i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.972370 0.233445i \(-0.0750000\pi\)
−0.972370 + 0.233445i \(0.925000\pi\)
\(920\) 3.10083 9.54339i 0.102231 0.314636i
\(921\) 7.55548 96.0014i 0.248961 3.16335i
\(922\) −11.2042 + 21.9894i −0.368990 + 0.724183i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 13.2005 + 54.9839i 0.433794 + 1.80688i
\(927\) 99.6571 32.3806i 3.27317 1.06352i
\(928\) 29.8461 + 48.7044i 0.979746 + 1.59880i
\(929\) 9.00122 21.7309i 0.295320 0.712967i −0.704674 0.709532i \(-0.748907\pi\)
0.999994 0.00343511i \(-0.00109343\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −40.1254 40.1254i −1.31294 1.31294i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.760406 0.649448i \(-0.775000\pi\)
0.760406 + 0.649448i \(0.225000\pi\)
\(938\) −2.24454 14.1715i −0.0732867 0.462714i
\(939\) 0 0
\(940\) 2.33852 + 5.64570i 0.0762743 + 0.184142i
\(941\) −26.7467 52.4933i −0.871917 1.71123i −0.684580 0.728937i \(-0.740015\pi\)
−0.187336 0.982296i \(-0.559985\pi\)
\(942\) 0 0
\(943\) 4.22273 + 9.23998i 0.137511 + 0.300895i
\(944\) 0 0
\(945\) −16.0294 + 8.16739i −0.521437 + 0.265685i
\(946\) 0 0
\(947\) −29.2177 + 40.2148i −0.949449 + 1.30680i 0.00232231 + 0.999997i \(0.499261\pi\)
−0.951772 + 0.306808i \(0.900739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −49.7146 + 11.9354i −1.60453 + 0.385214i
\(961\) −9.57953 + 29.4828i −0.309017 + 0.951057i
\(962\) 0 0
\(963\) 48.5453 95.2756i 1.56435 3.07021i
\(964\) 45.5420 + 23.2048i 1.46681 + 0.747376i
\(965\) 0 0
\(966\) −7.91647 2.57222i −0.254708 0.0827597i
\(967\) −13.7379 57.2226i −0.441782 1.84015i −0.535473 0.844552i \(-0.679867\pi\)
0.0936918 0.995601i \(-0.470133\pi\)
\(968\) −29.5899 + 9.61435i −0.951057 + 0.309017i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.996917 0.0784591i \(-0.0250000\pi\)
−0.996917 + 0.0784591i \(0.975000\pi\)
\(972\) 23.8814 + 5.73343i 0.765998 + 0.183900i
\(973\) 0 0
\(974\) 30.8049 + 42.3993i 0.987052 + 1.35856i
\(975\) 0 0
\(976\) 40.6439 + 6.43736i 1.30098 + 0.206055i
\(977\) 0 0 0.760406 0.649448i \(-0.225000\pi\)
−0.760406 + 0.649448i \(0.775000\pi\)
\(978\) 20.4466 + 17.4631i 0.653811 + 0.558407i
\(979\) 0 0
\(980\) −19.2308 13.9720i −0.614305 0.446319i
\(981\) 29.4682 + 71.1425i 0.940847 + 2.27141i
\(982\) 0 0
\(983\) 33.0869i 1.05531i −0.849459 0.527655i \(-0.823072\pi\)
0.849459 0.527655i \(-0.176928\pi\)
\(984\) 28.8997 42.9436i 0.921289 1.36899i
\(985\) 0 0
\(986\) 0 0
\(987\) 4.68324 1.93986i 0.149069 0.0617465i
\(988\) 0 0
\(989\) 20.4751 3.24294i 0.651070 0.103119i
\(990\) 0 0
\(991\) 0 0 −0.649448 0.760406i \(-0.725000\pi\)
0.649448 + 0.760406i \(0.275000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −1.95998 + 8.16388i −0.0621042 + 0.258683i
\(997\) 0 0 −0.0784591 0.996917i \(-0.525000\pi\)
0.0784591 + 0.996917i \(0.475000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.cc.f.719.1 yes 16
4.3 odd 2 820.2.cc.a.719.1 yes 16
5.4 even 2 820.2.cc.a.719.1 yes 16
20.19 odd 2 CM 820.2.cc.f.719.1 yes 16
41.28 odd 40 inner 820.2.cc.f.479.1 yes 16
164.151 even 40 820.2.cc.a.479.1 16
205.69 odd 40 820.2.cc.a.479.1 16
820.479 even 40 inner 820.2.cc.f.479.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.cc.a.479.1 16 164.151 even 40
820.2.cc.a.479.1 16 205.69 odd 40
820.2.cc.a.719.1 yes 16 4.3 odd 2
820.2.cc.a.719.1 yes 16 5.4 even 2
820.2.cc.f.479.1 yes 16 41.28 odd 40 inner
820.2.cc.f.479.1 yes 16 820.479 even 40 inner
820.2.cc.f.719.1 yes 16 1.1 even 1 trivial
820.2.cc.f.719.1 yes 16 20.19 odd 2 CM