Properties

Label 820.2.bq.a.49.8
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.8
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05623 + 1.05623i) q^{3} +(2.03080 - 0.935877i) q^{5} +(0.269596 - 1.70217i) q^{7} +0.768736i q^{9} +(2.98613 - 1.52151i) q^{11} +(0.0489169 - 0.00774768i) q^{13} +(-1.15649 + 3.13350i) q^{15} +(-2.41624 + 1.23114i) q^{17} +(0.213336 - 1.34695i) q^{19} +(1.51313 + 2.08264i) q^{21} +(4.22431 - 5.81426i) q^{23} +(3.24827 - 3.80115i) q^{25} +(-3.98067 - 3.98067i) q^{27} +(-0.765424 + 1.50223i) q^{29} +(1.81286 - 5.57941i) q^{31} +(-1.54698 + 4.76112i) q^{33} +(-1.04552 - 3.70906i) q^{35} +(-0.311494 + 0.101211i) q^{37} +(-0.0434844 + 0.0598511i) q^{39} +(4.30013 + 4.74435i) q^{41} +(7.60719 + 5.52695i) q^{43} +(0.719443 + 1.56115i) q^{45} +(0.914242 + 5.77229i) q^{47} +(3.83271 + 1.24532i) q^{49} +(1.25175 - 3.85249i) q^{51} +(12.1868 + 6.20947i) q^{53} +(4.64027 - 5.88452i) q^{55} +(1.19736 + 1.64803i) q^{57} +(-7.12083 - 5.17359i) q^{59} +(0.0274724 + 0.0378125i) q^{61} +(1.30852 + 0.207249i) q^{63} +(0.0920895 - 0.0615142i) q^{65} +(0.417773 - 0.819926i) q^{67} +(1.67936 + 10.6031i) q^{69} +(0.506397 - 0.258022i) q^{71} -5.65011 q^{73} +(0.583974 + 7.44584i) q^{75} +(-1.78481 - 5.49308i) q^{77} +(-1.10490 - 1.10490i) q^{79} +6.10284 q^{81} -13.0918i q^{83} +(-3.75470 + 4.76149i) q^{85} +(-0.778239 - 2.39517i) q^{87} +(2.33573 + 0.369944i) q^{89} -0.0853535i q^{91} +(3.97836 + 7.80797i) q^{93} +(-0.827339 - 2.93504i) q^{95} +(-0.686286 + 1.34691i) q^{97} +(1.16964 + 2.29554i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.05623 + 1.05623i −0.609817 + 0.609817i −0.942898 0.333081i \(-0.891912\pi\)
0.333081 + 0.942898i \(0.391912\pi\)
\(4\) 0 0
\(5\) 2.03080 0.935877i 0.908200 0.418537i
\(6\) 0 0
\(7\) 0.269596 1.70217i 0.101898 0.643358i −0.882888 0.469584i \(-0.844404\pi\)
0.984786 0.173774i \(-0.0555962\pi\)
\(8\) 0 0
\(9\) 0.768736i 0.256245i
\(10\) 0 0
\(11\) 2.98613 1.52151i 0.900351 0.458752i 0.0583924 0.998294i \(-0.481403\pi\)
0.841959 + 0.539542i \(0.181403\pi\)
\(12\) 0 0
\(13\) 0.0489169 0.00774768i 0.0135671 0.00214882i −0.149647 0.988739i \(-0.547814\pi\)
0.163214 + 0.986591i \(0.447814\pi\)
\(14\) 0 0
\(15\) −1.15649 + 3.13350i −0.298605 + 0.809067i
\(16\) 0 0
\(17\) −2.41624 + 1.23114i −0.586024 + 0.298594i −0.721752 0.692152i \(-0.756663\pi\)
0.135727 + 0.990746i \(0.456663\pi\)
\(18\) 0 0
\(19\) 0.213336 1.34695i 0.0489427 0.309012i −0.951057 0.309015i \(-0.900001\pi\)
1.00000 2.53092e-6i \(8.05616e-7\pi\)
\(20\) 0 0
\(21\) 1.51313 + 2.08264i 0.330192 + 0.454470i
\(22\) 0 0
\(23\) 4.22431 5.81426i 0.880829 1.21236i −0.0953614 0.995443i \(-0.530401\pi\)
0.976191 0.216915i \(-0.0695993\pi\)
\(24\) 0 0
\(25\) 3.24827 3.80115i 0.649654 0.760230i
\(26\) 0 0
\(27\) −3.98067 3.98067i −0.766080 0.766080i
\(28\) 0 0
\(29\) −0.765424 + 1.50223i −0.142136 + 0.278957i −0.951090 0.308915i \(-0.900034\pi\)
0.808954 + 0.587872i \(0.200034\pi\)
\(30\) 0 0
\(31\) 1.81286 5.57941i 0.325599 1.00209i −0.645570 0.763701i \(-0.723380\pi\)
0.971169 0.238390i \(-0.0766197\pi\)
\(32\) 0 0
\(33\) −1.54698 + 4.76112i −0.269295 + 0.828805i
\(34\) 0 0
\(35\) −1.04552 3.70906i −0.176725 0.626946i
\(36\) 0 0
\(37\) −0.311494 + 0.101211i −0.0512094 + 0.0166389i −0.334510 0.942392i \(-0.608571\pi\)
0.283300 + 0.959031i \(0.408571\pi\)
\(38\) 0 0
\(39\) −0.0434844 + 0.0598511i −0.00696308 + 0.00958385i
\(40\) 0 0
\(41\) 4.30013 + 4.74435i 0.671568 + 0.740943i
\(42\) 0 0
\(43\) 7.60719 + 5.52695i 1.16009 + 0.842852i 0.989789 0.142541i \(-0.0455273\pi\)
0.170297 + 0.985393i \(0.445527\pi\)
\(44\) 0 0
\(45\) 0.719443 + 1.56115i 0.107248 + 0.232722i
\(46\) 0 0
\(47\) 0.914242 + 5.77229i 0.133356 + 0.841976i 0.960153 + 0.279475i \(0.0901605\pi\)
−0.826797 + 0.562500i \(0.809840\pi\)
\(48\) 0 0
\(49\) 3.83271 + 1.24532i 0.547530 + 0.177903i
\(50\) 0 0
\(51\) 1.25175 3.85249i 0.175280 0.539456i
\(52\) 0 0
\(53\) 12.1868 + 6.20947i 1.67398 + 0.852936i 0.992658 + 0.120954i \(0.0385953\pi\)
0.681324 + 0.731982i \(0.261405\pi\)
\(54\) 0 0
\(55\) 4.64027 5.88452i 0.625694 0.793469i
\(56\) 0 0
\(57\) 1.19736 + 1.64803i 0.158595 + 0.218287i
\(58\) 0 0
\(59\) −7.12083 5.17359i −0.927054 0.673544i 0.0182159 0.999834i \(-0.494201\pi\)
−0.945270 + 0.326290i \(0.894201\pi\)
\(60\) 0 0
\(61\) 0.0274724 + 0.0378125i 0.00351748 + 0.00484140i 0.810772 0.585362i \(-0.199048\pi\)
−0.807255 + 0.590203i \(0.799048\pi\)
\(62\) 0 0
\(63\) 1.30852 + 0.207249i 0.164858 + 0.0261109i
\(64\) 0 0
\(65\) 0.0920895 0.0615142i 0.0114223 0.00762990i
\(66\) 0 0
\(67\) 0.417773 0.819926i 0.0510391 0.100170i −0.864078 0.503358i \(-0.832098\pi\)
0.915117 + 0.403188i \(0.132098\pi\)
\(68\) 0 0
\(69\) 1.67936 + 10.6031i 0.202172 + 1.27646i
\(70\) 0 0
\(71\) 0.506397 0.258022i 0.0600983 0.0306216i −0.423683 0.905810i \(-0.639263\pi\)
0.483781 + 0.875189i \(0.339263\pi\)
\(72\) 0 0
\(73\) −5.65011 −0.661295 −0.330648 0.943754i \(-0.607267\pi\)
−0.330648 + 0.943754i \(0.607267\pi\)
\(74\) 0 0
\(75\) 0.583974 + 7.44584i 0.0674315 + 0.859772i
\(76\) 0 0
\(77\) −1.78481 5.49308i −0.203398 0.625994i
\(78\) 0 0
\(79\) −1.10490 1.10490i −0.124311 0.124311i 0.642214 0.766525i \(-0.278016\pi\)
−0.766525 + 0.642214i \(0.778016\pi\)
\(80\) 0 0
\(81\) 6.10284 0.678093
\(82\) 0 0
\(83\) 13.0918i 1.43701i −0.695523 0.718504i \(-0.744827\pi\)
0.695523 0.718504i \(-0.255173\pi\)
\(84\) 0 0
\(85\) −3.75470 + 4.76149i −0.407255 + 0.516456i
\(86\) 0 0
\(87\) −0.778239 2.39517i −0.0834360 0.256790i
\(88\) 0 0
\(89\) 2.33573 + 0.369944i 0.247587 + 0.0392140i 0.278995 0.960293i \(-0.409999\pi\)
−0.0314072 + 0.999507i \(0.509999\pi\)
\(90\) 0 0
\(91\) 0.0853535i 0.00894747i
\(92\) 0 0
\(93\) 3.97836 + 7.80797i 0.412537 + 0.809649i
\(94\) 0 0
\(95\) −0.827339 2.93504i −0.0848832 0.301129i
\(96\) 0 0
\(97\) −0.686286 + 1.34691i −0.0696818 + 0.136758i −0.923220 0.384272i \(-0.874452\pi\)
0.853538 + 0.521031i \(0.174452\pi\)
\(98\) 0 0
\(99\) 1.16964 + 2.29554i 0.117553 + 0.230711i
\(100\) 0 0
\(101\) 0.826260 5.21680i 0.0822159 0.519091i −0.911869 0.410482i \(-0.865360\pi\)
0.994085 0.108609i \(-0.0346396\pi\)
\(102\) 0 0
\(103\) 2.71672 1.97382i 0.267687 0.194486i −0.445842 0.895112i \(-0.647096\pi\)
0.713529 + 0.700626i \(0.247096\pi\)
\(104\) 0 0
\(105\) 5.02195 + 2.81332i 0.490093 + 0.274552i
\(106\) 0 0
\(107\) 9.00432 + 12.3934i 0.870481 + 1.19811i 0.978968 + 0.204016i \(0.0653994\pi\)
−0.108487 + 0.994098i \(0.534601\pi\)
\(108\) 0 0
\(109\) −8.15603 + 8.15603i −0.781206 + 0.781206i −0.980034 0.198828i \(-0.936286\pi\)
0.198828 + 0.980034i \(0.436286\pi\)
\(110\) 0 0
\(111\) 0.222109 0.435913i 0.0210817 0.0413751i
\(112\) 0 0
\(113\) −12.3238 4.00426i −1.15933 0.376689i −0.334679 0.942332i \(-0.608628\pi\)
−0.824650 + 0.565643i \(0.808628\pi\)
\(114\) 0 0
\(115\) 3.13728 15.7610i 0.292553 1.46972i
\(116\) 0 0
\(117\) 0.00595592 + 0.0376042i 0.000550625 + 0.00347651i
\(118\) 0 0
\(119\) 1.44419 + 4.44475i 0.132388 + 0.407450i
\(120\) 0 0
\(121\) 0.136331 0.187644i 0.0123938 0.0170586i
\(122\) 0 0
\(123\) −9.55310 0.469195i −0.861374 0.0423059i
\(124\) 0 0
\(125\) 3.03916 10.7593i 0.271831 0.962345i
\(126\) 0 0
\(127\) 7.41147 2.40813i 0.657662 0.213687i 0.0388724 0.999244i \(-0.487623\pi\)
0.618789 + 0.785557i \(0.287623\pi\)
\(128\) 0 0
\(129\) −13.8727 + 2.19723i −1.22143 + 0.193455i
\(130\) 0 0
\(131\) −15.1163 4.91158i −1.32072 0.429127i −0.437975 0.898987i \(-0.644304\pi\)
−0.882741 + 0.469861i \(0.844304\pi\)
\(132\) 0 0
\(133\) −2.23522 0.726267i −0.193818 0.0629754i
\(134\) 0 0
\(135\) −11.8093 4.35851i −1.01639 0.375121i
\(136\) 0 0
\(137\) −8.43563 8.43563i −0.720704 0.720704i 0.248044 0.968749i \(-0.420212\pi\)
−0.968749 + 0.248044i \(0.920212\pi\)
\(138\) 0 0
\(139\) −11.8160 + 8.58481i −1.00222 + 0.728154i −0.962563 0.271060i \(-0.912626\pi\)
−0.0396552 + 0.999213i \(0.512626\pi\)
\(140\) 0 0
\(141\) −7.06255 5.13124i −0.594774 0.432129i
\(142\) 0 0
\(143\) 0.134284 0.0975631i 0.0112294 0.00815863i
\(144\) 0 0
\(145\) −0.148519 + 3.76706i −0.0123338 + 0.312838i
\(146\) 0 0
\(147\) −5.36360 + 2.73289i −0.442382 + 0.225405i
\(148\) 0 0
\(149\) −6.39865 3.26027i −0.524198 0.267092i 0.171805 0.985131i \(-0.445040\pi\)
−0.696003 + 0.718039i \(0.745040\pi\)
\(150\) 0 0
\(151\) 1.77132 + 11.1837i 0.144148 + 0.910117i 0.948687 + 0.316217i \(0.102413\pi\)
−0.804539 + 0.593900i \(0.797587\pi\)
\(152\) 0 0
\(153\) −0.946419 1.85745i −0.0765134 0.150166i
\(154\) 0 0
\(155\) −1.54009 13.0273i −0.123703 1.04637i
\(156\) 0 0
\(157\) 1.02618 6.47906i 0.0818983 0.517086i −0.912300 0.409523i \(-0.865695\pi\)
0.994198 0.107563i \(-0.0343047\pi\)
\(158\) 0 0
\(159\) −19.4307 + 6.31343i −1.54096 + 0.500688i
\(160\) 0 0
\(161\) −8.75798 8.75798i −0.690225 0.690225i
\(162\) 0 0
\(163\) 5.62570i 0.440639i −0.975428 0.220319i \(-0.929290\pi\)
0.975428 0.220319i \(-0.0707099\pi\)
\(164\) 0 0
\(165\) 1.31422 + 11.1167i 0.102312 + 0.865430i
\(166\) 0 0
\(167\) −13.0643 + 13.0643i −1.01095 + 1.01095i −0.0110070 + 0.999939i \(0.503504\pi\)
−0.999939 + 0.0110070i \(0.996496\pi\)
\(168\) 0 0
\(169\) −12.3614 + 4.01646i −0.950877 + 0.308959i
\(170\) 0 0
\(171\) 1.03545 + 0.163999i 0.0791829 + 0.0125413i
\(172\) 0 0
\(173\) 19.3413 1.47049 0.735245 0.677801i \(-0.237067\pi\)
0.735245 + 0.677801i \(0.237067\pi\)
\(174\) 0 0
\(175\) −5.59447 6.55387i −0.422902 0.495426i
\(176\) 0 0
\(177\) 12.9858 2.05675i 0.976072 0.154595i
\(178\) 0 0
\(179\) −12.1999 6.21616i −0.911863 0.464617i −0.0658801 0.997828i \(-0.520985\pi\)
−0.845983 + 0.533210i \(0.820985\pi\)
\(180\) 0 0
\(181\) 6.66341 + 13.0777i 0.495287 + 0.972056i 0.994416 + 0.105528i \(0.0336533\pi\)
−0.499129 + 0.866528i \(0.666347\pi\)
\(182\) 0 0
\(183\) −0.0689562 0.0109216i −0.00509739 0.000807347i
\(184\) 0 0
\(185\) −0.537861 + 0.497059i −0.0395443 + 0.0365445i
\(186\) 0 0
\(187\) −5.34202 + 7.35266i −0.390647 + 0.537680i
\(188\) 0 0
\(189\) −7.84893 + 5.70258i −0.570926 + 0.414802i
\(190\) 0 0
\(191\) 1.52242 1.52242i 0.110158 0.110158i −0.649879 0.760037i \(-0.725181\pi\)
0.760037 + 0.649879i \(0.225181\pi\)
\(192\) 0 0
\(193\) 0.407418 + 0.207590i 0.0293266 + 0.0149426i 0.468592 0.883415i \(-0.344761\pi\)
−0.439266 + 0.898357i \(0.644761\pi\)
\(194\) 0 0
\(195\) −0.0322947 + 0.162242i −0.00231267 + 0.0116184i
\(196\) 0 0
\(197\) 4.86268 14.9658i 0.346451 1.06627i −0.614351 0.789033i \(-0.710582\pi\)
0.960802 0.277235i \(-0.0894180\pi\)
\(198\) 0 0
\(199\) −17.7318 + 2.80844i −1.25697 + 0.199085i −0.749164 0.662384i \(-0.769545\pi\)
−0.507810 + 0.861469i \(0.669545\pi\)
\(200\) 0 0
\(201\) 0.424768 + 1.30730i 0.0299608 + 0.0922099i
\(202\) 0 0
\(203\) 2.35069 + 1.70787i 0.164986 + 0.119869i
\(204\) 0 0
\(205\) 13.1728 + 5.61041i 0.920030 + 0.391848i
\(206\) 0 0
\(207\) 4.46963 + 3.24738i 0.310661 + 0.225708i
\(208\) 0 0
\(209\) −1.41235 4.34676i −0.0976942 0.300672i
\(210\) 0 0
\(211\) 8.60558 1.36299i 0.592432 0.0938321i 0.146983 0.989139i \(-0.453044\pi\)
0.445450 + 0.895307i \(0.353044\pi\)
\(212\) 0 0
\(213\) −0.262342 + 0.807407i −0.0179754 + 0.0553226i
\(214\) 0 0
\(215\) 20.6212 + 4.10471i 1.40635 + 0.279939i
\(216\) 0 0
\(217\) −9.00833 4.58997i −0.611525 0.311588i
\(218\) 0 0
\(219\) 5.96784 5.96784i 0.403269 0.403269i
\(220\) 0 0
\(221\) −0.108657 + 0.0789437i −0.00730904 + 0.00531033i
\(222\) 0 0
\(223\) −13.2324 + 18.2129i −0.886108 + 1.21962i 0.0885836 + 0.996069i \(0.471766\pi\)
−0.974692 + 0.223554i \(0.928234\pi\)
\(224\) 0 0
\(225\) 2.92208 + 2.49706i 0.194806 + 0.166471i
\(226\) 0 0
\(227\) 7.47786 + 1.18438i 0.496323 + 0.0786098i 0.399578 0.916699i \(-0.369157\pi\)
0.0967452 + 0.995309i \(0.469157\pi\)
\(228\) 0 0
\(229\) 7.01373 + 13.7652i 0.463480 + 0.909631i 0.997922 + 0.0644262i \(0.0205217\pi\)
−0.534442 + 0.845205i \(0.679478\pi\)
\(230\) 0 0
\(231\) 7.68715 + 3.91680i 0.505778 + 0.257707i
\(232\) 0 0
\(233\) −26.6486 + 4.22072i −1.74581 + 0.276509i −0.946099 0.323878i \(-0.895013\pi\)
−0.799709 + 0.600387i \(0.795013\pi\)
\(234\) 0 0
\(235\) 7.25880 + 10.8667i 0.473512 + 0.708868i
\(236\) 0 0
\(237\) 2.33407 0.151614
\(238\) 0 0
\(239\) −28.7274 4.54997i −1.85822 0.294313i −0.876038 0.482242i \(-0.839823\pi\)
−0.982183 + 0.187929i \(0.939823\pi\)
\(240\) 0 0
\(241\) −4.54916 + 1.47811i −0.293037 + 0.0952135i −0.451846 0.892096i \(-0.649235\pi\)
0.158809 + 0.987309i \(0.449235\pi\)
\(242\) 0 0
\(243\) 5.49598 5.49598i 0.352568 0.352568i
\(244\) 0 0
\(245\) 8.94893 1.05795i 0.571726 0.0675898i
\(246\) 0 0
\(247\) 0.0675416i 0.00429757i
\(248\) 0 0
\(249\) 13.8280 + 13.8280i 0.876312 + 0.876312i
\(250\) 0 0
\(251\) 8.52149 2.76880i 0.537872 0.174765i −0.0274690 0.999623i \(-0.508745\pi\)
0.565341 + 0.824858i \(0.308745\pi\)
\(252\) 0 0
\(253\) 3.76788 23.7894i 0.236884 1.49563i
\(254\) 0 0
\(255\) −1.06341 8.99510i −0.0665931 0.563295i
\(256\) 0 0
\(257\) −2.24185 4.39988i −0.139843 0.274457i 0.810454 0.585802i \(-0.199220\pi\)
−0.950297 + 0.311345i \(0.899220\pi\)
\(258\) 0 0
\(259\) 0.0882995 + 0.557501i 0.00548666 + 0.0346414i
\(260\) 0 0
\(261\) −1.15482 0.588409i −0.0714815 0.0364216i
\(262\) 0 0
\(263\) −6.08759 + 3.10178i −0.375377 + 0.191264i −0.631492 0.775382i \(-0.717557\pi\)
0.256115 + 0.966646i \(0.417557\pi\)
\(264\) 0 0
\(265\) 30.5602 + 1.20485i 1.87730 + 0.0740135i
\(266\) 0 0
\(267\) −2.85783 + 2.07634i −0.174896 + 0.127070i
\(268\) 0 0
\(269\) 1.67349 + 1.21586i 0.102034 + 0.0741322i 0.637632 0.770341i \(-0.279914\pi\)
−0.535598 + 0.844473i \(0.679914\pi\)
\(270\) 0 0
\(271\) −0.633741 + 0.460440i −0.0384970 + 0.0279697i −0.606867 0.794803i \(-0.707574\pi\)
0.568370 + 0.822773i \(0.307574\pi\)
\(272\) 0 0
\(273\) 0.0901533 + 0.0901533i 0.00545632 + 0.00545632i
\(274\) 0 0
\(275\) 3.91626 16.2930i 0.236159 0.982504i
\(276\) 0 0
\(277\) 28.0611 + 9.11759i 1.68603 + 0.547823i 0.986065 0.166358i \(-0.0532008\pi\)
0.699961 + 0.714181i \(0.253201\pi\)
\(278\) 0 0
\(279\) 4.28909 + 1.39361i 0.256781 + 0.0834333i
\(280\) 0 0
\(281\) −6.85665 + 1.08599i −0.409034 + 0.0647846i −0.357561 0.933890i \(-0.616392\pi\)
−0.0514727 + 0.998674i \(0.516392\pi\)
\(282\) 0 0
\(283\) −6.26856 + 2.03678i −0.372627 + 0.121074i −0.489343 0.872091i \(-0.662763\pi\)
0.116716 + 0.993165i \(0.462763\pi\)
\(284\) 0 0
\(285\) 3.97396 + 2.22623i 0.235397 + 0.131870i
\(286\) 0 0
\(287\) 9.23497 6.04048i 0.545123 0.356558i
\(288\) 0 0
\(289\) −5.66983 + 7.80385i −0.333519 + 0.459050i
\(290\) 0 0
\(291\) −0.697777 2.14754i −0.0409044 0.125891i
\(292\) 0 0
\(293\) −3.24760 20.5045i −0.189727 1.19789i −0.880226 0.474554i \(-0.842609\pi\)
0.690499 0.723333i \(-0.257391\pi\)
\(294\) 0 0
\(295\) −19.3028 3.84228i −1.12385 0.223706i
\(296\) 0 0
\(297\) −17.9434 5.83017i −1.04118 0.338301i
\(298\) 0 0
\(299\) 0.161593 0.317144i 0.00934517 0.0183409i
\(300\) 0 0
\(301\) 11.4587 11.4587i 0.660466 0.660466i
\(302\) 0 0
\(303\) 4.63744 + 6.38289i 0.266414 + 0.366687i
\(304\) 0 0
\(305\) 0.0911787 + 0.0510787i 0.00522088 + 0.00292476i
\(306\) 0 0
\(307\) −10.2392 + 7.43922i −0.584383 + 0.424579i −0.840301 0.542120i \(-0.817622\pi\)
0.255919 + 0.966698i \(0.417622\pi\)
\(308\) 0 0
\(309\) −0.784686 + 4.95431i −0.0446392 + 0.281841i
\(310\) 0 0
\(311\) −3.15059 6.18337i −0.178653 0.350627i 0.784262 0.620429i \(-0.213042\pi\)
−0.962916 + 0.269802i \(0.913042\pi\)
\(312\) 0 0
\(313\) −13.6761 + 26.8408i −0.773018 + 1.51713i 0.0808973 + 0.996722i \(0.474221\pi\)
−0.853916 + 0.520411i \(0.825779\pi\)
\(314\) 0 0
\(315\) 2.85129 0.803730i 0.160652 0.0452851i
\(316\) 0 0
\(317\) 9.53349 + 18.7105i 0.535454 + 1.05089i 0.987311 + 0.158798i \(0.0507618\pi\)
−0.451857 + 0.892091i \(0.649238\pi\)
\(318\) 0 0
\(319\) 5.65045i 0.316364i
\(320\) 0 0
\(321\) −22.6010 3.57965i −1.26146 0.199796i
\(322\) 0 0
\(323\) 1.14281 + 3.51721i 0.0635876 + 0.195703i
\(324\) 0 0
\(325\) 0.129445 0.211107i 0.00718033 0.0117101i
\(326\) 0 0
\(327\) 17.2294i 0.952786i
\(328\) 0 0
\(329\) 10.0719 0.555280
\(330\) 0 0
\(331\) 15.0474 + 15.0474i 0.827078 + 0.827078i 0.987112 0.160034i \(-0.0511603\pi\)
−0.160034 + 0.987112i \(0.551160\pi\)
\(332\) 0 0
\(333\) −0.0778043 0.239457i −0.00426365 0.0131222i
\(334\) 0 0
\(335\) 0.0810624 2.05609i 0.00442891 0.112336i
\(336\) 0 0
\(337\) −11.4441 −0.623399 −0.311700 0.950181i \(-0.600898\pi\)
−0.311700 + 0.950181i \(0.600898\pi\)
\(338\) 0 0
\(339\) 17.2463 8.78743i 0.936691 0.477268i
\(340\) 0 0
\(341\) −3.07568 19.4191i −0.166558 1.05160i
\(342\) 0 0
\(343\) 8.62983 16.9370i 0.465967 0.914512i
\(344\) 0 0
\(345\) 13.3336 + 19.9610i 0.717858 + 1.07467i
\(346\) 0 0
\(347\) 18.4132 + 2.91636i 0.988472 + 0.156559i 0.629676 0.776858i \(-0.283188\pi\)
0.358796 + 0.933416i \(0.383188\pi\)
\(348\) 0 0
\(349\) 7.38263 + 10.1613i 0.395183 + 0.543923i 0.959527 0.281617i \(-0.0908707\pi\)
−0.564344 + 0.825540i \(0.690871\pi\)
\(350\) 0 0
\(351\) −0.225563 0.163881i −0.0120397 0.00874733i
\(352\) 0 0
\(353\) 4.58895 + 6.31615i 0.244245 + 0.336175i 0.913486 0.406871i \(-0.133380\pi\)
−0.669240 + 0.743046i \(0.733380\pi\)
\(354\) 0 0
\(355\) 0.786913 0.997917i 0.0417650 0.0529639i
\(356\) 0 0
\(357\) −6.22010 3.16930i −0.329203 0.167737i
\(358\) 0 0
\(359\) −1.06775 + 3.28620i −0.0563537 + 0.173439i −0.975271 0.221010i \(-0.929065\pi\)
0.918918 + 0.394449i \(0.129065\pi\)
\(360\) 0 0
\(361\) 16.3013 + 5.29662i 0.857963 + 0.278769i
\(362\) 0 0
\(363\) 0.0541982 + 0.342194i 0.00284467 + 0.0179605i
\(364\) 0 0
\(365\) −11.4742 + 5.28781i −0.600588 + 0.276777i
\(366\) 0 0
\(367\) −5.34005 3.87977i −0.278748 0.202522i 0.439623 0.898182i \(-0.355112\pi\)
−0.718371 + 0.695660i \(0.755112\pi\)
\(368\) 0 0
\(369\) −3.64715 + 3.30567i −0.189863 + 0.172086i
\(370\) 0 0
\(371\) 13.8551 19.0698i 0.719319 0.990057i
\(372\) 0 0
\(373\) −16.2236 + 5.27137i −0.840027 + 0.272941i −0.697263 0.716815i \(-0.745599\pi\)
−0.142764 + 0.989757i \(0.545599\pi\)
\(374\) 0 0
\(375\) 8.15432 + 14.5745i 0.421087 + 0.752622i
\(376\) 0 0
\(377\) −0.0258034 + 0.0794147i −0.00132894 + 0.00409007i
\(378\) 0 0
\(379\) 5.90337 18.1687i 0.303236 0.933264i −0.677094 0.735897i \(-0.736761\pi\)
0.980330 0.197367i \(-0.0632391\pi\)
\(380\) 0 0
\(381\) −5.28470 + 10.3718i −0.270743 + 0.531364i
\(382\) 0 0
\(383\) −6.14689 6.14689i −0.314091 0.314091i 0.532401 0.846492i \(-0.321290\pi\)
−0.846492 + 0.532401i \(0.821290\pi\)
\(384\) 0 0
\(385\) −8.76542 9.48496i −0.446727 0.483398i
\(386\) 0 0
\(387\) −4.24877 + 5.84792i −0.215977 + 0.297267i
\(388\) 0 0
\(389\) −10.2865 14.1582i −0.521546 0.717847i 0.464267 0.885696i \(-0.346318\pi\)
−0.985813 + 0.167849i \(0.946318\pi\)
\(390\) 0 0
\(391\) −3.04880 + 19.2494i −0.154184 + 0.973482i
\(392\) 0 0
\(393\) 21.1541 10.7786i 1.06708 0.543707i
\(394\) 0 0
\(395\) −3.27788 1.20978i −0.164928 0.0608705i
\(396\) 0 0
\(397\) −7.99784 + 1.26673i −0.401400 + 0.0635756i −0.353871 0.935294i \(-0.615135\pi\)
−0.0475294 + 0.998870i \(0.515135\pi\)
\(398\) 0 0
\(399\) 3.12803 1.59381i 0.156597 0.0797903i
\(400\) 0 0
\(401\) 24.7028i 1.23360i −0.787121 0.616799i \(-0.788429\pi\)
0.787121 0.616799i \(-0.211571\pi\)
\(402\) 0 0
\(403\) 0.0454520 0.286973i 0.00226413 0.0142951i
\(404\) 0 0
\(405\) 12.3936 5.71150i 0.615844 0.283807i
\(406\) 0 0
\(407\) −0.776169 + 0.776169i −0.0384733 + 0.0384733i
\(408\) 0 0
\(409\) 25.5028 1.26103 0.630516 0.776176i \(-0.282843\pi\)
0.630516 + 0.776176i \(0.282843\pi\)
\(410\) 0 0
\(411\) 17.8200 0.878996
\(412\) 0 0
\(413\) −10.7261 + 10.7261i −0.527795 + 0.527795i
\(414\) 0 0
\(415\) −12.2523 26.5867i −0.601441 1.30509i
\(416\) 0 0
\(417\) 3.41287 21.5480i 0.167129 1.05521i
\(418\) 0 0
\(419\) 33.0764i 1.61589i −0.589260 0.807944i \(-0.700581\pi\)
0.589260 0.807944i \(-0.299419\pi\)
\(420\) 0 0
\(421\) −12.8768 + 6.56105i −0.627577 + 0.319766i −0.738694 0.674041i \(-0.764557\pi\)
0.111117 + 0.993807i \(0.464557\pi\)
\(422\) 0 0
\(423\) −4.43737 + 0.702811i −0.215752 + 0.0341718i
\(424\) 0 0
\(425\) −3.16886 + 13.1836i −0.153712 + 0.639496i
\(426\) 0 0
\(427\) 0.0717696 0.0365685i 0.00347318 0.00176967i
\(428\) 0 0
\(429\) −0.0387860 + 0.244885i −0.00187260 + 0.0118232i
\(430\) 0 0
\(431\) 13.9507 + 19.2014i 0.671979 + 0.924900i 0.999803 0.0198386i \(-0.00631524\pi\)
−0.327824 + 0.944739i \(0.606315\pi\)
\(432\) 0 0
\(433\) 0.882448 1.21459i 0.0424077 0.0583692i −0.787287 0.616587i \(-0.788515\pi\)
0.829694 + 0.558218i \(0.188515\pi\)
\(434\) 0 0
\(435\) −3.82203 4.13578i −0.183253 0.198295i
\(436\) 0 0
\(437\) −6.93033 6.93033i −0.331523 0.331523i
\(438\) 0 0
\(439\) −0.785443 + 1.54152i −0.0374871 + 0.0735727i −0.908990 0.416817i \(-0.863146\pi\)
0.871503 + 0.490390i \(0.163146\pi\)
\(440\) 0 0
\(441\) −0.957325 + 2.94634i −0.0455869 + 0.140302i
\(442\) 0 0
\(443\) −4.52313 + 13.9208i −0.214900 + 0.661395i 0.784260 + 0.620432i \(0.213043\pi\)
−0.999161 + 0.0409634i \(0.986957\pi\)
\(444\) 0 0
\(445\) 5.08962 1.43468i 0.241271 0.0680103i
\(446\) 0 0
\(447\) 10.2021 3.31486i 0.482542 0.156787i
\(448\) 0 0
\(449\) 14.3965 19.8151i 0.679415 0.935134i −0.320512 0.947244i \(-0.603855\pi\)
0.999927 + 0.0121104i \(0.00385496\pi\)
\(450\) 0 0
\(451\) 20.0593 + 7.62454i 0.944556 + 0.359026i
\(452\) 0 0
\(453\) −13.6835 9.94168i −0.642909 0.467101i
\(454\) 0 0
\(455\) −0.0798803 0.173335i −0.00374485 0.00812609i
\(456\) 0 0
\(457\) 1.03077 + 6.50801i 0.0482173 + 0.304432i 0.999997 0.00234961i \(-0.000747904\pi\)
−0.951780 + 0.306782i \(0.900748\pi\)
\(458\) 0 0
\(459\) 14.5190 + 4.71751i 0.677689 + 0.220195i
\(460\) 0 0
\(461\) 6.95363 21.4011i 0.323863 0.996748i −0.648088 0.761565i \(-0.724431\pi\)
0.971951 0.235183i \(-0.0755688\pi\)
\(462\) 0 0
\(463\) −29.2737 14.9157i −1.36046 0.693190i −0.387009 0.922076i \(-0.626492\pi\)
−0.973453 + 0.228886i \(0.926492\pi\)
\(464\) 0 0
\(465\) 15.3865 + 12.1331i 0.713533 + 0.562661i
\(466\) 0 0
\(467\) −13.6458 18.7818i −0.631453 0.869120i 0.366671 0.930351i \(-0.380498\pi\)
−0.998124 + 0.0612305i \(0.980498\pi\)
\(468\) 0 0
\(469\) −1.28302 0.932168i −0.0592443 0.0430435i
\(470\) 0 0
\(471\) 5.75952 + 7.92730i 0.265385 + 0.365271i
\(472\) 0 0
\(473\) 31.1253 + 4.92977i 1.43114 + 0.226671i
\(474\) 0 0
\(475\) −4.42700 5.18619i −0.203125 0.237959i
\(476\) 0 0
\(477\) −4.77345 + 9.36841i −0.218561 + 0.428950i
\(478\) 0 0
\(479\) 6.11320 + 38.5972i 0.279319 + 1.76355i 0.584631 + 0.811300i \(0.301239\pi\)
−0.305311 + 0.952253i \(0.598761\pi\)
\(480\) 0 0
\(481\) −0.0144532 + 0.00736428i −0.000659009 + 0.000335782i
\(482\) 0 0
\(483\) 18.5010 0.841823
\(484\) 0 0
\(485\) −0.133163 + 3.37759i −0.00604663 + 0.153368i
\(486\) 0 0
\(487\) 11.0318 + 33.9524i 0.499899 + 1.53853i 0.809181 + 0.587560i \(0.199911\pi\)
−0.309282 + 0.950970i \(0.600089\pi\)
\(488\) 0 0
\(489\) 5.94206 + 5.94206i 0.268709 + 0.268709i
\(490\) 0 0
\(491\) −8.54660 −0.385702 −0.192851 0.981228i \(-0.561773\pi\)
−0.192851 + 0.981228i \(0.561773\pi\)
\(492\) 0 0
\(493\) 4.57209i 0.205917i
\(494\) 0 0
\(495\) 4.52364 + 3.56715i 0.203323 + 0.160331i
\(496\) 0 0
\(497\) −0.302674 0.931534i −0.0135768 0.0417850i
\(498\) 0 0
\(499\) 25.5882 + 4.05278i 1.14549 + 0.181427i 0.700190 0.713956i \(-0.253099\pi\)
0.445296 + 0.895384i \(0.353099\pi\)
\(500\) 0 0
\(501\) 27.5980i 1.23299i
\(502\) 0 0
\(503\) 1.17328 + 2.30270i 0.0523141 + 0.102672i 0.915683 0.401900i \(-0.131650\pi\)
−0.863369 + 0.504572i \(0.831650\pi\)
\(504\) 0 0
\(505\) −3.20432 11.3675i −0.142590 0.505849i
\(506\) 0 0
\(507\) 8.81421 17.2989i 0.391453 0.768270i
\(508\) 0 0
\(509\) −0.516698 1.01408i −0.0229022 0.0449482i 0.879272 0.476320i \(-0.158030\pi\)
−0.902174 + 0.431372i \(0.858030\pi\)
\(510\) 0 0
\(511\) −1.52325 + 9.61742i −0.0673846 + 0.425450i
\(512\) 0 0
\(513\) −6.21099 + 4.51255i −0.274222 + 0.199234i
\(514\) 0 0
\(515\) 3.66987 6.55094i 0.161714 0.288669i
\(516\) 0 0
\(517\) 11.5126 + 15.8458i 0.506325 + 0.696896i
\(518\) 0 0
\(519\) −20.4289 + 20.4289i −0.896731 + 0.896731i
\(520\) 0 0
\(521\) 10.7340 21.0667i 0.470266 0.922949i −0.527057 0.849830i \(-0.676705\pi\)
0.997323 0.0731194i \(-0.0232954\pi\)
\(522\) 0 0
\(523\) −11.0380 3.58646i −0.482658 0.156825i 0.0575740 0.998341i \(-0.481663\pi\)
−0.540232 + 0.841516i \(0.681663\pi\)
\(524\) 0 0
\(525\) 12.8315 + 1.01335i 0.560012 + 0.0442264i
\(526\) 0 0
\(527\) 2.48870 + 15.7131i 0.108410 + 0.684472i
\(528\) 0 0
\(529\) −8.85346 27.2482i −0.384933 1.18470i
\(530\) 0 0
\(531\) 3.97713 5.47404i 0.172593 0.237553i
\(532\) 0 0
\(533\) 0.247107 + 0.198763i 0.0107034 + 0.00860938i
\(534\) 0 0
\(535\) 29.8846 + 16.7415i 1.29203 + 0.723798i
\(536\) 0 0
\(537\) 19.4517 6.32023i 0.839402 0.272738i
\(538\) 0 0
\(539\) 13.3397 2.11281i 0.574583 0.0910050i
\(540\) 0 0
\(541\) 5.18660 + 1.68523i 0.222989 + 0.0724536i 0.418381 0.908272i \(-0.362598\pi\)
−0.195392 + 0.980725i \(0.562598\pi\)
\(542\) 0 0
\(543\) −20.8512 6.77497i −0.894811 0.290742i
\(544\) 0 0
\(545\) −8.93020 + 24.1963i −0.382528 + 1.03645i
\(546\) 0 0
\(547\) 5.94877 + 5.94877i 0.254351 + 0.254351i 0.822752 0.568401i \(-0.192438\pi\)
−0.568401 + 0.822752i \(0.692438\pi\)
\(548\) 0 0
\(549\) −0.0290679 + 0.0211190i −0.00124059 + 0.000901339i
\(550\) 0 0
\(551\) 1.86014 + 1.35147i 0.0792446 + 0.0575745i
\(552\) 0 0
\(553\) −2.17860 + 1.58285i −0.0926435 + 0.0673095i
\(554\) 0 0
\(555\) 0.0430968 1.09312i 0.00182936 0.0464003i
\(556\) 0 0
\(557\) −41.5768 + 21.1844i −1.76166 + 0.897613i −0.812420 + 0.583072i \(0.801850\pi\)
−0.949244 + 0.314540i \(0.898150\pi\)
\(558\) 0 0
\(559\) 0.414942 + 0.211423i 0.0175502 + 0.00894225i
\(560\) 0 0
\(561\) −2.12371 13.4086i −0.0896630 0.566110i
\(562\) 0 0
\(563\) 2.44411 + 4.79684i 0.103007 + 0.202163i 0.936758 0.349978i \(-0.113811\pi\)
−0.833751 + 0.552141i \(0.813811\pi\)
\(564\) 0 0
\(565\) −28.7747 + 3.40176i −1.21056 + 0.143113i
\(566\) 0 0
\(567\) 1.64530 10.3880i 0.0690962 0.436256i
\(568\) 0 0
\(569\) 29.9795 9.74094i 1.25681 0.408362i 0.396452 0.918055i \(-0.370241\pi\)
0.860356 + 0.509694i \(0.170241\pi\)
\(570\) 0 0
\(571\) 26.7167 + 26.7167i 1.11806 + 1.11806i 0.992026 + 0.126033i \(0.0402244\pi\)
0.126033 + 0.992026i \(0.459776\pi\)
\(572\) 0 0
\(573\) 3.21606i 0.134353i
\(574\) 0 0
\(575\) −8.37920 34.9435i −0.349437 1.45725i
\(576\) 0 0
\(577\) −11.7622 + 11.7622i −0.489668 + 0.489668i −0.908201 0.418534i \(-0.862544\pi\)
0.418534 + 0.908201i \(0.362544\pi\)
\(578\) 0 0
\(579\) −0.649593 + 0.211065i −0.0269961 + 0.00877158i
\(580\) 0 0
\(581\) −22.2843 3.52949i −0.924510 0.146428i
\(582\) 0 0
\(583\) 45.8390 1.89846
\(584\) 0 0
\(585\) 0.0472882 + 0.0707925i 0.00195513 + 0.00292691i
\(586\) 0 0
\(587\) −4.10563 + 0.650268i −0.169458 + 0.0268394i −0.240587 0.970628i \(-0.577340\pi\)
0.0711290 + 0.997467i \(0.477340\pi\)
\(588\) 0 0
\(589\) −7.12845 3.63212i −0.293722 0.149659i
\(590\) 0 0
\(591\) 10.6713 + 20.9435i 0.438957 + 0.861501i
\(592\) 0 0
\(593\) 38.1825 + 6.04752i 1.56797 + 0.248342i 0.879133 0.476576i \(-0.158122\pi\)
0.688835 + 0.724918i \(0.258122\pi\)
\(594\) 0 0
\(595\) 7.09259 + 7.67480i 0.290768 + 0.314636i
\(596\) 0 0
\(597\) 15.7626 21.6953i 0.645119 0.887930i
\(598\) 0 0
\(599\) −20.9617 + 15.2295i −0.856470 + 0.622262i −0.926922 0.375253i \(-0.877556\pi\)
0.0704524 + 0.997515i \(0.477556\pi\)
\(600\) 0 0
\(601\) −31.8591 + 31.8591i −1.29956 + 1.29956i −0.370877 + 0.928682i \(0.620943\pi\)
−0.928682 + 0.370877i \(0.879057\pi\)
\(602\) 0 0
\(603\) 0.630307 + 0.321157i 0.0256681 + 0.0130785i
\(604\) 0 0
\(605\) 0.101250 0.508656i 0.00411638 0.0206798i
\(606\) 0 0
\(607\) −1.27025 + 3.90944i −0.0515580 + 0.158679i −0.973520 0.228600i \(-0.926585\pi\)
0.921962 + 0.387279i \(0.126585\pi\)
\(608\) 0 0
\(609\) −4.28679 + 0.678961i −0.173710 + 0.0275129i
\(610\) 0 0
\(611\) 0.0894438 + 0.275280i 0.00361851 + 0.0111366i
\(612\) 0 0
\(613\) 26.9194 + 19.5581i 1.08726 + 0.789943i 0.978935 0.204173i \(-0.0654504\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(614\) 0 0
\(615\) −19.8395 + 7.98768i −0.800006 + 0.322094i
\(616\) 0 0
\(617\) 38.7720 + 28.1695i 1.56090 + 1.13406i 0.935266 + 0.353945i \(0.115160\pi\)
0.625635 + 0.780116i \(0.284840\pi\)
\(618\) 0 0
\(619\) −8.95735 27.5679i −0.360026 1.10805i −0.953037 0.302853i \(-0.902061\pi\)
0.593011 0.805194i \(-0.297939\pi\)
\(620\) 0 0
\(621\) −39.9602 + 6.32908i −1.60355 + 0.253977i
\(622\) 0 0
\(623\) 1.25941 3.87607i 0.0504572 0.155291i
\(624\) 0 0
\(625\) −3.89750 24.6943i −0.155900 0.987773i
\(626\) 0 0
\(627\) 6.08297 + 3.09943i 0.242931 + 0.123779i
\(628\) 0 0
\(629\) 0.628041 0.628041i 0.0250417 0.0250417i
\(630\) 0 0
\(631\) −20.6466 + 15.0006i −0.821928 + 0.597165i −0.917264 0.398280i \(-0.869607\pi\)
0.0953363 + 0.995445i \(0.469607\pi\)
\(632\) 0 0
\(633\) −7.64987 + 10.5291i −0.304055 + 0.418496i
\(634\) 0 0
\(635\) 12.7975 11.8267i 0.507852 0.469326i
\(636\) 0 0
\(637\) 0.197133 + 0.0312228i 0.00781069 + 0.00123709i
\(638\) 0 0
\(639\) 0.198351 + 0.389286i 0.00784665 + 0.0153999i
\(640\) 0 0
\(641\) −34.5696 17.6141i −1.36542 0.695715i −0.390985 0.920397i \(-0.627866\pi\)
−0.974432 + 0.224682i \(0.927866\pi\)
\(642\) 0 0
\(643\) −3.21315 + 0.508912i −0.126714 + 0.0200695i −0.219469 0.975619i \(-0.570433\pi\)
0.0927552 + 0.995689i \(0.470433\pi\)
\(644\) 0 0
\(645\) −26.1164 + 17.4453i −1.02833 + 0.686908i
\(646\) 0 0
\(647\) −20.1395 −0.791766 −0.395883 0.918301i \(-0.629561\pi\)
−0.395883 + 0.918301i \(0.629561\pi\)
\(648\) 0 0
\(649\) −29.1354 4.61459i −1.14366 0.181139i
\(650\) 0 0
\(651\) 14.3630 4.66682i 0.562930 0.182907i
\(652\) 0 0
\(653\) 15.4321 15.4321i 0.603904 0.603904i −0.337442 0.941346i \(-0.609562\pi\)
0.941346 + 0.337442i \(0.109562\pi\)
\(654\) 0 0
\(655\) −35.2947 + 4.17257i −1.37908 + 0.163036i
\(656\) 0 0
\(657\) 4.34345i 0.169454i
\(658\) 0 0
\(659\) −9.57918 9.57918i −0.373152 0.373152i 0.495472 0.868624i \(-0.334995\pi\)
−0.868624 + 0.495472i \(0.834995\pi\)
\(660\) 0 0
\(661\) 9.64409 3.13355i 0.375111 0.121881i −0.115393 0.993320i \(-0.536813\pi\)
0.490504 + 0.871439i \(0.336813\pi\)
\(662\) 0 0
\(663\) 0.0313839 0.198150i 0.00121885 0.00769551i
\(664\) 0 0
\(665\) −5.21898 + 0.616991i −0.202383 + 0.0239259i
\(666\) 0 0
\(667\) 5.50097 + 10.7963i 0.212998 + 0.418033i
\(668\) 0 0
\(669\) −5.26051 33.2136i −0.203383 1.28411i
\(670\) 0 0
\(671\) 0.139568 + 0.0711135i 0.00538797 + 0.00274531i
\(672\) 0 0
\(673\) 10.6918 5.44773i 0.412137 0.209994i −0.235613 0.971847i \(-0.575710\pi\)
0.647751 + 0.761852i \(0.275710\pi\)
\(674\) 0 0
\(675\) −28.0614 + 2.20084i −1.08008 + 0.0847105i
\(676\) 0 0
\(677\) 1.56643 1.13807i 0.0602026 0.0437398i −0.557277 0.830327i \(-0.688154\pi\)
0.617480 + 0.786587i \(0.288154\pi\)
\(678\) 0 0
\(679\) 2.10765 + 1.53130i 0.0808841 + 0.0587657i
\(680\) 0 0
\(681\) −9.14935 + 6.64739i −0.350604 + 0.254729i
\(682\) 0 0
\(683\) 10.4676 + 10.4676i 0.400532 + 0.400532i 0.878421 0.477888i \(-0.158598\pi\)
−0.477888 + 0.878421i \(0.658598\pi\)
\(684\) 0 0
\(685\) −25.0258 9.23633i −0.956185 0.352902i
\(686\) 0 0
\(687\) −21.9474 7.13116i −0.837347 0.272071i
\(688\) 0 0
\(689\) 0.644248 + 0.209329i 0.0245439 + 0.00797480i
\(690\) 0 0
\(691\) −9.03606 + 1.43117i −0.343748 + 0.0544443i −0.325922 0.945397i \(-0.605675\pi\)
−0.0178262 + 0.999841i \(0.505675\pi\)
\(692\) 0 0
\(693\) 4.22273 1.37205i 0.160408 0.0521198i
\(694\) 0 0
\(695\) −15.9615 + 28.4923i −0.605455 + 1.08077i
\(696\) 0 0
\(697\) −16.2311 6.16944i −0.614797 0.233684i
\(698\) 0 0
\(699\) 23.6891 32.6053i 0.896004 1.23324i
\(700\) 0 0
\(701\) −1.66990 5.13942i −0.0630712 0.194113i 0.914556 0.404460i \(-0.132541\pi\)
−0.977627 + 0.210347i \(0.932541\pi\)
\(702\) 0 0
\(703\) 0.0698729 + 0.441160i 0.00263531 + 0.0166387i
\(704\) 0 0
\(705\) −19.1448 3.81083i −0.721035 0.143524i
\(706\) 0 0
\(707\) −8.65710 2.81286i −0.325584 0.105789i
\(708\) 0 0
\(709\) −10.4586 + 20.5262i −0.392781 + 0.770877i −0.999715 0.0238757i \(-0.992399\pi\)
0.606934 + 0.794753i \(0.292399\pi\)
\(710\) 0 0
\(711\) 0.849377 0.849377i 0.0318541 0.0318541i
\(712\) 0 0
\(713\) −24.7821 34.1096i −0.928095 1.27741i
\(714\) 0 0
\(715\) 0.181397 0.323804i 0.00678384 0.0121096i
\(716\) 0 0
\(717\) 35.1487 25.5370i 1.31265 0.953698i
\(718\) 0 0
\(719\) −2.55030 + 16.1020i −0.0951101 + 0.600501i 0.893390 + 0.449282i \(0.148320\pi\)
−0.988500 + 0.151220i \(0.951680\pi\)
\(720\) 0 0
\(721\) −2.62734 5.15645i −0.0978473 0.192036i
\(722\) 0 0
\(723\) 3.24375 6.36621i 0.120636 0.236762i
\(724\) 0 0
\(725\) 3.22390 + 7.78914i 0.119733 + 0.289281i
\(726\) 0 0
\(727\) −19.9076 39.0709i −0.738333 1.44906i −0.887769 0.460288i \(-0.847746\pi\)
0.149437 0.988771i \(-0.452254\pi\)
\(728\) 0 0
\(729\) 29.9186i 1.10810i
\(730\) 0 0
\(731\) −25.1852 3.98895i −0.931509 0.147537i
\(732\) 0 0
\(733\) 2.39043 + 7.35699i 0.0882926 + 0.271737i 0.985448 0.169979i \(-0.0543700\pi\)
−0.897155 + 0.441716i \(0.854370\pi\)
\(734\) 0 0
\(735\) −8.33473 + 10.5696i −0.307431 + 0.389866i
\(736\) 0 0
\(737\) 3.08405i 0.113602i
\(738\) 0 0
\(739\) 32.4190 1.19255 0.596275 0.802780i \(-0.296647\pi\)
0.596275 + 0.802780i \(0.296647\pi\)
\(740\) 0 0
\(741\) 0.0713398 + 0.0713398i 0.00262073 + 0.00262073i
\(742\) 0 0
\(743\) 4.24905 + 13.0772i 0.155882 + 0.479757i 0.998249 0.0591477i \(-0.0188383\pi\)
−0.842367 + 0.538905i \(0.818838\pi\)
\(744\) 0 0
\(745\) −16.0456 0.632606i −0.587864 0.0231769i
\(746\) 0 0
\(747\) 10.0641 0.368227
\(748\) 0 0
\(749\) 23.5231 11.9856i 0.859516 0.437945i
\(750\) 0 0
\(751\) 2.11056 + 13.3255i 0.0770153 + 0.486255i 0.995804 + 0.0915067i \(0.0291683\pi\)
−0.918789 + 0.394749i \(0.870832\pi\)
\(752\) 0 0
\(753\) −6.07619 + 11.9252i −0.221429 + 0.434578i
\(754\) 0 0
\(755\) 14.0638 + 21.0541i 0.511833 + 0.766236i
\(756\) 0 0
\(757\) −45.2505 7.16698i −1.64466 0.260488i −0.735679 0.677330i \(-0.763137\pi\)
−0.908979 + 0.416842i \(0.863137\pi\)
\(758\) 0 0
\(759\) 21.1475 + 29.1070i 0.767605 + 1.05652i
\(760\) 0 0
\(761\) −9.58644 6.96496i −0.347508 0.252479i 0.400315 0.916378i \(-0.368901\pi\)
−0.747823 + 0.663898i \(0.768901\pi\)
\(762\) 0 0
\(763\) 11.6841 + 16.0818i 0.422992 + 0.582198i
\(764\) 0 0
\(765\) −3.66033 2.88638i −0.132340 0.104357i
\(766\) 0 0
\(767\) −0.388413 0.197906i −0.0140248 0.00714598i
\(768\) 0 0
\(769\) 6.31637 19.4398i 0.227774 0.701017i −0.770224 0.637773i \(-0.779856\pi\)
0.997998 0.0632433i \(-0.0201444\pi\)
\(770\) 0 0
\(771\) 7.01523 + 2.27939i 0.252647 + 0.0820901i
\(772\) 0 0
\(773\) 1.12679 + 7.11429i 0.0405279 + 0.255883i 0.999631 0.0271748i \(-0.00865106\pi\)
−0.959103 + 0.283058i \(0.908651\pi\)
\(774\) 0 0
\(775\) −15.3195 25.0144i −0.550293 0.898542i
\(776\) 0 0
\(777\) −0.682117 0.495587i −0.0244708 0.0177791i
\(778\) 0 0
\(779\) 7.30779 4.77993i 0.261829 0.171259i
\(780\) 0 0
\(781\) 1.11958 1.54098i 0.0400619 0.0551404i
\(782\) 0 0
\(783\) 9.02678 2.93298i 0.322591 0.104816i
\(784\) 0 0
\(785\) −3.97964 14.1180i −0.142039 0.503894i
\(786\) 0 0
\(787\) 2.68864 8.27479i 0.0958397 0.294964i −0.891632 0.452761i \(-0.850439\pi\)
0.987472 + 0.157797i \(0.0504391\pi\)
\(788\) 0 0
\(789\) 3.15371 9.70613i 0.112275 0.345547i
\(790\) 0 0
\(791\) −10.1384 + 19.8977i −0.360479 + 0.707480i
\(792\) 0 0
\(793\) 0.00163683 + 0.00163683i 5.81254e−5 + 5.81254e-5i
\(794\) 0 0
\(795\) −33.5513 + 31.0061i −1.18994 + 1.09967i
\(796\) 0 0
\(797\) 15.7085 21.6209i 0.556424 0.765852i −0.434442 0.900700i \(-0.643054\pi\)
0.990866 + 0.134847i \(0.0430544\pi\)
\(798\) 0 0
\(799\) −9.31551 12.8217i −0.329559 0.453599i
\(800\) 0 0
\(801\) −0.284389 + 1.79556i −0.0100484 + 0.0634431i
\(802\) 0 0
\(803\) −16.8719 + 8.59669i −0.595398 + 0.303370i
\(804\) 0 0
\(805\) −25.9821 9.58928i −0.915747 0.337978i
\(806\) 0 0
\(807\) −3.05182 + 0.483362i −0.107429 + 0.0170151i
\(808\) 0 0
\(809\) 39.9883 20.3750i 1.40591 0.716348i 0.423996 0.905664i \(-0.360627\pi\)
0.981916 + 0.189316i \(0.0606270\pi\)
\(810\) 0 0
\(811\) 24.6580i 0.865859i 0.901428 + 0.432930i \(0.142520\pi\)
−0.901428 + 0.432930i \(0.857480\pi\)
\(812\) 0 0
\(813\) 0.183047 1.15571i 0.00641973 0.0405326i
\(814\) 0 0
\(815\) −5.26496 11.4246i −0.184423 0.400188i
\(816\) 0 0
\(817\) 9.06743 9.06743i 0.317229 0.317229i
\(818\) 0 0
\(819\) 0.0656143 0.00229275
\(820\) 0 0
\(821\) −10.6531 −0.371794 −0.185897 0.982569i \(-0.559519\pi\)
−0.185897 + 0.982569i \(0.559519\pi\)
\(822\) 0 0
\(823\) 1.08650 1.08650i 0.0378729 0.0378729i −0.687917 0.725790i \(-0.741475\pi\)
0.725790 + 0.687917i \(0.241475\pi\)
\(824\) 0 0
\(825\) 13.0727 + 21.3457i 0.455134 + 0.743162i
\(826\) 0 0
\(827\) −0.500186 + 3.15805i −0.0173932 + 0.109816i −0.994858 0.101284i \(-0.967705\pi\)
0.977464 + 0.211101i \(0.0677048\pi\)
\(828\) 0 0
\(829\) 24.0797i 0.836321i −0.908373 0.418161i \(-0.862675\pi\)
0.908373 0.418161i \(-0.137325\pi\)
\(830\) 0 0
\(831\) −39.2694 + 20.0088i −1.36224 + 0.694096i
\(832\) 0 0
\(833\) −10.7939 + 1.70959i −0.373987 + 0.0592337i
\(834\) 0 0
\(835\) −14.3044 + 38.7575i −0.495023 + 1.34126i
\(836\) 0 0
\(837\) −29.4262 + 14.9934i −1.01712 + 0.518247i
\(838\) 0 0
\(839\) −5.09989 + 32.1994i −0.176068 + 1.11165i 0.728415 + 0.685136i \(0.240257\pi\)
−0.904482 + 0.426511i \(0.859743\pi\)
\(840\) 0 0
\(841\) 15.3750 + 21.1618i 0.530171 + 0.729718i
\(842\) 0 0
\(843\) 6.09518 8.38929i 0.209929 0.288943i
\(844\) 0 0
\(845\) −21.3446 + 19.7254i −0.734276 + 0.678573i
\(846\) 0 0
\(847\) −0.282647 0.282647i −0.00971186 0.00971186i
\(848\) 0 0
\(849\) 4.46976 8.77239i 0.153402 0.301068i
\(850\) 0 0
\(851\) −0.727383 + 2.23866i −0.0249344 + 0.0767401i
\(852\) 0 0
\(853\) 4.30659 13.2543i 0.147455 0.453819i −0.849864 0.527003i \(-0.823316\pi\)
0.997319 + 0.0731834i \(0.0233158\pi\)
\(854\) 0 0
\(855\) 2.25627 0.636006i 0.0771629 0.0217509i
\(856\) 0 0
\(857\) −40.4192 + 13.1330i −1.38069 + 0.448614i −0.902897 0.429856i \(-0.858564\pi\)
−0.477796 + 0.878471i \(0.658564\pi\)
\(858\) 0 0
\(859\) 26.8872 37.0071i 0.917380 1.26266i −0.0472035 0.998885i \(-0.515031\pi\)
0.964583 0.263779i \(-0.0849691\pi\)
\(860\) 0 0
\(861\) −3.37413 + 16.1345i −0.114990 + 0.549861i
\(862\) 0 0
\(863\) −35.7162 25.9494i −1.21579 0.883327i −0.220051 0.975488i \(-0.570622\pi\)
−0.995744 + 0.0921617i \(0.970622\pi\)
\(864\) 0 0
\(865\) 39.2782 18.1011i 1.33550 0.615454i
\(866\) 0 0
\(867\) −2.25403 14.2314i −0.0765507 0.483322i
\(868\) 0 0
\(869\) −4.98049 1.61826i −0.168952 0.0548957i
\(870\) 0 0
\(871\) 0.0140837 0.0433450i 0.000477206 0.00146869i
\(872\) 0 0
\(873\) −1.03542 0.527573i −0.0350437 0.0178556i
\(874\) 0 0
\(875\) −17.4948 8.07384i −0.591433 0.272946i
\(876\) 0 0
\(877\) 29.7795 + 40.9880i 1.00558 + 1.38407i 0.921837 + 0.387578i \(0.126688\pi\)
0.0837458 + 0.996487i \(0.473312\pi\)
\(878\) 0 0
\(879\) 25.0878 + 18.2274i 0.846191 + 0.614794i
\(880\) 0 0
\(881\) −22.4363 30.8810i −0.755900 1.04041i −0.997544 0.0700418i \(-0.977687\pi\)
0.241644 0.970365i \(-0.422313\pi\)
\(882\) 0 0
\(883\) 9.81600 + 1.55470i 0.330335 + 0.0523199i 0.319399 0.947620i \(-0.396519\pi\)
0.0109357 + 0.999940i \(0.496519\pi\)
\(884\) 0 0
\(885\) 24.4466 16.3299i 0.821765 0.548925i
\(886\) 0 0
\(887\) −11.5197 + 22.6087i −0.386795 + 0.759127i −0.999514 0.0311735i \(-0.990076\pi\)
0.612719 + 0.790300i \(0.290076\pi\)
\(888\) 0 0
\(889\) −2.10093 13.2648i −0.0704631 0.444886i
\(890\) 0 0
\(891\) 18.2238 9.28551i 0.610522 0.311076i
\(892\) 0 0
\(893\) 7.97005 0.266707
\(894\) 0 0
\(895\) −30.5931 1.20615i −1.02261 0.0403171i
\(896\) 0 0
\(897\) 0.164299 + 0.505659i 0.00548577 + 0.0168835i
\(898\) 0 0
\(899\) 6.99394 + 6.99394i 0.233261 + 0.233261i
\(900\) 0 0
\(901\) −37.0909 −1.23568
\(902\) 0 0
\(903\) 24.2061i 0.805527i
\(904\) 0 0
\(905\) 25.7711 + 20.3220i 0.856661 + 0.675525i
\(906\) 0 0
\(907\) −3.74460 11.5247i −0.124337 0.382671i 0.869442 0.494034i \(-0.164478\pi\)
−0.993780 + 0.111363i \(0.964478\pi\)
\(908\) 0 0
\(909\) 4.01034 + 0.635176i 0.133015 + 0.0210675i
\(910\) 0 0
\(911\) 27.7200i 0.918404i −0.888332 0.459202i \(-0.848135\pi\)
0.888332 0.459202i \(-0.151865\pi\)
\(912\) 0 0
\(913\) −19.9192 39.0937i −0.659230 1.29381i
\(914\) 0 0
\(915\) −0.150257 + 0.0423550i −0.00496735 + 0.00140021i
\(916\) 0 0
\(917\) −12.4356 + 24.4063i −0.410660 + 0.805966i
\(918\) 0 0
\(919\) −3.55757 6.98213i −0.117354 0.230319i 0.824856 0.565342i \(-0.191256\pi\)
−0.942210 + 0.335023i \(0.891256\pi\)
\(920\) 0 0
\(921\) 2.95744 18.6726i 0.0974511 0.615282i
\(922\) 0 0
\(923\) 0.0227723 0.0165451i 0.000749561 0.000544588i
\(924\) 0 0
\(925\) −0.627101 + 1.51280i −0.0206189 + 0.0497405i
\(926\) 0 0
\(927\) 1.51734 + 2.08844i 0.0498361 + 0.0685935i
\(928\) 0 0
\(929\) −25.8285 + 25.8285i −0.847404 + 0.847404i −0.989809 0.142404i \(-0.954517\pi\)
0.142404 + 0.989809i \(0.454517\pi\)
\(930\) 0 0
\(931\) 2.49505 4.89681i 0.0817719 0.160486i
\(932\) 0 0
\(933\) 9.85885 + 3.20334i 0.322764 + 0.104873i
\(934\) 0 0
\(935\) −3.96737 + 19.9312i −0.129747 + 0.651821i
\(936\) 0 0
\(937\) −8.31846 52.5207i −0.271752 1.71578i −0.625321 0.780368i \(-0.715032\pi\)
0.353569 0.935409i \(-0.384968\pi\)
\(938\) 0 0
\(939\) −13.9051 42.7954i −0.453775 1.39657i
\(940\) 0 0
\(941\) −29.2577 + 40.2697i −0.953773 + 1.31276i −0.00394143 + 0.999992i \(0.501255\pi\)
−0.949831 + 0.312763i \(0.898745\pi\)
\(942\) 0 0
\(943\) 45.7500 4.96051i 1.48982 0.161536i
\(944\) 0 0
\(945\) −10.6027 + 18.9264i −0.344905 + 0.615677i
\(946\) 0 0
\(947\) 27.6204 8.97440i 0.897541 0.291629i 0.176319 0.984333i \(-0.443581\pi\)
0.721222 + 0.692704i \(0.243581\pi\)
\(948\) 0 0
\(949\) −0.276386 + 0.0437753i −0.00897187 + 0.00142100i
\(950\) 0 0
\(951\) −29.8323 9.69311i −0.967379 0.314321i
\(952\) 0 0
\(953\) −0.698306 0.226893i −0.0226204 0.00734980i 0.297685 0.954664i \(-0.403786\pi\)
−0.320305 + 0.947314i \(0.603786\pi\)
\(954\) 0 0
\(955\) 1.66692 4.51651i 0.0539404 0.146151i
\(956\) 0 0
\(957\) −5.96820 5.96820i −0.192924 0.192924i
\(958\) 0 0
\(959\) −16.6331 + 12.0846i −0.537109 + 0.390233i
\(960\) 0 0
\(961\) −2.76379 2.00801i −0.0891546 0.0647746i
\(962\) 0 0
\(963\) −9.52725 + 6.92195i −0.307011 + 0.223057i
\(964\) 0 0
\(965\) 1.02166 + 0.0402796i 0.0328884 + 0.00129665i
\(966\) 0 0
\(967\) 15.1542 7.72147i 0.487327 0.248306i −0.193021 0.981195i \(-0.561829\pi\)
0.680348 + 0.732889i \(0.261829\pi\)
\(968\) 0 0
\(969\) −4.92207 2.50792i −0.158120 0.0805660i
\(970\) 0 0
\(971\) 1.84360 + 11.6400i 0.0591639 + 0.373546i 0.999450 + 0.0331612i \(0.0105575\pi\)
−0.940286 + 0.340385i \(0.889443\pi\)
\(972\) 0 0
\(973\) 11.4272 + 22.4272i 0.366340 + 0.718982i
\(974\) 0 0
\(975\) 0.0862542 + 0.359703i 0.00276235 + 0.0115197i
\(976\) 0 0
\(977\) −4.28186 + 27.0346i −0.136989 + 0.864913i 0.819486 + 0.573099i \(0.194259\pi\)
−0.956475 + 0.291814i \(0.905741\pi\)
\(978\) 0 0
\(979\) 7.53767 2.44914i 0.240905 0.0782748i
\(980\) 0 0
\(981\) −6.26984 6.26984i −0.200181 0.200181i
\(982\) 0 0
\(983\) 13.4689i 0.429590i 0.976659 + 0.214795i \(0.0689084\pi\)
−0.976659 + 0.214795i \(0.931092\pi\)
\(984\) 0 0
\(985\) −4.13102 34.9433i −0.131625 1.11339i
\(986\) 0 0
\(987\) −10.6383 + 10.6383i −0.338620 + 0.338620i
\(988\) 0 0
\(989\) 64.2702 20.8827i 2.04367 0.664030i
\(990\) 0 0
\(991\) 60.3413 + 9.55712i 1.91680 + 0.303592i 0.996214 0.0869389i \(-0.0277085\pi\)
0.920590 + 0.390531i \(0.127708\pi\)
\(992\) 0 0
\(993\) −31.7871 −1.00873
\(994\) 0 0
\(995\) −33.3813 + 22.2982i −1.05826 + 0.706899i
\(996\) 0 0
\(997\) −12.9392 + 2.04937i −0.409789 + 0.0649042i −0.357926 0.933750i \(-0.616516\pi\)
−0.0518631 + 0.998654i \(0.516516\pi\)
\(998\) 0 0
\(999\) 1.64284 + 0.837070i 0.0519773 + 0.0264837i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.8 176
5.4 even 2 inner 820.2.bq.a.49.15 yes 176
41.36 even 20 inner 820.2.bq.a.569.15 yes 176
205.159 even 20 inner 820.2.bq.a.569.8 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.8 176 1.1 even 1 trivial
820.2.bq.a.49.15 yes 176 5.4 even 2 inner
820.2.bq.a.569.8 yes 176 205.159 even 20 inner
820.2.bq.a.569.15 yes 176 41.36 even 20 inner