Properties

Label 820.2.bq.a.49.4
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.52630 + 1.52630i) q^{3} +(2.01925 + 0.960543i) q^{5} +(-0.663644 + 4.19008i) q^{7} -1.65918i q^{9} +(0.501988 - 0.255776i) q^{11} +(-6.82894 + 1.08160i) q^{13} +(-4.54805 + 1.61590i) q^{15} +(5.72139 - 2.91520i) q^{17} +(-1.30618 + 8.24687i) q^{19} +(-5.38240 - 7.40824i) q^{21} +(3.64656 - 5.01906i) q^{23} +(3.15471 + 3.87915i) q^{25} +(-2.04650 - 2.04650i) q^{27} +(2.61830 - 5.13871i) q^{29} +(-0.662459 + 2.03884i) q^{31} +(-0.375794 + 1.15657i) q^{33} +(-5.36481 + 7.82335i) q^{35} +(-0.235334 + 0.0764648i) q^{37} +(8.77216 - 12.0738i) q^{39} +(-6.39744 + 0.269626i) q^{41} +(-5.54369 - 4.02773i) q^{43} +(1.59371 - 3.35029i) q^{45} +(0.604508 + 3.81672i) q^{47} +(-10.4590 - 3.39832i) q^{49} +(-4.28310 + 13.1820i) q^{51} +(-5.11328 - 2.60535i) q^{53} +(1.25932 - 0.0342931i) q^{55} +(-10.5936 - 14.5808i) q^{57} +(5.56649 + 4.04429i) q^{59} +(0.00839508 + 0.0115548i) q^{61} +(6.95209 + 1.10110i) q^{63} +(-14.8282 - 4.37547i) q^{65} +(-3.06934 + 6.02392i) q^{67} +(2.09485 + 13.2263i) q^{69} +(-7.94526 + 4.04831i) q^{71} +1.97734 q^{73} +(-10.7358 - 1.10570i) q^{75} +(0.738580 + 2.27311i) q^{77} +(2.64995 + 2.64995i) q^{79} +11.2247 q^{81} +3.01964i q^{83} +(14.3531 - 0.390855i) q^{85} +(3.84689 + 11.8395i) q^{87} +(-1.17725 - 0.186457i) q^{89} -29.3316i q^{91} +(-2.10077 - 4.12299i) q^{93} +(-10.5590 + 15.3978i) q^{95} +(-5.27287 + 10.3486i) q^{97} +(-0.424377 - 0.832887i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.52630 + 1.52630i −0.881209 + 0.881209i −0.993658 0.112448i \(-0.964131\pi\)
0.112448 + 0.993658i \(0.464131\pi\)
\(4\) 0 0
\(5\) 2.01925 + 0.960543i 0.903035 + 0.429568i
\(6\) 0 0
\(7\) −0.663644 + 4.19008i −0.250834 + 1.58370i 0.464922 + 0.885352i \(0.346082\pi\)
−0.715756 + 0.698350i \(0.753918\pi\)
\(8\) 0 0
\(9\) 1.65918i 0.553059i
\(10\) 0 0
\(11\) 0.501988 0.255776i 0.151355 0.0771193i −0.376672 0.926347i \(-0.622932\pi\)
0.528028 + 0.849227i \(0.322932\pi\)
\(12\) 0 0
\(13\) −6.82894 + 1.08160i −1.89401 + 0.299981i −0.991439 0.130569i \(-0.958320\pi\)
−0.902567 + 0.430550i \(0.858320\pi\)
\(14\) 0 0
\(15\) −4.54805 + 1.61590i −1.17430 + 0.417223i
\(16\) 0 0
\(17\) 5.72139 2.91520i 1.38764 0.707039i 0.408985 0.912541i \(-0.365883\pi\)
0.978657 + 0.205502i \(0.0658828\pi\)
\(18\) 0 0
\(19\) −1.30618 + 8.24687i −0.299657 + 1.89196i 0.134160 + 0.990960i \(0.457166\pi\)
−0.433817 + 0.901001i \(0.642834\pi\)
\(20\) 0 0
\(21\) −5.38240 7.40824i −1.17454 1.61661i
\(22\) 0 0
\(23\) 3.64656 5.01906i 0.760361 1.04655i −0.236823 0.971553i \(-0.576106\pi\)
0.997184 0.0749943i \(-0.0238938\pi\)
\(24\) 0 0
\(25\) 3.15471 + 3.87915i 0.630943 + 0.775829i
\(26\) 0 0
\(27\) −2.04650 2.04650i −0.393848 0.393848i
\(28\) 0 0
\(29\) 2.61830 5.13871i 0.486207 0.954234i −0.509394 0.860534i \(-0.670130\pi\)
0.995600 0.0937008i \(-0.0298697\pi\)
\(30\) 0 0
\(31\) −0.662459 + 2.03884i −0.118981 + 0.366186i −0.992757 0.120143i \(-0.961665\pi\)
0.873775 + 0.486330i \(0.161665\pi\)
\(32\) 0 0
\(33\) −0.375794 + 1.15657i −0.0654173 + 0.201334i
\(34\) 0 0
\(35\) −5.36481 + 7.82335i −0.906819 + 1.32239i
\(36\) 0 0
\(37\) −0.235334 + 0.0764648i −0.0386887 + 0.0125707i −0.328297 0.944574i \(-0.606475\pi\)
0.289609 + 0.957145i \(0.406475\pi\)
\(38\) 0 0
\(39\) 8.77216 12.0738i 1.40467 1.93336i
\(40\) 0 0
\(41\) −6.39744 + 0.269626i −0.999113 + 0.0421085i
\(42\) 0 0
\(43\) −5.54369 4.02773i −0.845405 0.614222i 0.0784706 0.996916i \(-0.474996\pi\)
−0.923875 + 0.382694i \(0.874996\pi\)
\(44\) 0 0
\(45\) 1.59371 3.35029i 0.237577 0.499432i
\(46\) 0 0
\(47\) 0.604508 + 3.81672i 0.0881766 + 0.556725i 0.991739 + 0.128269i \(0.0409422\pi\)
−0.903563 + 0.428456i \(0.859058\pi\)
\(48\) 0 0
\(49\) −10.4590 3.39832i −1.49414 0.485475i
\(50\) 0 0
\(51\) −4.28310 + 13.1820i −0.599754 + 1.84585i
\(52\) 0 0
\(53\) −5.11328 2.60535i −0.702363 0.357872i 0.0660586 0.997816i \(-0.478958\pi\)
−0.768422 + 0.639944i \(0.778958\pi\)
\(54\) 0 0
\(55\) 1.25932 0.0342931i 0.169807 0.00462408i
\(56\) 0 0
\(57\) −10.5936 14.5808i −1.40315 1.93127i
\(58\) 0 0
\(59\) 5.56649 + 4.04429i 0.724695 + 0.526522i 0.887881 0.460073i \(-0.152177\pi\)
−0.163185 + 0.986595i \(0.552177\pi\)
\(60\) 0 0
\(61\) 0.00839508 + 0.0115548i 0.00107488 + 0.00147944i 0.809554 0.587045i \(-0.199709\pi\)
−0.808479 + 0.588525i \(0.799709\pi\)
\(62\) 0 0
\(63\) 6.95209 + 1.10110i 0.875881 + 0.138726i
\(64\) 0 0
\(65\) −14.8282 4.37547i −1.83922 0.542711i
\(66\) 0 0
\(67\) −3.06934 + 6.02392i −0.374979 + 0.735938i −0.998964 0.0454978i \(-0.985513\pi\)
0.623985 + 0.781436i \(0.285513\pi\)
\(68\) 0 0
\(69\) 2.09485 + 13.2263i 0.252190 + 1.59226i
\(70\) 0 0
\(71\) −7.94526 + 4.04831i −0.942929 + 0.480446i −0.856692 0.515828i \(-0.827484\pi\)
−0.0862372 + 0.996275i \(0.527484\pi\)
\(72\) 0 0
\(73\) 1.97734 0.231430 0.115715 0.993282i \(-0.463084\pi\)
0.115715 + 0.993282i \(0.463084\pi\)
\(74\) 0 0
\(75\) −10.7358 1.10570i −1.23966 0.127675i
\(76\) 0 0
\(77\) 0.738580 + 2.27311i 0.0841690 + 0.259045i
\(78\) 0 0
\(79\) 2.64995 + 2.64995i 0.298143 + 0.298143i 0.840286 0.542143i \(-0.182387\pi\)
−0.542143 + 0.840286i \(0.682387\pi\)
\(80\) 0 0
\(81\) 11.2247 1.24718
\(82\) 0 0
\(83\) 3.01964i 0.331448i 0.986172 + 0.165724i \(0.0529962\pi\)
−0.986172 + 0.165724i \(0.947004\pi\)
\(84\) 0 0
\(85\) 14.3531 0.390855i 1.55681 0.0423941i
\(86\) 0 0
\(87\) 3.84689 + 11.8395i 0.412430 + 1.26933i
\(88\) 0 0
\(89\) −1.17725 0.186457i −0.124788 0.0197644i 0.0937281 0.995598i \(-0.470122\pi\)
−0.218516 + 0.975833i \(0.570122\pi\)
\(90\) 0 0
\(91\) 29.3316i 3.07479i
\(92\) 0 0
\(93\) −2.10077 4.12299i −0.217839 0.427534i
\(94\) 0 0
\(95\) −10.5590 + 15.3978i −1.08333 + 1.57978i
\(96\) 0 0
\(97\) −5.27287 + 10.3486i −0.535379 + 1.05074i 0.451948 + 0.892044i \(0.350729\pi\)
−0.987327 + 0.158696i \(0.949271\pi\)
\(98\) 0 0
\(99\) −0.424377 0.832887i −0.0426515 0.0837083i
\(100\) 0 0
\(101\) 2.04447 12.9083i 0.203432 1.28442i −0.648680 0.761061i \(-0.724679\pi\)
0.852112 0.523359i \(-0.175321\pi\)
\(102\) 0 0
\(103\) 7.22048 5.24599i 0.711455 0.516903i −0.172187 0.985064i \(-0.555083\pi\)
0.883643 + 0.468162i \(0.155083\pi\)
\(104\) 0 0
\(105\) −3.75246 20.1291i −0.366203 1.96440i
\(106\) 0 0
\(107\) −2.36893 3.26055i −0.229013 0.315210i 0.679010 0.734129i \(-0.262409\pi\)
−0.908024 + 0.418919i \(0.862409\pi\)
\(108\) 0 0
\(109\) 5.53818 5.53818i 0.530462 0.530462i −0.390248 0.920710i \(-0.627611\pi\)
0.920710 + 0.390248i \(0.127611\pi\)
\(110\) 0 0
\(111\) 0.242483 0.475899i 0.0230154 0.0451703i
\(112\) 0 0
\(113\) 4.69002 + 1.52388i 0.441200 + 0.143355i 0.521189 0.853441i \(-0.325489\pi\)
−0.0799892 + 0.996796i \(0.525489\pi\)
\(114\) 0 0
\(115\) 12.1843 6.63205i 1.13620 0.618442i
\(116\) 0 0
\(117\) 1.79456 + 11.3304i 0.165907 + 1.04750i
\(118\) 0 0
\(119\) 8.41794 + 25.9078i 0.771671 + 2.37496i
\(120\) 0 0
\(121\) −6.27907 + 8.64239i −0.570824 + 0.785672i
\(122\) 0 0
\(123\) 9.35288 10.1759i 0.843321 0.917534i
\(124\) 0 0
\(125\) 2.64406 + 10.8632i 0.236492 + 0.971633i
\(126\) 0 0
\(127\) 15.0159 4.87896i 1.33244 0.432937i 0.445693 0.895186i \(-0.352957\pi\)
0.886751 + 0.462248i \(0.152957\pi\)
\(128\) 0 0
\(129\) 14.6088 2.31381i 1.28624 0.203720i
\(130\) 0 0
\(131\) −0.0627219 0.0203796i −0.00548004 0.00178057i 0.306276 0.951943i \(-0.400917\pi\)
−0.311756 + 0.950162i \(0.600917\pi\)
\(132\) 0 0
\(133\) −33.6882 10.9460i −2.92114 0.949135i
\(134\) 0 0
\(135\) −2.16663 6.09813i −0.186474 0.524843i
\(136\) 0 0
\(137\) 7.53598 + 7.53598i 0.643843 + 0.643843i 0.951498 0.307655i \(-0.0995444\pi\)
−0.307655 + 0.951498i \(0.599544\pi\)
\(138\) 0 0
\(139\) −6.66371 + 4.84147i −0.565208 + 0.410648i −0.833361 0.552729i \(-0.813587\pi\)
0.268153 + 0.963376i \(0.413587\pi\)
\(140\) 0 0
\(141\) −6.74811 4.90279i −0.568293 0.412889i
\(142\) 0 0
\(143\) −3.15140 + 2.28962i −0.263533 + 0.191468i
\(144\) 0 0
\(145\) 10.2230 7.86133i 0.848970 0.652848i
\(146\) 0 0
\(147\) 21.1504 10.7767i 1.74445 0.888843i
\(148\) 0 0
\(149\) 8.10072 + 4.12752i 0.663637 + 0.338140i 0.753153 0.657846i \(-0.228532\pi\)
−0.0895160 + 0.995985i \(0.528532\pi\)
\(150\) 0 0
\(151\) 0.0804628 + 0.508022i 0.00654797 + 0.0413423i 0.990746 0.135729i \(-0.0433377\pi\)
−0.984198 + 0.177071i \(0.943338\pi\)
\(152\) 0 0
\(153\) −4.83683 9.49281i −0.391034 0.767448i
\(154\) 0 0
\(155\) −3.29606 + 3.48060i −0.264746 + 0.279568i
\(156\) 0 0
\(157\) −3.39185 + 21.4153i −0.270699 + 1.70913i 0.359876 + 0.933000i \(0.382819\pi\)
−0.630576 + 0.776128i \(0.717181\pi\)
\(158\) 0 0
\(159\) 11.7809 3.82786i 0.934289 0.303569i
\(160\) 0 0
\(161\) 18.6103 + 18.6103i 1.46669 + 1.46669i
\(162\) 0 0
\(163\) 0.674798i 0.0528542i −0.999651 0.0264271i \(-0.991587\pi\)
0.999651 0.0264271i \(-0.00841299\pi\)
\(164\) 0 0
\(165\) −1.86976 + 1.97444i −0.145561 + 0.153710i
\(166\) 0 0
\(167\) 4.47481 4.47481i 0.346271 0.346271i −0.512447 0.858719i \(-0.671261\pi\)
0.858719 + 0.512447i \(0.171261\pi\)
\(168\) 0 0
\(169\) 33.1008 10.7551i 2.54621 0.827315i
\(170\) 0 0
\(171\) 13.6830 + 2.16718i 1.04637 + 0.165728i
\(172\) 0 0
\(173\) 16.1962 1.23138 0.615689 0.787989i \(-0.288878\pi\)
0.615689 + 0.787989i \(0.288878\pi\)
\(174\) 0 0
\(175\) −18.3475 + 10.6441i −1.38694 + 0.804621i
\(176\) 0 0
\(177\) −14.6689 + 2.32333i −1.10258 + 0.174632i
\(178\) 0 0
\(179\) 11.2154 + 5.71455i 0.838282 + 0.427126i 0.819763 0.572703i \(-0.194105\pi\)
0.0185185 + 0.999829i \(0.494105\pi\)
\(180\) 0 0
\(181\) 11.4015 + 22.3767i 0.847468 + 1.66325i 0.743566 + 0.668662i \(0.233133\pi\)
0.103902 + 0.994588i \(0.466867\pi\)
\(182\) 0 0
\(183\) −0.0304495 0.00482273i −0.00225089 0.000356507i
\(184\) 0 0
\(185\) −0.548646 0.0716476i −0.0403373 0.00526763i
\(186\) 0 0
\(187\) 2.12643 2.92679i 0.155500 0.214028i
\(188\) 0 0
\(189\) 9.93313 7.21684i 0.722529 0.524948i
\(190\) 0 0
\(191\) −1.15909 + 1.15909i −0.0838689 + 0.0838689i −0.747797 0.663928i \(-0.768888\pi\)
0.663928 + 0.747797i \(0.268888\pi\)
\(192\) 0 0
\(193\) 6.61389 + 3.36994i 0.476078 + 0.242574i 0.675528 0.737334i \(-0.263916\pi\)
−0.199450 + 0.979908i \(0.563916\pi\)
\(194\) 0 0
\(195\) 29.3106 15.9540i 2.09898 1.14249i
\(196\) 0 0
\(197\) 1.94602 5.98924i 0.138648 0.426715i −0.857491 0.514498i \(-0.827978\pi\)
0.996140 + 0.0877829i \(0.0279782\pi\)
\(198\) 0 0
\(199\) 0.0632057 0.0100108i 0.00448054 0.000709647i −0.154194 0.988041i \(-0.549278\pi\)
0.158674 + 0.987331i \(0.449278\pi\)
\(200\) 0 0
\(201\) −4.50957 13.8790i −0.318080 0.978951i
\(202\) 0 0
\(203\) 19.7940 + 14.3812i 1.38927 + 1.00936i
\(204\) 0 0
\(205\) −13.1770 5.60058i −0.920322 0.391161i
\(206\) 0 0
\(207\) −8.32752 6.05030i −0.578803 0.420525i
\(208\) 0 0
\(209\) 1.45366 + 4.47392i 0.100552 + 0.309467i
\(210\) 0 0
\(211\) −14.7205 + 2.33150i −1.01340 + 0.160507i −0.640981 0.767557i \(-0.721472\pi\)
−0.372421 + 0.928064i \(0.621472\pi\)
\(212\) 0 0
\(213\) 5.94791 18.3058i 0.407544 1.25429i
\(214\) 0 0
\(215\) −7.32527 13.4579i −0.499579 0.917823i
\(216\) 0 0
\(217\) −8.10327 4.12882i −0.550085 0.280283i
\(218\) 0 0
\(219\) −3.01801 + 3.01801i −0.203938 + 0.203938i
\(220\) 0 0
\(221\) −35.9180 + 26.0959i −2.41610 + 1.75540i
\(222\) 0 0
\(223\) −11.4172 + 15.7145i −0.764554 + 1.05232i 0.232267 + 0.972652i \(0.425386\pi\)
−0.996822 + 0.0796666i \(0.974614\pi\)
\(224\) 0 0
\(225\) 6.43619 5.23423i 0.429080 0.348949i
\(226\) 0 0
\(227\) −3.04035 0.481545i −0.201795 0.0319612i 0.0547184 0.998502i \(-0.482574\pi\)
−0.256514 + 0.966541i \(0.582574\pi\)
\(228\) 0 0
\(229\) 8.36984 + 16.4267i 0.553095 + 1.08551i 0.983166 + 0.182715i \(0.0584885\pi\)
−0.430071 + 0.902795i \(0.641512\pi\)
\(230\) 0 0
\(231\) −4.59675 2.34216i −0.302444 0.154103i
\(232\) 0 0
\(233\) −6.07229 + 0.961756i −0.397809 + 0.0630067i −0.352134 0.935950i \(-0.614544\pi\)
−0.0456749 + 0.998956i \(0.514544\pi\)
\(234\) 0 0
\(235\) −2.44547 + 8.28755i −0.159525 + 0.540620i
\(236\) 0 0
\(237\) −8.08924 −0.525452
\(238\) 0 0
\(239\) −2.53751 0.401902i −0.164138 0.0259969i 0.0738246 0.997271i \(-0.476479\pi\)
−0.237962 + 0.971274i \(0.576479\pi\)
\(240\) 0 0
\(241\) 12.0886 3.92781i 0.778693 0.253013i 0.107411 0.994215i \(-0.465744\pi\)
0.671282 + 0.741202i \(0.265744\pi\)
\(242\) 0 0
\(243\) −10.9927 + 10.9927i −0.705182 + 0.705182i
\(244\) 0 0
\(245\) −17.8550 16.9083i −1.14071 1.08023i
\(246\) 0 0
\(247\) 57.7301i 3.67328i
\(248\) 0 0
\(249\) −4.60887 4.60887i −0.292075 0.292075i
\(250\) 0 0
\(251\) −26.8927 + 8.73798i −1.69746 + 0.551537i −0.988167 0.153382i \(-0.950983\pi\)
−0.709288 + 0.704919i \(0.750983\pi\)
\(252\) 0 0
\(253\) 0.546777 3.45221i 0.0343756 0.217039i
\(254\) 0 0
\(255\) −21.3105 + 22.5036i −1.33452 + 1.40923i
\(256\) 0 0
\(257\) −11.0192 21.6265i −0.687362 1.34902i −0.925855 0.377879i \(-0.876654\pi\)
0.238493 0.971144i \(-0.423346\pi\)
\(258\) 0 0
\(259\) −0.164215 1.03682i −0.0102039 0.0644246i
\(260\) 0 0
\(261\) −8.52603 4.34423i −0.527748 0.268901i
\(262\) 0 0
\(263\) 13.8338 7.04870i 0.853032 0.434641i 0.0279194 0.999610i \(-0.491112\pi\)
0.825112 + 0.564969i \(0.191112\pi\)
\(264\) 0 0
\(265\) −7.82243 10.1724i −0.480528 0.624883i
\(266\) 0 0
\(267\) 2.08142 1.51224i 0.127381 0.0925475i
\(268\) 0 0
\(269\) −13.4716 9.78771i −0.821379 0.596767i 0.0957280 0.995408i \(-0.469482\pi\)
−0.917107 + 0.398641i \(0.869482\pi\)
\(270\) 0 0
\(271\) 14.7176 10.6930i 0.894031 0.649552i −0.0428946 0.999080i \(-0.513658\pi\)
0.936926 + 0.349528i \(0.113658\pi\)
\(272\) 0 0
\(273\) 44.7688 + 44.7688i 2.70953 + 2.70953i
\(274\) 0 0
\(275\) 2.57582 + 1.14039i 0.155328 + 0.0687679i
\(276\) 0 0
\(277\) −2.71399 0.881829i −0.163068 0.0529840i 0.226345 0.974047i \(-0.427322\pi\)
−0.389413 + 0.921063i \(0.627322\pi\)
\(278\) 0 0
\(279\) 3.38280 + 1.09914i 0.202523 + 0.0658036i
\(280\) 0 0
\(281\) 9.07960 1.43807i 0.541643 0.0857879i 0.120383 0.992728i \(-0.461588\pi\)
0.421261 + 0.906940i \(0.361588\pi\)
\(282\) 0 0
\(283\) −24.3086 + 7.89833i −1.44499 + 0.469507i −0.923450 0.383718i \(-0.874644\pi\)
−0.521543 + 0.853225i \(0.674644\pi\)
\(284\) 0 0
\(285\) −7.38555 39.6178i −0.437482 2.34676i
\(286\) 0 0
\(287\) 3.11587 26.9848i 0.183924 1.59286i
\(288\) 0 0
\(289\) 14.2436 19.6047i 0.837861 1.15322i
\(290\) 0 0
\(291\) −7.74707 23.8430i −0.454141 1.39770i
\(292\) 0 0
\(293\) −2.98952 18.8751i −0.174649 1.10269i −0.906803 0.421554i \(-0.861485\pi\)
0.732154 0.681139i \(-0.238515\pi\)
\(294\) 0 0
\(295\) 7.35540 + 13.5133i 0.428248 + 0.786774i
\(296\) 0 0
\(297\) −1.55076 0.503872i −0.0899842 0.0292376i
\(298\) 0 0
\(299\) −19.4735 + 38.2190i −1.12618 + 2.21026i
\(300\) 0 0
\(301\) 20.5555 20.5555i 1.18480 1.18480i
\(302\) 0 0
\(303\) 16.5814 + 22.8223i 0.952576 + 1.31111i
\(304\) 0 0
\(305\) 0.00585282 + 0.0313959i 0.000335131 + 0.00179772i
\(306\) 0 0
\(307\) 6.08054 4.41777i 0.347035 0.252135i −0.400589 0.916258i \(-0.631195\pi\)
0.747624 + 0.664122i \(0.231195\pi\)
\(308\) 0 0
\(309\) −3.01367 + 19.0276i −0.171442 + 1.08244i
\(310\) 0 0
\(311\) 2.20578 + 4.32909i 0.125078 + 0.245480i 0.945051 0.326922i \(-0.106012\pi\)
−0.819973 + 0.572402i \(0.806012\pi\)
\(312\) 0 0
\(313\) −2.05746 + 4.03799i −0.116295 + 0.228241i −0.941815 0.336131i \(-0.890882\pi\)
0.825521 + 0.564372i \(0.190882\pi\)
\(314\) 0 0
\(315\) 12.9803 + 8.90118i 0.731359 + 0.501525i
\(316\) 0 0
\(317\) 10.2311 + 20.0797i 0.574636 + 1.12779i 0.977185 + 0.212389i \(0.0681243\pi\)
−0.402549 + 0.915398i \(0.631876\pi\)
\(318\) 0 0
\(319\) 3.24927i 0.181924i
\(320\) 0 0
\(321\) 8.59228 + 1.36088i 0.479574 + 0.0759571i
\(322\) 0 0
\(323\) 16.5681 + 50.9913i 0.921873 + 2.83723i
\(324\) 0 0
\(325\) −25.7390 23.0783i −1.42774 1.28015i
\(326\) 0 0
\(327\) 16.9058i 0.934895i
\(328\) 0 0
\(329\) −16.3935 −0.903805
\(330\) 0 0
\(331\) 2.20626 + 2.20626i 0.121267 + 0.121267i 0.765136 0.643869i \(-0.222672\pi\)
−0.643869 + 0.765136i \(0.722672\pi\)
\(332\) 0 0
\(333\) 0.126869 + 0.390462i 0.00695236 + 0.0213972i
\(334\) 0 0
\(335\) −11.9840 + 9.21554i −0.654755 + 0.503499i
\(336\) 0 0
\(337\) 7.75879 0.422648 0.211324 0.977416i \(-0.432222\pi\)
0.211324 + 0.977416i \(0.432222\pi\)
\(338\) 0 0
\(339\) −9.48427 + 4.83248i −0.515115 + 0.262464i
\(340\) 0 0
\(341\) 0.188939 + 1.19291i 0.0102316 + 0.0645999i
\(342\) 0 0
\(343\) 7.69850 15.1092i 0.415680 0.815818i
\(344\) 0 0
\(345\) −8.47446 + 28.7194i −0.456249 + 1.54620i
\(346\) 0 0
\(347\) 19.8038 + 3.13662i 1.06313 + 0.168383i 0.663410 0.748256i \(-0.269109\pi\)
0.399716 + 0.916639i \(0.369109\pi\)
\(348\) 0 0
\(349\) 17.5116 + 24.1027i 0.937376 + 1.29019i 0.956912 + 0.290378i \(0.0937811\pi\)
−0.0195361 + 0.999809i \(0.506219\pi\)
\(350\) 0 0
\(351\) 16.1889 + 11.7619i 0.864098 + 0.627804i
\(352\) 0 0
\(353\) 16.2088 + 22.3096i 0.862709 + 1.18742i 0.980917 + 0.194429i \(0.0622853\pi\)
−0.118207 + 0.992989i \(0.537715\pi\)
\(354\) 0 0
\(355\) −19.9320 + 0.542777i −1.05788 + 0.0288076i
\(356\) 0 0
\(357\) −52.3913 26.6947i −2.77284 1.41283i
\(358\) 0 0
\(359\) 8.47141 26.0723i 0.447104 1.37604i −0.433056 0.901367i \(-0.642565\pi\)
0.880160 0.474677i \(-0.157435\pi\)
\(360\) 0 0
\(361\) −48.2346 15.6724i −2.53866 0.824862i
\(362\) 0 0
\(363\) −3.60714 22.7746i −0.189326 1.19536i
\(364\) 0 0
\(365\) 3.99273 + 1.89932i 0.208989 + 0.0994148i
\(366\) 0 0
\(367\) 24.7816 + 18.0049i 1.29359 + 0.939846i 0.999871 0.0160472i \(-0.00510819\pi\)
0.293715 + 0.955893i \(0.405108\pi\)
\(368\) 0 0
\(369\) 0.447358 + 10.6145i 0.0232885 + 0.552569i
\(370\) 0 0
\(371\) 14.3100 19.6960i 0.742939 1.02257i
\(372\) 0 0
\(373\) −25.4543 + 8.27061i −1.31797 + 0.428236i −0.881799 0.471625i \(-0.843667\pi\)
−0.436176 + 0.899861i \(0.643667\pi\)
\(374\) 0 0
\(375\) −20.6161 12.5449i −1.06461 0.647814i
\(376\) 0 0
\(377\) −12.3222 + 37.9239i −0.634626 + 1.95318i
\(378\) 0 0
\(379\) 1.27261 3.91668i 0.0653695 0.201187i −0.913037 0.407877i \(-0.866269\pi\)
0.978406 + 0.206690i \(0.0662693\pi\)
\(380\) 0 0
\(381\) −15.4720 + 30.3655i −0.792654 + 1.55567i
\(382\) 0 0
\(383\) −22.6167 22.6167i −1.15566 1.15566i −0.985399 0.170261i \(-0.945539\pi\)
−0.170261 0.985399i \(-0.554461\pi\)
\(384\) 0 0
\(385\) −0.692050 + 5.29942i −0.0352701 + 0.270083i
\(386\) 0 0
\(387\) −6.68271 + 9.19797i −0.339701 + 0.467559i
\(388\) 0 0
\(389\) −20.4365 28.1285i −1.03617 1.42617i −0.900210 0.435456i \(-0.856587\pi\)
−0.135963 0.990714i \(-0.543413\pi\)
\(390\) 0 0
\(391\) 6.23187 39.3465i 0.315159 1.98984i
\(392\) 0 0
\(393\) 0.126838 0.0646271i 0.00639812 0.00326000i
\(394\) 0 0
\(395\) 2.80551 + 7.89630i 0.141161 + 0.397306i
\(396\) 0 0
\(397\) 8.44293 1.33723i 0.423739 0.0671136i 0.0590764 0.998253i \(-0.481184\pi\)
0.364662 + 0.931140i \(0.381184\pi\)
\(398\) 0 0
\(399\) 68.1251 34.7115i 3.41052 1.73775i
\(400\) 0 0
\(401\) 14.1447i 0.706353i 0.935557 + 0.353177i \(0.114899\pi\)
−0.935557 + 0.353177i \(0.885101\pi\)
\(402\) 0 0
\(403\) 2.31869 14.6396i 0.115502 0.729251i
\(404\) 0 0
\(405\) 22.6654 + 10.7818i 1.12625 + 0.535751i
\(406\) 0 0
\(407\) −0.0985772 + 0.0985772i −0.00488629 + 0.00488629i
\(408\) 0 0
\(409\) 10.0182 0.495368 0.247684 0.968841i \(-0.420330\pi\)
0.247684 + 0.968841i \(0.420330\pi\)
\(410\) 0 0
\(411\) −23.0043 −1.13472
\(412\) 0 0
\(413\) −20.6401 + 20.6401i −1.01563 + 1.01563i
\(414\) 0 0
\(415\) −2.90049 + 6.09740i −0.142380 + 0.299309i
\(416\) 0 0
\(417\) 2.78128 17.5603i 0.136200 0.859933i
\(418\) 0 0
\(419\) 25.3066i 1.23631i −0.786057 0.618154i \(-0.787881\pi\)
0.786057 0.618154i \(-0.212119\pi\)
\(420\) 0 0
\(421\) 14.5074 7.39191i 0.707050 0.360260i −0.0632012 0.998001i \(-0.520131\pi\)
0.770251 + 0.637741i \(0.220131\pi\)
\(422\) 0 0
\(423\) 6.33261 1.00299i 0.307902 0.0487669i
\(424\) 0 0
\(425\) 29.3578 + 12.9975i 1.42406 + 0.630472i
\(426\) 0 0
\(427\) −0.0539870 + 0.0275078i −0.00261262 + 0.00133119i
\(428\) 0 0
\(429\) 1.31532 8.30463i 0.0635044 0.400951i
\(430\) 0 0
\(431\) 8.52308 + 11.7310i 0.410542 + 0.565063i 0.963351 0.268246i \(-0.0864438\pi\)
−0.552808 + 0.833308i \(0.686444\pi\)
\(432\) 0 0
\(433\) −3.04889 + 4.19644i −0.146520 + 0.201668i −0.875969 0.482368i \(-0.839777\pi\)
0.729448 + 0.684036i \(0.239777\pi\)
\(434\) 0 0
\(435\) −3.60454 + 27.6020i −0.172825 + 1.32342i
\(436\) 0 0
\(437\) 36.6285 + 36.6285i 1.75218 + 1.75218i
\(438\) 0 0
\(439\) −13.0782 + 25.6674i −0.624187 + 1.22504i 0.334988 + 0.942222i \(0.391268\pi\)
−0.959175 + 0.282813i \(0.908732\pi\)
\(440\) 0 0
\(441\) −5.63842 + 17.3533i −0.268496 + 0.826347i
\(442\) 0 0
\(443\) −10.5732 + 32.5408i −0.502346 + 1.54606i 0.302842 + 0.953041i \(0.402065\pi\)
−0.805188 + 0.593020i \(0.797935\pi\)
\(444\) 0 0
\(445\) −2.19805 1.50730i −0.104198 0.0714528i
\(446\) 0 0
\(447\) −18.6640 + 6.06429i −0.882775 + 0.286831i
\(448\) 0 0
\(449\) −11.1310 + 15.3206i −0.525306 + 0.723022i −0.986406 0.164326i \(-0.947455\pi\)
0.461100 + 0.887348i \(0.347455\pi\)
\(450\) 0 0
\(451\) −3.14248 + 1.77166i −0.147973 + 0.0834242i
\(452\) 0 0
\(453\) −0.898204 0.652583i −0.0422013 0.0306610i
\(454\) 0 0
\(455\) 28.1743 59.2277i 1.32083 2.77664i
\(456\) 0 0
\(457\) 1.58951 + 10.0358i 0.0743540 + 0.469453i 0.996568 + 0.0827738i \(0.0263779\pi\)
−0.922214 + 0.386679i \(0.873622\pi\)
\(458\) 0 0
\(459\) −17.6747 5.74287i −0.824986 0.268054i
\(460\) 0 0
\(461\) 0.146379 0.450507i 0.00681753 0.0209822i −0.947590 0.319489i \(-0.896489\pi\)
0.954407 + 0.298507i \(0.0964887\pi\)
\(462\) 0 0
\(463\) 18.4219 + 9.38645i 0.856140 + 0.436225i 0.826234 0.563327i \(-0.190479\pi\)
0.0299066 + 0.999553i \(0.490479\pi\)
\(464\) 0 0
\(465\) −0.281660 10.3432i −0.0130617 0.479655i
\(466\) 0 0
\(467\) 2.14840 + 2.95702i 0.0994160 + 0.136834i 0.855827 0.517262i \(-0.173049\pi\)
−0.756411 + 0.654097i \(0.773049\pi\)
\(468\) 0 0
\(469\) −23.2038 16.8585i −1.07145 0.778454i
\(470\) 0 0
\(471\) −27.5092 37.8631i −1.26756 1.74464i
\(472\) 0 0
\(473\) −3.81306 0.603929i −0.175325 0.0277687i
\(474\) 0 0
\(475\) −36.1114 + 20.9497i −1.65691 + 0.961236i
\(476\) 0 0
\(477\) −4.32273 + 8.48384i −0.197924 + 0.388448i
\(478\) 0 0
\(479\) −1.59007 10.0393i −0.0726521 0.458707i −0.997016 0.0771954i \(-0.975403\pi\)
0.924364 0.381512i \(-0.124597\pi\)
\(480\) 0 0
\(481\) 1.52438 0.776710i 0.0695057 0.0354149i
\(482\) 0 0
\(483\) −56.8097 −2.58493
\(484\) 0 0
\(485\) −20.5875 + 15.8315i −0.934830 + 0.718873i
\(486\) 0 0
\(487\) −9.36954 28.8365i −0.424574 1.30671i −0.903401 0.428796i \(-0.858938\pi\)
0.478827 0.877909i \(-0.341062\pi\)
\(488\) 0 0
\(489\) 1.02994 + 1.02994i 0.0465756 + 0.0465756i
\(490\) 0 0
\(491\) 13.6970 0.618139 0.309070 0.951039i \(-0.399982\pi\)
0.309070 + 0.951039i \(0.399982\pi\)
\(492\) 0 0
\(493\) 37.0334i 1.66790i
\(494\) 0 0
\(495\) −0.0568983 2.08944i −0.00255739 0.0939133i
\(496\) 0 0
\(497\) −11.6899 35.9779i −0.524366 1.61383i
\(498\) 0 0
\(499\) −26.5556 4.20599i −1.18879 0.188286i −0.469460 0.882954i \(-0.655551\pi\)
−0.719331 + 0.694668i \(0.755551\pi\)
\(500\) 0 0
\(501\) 13.6598i 0.610274i
\(502\) 0 0
\(503\) 3.20056 + 6.28146i 0.142706 + 0.280076i 0.951286 0.308310i \(-0.0997634\pi\)
−0.808580 + 0.588386i \(0.799763\pi\)
\(504\) 0 0
\(505\) 16.5272 24.1012i 0.735452 1.07249i
\(506\) 0 0
\(507\) −34.1062 + 66.9372i −1.51471 + 2.97278i
\(508\) 0 0
\(509\) −0.480631 0.943291i −0.0213036 0.0418106i 0.880109 0.474771i \(-0.157469\pi\)
−0.901413 + 0.432960i \(0.857469\pi\)
\(510\) 0 0
\(511\) −1.31225 + 8.28520i −0.0580504 + 0.366516i
\(512\) 0 0
\(513\) 19.5503 14.2041i 0.863165 0.627126i
\(514\) 0 0
\(515\) 19.6189 3.65736i 0.864514 0.161163i
\(516\) 0 0
\(517\) 1.27968 + 1.76133i 0.0562802 + 0.0774631i
\(518\) 0 0
\(519\) −24.7203 + 24.7203i −1.08510 + 1.08510i
\(520\) 0 0
\(521\) −8.93107 + 17.5282i −0.391277 + 0.767925i −0.999669 0.0257116i \(-0.991815\pi\)
0.608392 + 0.793637i \(0.291815\pi\)
\(522\) 0 0
\(523\) −8.82585 2.86769i −0.385927 0.125395i 0.109626 0.993973i \(-0.465035\pi\)
−0.495553 + 0.868577i \(0.665035\pi\)
\(524\) 0 0
\(525\) 11.7577 44.2500i 0.513148 1.93123i
\(526\) 0 0
\(527\) 2.15343 + 13.5962i 0.0938047 + 0.592260i
\(528\) 0 0
\(529\) −4.78618 14.7304i −0.208095 0.640451i
\(530\) 0 0
\(531\) 6.71020 9.23580i 0.291198 0.400800i
\(532\) 0 0
\(533\) 43.3961 8.76072i 1.87969 0.379469i
\(534\) 0 0
\(535\) −1.65155 8.85932i −0.0714029 0.383022i
\(536\) 0 0
\(537\) −25.8402 + 8.39600i −1.11509 + 0.362314i
\(538\) 0 0
\(539\) −6.11948 + 0.969231i −0.263585 + 0.0417477i
\(540\) 0 0
\(541\) 15.0728 + 4.89744i 0.648029 + 0.210557i 0.614545 0.788882i \(-0.289340\pi\)
0.0334841 + 0.999439i \(0.489340\pi\)
\(542\) 0 0
\(543\) −51.5557 16.7515i −2.21247 0.718874i
\(544\) 0 0
\(545\) 16.5026 5.86329i 0.706895 0.251156i
\(546\) 0 0
\(547\) −12.6634 12.6634i −0.541447 0.541447i 0.382506 0.923953i \(-0.375061\pi\)
−0.923953 + 0.382506i \(0.875061\pi\)
\(548\) 0 0
\(549\) 0.0191715 0.0139289i 0.000818221 0.000594472i
\(550\) 0 0
\(551\) 38.9583 + 28.3049i 1.65968 + 1.20583i
\(552\) 0 0
\(553\) −12.8621 + 9.34489i −0.546954 + 0.397385i
\(554\) 0 0
\(555\) 0.946753 0.728042i 0.0401874 0.0309037i
\(556\) 0 0
\(557\) 7.15773 3.64705i 0.303283 0.154530i −0.295726 0.955273i \(-0.595561\pi\)
0.599009 + 0.800743i \(0.295561\pi\)
\(558\) 0 0
\(559\) 42.2139 + 21.5090i 1.78546 + 0.909735i
\(560\) 0 0
\(561\) 1.22158 + 7.71273i 0.0515750 + 0.325632i
\(562\) 0 0
\(563\) −10.2154 20.0488i −0.430526 0.844955i −0.999741 0.0227664i \(-0.992753\pi\)
0.569215 0.822189i \(-0.307247\pi\)
\(564\) 0 0
\(565\) 8.00656 + 7.58206i 0.336838 + 0.318980i
\(566\) 0 0
\(567\) −7.44918 + 47.0323i −0.312836 + 1.97517i
\(568\) 0 0
\(569\) 3.24221 1.05346i 0.135921 0.0441633i −0.240267 0.970707i \(-0.577235\pi\)
0.376187 + 0.926544i \(0.377235\pi\)
\(570\) 0 0
\(571\) −22.5249 22.5249i −0.942638 0.942638i 0.0558037 0.998442i \(-0.482228\pi\)
−0.998442 + 0.0558037i \(0.982228\pi\)
\(572\) 0 0
\(573\) 3.53824i 0.147812i
\(574\) 0 0
\(575\) 30.9735 1.68816i 1.29169 0.0704011i
\(576\) 0 0
\(577\) 15.6524 15.6524i 0.651619 0.651619i −0.301764 0.953383i \(-0.597575\pi\)
0.953383 + 0.301764i \(0.0975754\pi\)
\(578\) 0 0
\(579\) −15.2383 + 4.95123i −0.633282 + 0.205766i
\(580\) 0 0
\(581\) −12.6525 2.00396i −0.524916 0.0831385i
\(582\) 0 0
\(583\) −3.23319 −0.133905
\(584\) 0 0
\(585\) −7.25969 + 24.6027i −0.300151 + 1.01720i
\(586\) 0 0
\(587\) 3.35630 0.531585i 0.138529 0.0219409i −0.0867847 0.996227i \(-0.527659\pi\)
0.225314 + 0.974286i \(0.427659\pi\)
\(588\) 0 0
\(589\) −15.9487 8.12629i −0.657157 0.334838i
\(590\) 0 0
\(591\) 6.17116 + 12.1116i 0.253847 + 0.498204i
\(592\) 0 0
\(593\) 26.1384 + 4.13992i 1.07338 + 0.170006i 0.668013 0.744149i \(-0.267145\pi\)
0.405364 + 0.914155i \(0.367145\pi\)
\(594\) 0 0
\(595\) −7.88762 + 60.3999i −0.323361 + 2.47616i
\(596\) 0 0
\(597\) −0.0811914 + 0.111750i −0.00332294 + 0.00457364i
\(598\) 0 0
\(599\) −27.6765 + 20.1081i −1.13083 + 0.821596i −0.985815 0.167833i \(-0.946323\pi\)
−0.145015 + 0.989429i \(0.546323\pi\)
\(600\) 0 0
\(601\) 17.8502 17.8502i 0.728125 0.728125i −0.242121 0.970246i \(-0.577843\pi\)
0.970246 + 0.242121i \(0.0778430\pi\)
\(602\) 0 0
\(603\) 9.99475 + 5.09258i 0.407018 + 0.207386i
\(604\) 0 0
\(605\) −20.9804 + 11.4198i −0.852974 + 0.464281i
\(606\) 0 0
\(607\) 8.24295 25.3692i 0.334571 1.02970i −0.632362 0.774673i \(-0.717914\pi\)
0.966933 0.255031i \(-0.0820855\pi\)
\(608\) 0 0
\(609\) −52.1615 + 8.26158i −2.11369 + 0.334776i
\(610\) 0 0
\(611\) −8.25630 25.4103i −0.334014 1.02799i
\(612\) 0 0
\(613\) 6.39929 + 4.64936i 0.258465 + 0.187786i 0.709470 0.704736i \(-0.248934\pi\)
−0.451005 + 0.892521i \(0.648934\pi\)
\(614\) 0 0
\(615\) 28.6602 11.5639i 1.15569 0.466301i
\(616\) 0 0
\(617\) 9.13950 + 6.64024i 0.367942 + 0.267326i 0.756357 0.654159i \(-0.226977\pi\)
−0.388415 + 0.921485i \(0.626977\pi\)
\(618\) 0 0
\(619\) −0.0183810 0.0565710i −0.000738796 0.00227378i 0.950686 0.310154i \(-0.100381\pi\)
−0.951425 + 0.307880i \(0.900381\pi\)
\(620\) 0 0
\(621\) −17.7342 + 2.80882i −0.711648 + 0.112714i
\(622\) 0 0
\(623\) 1.56254 4.80901i 0.0626020 0.192669i
\(624\) 0 0
\(625\) −5.09556 + 24.4752i −0.203822 + 0.979008i
\(626\) 0 0
\(627\) −9.04726 4.60981i −0.361313 0.184098i
\(628\) 0 0
\(629\) −1.12353 + 1.12353i −0.0447981 + 0.0447981i
\(630\) 0 0
\(631\) 8.92454 6.48406i 0.355280 0.258126i −0.395801 0.918336i \(-0.629533\pi\)
0.751081 + 0.660210i \(0.229533\pi\)
\(632\) 0 0
\(633\) 18.9093 26.0265i 0.751579 1.03446i
\(634\) 0 0
\(635\) 35.0072 + 4.57158i 1.38922 + 0.181418i
\(636\) 0 0
\(637\) 75.0992 + 11.8945i 2.97554 + 0.471279i
\(638\) 0 0
\(639\) 6.71687 + 13.1826i 0.265715 + 0.521496i
\(640\) 0 0
\(641\) −35.0821 17.8752i −1.38566 0.706029i −0.407369 0.913264i \(-0.633554\pi\)
−0.978291 + 0.207234i \(0.933554\pi\)
\(642\) 0 0
\(643\) 6.35391 1.00636i 0.250574 0.0396870i −0.0298839 0.999553i \(-0.509514\pi\)
0.280458 + 0.959866i \(0.409514\pi\)
\(644\) 0 0
\(645\) 31.7214 + 9.36026i 1.24903 + 0.368560i
\(646\) 0 0
\(647\) 6.00084 0.235918 0.117959 0.993018i \(-0.462365\pi\)
0.117959 + 0.993018i \(0.462365\pi\)
\(648\) 0 0
\(649\) 3.82874 + 0.606413i 0.150291 + 0.0238038i
\(650\) 0 0
\(651\) 18.6698 6.06619i 0.731728 0.237753i
\(652\) 0 0
\(653\) 2.83672 2.83672i 0.111009 0.111009i −0.649420 0.760430i \(-0.724988\pi\)
0.760430 + 0.649420i \(0.224988\pi\)
\(654\) 0 0
\(655\) −0.107076 0.101399i −0.00418379 0.00396197i
\(656\) 0 0
\(657\) 3.28075i 0.127994i
\(658\) 0 0
\(659\) 26.7459 + 26.7459i 1.04187 + 1.04187i 0.999084 + 0.0427888i \(0.0136243\pi\)
0.0427888 + 0.999084i \(0.486376\pi\)
\(660\) 0 0
\(661\) 9.57587 3.11139i 0.372458 0.121019i −0.116806 0.993155i \(-0.537265\pi\)
0.489264 + 0.872136i \(0.337265\pi\)
\(662\) 0 0
\(663\) 14.9914 94.6517i 0.582216 3.67597i
\(664\) 0 0
\(665\) −57.5107 54.4616i −2.23017 2.11193i
\(666\) 0 0
\(667\) −16.2437 31.8801i −0.628959 1.23440i
\(668\) 0 0
\(669\) −6.55887 41.4111i −0.253581 1.60105i
\(670\) 0 0
\(671\) 0.00716967 + 0.00365313i 0.000276782 + 0.000141028i
\(672\) 0 0
\(673\) 8.93358 4.55188i 0.344364 0.175462i −0.273251 0.961943i \(-0.588099\pi\)
0.617615 + 0.786481i \(0.288099\pi\)
\(674\) 0 0
\(675\) 1.48255 14.3948i 0.0570633 0.554055i
\(676\) 0 0
\(677\) 27.6747 20.1068i 1.06362 0.772769i 0.0888693 0.996043i \(-0.471675\pi\)
0.974756 + 0.223275i \(0.0716747\pi\)
\(678\) 0 0
\(679\) −39.8621 28.9615i −1.52977 1.11144i
\(680\) 0 0
\(681\) 5.37547 3.90551i 0.205988 0.149659i
\(682\) 0 0
\(683\) −35.0475 35.0475i −1.34106 1.34106i −0.895011 0.446044i \(-0.852832\pi\)
−0.446044 0.895011i \(-0.647168\pi\)
\(684\) 0 0
\(685\) 7.97837 + 22.4556i 0.304838 + 0.857986i
\(686\) 0 0
\(687\) −37.8470 12.2972i −1.44395 0.469169i
\(688\) 0 0
\(689\) 37.7362 + 12.2612i 1.43763 + 0.467116i
\(690\) 0 0
\(691\) 7.03385 1.11405i 0.267580 0.0423805i −0.0212026 0.999775i \(-0.506749\pi\)
0.288783 + 0.957395i \(0.406749\pi\)
\(692\) 0 0
\(693\) 3.77150 1.22544i 0.143268 0.0465504i
\(694\) 0 0
\(695\) −18.1061 + 3.37534i −0.686804 + 0.128034i
\(696\) 0 0
\(697\) −35.8163 + 20.1924i −1.35664 + 0.764843i
\(698\) 0 0
\(699\) 7.80020 10.7361i 0.295031 0.406075i
\(700\) 0 0
\(701\) 7.77351 + 23.9244i 0.293601 + 0.903612i 0.983688 + 0.179885i \(0.0575725\pi\)
−0.690086 + 0.723727i \(0.742427\pi\)
\(702\) 0 0
\(703\) −0.323207 2.04065i −0.0121900 0.0769645i
\(704\) 0 0
\(705\) −8.91676 16.3818i −0.335825 0.616974i
\(706\) 0 0
\(707\) 52.7299 + 17.1330i 1.98311 + 0.644352i
\(708\) 0 0
\(709\) 5.60096 10.9925i 0.210348 0.412832i −0.761593 0.648056i \(-0.775582\pi\)
0.971941 + 0.235224i \(0.0755823\pi\)
\(710\) 0 0
\(711\) 4.39674 4.39674i 0.164891 0.164891i
\(712\) 0 0
\(713\) 7.81736 + 10.7597i 0.292763 + 0.402953i
\(714\) 0 0
\(715\) −8.56273 + 1.59626i −0.320228 + 0.0596969i
\(716\) 0 0
\(717\) 4.48642 3.25957i 0.167548 0.121731i
\(718\) 0 0
\(719\) 2.04558 12.9153i 0.0762874 0.481659i −0.919734 0.392543i \(-0.871596\pi\)
0.996021 0.0891169i \(-0.0284045\pi\)
\(720\) 0 0
\(721\) 17.1893 + 33.7359i 0.640163 + 1.25639i
\(722\) 0 0
\(723\) −12.4557 + 24.4458i −0.463234 + 0.909148i
\(724\) 0 0
\(725\) 28.1938 6.05438i 1.04709 0.224854i
\(726\) 0 0
\(727\) 16.2438 + 31.8802i 0.602448 + 1.18237i 0.967852 + 0.251522i \(0.0809310\pi\)
−0.365403 + 0.930849i \(0.619069\pi\)
\(728\) 0 0
\(729\) 0.117674i 0.00435828i
\(730\) 0 0
\(731\) −43.4592 6.88327i −1.60740 0.254587i
\(732\) 0 0
\(733\) 7.50676 + 23.1034i 0.277268 + 0.853344i 0.988610 + 0.150498i \(0.0480878\pi\)
−0.711342 + 0.702846i \(0.751912\pi\)
\(734\) 0 0
\(735\) 53.0593 1.44488i 1.95712 0.0532951i
\(736\) 0 0
\(737\) 3.80900i 0.140306i
\(738\) 0 0
\(739\) −44.0374 −1.61994 −0.809971 0.586469i \(-0.800517\pi\)
−0.809971 + 0.586469i \(0.800517\pi\)
\(740\) 0 0
\(741\) 88.1134 + 88.1134i 3.23692 + 3.23692i
\(742\) 0 0
\(743\) −10.9746 33.7764i −0.402620 1.23914i −0.922866 0.385121i \(-0.874160\pi\)
0.520246 0.854016i \(-0.325840\pi\)
\(744\) 0 0
\(745\) 12.3927 + 16.1156i 0.454033 + 0.590429i
\(746\) 0 0
\(747\) 5.01012 0.183311
\(748\) 0 0
\(749\) 15.2341 7.76217i 0.556642 0.283623i
\(750\) 0 0
\(751\) −3.19177 20.1521i −0.116470 0.735360i −0.974935 0.222489i \(-0.928582\pi\)
0.858466 0.512871i \(-0.171418\pi\)
\(752\) 0 0
\(753\) 27.7096 54.3831i 1.00979 1.98183i
\(754\) 0 0
\(755\) −0.325503 + 1.10311i −0.0118463 + 0.0401463i
\(756\) 0 0
\(757\) 5.56149 + 0.880853i 0.202136 + 0.0320152i 0.256681 0.966496i \(-0.417371\pi\)
−0.0545454 + 0.998511i \(0.517371\pi\)
\(758\) 0 0
\(759\) 4.43456 + 6.10365i 0.160964 + 0.221549i
\(760\) 0 0
\(761\) 4.19628 + 3.04878i 0.152115 + 0.110518i 0.661239 0.750175i \(-0.270031\pi\)
−0.509124 + 0.860693i \(0.670031\pi\)
\(762\) 0 0
\(763\) 19.5301 + 26.8808i 0.707036 + 0.973151i
\(764\) 0 0
\(765\) −0.648497 23.8143i −0.0234465 0.861008i
\(766\) 0 0
\(767\) −42.3875 21.5975i −1.53052 0.779841i
\(768\) 0 0
\(769\) −7.16854 + 22.0625i −0.258504 + 0.795594i 0.734615 + 0.678485i \(0.237363\pi\)
−0.993119 + 0.117110i \(0.962637\pi\)
\(770\) 0 0
\(771\) 49.8272 + 16.1898i 1.79448 + 0.583062i
\(772\) 0 0
\(773\) 0.735814 + 4.64575i 0.0264654 + 0.167096i 0.997381 0.0723258i \(-0.0230421\pi\)
−0.970916 + 0.239422i \(0.923042\pi\)
\(774\) 0 0
\(775\) −9.99882 + 3.86218i −0.359168 + 0.138734i
\(776\) 0 0
\(777\) 1.83313 + 1.33185i 0.0657633 + 0.0477798i
\(778\) 0 0
\(779\) 6.13261 53.1110i 0.219724 1.90290i
\(780\) 0 0
\(781\) −2.95297 + 4.06441i −0.105665 + 0.145436i
\(782\) 0 0
\(783\) −15.8747 + 5.15800i −0.567315 + 0.184332i
\(784\) 0 0
\(785\) −27.4193 + 39.9848i −0.978637 + 1.42712i
\(786\) 0 0
\(787\) −10.8266 + 33.3210i −0.385928 + 1.18776i 0.549877 + 0.835246i \(0.314675\pi\)
−0.935805 + 0.352518i \(0.885325\pi\)
\(788\) 0 0
\(789\) −10.3562 + 31.8730i −0.368689 + 1.13471i
\(790\) 0 0
\(791\) −9.49769 + 18.6403i −0.337699 + 0.662771i
\(792\) 0 0
\(793\) −0.0698271 0.0698271i −0.00247963 0.00247963i
\(794\) 0 0
\(795\) 27.4654 + 3.58670i 0.974098 + 0.127207i
\(796\) 0 0
\(797\) −19.3408 + 26.6204i −0.685087 + 0.942941i −0.999981 0.00618557i \(-0.998031\pi\)
0.314894 + 0.949127i \(0.398031\pi\)
\(798\) 0 0
\(799\) 14.5851 + 20.0747i 0.515984 + 0.710191i
\(800\) 0 0
\(801\) −0.309366 + 1.95326i −0.0109309 + 0.0690150i
\(802\) 0 0
\(803\) 0.992599 0.505754i 0.0350281 0.0178477i
\(804\) 0 0
\(805\) 19.7028 + 55.4547i 0.694431 + 1.95452i
\(806\) 0 0
\(807\) 35.5007 5.62276i 1.24968 0.197930i
\(808\) 0 0
\(809\) −8.25584 + 4.20656i −0.290260 + 0.147895i −0.593058 0.805160i \(-0.702079\pi\)
0.302798 + 0.953055i \(0.402079\pi\)
\(810\) 0 0
\(811\) 12.3172i 0.432515i 0.976336 + 0.216258i \(0.0693851\pi\)
−0.976336 + 0.216258i \(0.930615\pi\)
\(812\) 0 0
\(813\) −6.14281 + 38.7842i −0.215438 + 1.36022i
\(814\) 0 0
\(815\) 0.648172 1.36258i 0.0227045 0.0477292i
\(816\) 0 0
\(817\) 40.4571 40.4571i 1.41542 1.41542i
\(818\) 0 0
\(819\) −48.6663 −1.70054
\(820\) 0 0
\(821\) −27.5922 −0.962975 −0.481487 0.876453i \(-0.659903\pi\)
−0.481487 + 0.876453i \(0.659903\pi\)
\(822\) 0 0
\(823\) −3.17605 + 3.17605i −0.110710 + 0.110710i −0.760292 0.649582i \(-0.774944\pi\)
0.649582 + 0.760292i \(0.274944\pi\)
\(824\) 0 0
\(825\) −5.67204 + 2.19090i −0.197475 + 0.0762774i
\(826\) 0 0
\(827\) 4.57880 28.9094i 0.159221 1.00528i −0.770614 0.637302i \(-0.780050\pi\)
0.929835 0.367977i \(-0.119950\pi\)
\(828\) 0 0
\(829\) 23.4237i 0.813538i −0.913531 0.406769i \(-0.866655\pi\)
0.913531 0.406769i \(-0.133345\pi\)
\(830\) 0 0
\(831\) 5.48830 2.79643i 0.190387 0.0970069i
\(832\) 0 0
\(833\) −69.7466 + 11.0468i −2.41658 + 0.382748i
\(834\) 0 0
\(835\) 13.3340 4.73750i 0.461442 0.163948i
\(836\) 0 0
\(837\) 5.52819 2.81676i 0.191082 0.0973613i
\(838\) 0 0
\(839\) 6.26266 39.5409i 0.216211 1.36510i −0.605793 0.795622i \(-0.707144\pi\)
0.822004 0.569481i \(-0.192856\pi\)
\(840\) 0 0
\(841\) −2.50505 3.44791i −0.0863811 0.118893i
\(842\) 0 0
\(843\) −11.6633 + 16.0531i −0.401704 + 0.552898i
\(844\) 0 0
\(845\) 77.1694 + 10.0775i 2.65471 + 0.346678i
\(846\) 0 0
\(847\) −32.0453 32.0453i −1.10109 1.10109i
\(848\) 0 0
\(849\) 25.0469 49.1573i 0.859608 1.68708i
\(850\) 0 0
\(851\) −0.474380 + 1.45999i −0.0162615 + 0.0500479i
\(852\) 0 0
\(853\) 8.40186 25.8583i 0.287674 0.885370i −0.697910 0.716185i \(-0.745887\pi\)
0.985584 0.169185i \(-0.0541134\pi\)
\(854\) 0 0
\(855\) 25.5477 + 17.5192i 0.873714 + 0.599144i
\(856\) 0 0
\(857\) 30.5271 9.91885i 1.04278 0.338821i 0.262952 0.964809i \(-0.415304\pi\)
0.779833 + 0.625988i \(0.215304\pi\)
\(858\) 0 0
\(859\) 21.5284 29.6313i 0.734539 1.01101i −0.264375 0.964420i \(-0.585166\pi\)
0.998914 0.0465862i \(-0.0148342\pi\)
\(860\) 0 0
\(861\) 36.4311 + 45.9426i 1.24157 + 1.56572i
\(862\) 0 0
\(863\) −7.65194 5.55946i −0.260475 0.189246i 0.449881 0.893088i \(-0.351466\pi\)
−0.710357 + 0.703842i \(0.751466\pi\)
\(864\) 0 0
\(865\) 32.7042 + 15.5572i 1.11198 + 0.528960i
\(866\) 0 0
\(867\) 8.18256 + 51.6626i 0.277894 + 1.75456i
\(868\) 0 0
\(869\) 2.00804 + 0.652451i 0.0681180 + 0.0221329i
\(870\) 0 0
\(871\) 14.4449 44.4567i 0.489446 1.50636i
\(872\) 0 0
\(873\) 17.1702 + 8.74863i 0.581122 + 0.296096i
\(874\) 0 0
\(875\) −47.2724 + 3.86953i −1.59810 + 0.130814i
\(876\) 0 0
\(877\) −7.32773 10.0857i −0.247440 0.340572i 0.667173 0.744903i \(-0.267504\pi\)
−0.914613 + 0.404331i \(0.867504\pi\)
\(878\) 0 0
\(879\) 33.3719 + 24.2461i 1.12561 + 0.817800i
\(880\) 0 0
\(881\) 20.8353 + 28.6774i 0.701961 + 0.966166i 0.999933 + 0.0115913i \(0.00368971\pi\)
−0.297972 + 0.954575i \(0.596310\pi\)
\(882\) 0 0
\(883\) 32.1629 + 5.09410i 1.08237 + 0.171430i 0.672045 0.740510i \(-0.265416\pi\)
0.410323 + 0.911940i \(0.365416\pi\)
\(884\) 0 0
\(885\) −31.8519 9.39876i −1.07069 0.315936i
\(886\) 0 0
\(887\) 5.61203 11.0142i 0.188434 0.369822i −0.777391 0.629017i \(-0.783457\pi\)
0.965825 + 0.259196i \(0.0834574\pi\)
\(888\) 0 0
\(889\) 10.4780 + 66.1557i 0.351422 + 2.21879i
\(890\) 0 0
\(891\) 5.63465 2.87100i 0.188768 0.0961820i
\(892\) 0 0
\(893\) −32.2655 −1.07973
\(894\) 0 0
\(895\) 17.1577 + 22.3120i 0.573518 + 0.745808i
\(896\) 0 0
\(897\) −28.6111 88.0560i −0.955298 2.94011i
\(898\) 0 0
\(899\) 8.74248 + 8.74248i 0.291578 + 0.291578i
\(900\) 0 0
\(901\) −36.8502 −1.22766
\(902\) 0 0
\(903\) 62.7478i 2.08812i
\(904\) 0 0
\(905\) 1.52866 + 56.1358i 0.0508143 + 1.86602i
\(906\) 0 0
\(907\) 10.9576 + 33.7240i 0.363841 + 1.11979i 0.950704 + 0.310101i \(0.100363\pi\)
−0.586863 + 0.809686i \(0.699637\pi\)
\(908\) 0 0
\(909\) −21.4171 3.39214i −0.710360 0.112510i
\(910\) 0 0
\(911\) 22.8233i 0.756170i −0.925771 0.378085i \(-0.876583\pi\)
0.925771 0.378085i \(-0.123417\pi\)
\(912\) 0 0
\(913\) 0.772350 + 1.51582i 0.0255611 + 0.0501664i
\(914\) 0 0
\(915\) −0.0568527 0.0389864i −0.00187949 0.00128885i
\(916\) 0 0
\(917\) 0.127017 0.249285i 0.00419448 0.00823212i
\(918\) 0 0
\(919\) 13.8908 + 27.2621i 0.458214 + 0.899295i 0.998334 + 0.0577070i \(0.0183789\pi\)
−0.540120 + 0.841588i \(0.681621\pi\)
\(920\) 0 0
\(921\) −2.53788 + 16.0236i −0.0836261 + 0.527994i
\(922\) 0 0
\(923\) 49.8790 36.2392i 1.64179 1.19283i
\(924\) 0 0
\(925\) −1.03903 0.671672i −0.0341631 0.0220844i
\(926\) 0 0
\(927\) −8.70403 11.9801i −0.285878 0.393477i
\(928\) 0 0
\(929\) −24.5740 + 24.5740i −0.806245 + 0.806245i −0.984063 0.177818i \(-0.943096\pi\)
0.177818 + 0.984063i \(0.443096\pi\)
\(930\) 0 0
\(931\) 41.6868 81.8149i 1.36623 2.68137i
\(932\) 0 0
\(933\) −9.97417 3.24080i −0.326540 0.106099i
\(934\) 0 0
\(935\) 7.10510 3.86737i 0.232362 0.126477i
\(936\) 0 0
\(937\) −2.75074 17.3675i −0.0898627 0.567370i −0.991003 0.133842i \(-0.957268\pi\)
0.901140 0.433528i \(-0.142732\pi\)
\(938\) 0 0
\(939\) −3.02289 9.30349i −0.0986482 0.303608i
\(940\) 0 0
\(941\) 31.7577 43.7108i 1.03527 1.42493i 0.134358 0.990933i \(-0.457103\pi\)
0.900914 0.433997i \(-0.142897\pi\)
\(942\) 0 0
\(943\) −21.9754 + 33.0924i −0.715618 + 1.07764i
\(944\) 0 0
\(945\) 26.9895 5.03138i 0.877969 0.163671i
\(946\) 0 0
\(947\) −10.2685 + 3.33643i −0.333681 + 0.108419i −0.471065 0.882098i \(-0.656130\pi\)
0.137385 + 0.990518i \(0.456130\pi\)
\(948\) 0 0
\(949\) −13.5031 + 2.13868i −0.438329 + 0.0694245i
\(950\) 0 0
\(951\) −46.2633 15.0319i −1.50019 0.487442i
\(952\) 0 0
\(953\) −8.93935 2.90457i −0.289574 0.0940883i 0.160628 0.987015i \(-0.448648\pi\)
−0.450202 + 0.892927i \(0.648648\pi\)
\(954\) 0 0
\(955\) −3.45385 + 1.22713i −0.111764 + 0.0397091i
\(956\) 0 0
\(957\) 4.95936 + 4.95936i 0.160313 + 0.160313i
\(958\) 0 0
\(959\) −36.5776 + 26.5752i −1.18115 + 0.858157i
\(960\) 0 0
\(961\) 21.3615 + 15.5200i 0.689081 + 0.500647i
\(962\) 0 0
\(963\) −5.40984 + 3.93048i −0.174330 + 0.126658i
\(964\) 0 0
\(965\) 10.1181 + 13.1577i 0.325713 + 0.423560i
\(966\) 0 0
\(967\) 10.6180 5.41013i 0.341451 0.173978i −0.274853 0.961486i \(-0.588629\pi\)
0.616304 + 0.787508i \(0.288629\pi\)
\(968\) 0 0
\(969\) −103.116 52.5402i −3.31256 1.68783i
\(970\) 0 0
\(971\) 8.38818 + 52.9609i 0.269190 + 1.69960i 0.637955 + 0.770074i \(0.279781\pi\)
−0.368765 + 0.929522i \(0.620219\pi\)
\(972\) 0 0
\(973\) −15.8638 31.1345i −0.508570 0.998126i
\(974\) 0 0
\(975\) 74.5098 4.06103i 2.38622 0.130057i
\(976\) 0 0
\(977\) −1.01530 + 6.41032i −0.0324822 + 0.205084i −0.998592 0.0530469i \(-0.983107\pi\)
0.966110 + 0.258131i \(0.0831067\pi\)
\(978\) 0 0
\(979\) −0.638654 + 0.207511i −0.0204115 + 0.00663209i
\(980\) 0 0
\(981\) −9.18883 9.18883i −0.293377 0.293377i
\(982\) 0 0
\(983\) 51.7443i 1.65039i −0.564850 0.825193i \(-0.691066\pi\)
0.564850 0.825193i \(-0.308934\pi\)
\(984\) 0 0
\(985\) 9.68242 10.2245i 0.308507 0.325780i
\(986\) 0 0
\(987\) 25.0214 25.0214i 0.796441 0.796441i
\(988\) 0 0
\(989\) −40.4308 + 13.1368i −1.28563 + 0.417725i
\(990\) 0 0
\(991\) −11.3931 1.80448i −0.361913 0.0573213i −0.0271697 0.999631i \(-0.508649\pi\)
−0.334743 + 0.942310i \(0.608649\pi\)
\(992\) 0 0
\(993\) −6.73483 −0.213723
\(994\) 0 0
\(995\) 0.137244 + 0.0404975i 0.00435092 + 0.00128386i
\(996\) 0 0
\(997\) 1.42388 0.225520i 0.0450947 0.00714230i −0.133846 0.991002i \(-0.542733\pi\)
0.178941 + 0.983860i \(0.442733\pi\)
\(998\) 0 0
\(999\) 0.638096 + 0.325126i 0.0201885 + 0.0102865i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.4 176
5.4 even 2 inner 820.2.bq.a.49.19 yes 176
41.36 even 20 inner 820.2.bq.a.569.19 yes 176
205.159 even 20 inner 820.2.bq.a.569.4 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.4 176 1.1 even 1 trivial
820.2.bq.a.49.19 yes 176 5.4 even 2 inner
820.2.bq.a.569.4 yes 176 205.159 even 20 inner
820.2.bq.a.569.19 yes 176 41.36 even 20 inner