Properties

Label 820.2.bq.a.49.3
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.3
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.10870 + 2.10870i) q^{3} +(2.22522 + 0.220000i) q^{5} +(0.00805431 - 0.0508529i) q^{7} -5.89321i q^{9} +(-5.62726 + 2.86723i) q^{11} +(3.05328 - 0.483592i) q^{13} +(-5.15623 + 4.22840i) q^{15} +(-6.63399 + 3.38019i) q^{17} +(0.631767 - 3.98882i) q^{19} +(0.0902493 + 0.124218i) q^{21} +(-2.59996 + 3.57853i) q^{23} +(4.90320 + 0.979095i) q^{25} +(6.10090 + 6.10090i) q^{27} +(-0.283661 + 0.556716i) q^{29} +(-1.37734 + 4.23901i) q^{31} +(5.82007 - 17.9123i) q^{33} +(0.0291102 - 0.111387i) q^{35} +(-2.16768 + 0.704323i) q^{37} +(-5.41869 + 7.45818i) q^{39} +(-6.09149 + 1.97327i) q^{41} +(-8.19297 - 5.95254i) q^{43} +(1.29650 - 13.1137i) q^{45} +(-1.23381 - 7.78997i) q^{47} +(6.65487 + 2.16230i) q^{49} +(6.86129 - 21.1169i) q^{51} +(-7.91252 - 4.03163i) q^{53} +(-13.1527 + 5.14223i) q^{55} +(7.07901 + 9.74342i) q^{57} +(2.96443 + 2.15378i) q^{59} +(-7.25056 - 9.97954i) q^{61} +(-0.299687 - 0.0474657i) q^{63} +(6.90060 - 0.404377i) q^{65} +(2.07903 - 4.08033i) q^{67} +(-2.06352 - 13.0286i) q^{69} +(-0.617012 + 0.314384i) q^{71} -1.63367 q^{73} +(-12.4040 + 8.27475i) q^{75} +(0.100484 + 0.309256i) q^{77} +(9.28790 + 9.28790i) q^{79} -8.05027 q^{81} -8.68291i q^{83} +(-15.5057 + 6.06218i) q^{85} +(-0.575791 - 1.77210i) q^{87} +(-2.87604 - 0.455520i) q^{89} -0.159163i q^{91} +(-6.03439 - 11.8432i) q^{93} +(2.28336 - 8.73701i) q^{95} +(-5.23384 + 10.2720i) q^{97} +(16.8972 + 33.1626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.10870 + 2.10870i −1.21746 + 1.21746i −0.248937 + 0.968520i \(0.580081\pi\)
−0.968520 + 0.248937i \(0.919919\pi\)
\(4\) 0 0
\(5\) 2.22522 + 0.220000i 0.995148 + 0.0983868i
\(6\) 0 0
\(7\) 0.00805431 0.0508529i 0.00304424 0.0192206i −0.986119 0.166037i \(-0.946903\pi\)
0.989164 + 0.146817i \(0.0469028\pi\)
\(8\) 0 0
\(9\) 5.89321i 1.96440i
\(10\) 0 0
\(11\) −5.62726 + 2.86723i −1.69668 + 0.864504i −0.709541 + 0.704664i \(0.751098\pi\)
−0.987143 + 0.159840i \(0.948902\pi\)
\(12\) 0 0
\(13\) 3.05328 0.483592i 0.846827 0.134124i 0.282082 0.959390i \(-0.408975\pi\)
0.564744 + 0.825266i \(0.308975\pi\)
\(14\) 0 0
\(15\) −5.15623 + 4.22840i −1.33133 + 1.09177i
\(16\) 0 0
\(17\) −6.63399 + 3.38019i −1.60898 + 0.819816i −0.609341 + 0.792908i \(0.708566\pi\)
−0.999638 + 0.0269079i \(0.991434\pi\)
\(18\) 0 0
\(19\) 0.631767 3.98882i 0.144937 0.915098i −0.802847 0.596185i \(-0.796682\pi\)
0.947784 0.318913i \(-0.103318\pi\)
\(20\) 0 0
\(21\) 0.0902493 + 0.124218i 0.0196940 + 0.0271065i
\(22\) 0 0
\(23\) −2.59996 + 3.57853i −0.542129 + 0.746176i −0.988918 0.148463i \(-0.952567\pi\)
0.446789 + 0.894639i \(0.352567\pi\)
\(24\) 0 0
\(25\) 4.90320 + 0.979095i 0.980640 + 0.195819i
\(26\) 0 0
\(27\) 6.10090 + 6.10090i 1.17412 + 1.17412i
\(28\) 0 0
\(29\) −0.283661 + 0.556716i −0.0526745 + 0.103380i −0.915843 0.401536i \(-0.868476\pi\)
0.863169 + 0.504916i \(0.168476\pi\)
\(30\) 0 0
\(31\) −1.37734 + 4.23901i −0.247377 + 0.761348i 0.747860 + 0.663857i \(0.231082\pi\)
−0.995236 + 0.0974908i \(0.968918\pi\)
\(32\) 0 0
\(33\) 5.82007 17.9123i 1.01314 3.11814i
\(34\) 0 0
\(35\) 0.0291102 0.111387i 0.00492053 0.0188278i
\(36\) 0 0
\(37\) −2.16768 + 0.704323i −0.356365 + 0.115790i −0.481728 0.876321i \(-0.659991\pi\)
0.125363 + 0.992111i \(0.459991\pi\)
\(38\) 0 0
\(39\) −5.41869 + 7.45818i −0.867685 + 1.19427i
\(40\) 0 0
\(41\) −6.09149 + 1.97327i −0.951331 + 0.308172i
\(42\) 0 0
\(43\) −8.19297 5.95254i −1.24942 0.907754i −0.251229 0.967928i \(-0.580835\pi\)
−0.998188 + 0.0601734i \(0.980835\pi\)
\(44\) 0 0
\(45\) 1.29650 13.1137i 0.193271 1.95487i
\(46\) 0 0
\(47\) −1.23381 7.78997i −0.179970 1.13628i −0.897910 0.440179i \(-0.854915\pi\)
0.717940 0.696104i \(-0.245085\pi\)
\(48\) 0 0
\(49\) 6.65487 + 2.16230i 0.950696 + 0.308900i
\(50\) 0 0
\(51\) 6.86129 21.1169i 0.960772 2.95695i
\(52\) 0 0
\(53\) −7.91252 4.03163i −1.08687 0.553787i −0.183660 0.982990i \(-0.558795\pi\)
−0.903208 + 0.429203i \(0.858795\pi\)
\(54\) 0 0
\(55\) −13.1527 + 5.14223i −1.77351 + 0.693378i
\(56\) 0 0
\(57\) 7.07901 + 9.74342i 0.937638 + 1.29055i
\(58\) 0 0
\(59\) 2.96443 + 2.15378i 0.385935 + 0.280398i 0.763788 0.645467i \(-0.223337\pi\)
−0.377852 + 0.925866i \(0.623337\pi\)
\(60\) 0 0
\(61\) −7.25056 9.97954i −0.928339 1.27775i −0.960504 0.278266i \(-0.910240\pi\)
0.0321649 0.999483i \(-0.489760\pi\)
\(62\) 0 0
\(63\) −0.299687 0.0474657i −0.0377570 0.00598012i
\(64\) 0 0
\(65\) 6.90060 0.404377i 0.855914 0.0501568i
\(66\) 0 0
\(67\) 2.07903 4.08033i 0.253994 0.498492i −0.728438 0.685112i \(-0.759753\pi\)
0.982432 + 0.186620i \(0.0597533\pi\)
\(68\) 0 0
\(69\) −2.06352 13.0286i −0.248419 1.56846i
\(70\) 0 0
\(71\) −0.617012 + 0.314384i −0.0732259 + 0.0373105i −0.490220 0.871599i \(-0.663084\pi\)
0.416994 + 0.908909i \(0.363084\pi\)
\(72\) 0 0
\(73\) −1.63367 −0.191206 −0.0956030 0.995420i \(-0.530478\pi\)
−0.0956030 + 0.995420i \(0.530478\pi\)
\(74\) 0 0
\(75\) −12.4040 + 8.27475i −1.43229 + 0.955486i
\(76\) 0 0
\(77\) 0.100484 + 0.309256i 0.0114512 + 0.0352430i
\(78\) 0 0
\(79\) 9.28790 + 9.28790i 1.04497 + 1.04497i 0.998940 + 0.0460302i \(0.0146570\pi\)
0.0460302 + 0.998940i \(0.485343\pi\)
\(80\) 0 0
\(81\) −8.05027 −0.894474
\(82\) 0 0
\(83\) 8.68291i 0.953073i −0.879155 0.476537i \(-0.841892\pi\)
0.879155 0.476537i \(-0.158108\pi\)
\(84\) 0 0
\(85\) −15.5057 + 6.06218i −1.68183 + 0.657536i
\(86\) 0 0
\(87\) −0.575791 1.77210i −0.0617312 0.189989i
\(88\) 0 0
\(89\) −2.87604 0.455520i −0.304860 0.0482851i 0.00213029 0.999998i \(-0.499322\pi\)
−0.306990 + 0.951713i \(0.599322\pi\)
\(90\) 0 0
\(91\) 0.159163i 0.0166848i
\(92\) 0 0
\(93\) −6.03439 11.8432i −0.625737 1.22808i
\(94\) 0 0
\(95\) 2.28336 8.73701i 0.234268 0.896399i
\(96\) 0 0
\(97\) −5.23384 + 10.2720i −0.531416 + 1.04296i 0.456753 + 0.889594i \(0.349012\pi\)
−0.988169 + 0.153369i \(0.950988\pi\)
\(98\) 0 0
\(99\) 16.8972 + 33.1626i 1.69823 + 3.33297i
\(100\) 0 0
\(101\) −1.94664 + 12.2906i −0.193698 + 1.22296i 0.678793 + 0.734330i \(0.262504\pi\)
−0.872491 + 0.488631i \(0.837496\pi\)
\(102\) 0 0
\(103\) −1.11678 + 0.811387i −0.110039 + 0.0799483i −0.641444 0.767170i \(-0.721664\pi\)
0.531405 + 0.847118i \(0.321664\pi\)
\(104\) 0 0
\(105\) 0.173497 + 0.296266i 0.0169315 + 0.0289126i
\(106\) 0 0
\(107\) 6.82901 + 9.39932i 0.660185 + 0.908667i 0.999488 0.0320107i \(-0.0101911\pi\)
−0.339303 + 0.940677i \(0.610191\pi\)
\(108\) 0 0
\(109\) −11.4794 + 11.4794i −1.09953 + 1.09953i −0.105067 + 0.994465i \(0.533506\pi\)
−0.994465 + 0.105067i \(0.966494\pi\)
\(110\) 0 0
\(111\) 3.08578 6.05619i 0.292890 0.574828i
\(112\) 0 0
\(113\) 12.6324 + 4.10451i 1.18835 + 0.386120i 0.835464 0.549545i \(-0.185199\pi\)
0.352891 + 0.935665i \(0.385199\pi\)
\(114\) 0 0
\(115\) −6.57275 + 7.39103i −0.612912 + 0.689217i
\(116\) 0 0
\(117\) −2.84991 17.9936i −0.263474 1.66351i
\(118\) 0 0
\(119\) 0.118460 + 0.364583i 0.0108592 + 0.0334213i
\(120\) 0 0
\(121\) 16.9794 23.3702i 1.54359 2.12456i
\(122\) 0 0
\(123\) 8.68408 17.0061i 0.783017 1.53339i
\(124\) 0 0
\(125\) 10.6953 + 3.25740i 0.956616 + 0.291351i
\(126\) 0 0
\(127\) 2.10690 0.684572i 0.186957 0.0607459i −0.214042 0.976824i \(-0.568663\pi\)
0.400999 + 0.916078i \(0.368663\pi\)
\(128\) 0 0
\(129\) 29.8286 4.72439i 2.62626 0.415959i
\(130\) 0 0
\(131\) 0.771163 + 0.250566i 0.0673768 + 0.0218921i 0.342511 0.939514i \(-0.388722\pi\)
−0.275135 + 0.961406i \(0.588722\pi\)
\(132\) 0 0
\(133\) −0.197755 0.0642544i −0.0171475 0.00557156i
\(134\) 0 0
\(135\) 12.2336 + 14.9180i 1.05290 + 1.28394i
\(136\) 0 0
\(137\) −1.25227 1.25227i −0.106989 0.106989i 0.651586 0.758575i \(-0.274104\pi\)
−0.758575 + 0.651586i \(0.774104\pi\)
\(138\) 0 0
\(139\) −4.13279 + 3.00265i −0.350539 + 0.254682i −0.749095 0.662462i \(-0.769511\pi\)
0.398556 + 0.917144i \(0.369511\pi\)
\(140\) 0 0
\(141\) 19.0284 + 13.8249i 1.60248 + 1.16427i
\(142\) 0 0
\(143\) −15.7950 + 11.4758i −1.32085 + 0.959651i
\(144\) 0 0
\(145\) −0.753685 + 1.17641i −0.0625902 + 0.0976955i
\(146\) 0 0
\(147\) −18.5928 + 9.47348i −1.53350 + 0.781359i
\(148\) 0 0
\(149\) 10.5477 + 5.37435i 0.864105 + 0.440284i 0.829098 0.559103i \(-0.188855\pi\)
0.0350073 + 0.999387i \(0.488855\pi\)
\(150\) 0 0
\(151\) 1.73463 + 10.9520i 0.141162 + 0.891261i 0.952024 + 0.306024i \(0.0989986\pi\)
−0.810862 + 0.585237i \(0.801001\pi\)
\(152\) 0 0
\(153\) 19.9201 + 39.0955i 1.61045 + 3.16068i
\(154\) 0 0
\(155\) −3.99746 + 9.12970i −0.321083 + 0.733315i
\(156\) 0 0
\(157\) −1.55054 + 9.78969i −0.123746 + 0.781303i 0.845276 + 0.534330i \(0.179436\pi\)
−0.969022 + 0.246973i \(0.920564\pi\)
\(158\) 0 0
\(159\) 25.1866 8.18362i 1.99743 0.649004i
\(160\) 0 0
\(161\) 0.161038 + 0.161038i 0.0126916 + 0.0126916i
\(162\) 0 0
\(163\) 9.29229i 0.727829i 0.931432 + 0.363914i \(0.118560\pi\)
−0.931432 + 0.363914i \(0.881440\pi\)
\(164\) 0 0
\(165\) 16.8916 38.5784i 1.31501 3.00333i
\(166\) 0 0
\(167\) −1.54377 + 1.54377i −0.119460 + 0.119460i −0.764310 0.644849i \(-0.776920\pi\)
0.644849 + 0.764310i \(0.276920\pi\)
\(168\) 0 0
\(169\) −3.27510 + 1.06414i −0.251930 + 0.0818572i
\(170\) 0 0
\(171\) −23.5069 3.72313i −1.79762 0.284715i
\(172\) 0 0
\(173\) −14.5470 −1.10599 −0.552993 0.833186i \(-0.686515\pi\)
−0.552993 + 0.833186i \(0.686515\pi\)
\(174\) 0 0
\(175\) 0.0892817 0.241456i 0.00674906 0.0182524i
\(176\) 0 0
\(177\) −10.7927 + 1.70940i −0.811233 + 0.128487i
\(178\) 0 0
\(179\) −13.9986 7.13264i −1.04630 0.533118i −0.155655 0.987811i \(-0.549749\pi\)
−0.890648 + 0.454693i \(0.849749\pi\)
\(180\) 0 0
\(181\) 3.73206 + 7.32458i 0.277402 + 0.544432i 0.987106 0.160068i \(-0.0511713\pi\)
−0.709704 + 0.704500i \(0.751171\pi\)
\(182\) 0 0
\(183\) 36.3331 + 5.75459i 2.68582 + 0.425392i
\(184\) 0 0
\(185\) −4.97852 + 1.09038i −0.366028 + 0.0801666i
\(186\) 0 0
\(187\) 27.6394 38.0424i 2.02120 2.78194i
\(188\) 0 0
\(189\) 0.359387 0.261110i 0.0261416 0.0189930i
\(190\) 0 0
\(191\) −14.4951 + 14.4951i −1.04883 + 1.04883i −0.0500871 + 0.998745i \(0.515950\pi\)
−0.998745 + 0.0500871i \(0.984050\pi\)
\(192\) 0 0
\(193\) −4.35034 2.21661i −0.313144 0.159555i 0.290354 0.956919i \(-0.406227\pi\)
−0.603498 + 0.797364i \(0.706227\pi\)
\(194\) 0 0
\(195\) −13.6986 + 15.4040i −0.980975 + 1.10310i
\(196\) 0 0
\(197\) 5.57469 17.1571i 0.397181 1.22240i −0.530070 0.847954i \(-0.677834\pi\)
0.927250 0.374442i \(-0.122166\pi\)
\(198\) 0 0
\(199\) 2.21552 0.350904i 0.157054 0.0248749i −0.0774123 0.996999i \(-0.524666\pi\)
0.234466 + 0.972124i \(0.424666\pi\)
\(200\) 0 0
\(201\) 4.22013 + 12.9882i 0.297665 + 0.916120i
\(202\) 0 0
\(203\) 0.0260259 + 0.0189090i 0.00182666 + 0.00132715i
\(204\) 0 0
\(205\) −13.9890 + 3.05082i −0.977035 + 0.213079i
\(206\) 0 0
\(207\) 21.0890 + 15.3221i 1.46579 + 1.06496i
\(208\) 0 0
\(209\) 7.88176 + 24.2576i 0.545193 + 1.67793i
\(210\) 0 0
\(211\) 9.38792 1.48690i 0.646291 0.102362i 0.175321 0.984511i \(-0.443904\pi\)
0.470971 + 0.882149i \(0.343904\pi\)
\(212\) 0 0
\(213\) 0.638153 1.96403i 0.0437255 0.134573i
\(214\) 0 0
\(215\) −16.9216 15.0482i −1.15404 1.02628i
\(216\) 0 0
\(217\) 0.204472 + 0.104184i 0.0138805 + 0.00707246i
\(218\) 0 0
\(219\) 3.44491 3.44491i 0.232785 0.232785i
\(220\) 0 0
\(221\) −18.6208 + 13.5288i −1.25257 + 0.910045i
\(222\) 0 0
\(223\) −7.88686 + 10.8553i −0.528143 + 0.726927i −0.986846 0.161663i \(-0.948314\pi\)
0.458703 + 0.888590i \(0.348314\pi\)
\(224\) 0 0
\(225\) 5.77001 28.8956i 0.384667 1.92637i
\(226\) 0 0
\(227\) 26.1741 + 4.14557i 1.73724 + 0.275151i 0.943081 0.332564i \(-0.107914\pi\)
0.794155 + 0.607715i \(0.207914\pi\)
\(228\) 0 0
\(229\) −4.47326 8.77926i −0.295601 0.580150i 0.694665 0.719333i \(-0.255552\pi\)
−0.990267 + 0.139183i \(0.955552\pi\)
\(230\) 0 0
\(231\) −0.864017 0.440239i −0.0568482 0.0289656i
\(232\) 0 0
\(233\) −21.3278 + 3.37800i −1.39723 + 0.221300i −0.809198 0.587536i \(-0.800098\pi\)
−0.588035 + 0.808836i \(0.700098\pi\)
\(234\) 0 0
\(235\) −1.03171 17.6058i −0.0673011 1.14848i
\(236\) 0 0
\(237\) −39.1707 −2.54441
\(238\) 0 0
\(239\) −1.82523 0.289088i −0.118064 0.0186995i 0.0971227 0.995272i \(-0.469036\pi\)
−0.215187 + 0.976573i \(0.569036\pi\)
\(240\) 0 0
\(241\) 13.9719 4.53973i 0.900006 0.292430i 0.177767 0.984073i \(-0.443113\pi\)
0.722240 + 0.691643i \(0.243113\pi\)
\(242\) 0 0
\(243\) −1.32711 + 1.32711i −0.0851344 + 0.0851344i
\(244\) 0 0
\(245\) 14.3328 + 6.27566i 0.915692 + 0.400937i
\(246\) 0 0
\(247\) 12.4845i 0.794369i
\(248\) 0 0
\(249\) 18.3096 + 18.3096i 1.16033 + 1.16033i
\(250\) 0 0
\(251\) −12.1552 + 3.94947i −0.767231 + 0.249288i −0.666379 0.745613i \(-0.732157\pi\)
−0.100852 + 0.994901i \(0.532157\pi\)
\(252\) 0 0
\(253\) 4.37015 27.5920i 0.274749 1.73470i
\(254\) 0 0
\(255\) 19.9136 45.4802i 1.24704 2.84808i
\(256\) 0 0
\(257\) 12.0630 + 23.6749i 0.752469 + 1.47680i 0.874888 + 0.484324i \(0.160935\pi\)
−0.122420 + 0.992478i \(0.539065\pi\)
\(258\) 0 0
\(259\) 0.0183577 + 0.115906i 0.00114069 + 0.00720204i
\(260\) 0 0
\(261\) 3.28084 + 1.67167i 0.203079 + 0.103474i
\(262\) 0 0
\(263\) 17.1319 8.72915i 1.05640 0.538262i 0.162583 0.986695i \(-0.448018\pi\)
0.893817 + 0.448433i \(0.148018\pi\)
\(264\) 0 0
\(265\) −16.7201 10.7120i −1.02711 0.658034i
\(266\) 0 0
\(267\) 7.02526 5.10415i 0.429939 0.312369i
\(268\) 0 0
\(269\) −18.1872 13.2138i −1.10889 0.805658i −0.126405 0.991979i \(-0.540344\pi\)
−0.982489 + 0.186320i \(0.940344\pi\)
\(270\) 0 0
\(271\) 6.90176 5.01442i 0.419252 0.304604i −0.358085 0.933689i \(-0.616570\pi\)
0.777337 + 0.629085i \(0.216570\pi\)
\(272\) 0 0
\(273\) 0.335627 + 0.335627i 0.0203130 + 0.0203130i
\(274\) 0 0
\(275\) −30.3989 + 8.54900i −1.83312 + 0.515524i
\(276\) 0 0
\(277\) −5.72931 1.86157i −0.344241 0.111851i 0.131794 0.991277i \(-0.457926\pi\)
−0.476035 + 0.879426i \(0.657926\pi\)
\(278\) 0 0
\(279\) 24.9813 + 8.11693i 1.49559 + 0.485948i
\(280\) 0 0
\(281\) −26.4784 + 4.19376i −1.57957 + 0.250179i −0.883722 0.468013i \(-0.844970\pi\)
−0.695845 + 0.718192i \(0.744970\pi\)
\(282\) 0 0
\(283\) 7.41877 2.41051i 0.441000 0.143290i −0.0800968 0.996787i \(-0.525523\pi\)
0.521097 + 0.853497i \(0.325523\pi\)
\(284\) 0 0
\(285\) 13.6088 + 23.2386i 0.806116 + 1.37654i
\(286\) 0 0
\(287\) 0.0512836 + 0.325663i 0.00302718 + 0.0192233i
\(288\) 0 0
\(289\) 22.5918 31.0950i 1.32893 1.82912i
\(290\) 0 0
\(291\) −10.6239 32.6971i −0.622786 1.91674i
\(292\) 0 0
\(293\) 0.00246306 + 0.0155512i 0.000143894 + 0.000908509i 0.987760 0.155980i \(-0.0498536\pi\)
−0.987616 + 0.156889i \(0.949854\pi\)
\(294\) 0 0
\(295\) 6.12267 + 5.44481i 0.356475 + 0.317009i
\(296\) 0 0
\(297\) −51.8241 16.8387i −3.00714 0.977078i
\(298\) 0 0
\(299\) −6.20784 + 12.1836i −0.359009 + 0.704594i
\(300\) 0 0
\(301\) −0.368693 + 0.368693i −0.0212511 + 0.0212511i
\(302\) 0 0
\(303\) −21.8123 30.0220i −1.25308 1.72472i
\(304\) 0 0
\(305\) −13.9386 23.8018i −0.798121 1.36289i
\(306\) 0 0
\(307\) 2.07917 1.51061i 0.118665 0.0862149i −0.526870 0.849946i \(-0.676635\pi\)
0.645535 + 0.763731i \(0.276635\pi\)
\(308\) 0 0
\(309\) 0.643978 4.06592i 0.0366346 0.231302i
\(310\) 0 0
\(311\) 11.2746 + 22.1276i 0.639322 + 1.25474i 0.952353 + 0.304997i \(0.0986554\pi\)
−0.313032 + 0.949743i \(0.601345\pi\)
\(312\) 0 0
\(313\) −11.1982 + 21.9777i −0.632961 + 1.24226i 0.322341 + 0.946624i \(0.395530\pi\)
−0.955302 + 0.295632i \(0.904470\pi\)
\(314\) 0 0
\(315\) −0.656426 0.171553i −0.0369854 0.00966590i
\(316\) 0 0
\(317\) 0.902336 + 1.77093i 0.0506802 + 0.0994655i 0.914958 0.403550i \(-0.132224\pi\)
−0.864277 + 0.503016i \(0.832224\pi\)
\(318\) 0 0
\(319\) 3.94611i 0.220940i
\(320\) 0 0
\(321\) −34.2206 5.42001i −1.91001 0.302516i
\(322\) 0 0
\(323\) 9.29182 + 28.5973i 0.517011 + 1.59120i
\(324\) 0 0
\(325\) 15.4443 + 0.618301i 0.856696 + 0.0342972i
\(326\) 0 0
\(327\) 48.4134i 2.67726i
\(328\) 0 0
\(329\) −0.406080 −0.0223879
\(330\) 0 0
\(331\) −3.55291 3.55291i −0.195286 0.195286i 0.602690 0.797976i \(-0.294096\pi\)
−0.797976 + 0.602690i \(0.794096\pi\)
\(332\) 0 0
\(333\) 4.15072 + 12.7746i 0.227458 + 0.700044i
\(334\) 0 0
\(335\) 5.52398 8.62225i 0.301807 0.471084i
\(336\) 0 0
\(337\) 13.8510 0.754513 0.377257 0.926109i \(-0.376867\pi\)
0.377257 + 0.926109i \(0.376867\pi\)
\(338\) 0 0
\(339\) −35.2930 + 17.9827i −1.91686 + 0.976687i
\(340\) 0 0
\(341\) −4.40359 27.8032i −0.238468 1.50563i
\(342\) 0 0
\(343\) 0.327181 0.642130i 0.0176661 0.0346717i
\(344\) 0 0
\(345\) −1.72551 29.4454i −0.0928983 1.58529i
\(346\) 0 0
\(347\) 16.2530 + 2.57422i 0.872505 + 0.138191i 0.576600 0.817026i \(-0.304379\pi\)
0.295905 + 0.955218i \(0.404379\pi\)
\(348\) 0 0
\(349\) 14.9832 + 20.6226i 0.802032 + 1.10390i 0.992504 + 0.122209i \(0.0389979\pi\)
−0.190473 + 0.981692i \(0.561002\pi\)
\(350\) 0 0
\(351\) 21.5781 + 15.6774i 1.15175 + 0.836797i
\(352\) 0 0
\(353\) 18.8121 + 25.8926i 1.00127 + 1.37813i 0.924545 + 0.381074i \(0.124446\pi\)
0.0767228 + 0.997052i \(0.475554\pi\)
\(354\) 0 0
\(355\) −1.44215 + 0.563830i −0.0765415 + 0.0299250i
\(356\) 0 0
\(357\) −1.01859 0.518998i −0.0539096 0.0274683i
\(358\) 0 0
\(359\) −2.33890 + 7.19839i −0.123442 + 0.379917i −0.993614 0.112832i \(-0.964008\pi\)
0.870172 + 0.492749i \(0.164008\pi\)
\(360\) 0 0
\(361\) 2.55851 + 0.831311i 0.134659 + 0.0437532i
\(362\) 0 0
\(363\) 13.4762 + 85.0851i 0.707315 + 4.46581i
\(364\) 0 0
\(365\) −3.63526 0.359406i −0.190278 0.0188122i
\(366\) 0 0
\(367\) 1.41570 + 1.02857i 0.0738990 + 0.0536907i 0.624121 0.781327i \(-0.285457\pi\)
−0.550222 + 0.835018i \(0.685457\pi\)
\(368\) 0 0
\(369\) 11.6289 + 35.8984i 0.605375 + 1.86880i
\(370\) 0 0
\(371\) −0.268750 + 0.369903i −0.0139528 + 0.0192044i
\(372\) 0 0
\(373\) −0.939532 + 0.305273i −0.0486471 + 0.0158064i −0.333239 0.942842i \(-0.608142\pi\)
0.284592 + 0.958649i \(0.408142\pi\)
\(374\) 0 0
\(375\) −29.4220 + 15.6843i −1.51935 + 0.809932i
\(376\) 0 0
\(377\) −0.596873 + 1.83698i −0.0307405 + 0.0946095i
\(378\) 0 0
\(379\) 0.135167 0.416002i 0.00694307 0.0213686i −0.947525 0.319682i \(-0.896424\pi\)
0.954468 + 0.298313i \(0.0964240\pi\)
\(380\) 0 0
\(381\) −2.99925 + 5.88636i −0.153656 + 0.301567i
\(382\) 0 0
\(383\) 13.2357 + 13.2357i 0.676313 + 0.676313i 0.959164 0.282851i \(-0.0912802\pi\)
−0.282851 + 0.959164i \(0.591280\pi\)
\(384\) 0 0
\(385\) 0.155562 + 0.710270i 0.00792815 + 0.0361987i
\(386\) 0 0
\(387\) −35.0796 + 48.2829i −1.78319 + 2.45436i
\(388\) 0 0
\(389\) 13.5531 + 18.6542i 0.687169 + 0.945807i 0.999992 0.00400462i \(-0.00127471\pi\)
−0.312823 + 0.949811i \(0.601275\pi\)
\(390\) 0 0
\(391\) 5.15198 32.5283i 0.260547 1.64503i
\(392\) 0 0
\(393\) −2.15452 + 1.09778i −0.108681 + 0.0553757i
\(394\) 0 0
\(395\) 18.6243 + 22.7109i 0.937089 + 1.14271i
\(396\) 0 0
\(397\) 1.15916 0.183594i 0.0581768 0.00921430i −0.127278 0.991867i \(-0.540624\pi\)
0.185455 + 0.982653i \(0.440624\pi\)
\(398\) 0 0
\(399\) 0.552498 0.281512i 0.0276595 0.0140932i
\(400\) 0 0
\(401\) 0.578760i 0.0289019i −0.999896 0.0144509i \(-0.995400\pi\)
0.999896 0.0144509i \(-0.00460004\pi\)
\(402\) 0 0
\(403\) −2.15544 + 13.6089i −0.107370 + 0.677909i
\(404\) 0 0
\(405\) −17.9136 1.77106i −0.890135 0.0880045i
\(406\) 0 0
\(407\) 10.1787 10.1787i 0.504538 0.504538i
\(408\) 0 0
\(409\) −3.24161 −0.160287 −0.0801436 0.996783i \(-0.525538\pi\)
−0.0801436 + 0.996783i \(0.525538\pi\)
\(410\) 0 0
\(411\) 5.28133 0.260509
\(412\) 0 0
\(413\) 0.133402 0.133402i 0.00656431 0.00656431i
\(414\) 0 0
\(415\) 1.91024 19.3214i 0.0937699 0.948449i
\(416\) 0 0
\(417\) 2.38313 15.0465i 0.116702 0.736830i
\(418\) 0 0
\(419\) 4.77016i 0.233038i −0.993188 0.116519i \(-0.962826\pi\)
0.993188 0.116519i \(-0.0371736\pi\)
\(420\) 0 0
\(421\) 30.9021 15.7454i 1.50608 0.767385i 0.510372 0.859954i \(-0.329508\pi\)
0.995706 + 0.0925683i \(0.0295077\pi\)
\(422\) 0 0
\(423\) −45.9079 + 7.27109i −2.23212 + 0.353533i
\(424\) 0 0
\(425\) −35.8373 + 10.0784i −1.73837 + 0.488876i
\(426\) 0 0
\(427\) −0.565887 + 0.288334i −0.0273852 + 0.0139535i
\(428\) 0 0
\(429\) 9.10803 57.5058i 0.439740 2.77641i
\(430\) 0 0
\(431\) −8.68513 11.9541i −0.418348 0.575806i 0.546882 0.837210i \(-0.315815\pi\)
−0.965230 + 0.261403i \(0.915815\pi\)
\(432\) 0 0
\(433\) −1.07310 + 1.47700i −0.0515701 + 0.0709801i −0.834023 0.551729i \(-0.813968\pi\)
0.782453 + 0.622709i \(0.213968\pi\)
\(434\) 0 0
\(435\) −0.891398 4.06999i −0.0427393 0.195141i
\(436\) 0 0
\(437\) 12.6316 + 12.6316i 0.604250 + 0.604250i
\(438\) 0 0
\(439\) 0.455977 0.894904i 0.0217626 0.0427115i −0.879869 0.475216i \(-0.842370\pi\)
0.901632 + 0.432504i \(0.142370\pi\)
\(440\) 0 0
\(441\) 12.7429 39.2186i 0.606804 1.86755i
\(442\) 0 0
\(443\) 6.43525 19.8056i 0.305748 0.940995i −0.673649 0.739051i \(-0.735274\pi\)
0.979397 0.201944i \(-0.0647258\pi\)
\(444\) 0 0
\(445\) −6.29961 1.64636i −0.298630 0.0780450i
\(446\) 0 0
\(447\) −33.5749 + 10.9091i −1.58804 + 0.515985i
\(448\) 0 0
\(449\) 8.82587 12.1478i 0.416519 0.573289i −0.548275 0.836298i \(-0.684715\pi\)
0.964793 + 0.263010i \(0.0847151\pi\)
\(450\) 0 0
\(451\) 28.6206 28.5698i 1.34769 1.34530i
\(452\) 0 0
\(453\) −26.7522 19.4366i −1.25693 0.913213i
\(454\) 0 0
\(455\) 0.0350158 0.354173i 0.00164157 0.0166039i
\(456\) 0 0
\(457\) −5.10990 32.2626i −0.239031 1.50918i −0.756791 0.653657i \(-0.773234\pi\)
0.517760 0.855526i \(-0.326766\pi\)
\(458\) 0 0
\(459\) −61.0955 19.8511i −2.85169 0.926571i
\(460\) 0 0
\(461\) −10.1649 + 31.2842i −0.473424 + 1.45705i 0.374646 + 0.927168i \(0.377764\pi\)
−0.848071 + 0.529883i \(0.822236\pi\)
\(462\) 0 0
\(463\) −31.1971 15.8957i −1.44985 0.738736i −0.460966 0.887418i \(-0.652497\pi\)
−0.988885 + 0.148682i \(0.952497\pi\)
\(464\) 0 0
\(465\) −10.8224 27.6812i −0.501875 1.28368i
\(466\) 0 0
\(467\) 3.45304 + 4.75270i 0.159787 + 0.219929i 0.881403 0.472366i \(-0.156600\pi\)
−0.721615 + 0.692294i \(0.756600\pi\)
\(468\) 0 0
\(469\) −0.190752 0.138589i −0.00880809 0.00639945i
\(470\) 0 0
\(471\) −17.3739 23.9131i −0.800547 1.10186i
\(472\) 0 0
\(473\) 63.1714 + 10.0054i 2.90462 + 0.460047i
\(474\) 0 0
\(475\) 7.00311 18.9394i 0.321325 0.869001i
\(476\) 0 0
\(477\) −23.7592 + 46.6301i −1.08786 + 2.13505i
\(478\) 0 0
\(479\) 0.00125562 + 0.00792765i 5.73706e−5 + 0.000362223i 0.987717 0.156253i \(-0.0499416\pi\)
−0.987660 + 0.156616i \(0.949942\pi\)
\(480\) 0 0
\(481\) −6.27793 + 3.19877i −0.286249 + 0.145851i
\(482\) 0 0
\(483\) −0.679161 −0.0309029
\(484\) 0 0
\(485\) −13.9063 + 21.7060i −0.631452 + 0.985619i
\(486\) 0 0
\(487\) 13.5451 + 41.6876i 0.613787 + 1.88904i 0.418192 + 0.908359i \(0.362664\pi\)
0.195596 + 0.980685i \(0.437336\pi\)
\(488\) 0 0
\(489\) −19.5946 19.5946i −0.886100 0.886100i
\(490\) 0 0
\(491\) −24.0194 −1.08398 −0.541990 0.840385i \(-0.682329\pi\)
−0.541990 + 0.840385i \(0.682329\pi\)
\(492\) 0 0
\(493\) 4.65208i 0.209519i
\(494\) 0 0
\(495\) 30.3042 + 77.5115i 1.36207 + 3.48388i
\(496\) 0 0
\(497\) 0.0110177 + 0.0339090i 0.000494212 + 0.00152103i
\(498\) 0 0
\(499\) −3.05233 0.483442i −0.136641 0.0216418i 0.0877391 0.996143i \(-0.472036\pi\)
−0.224380 + 0.974502i \(0.572036\pi\)
\(500\) 0 0
\(501\) 6.51067i 0.290875i
\(502\) 0 0
\(503\) −16.1762 31.7476i −0.721261 1.41556i −0.901873 0.432001i \(-0.857808\pi\)
0.180612 0.983554i \(-0.442192\pi\)
\(504\) 0 0
\(505\) −7.03563 + 26.9210i −0.313081 + 1.19797i
\(506\) 0 0
\(507\) 4.66223 9.15014i 0.207057 0.406372i
\(508\) 0 0
\(509\) −6.39424 12.5494i −0.283420 0.556242i 0.704778 0.709428i \(-0.251047\pi\)
−0.988197 + 0.153186i \(0.951047\pi\)
\(510\) 0 0
\(511\) −0.0131580 + 0.0830766i −0.000582078 + 0.00367509i
\(512\) 0 0
\(513\) 28.1897 20.4810i 1.24461 0.904260i
\(514\) 0 0
\(515\) −2.66358 + 1.55982i −0.117371 + 0.0687340i
\(516\) 0 0
\(517\) 29.2786 + 40.2986i 1.28767 + 1.77233i
\(518\) 0 0
\(519\) 30.6752 30.6752i 1.34649 1.34649i
\(520\) 0 0
\(521\) 14.1654 27.8011i 0.620596 1.21799i −0.340101 0.940389i \(-0.610461\pi\)
0.960697 0.277599i \(-0.0895386\pi\)
\(522\) 0 0
\(523\) −5.56778 1.80908i −0.243462 0.0791055i 0.184744 0.982787i \(-0.440854\pi\)
−0.428206 + 0.903681i \(0.640854\pi\)
\(524\) 0 0
\(525\) 0.320890 + 0.697426i 0.0140048 + 0.0304382i
\(526\) 0 0
\(527\) −5.19140 32.7772i −0.226141 1.42780i
\(528\) 0 0
\(529\) 1.06126 + 3.26622i 0.0461418 + 0.142010i
\(530\) 0 0
\(531\) 12.6927 17.4700i 0.550815 0.758132i
\(532\) 0 0
\(533\) −17.6447 + 8.97072i −0.764279 + 0.388565i
\(534\) 0 0
\(535\) 13.1282 + 22.4179i 0.567581 + 0.969211i
\(536\) 0 0
\(537\) 44.5594 14.4782i 1.92288 0.624781i
\(538\) 0 0
\(539\) −43.6486 + 6.91325i −1.88008 + 0.297775i
\(540\) 0 0
\(541\) −11.8447 3.84858i −0.509244 0.165464i 0.0431142 0.999070i \(-0.486272\pi\)
−0.552359 + 0.833607i \(0.686272\pi\)
\(542\) 0 0
\(543\) −23.3151 7.57554i −1.00055 0.325098i
\(544\) 0 0
\(545\) −28.0698 + 23.0188i −1.20238 + 0.986018i
\(546\) 0 0
\(547\) −22.8227 22.8227i −0.975826 0.975826i 0.0238884 0.999715i \(-0.492395\pi\)
−0.999715 + 0.0238884i \(0.992395\pi\)
\(548\) 0 0
\(549\) −58.8115 + 42.7290i −2.51001 + 1.82363i
\(550\) 0 0
\(551\) 2.04143 + 1.48319i 0.0869680 + 0.0631859i
\(552\) 0 0
\(553\) 0.547124 0.397509i 0.0232661 0.0169038i
\(554\) 0 0
\(555\) 8.19891 12.7975i 0.348024 0.543223i
\(556\) 0 0
\(557\) 8.28583 4.22184i 0.351082 0.178885i −0.269552 0.962986i \(-0.586876\pi\)
0.620633 + 0.784101i \(0.286876\pi\)
\(558\) 0 0
\(559\) −27.8940 14.2127i −1.17979 0.601134i
\(560\) 0 0
\(561\) 21.9367 + 138.503i 0.926170 + 5.84761i
\(562\) 0 0
\(563\) −8.06495 15.8284i −0.339897 0.667086i 0.656273 0.754524i \(-0.272132\pi\)
−0.996170 + 0.0874380i \(0.972132\pi\)
\(564\) 0 0
\(565\) 27.2068 + 11.9126i 1.14460 + 0.501165i
\(566\) 0 0
\(567\) −0.0648394 + 0.409380i −0.00272300 + 0.0171923i
\(568\) 0 0
\(569\) −10.8104 + 3.51252i −0.453197 + 0.147253i −0.526716 0.850041i \(-0.676577\pi\)
0.0735192 + 0.997294i \(0.476577\pi\)
\(570\) 0 0
\(571\) −22.0859 22.0859i −0.924266 0.924266i 0.0730616 0.997327i \(-0.476723\pi\)
−0.997327 + 0.0730616i \(0.976723\pi\)
\(572\) 0 0
\(573\) 61.1317i 2.55382i
\(574\) 0 0
\(575\) −16.2518 + 15.0007i −0.677748 + 0.625571i
\(576\) 0 0
\(577\) −10.2713 + 10.2713i −0.427601 + 0.427601i −0.887810 0.460209i \(-0.847774\pi\)
0.460209 + 0.887810i \(0.347774\pi\)
\(578\) 0 0
\(579\) 13.8477 4.49939i 0.575491 0.186988i
\(580\) 0 0
\(581\) −0.441551 0.0699349i −0.0183186 0.00290139i
\(582\) 0 0
\(583\) 56.0855 2.32282
\(584\) 0 0
\(585\) −2.38308 40.6667i −0.0985282 1.68136i
\(586\) 0 0
\(587\) 19.9909 3.16625i 0.825114 0.130685i 0.270423 0.962742i \(-0.412836\pi\)
0.554691 + 0.832056i \(0.312836\pi\)
\(588\) 0 0
\(589\) 16.0385 + 8.17201i 0.660854 + 0.336722i
\(590\) 0 0
\(591\) 24.4239 + 47.9346i 1.00466 + 1.97176i
\(592\) 0 0
\(593\) 17.6259 + 2.79167i 0.723809 + 0.114640i 0.507459 0.861676i \(-0.330585\pi\)
0.216350 + 0.976316i \(0.430585\pi\)
\(594\) 0 0
\(595\) 0.183392 + 0.837338i 0.00751833 + 0.0343275i
\(596\) 0 0
\(597\) −3.93191 + 5.41181i −0.160922 + 0.221491i
\(598\) 0 0
\(599\) 33.6513 24.4491i 1.37496 0.998964i 0.377624 0.925959i \(-0.376741\pi\)
0.997332 0.0730047i \(-0.0232588\pi\)
\(600\) 0 0
\(601\) −4.58020 + 4.58020i −0.186830 + 0.186830i −0.794324 0.607494i \(-0.792175\pi\)
0.607494 + 0.794324i \(0.292175\pi\)
\(602\) 0 0
\(603\) −24.0462 12.2522i −0.979239 0.498947i
\(604\) 0 0
\(605\) 42.9244 48.2683i 1.74512 1.96239i
\(606\) 0 0
\(607\) −2.09145 + 6.43682i −0.0848893 + 0.261262i −0.984487 0.175457i \(-0.943860\pi\)
0.899598 + 0.436719i \(0.143860\pi\)
\(608\) 0 0
\(609\) −0.0947541 + 0.0150076i −0.00383963 + 0.000608138i
\(610\) 0 0
\(611\) −7.53432 23.1883i −0.304806 0.938097i
\(612\) 0 0
\(613\) 1.10815 + 0.805118i 0.0447578 + 0.0325184i 0.609939 0.792448i \(-0.291194\pi\)
−0.565181 + 0.824967i \(0.691194\pi\)
\(614\) 0 0
\(615\) 23.0653 35.9319i 0.930084 1.44891i
\(616\) 0 0
\(617\) −10.7501 7.81038i −0.432781 0.314434i 0.349979 0.936758i \(-0.386189\pi\)
−0.782760 + 0.622324i \(0.786189\pi\)
\(618\) 0 0
\(619\) −4.04288 12.4427i −0.162497 0.500115i 0.836346 0.548202i \(-0.184687\pi\)
−0.998843 + 0.0480872i \(0.984687\pi\)
\(620\) 0 0
\(621\) −37.6943 + 5.97020i −1.51262 + 0.239576i
\(622\) 0 0
\(623\) −0.0463291 + 0.142586i −0.00185614 + 0.00571260i
\(624\) 0 0
\(625\) 23.0827 + 9.60140i 0.923310 + 0.384056i
\(626\) 0 0
\(627\) −67.7721 34.5316i −2.70656 1.37906i
\(628\) 0 0
\(629\) 11.9997 11.9997i 0.478457 0.478457i
\(630\) 0 0
\(631\) −15.3021 + 11.1177i −0.609169 + 0.442587i −0.849121 0.528198i \(-0.822868\pi\)
0.239953 + 0.970785i \(0.422868\pi\)
\(632\) 0 0
\(633\) −16.6609 + 22.9317i −0.662210 + 0.911454i
\(634\) 0 0
\(635\) 4.83891 1.05981i 0.192026 0.0420571i
\(636\) 0 0
\(637\) 21.3648 + 3.38386i 0.846506 + 0.134073i
\(638\) 0 0
\(639\) 1.85273 + 3.63618i 0.0732928 + 0.143845i
\(640\) 0 0
\(641\) 9.72005 + 4.95261i 0.383919 + 0.195616i 0.635289 0.772275i \(-0.280881\pi\)
−0.251370 + 0.967891i \(0.580881\pi\)
\(642\) 0 0
\(643\) −25.4586 + 4.03224i −1.00399 + 0.159016i −0.636716 0.771098i \(-0.719708\pi\)
−0.367271 + 0.930114i \(0.619708\pi\)
\(644\) 0 0
\(645\) 67.4146 3.95051i 2.65445 0.155551i
\(646\) 0 0
\(647\) 7.61274 0.299288 0.149644 0.988740i \(-0.452187\pi\)
0.149644 + 0.988740i \(0.452187\pi\)
\(648\) 0 0
\(649\) −22.8570 3.62019i −0.897216 0.142105i
\(650\) 0 0
\(651\) −0.650862 + 0.211478i −0.0255093 + 0.00828848i
\(652\) 0 0
\(653\) 20.7787 20.7787i 0.813135 0.813135i −0.171968 0.985103i \(-0.555012\pi\)
0.985103 + 0.171968i \(0.0550125\pi\)
\(654\) 0 0
\(655\) 1.66088 + 0.727220i 0.0648960 + 0.0284148i
\(656\) 0 0
\(657\) 9.62753i 0.375606i
\(658\) 0 0
\(659\) 7.09405 + 7.09405i 0.276345 + 0.276345i 0.831648 0.555303i \(-0.187398\pi\)
−0.555303 + 0.831648i \(0.687398\pi\)
\(660\) 0 0
\(661\) −43.5526 + 14.1511i −1.69400 + 0.550413i −0.987544 0.157345i \(-0.949706\pi\)
−0.706454 + 0.707759i \(0.749706\pi\)
\(662\) 0 0
\(663\) 10.7375 67.7937i 0.417009 2.63289i
\(664\) 0 0
\(665\) −0.425912 0.186486i −0.0165161 0.00723162i
\(666\) 0 0
\(667\) −1.25472 2.46253i −0.0485830 0.0953495i
\(668\) 0 0
\(669\) −6.25961 39.5216i −0.242010 1.52799i
\(670\) 0 0
\(671\) 69.4145 + 35.3685i 2.67972 + 1.36538i
\(672\) 0 0
\(673\) 19.0545 9.70876i 0.734498 0.374245i −0.0463844 0.998924i \(-0.514770\pi\)
0.780882 + 0.624678i \(0.214770\pi\)
\(674\) 0 0
\(675\) 23.9406 + 35.8873i 0.921473 + 1.38130i
\(676\) 0 0
\(677\) 2.03551 1.47889i 0.0782311 0.0568382i −0.547982 0.836490i \(-0.684604\pi\)
0.626213 + 0.779652i \(0.284604\pi\)
\(678\) 0 0
\(679\) 0.480206 + 0.348890i 0.0184286 + 0.0133892i
\(680\) 0 0
\(681\) −63.9350 + 46.4515i −2.44999 + 1.78002i
\(682\) 0 0
\(683\) −35.6140 35.6140i −1.36273 1.36273i −0.870418 0.492314i \(-0.836151\pi\)
−0.492314 0.870418i \(-0.663849\pi\)
\(684\) 0 0
\(685\) −2.51108 3.06208i −0.0959435 0.116996i
\(686\) 0 0
\(687\) 27.9456 + 9.08006i 1.06619 + 0.346426i
\(688\) 0 0
\(689\) −26.1088 8.48326i −0.994665 0.323186i
\(690\) 0 0
\(691\) 10.2166 1.61815i 0.388657 0.0615572i 0.0409517 0.999161i \(-0.486961\pi\)
0.347705 + 0.937604i \(0.386961\pi\)
\(692\) 0 0
\(693\) 1.82251 0.592170i 0.0692315 0.0224947i
\(694\) 0 0
\(695\) −9.85696 + 5.77234i −0.373896 + 0.218957i
\(696\) 0 0
\(697\) 33.7409 33.6810i 1.27803 1.27576i
\(698\) 0 0
\(699\) 37.8508 52.0971i 1.43165 1.97049i
\(700\) 0 0
\(701\) 9.38897 + 28.8963i 0.354617 + 1.09140i 0.956232 + 0.292611i \(0.0945242\pi\)
−0.601615 + 0.798786i \(0.705476\pi\)
\(702\) 0 0
\(703\) 1.43995 + 9.09147i 0.0543086 + 0.342891i
\(704\) 0 0
\(705\) 39.3009 + 34.9498i 1.48016 + 1.31629i
\(706\) 0 0
\(707\) 0.609334 + 0.197985i 0.0229164 + 0.00744598i
\(708\) 0 0
\(709\) 1.61832 3.17613i 0.0607772 0.119282i −0.858620 0.512613i \(-0.828677\pi\)
0.919397 + 0.393331i \(0.128677\pi\)
\(710\) 0 0
\(711\) 54.7355 54.7355i 2.05274 2.05274i
\(712\) 0 0
\(713\) −11.5884 15.9501i −0.433989 0.597335i
\(714\) 0 0
\(715\) −37.6721 + 22.0612i −1.40886 + 0.825041i
\(716\) 0 0
\(717\) 4.45845 3.23925i 0.166504 0.120972i
\(718\) 0 0
\(719\) −6.20859 + 39.1995i −0.231541 + 1.46189i 0.548492 + 0.836156i \(0.315202\pi\)
−0.780033 + 0.625738i \(0.784798\pi\)
\(720\) 0 0
\(721\) 0.0322665 + 0.0633266i 0.00120167 + 0.00235841i
\(722\) 0 0
\(723\) −19.8895 + 39.0353i −0.739698 + 1.45174i
\(724\) 0 0
\(725\) −1.93592 + 2.45196i −0.0718984 + 0.0910635i
\(726\) 0 0
\(727\) −1.44845 2.84274i −0.0537199 0.105431i 0.862586 0.505911i \(-0.168844\pi\)
−0.916306 + 0.400480i \(0.868844\pi\)
\(728\) 0 0
\(729\) 29.7478i 1.10177i
\(730\) 0 0
\(731\) 74.4728 + 11.7953i 2.75448 + 0.436266i
\(732\) 0 0
\(733\) −2.15147 6.62156i −0.0794665 0.244573i 0.903429 0.428738i \(-0.141042\pi\)
−0.982895 + 0.184165i \(0.941042\pi\)
\(734\) 0 0
\(735\) −43.4571 + 16.9902i −1.60294 + 0.626692i
\(736\) 0 0
\(737\) 28.9222i 1.06536i
\(738\) 0 0
\(739\) −35.6236 −1.31044 −0.655218 0.755440i \(-0.727423\pi\)
−0.655218 + 0.755440i \(0.727423\pi\)
\(740\) 0 0
\(741\) 26.3260 + 26.3260i 0.967110 + 0.967110i
\(742\) 0 0
\(743\) 4.81322 + 14.8136i 0.176580 + 0.543457i 0.999702 0.0244071i \(-0.00776981\pi\)
−0.823122 + 0.567864i \(0.807770\pi\)
\(744\) 0 0
\(745\) 22.2887 + 14.2796i 0.816595 + 0.523164i
\(746\) 0 0
\(747\) −51.1702 −1.87222
\(748\) 0 0
\(749\) 0.532986 0.271570i 0.0194749 0.00992295i
\(750\) 0 0
\(751\) 1.52475 + 9.62690i 0.0556390 + 0.351291i 0.999764 + 0.0217044i \(0.00690925\pi\)
−0.944125 + 0.329586i \(0.893091\pi\)
\(752\) 0 0
\(753\) 17.3034 33.9599i 0.630573 1.23757i
\(754\) 0 0
\(755\) 1.45049 + 24.7522i 0.0527886 + 0.900825i
\(756\) 0 0
\(757\) 49.9564 + 7.91232i 1.81570 + 0.287578i 0.969464 0.245234i \(-0.0788648\pi\)
0.846234 + 0.532812i \(0.178865\pi\)
\(758\) 0 0
\(759\) 48.9679 + 67.3986i 1.77742 + 2.44641i
\(760\) 0 0
\(761\) 1.18527 + 0.861146i 0.0429658 + 0.0312165i 0.609061 0.793123i \(-0.291546\pi\)
−0.566095 + 0.824340i \(0.691546\pi\)
\(762\) 0 0
\(763\) 0.491304 + 0.676223i 0.0177864 + 0.0244809i
\(764\) 0 0
\(765\) 35.7257 + 91.3785i 1.29167 + 3.30379i
\(766\) 0 0
\(767\) 10.0928 + 5.14252i 0.364429 + 0.185686i
\(768\) 0 0
\(769\) 0.0267024 0.0821815i 0.000962913 0.00296354i −0.950574 0.310498i \(-0.899504\pi\)
0.951537 + 0.307535i \(0.0995041\pi\)
\(770\) 0 0
\(771\) −75.3605 24.4861i −2.71404 0.881846i
\(772\) 0 0
\(773\) −0.543888 3.43398i −0.0195623 0.123512i 0.975975 0.217884i \(-0.0699155\pi\)
−0.995537 + 0.0943726i \(0.969915\pi\)
\(774\) 0 0
\(775\) −10.9037 + 19.4362i −0.391674 + 0.698167i
\(776\) 0 0
\(777\) −0.283121 0.205700i −0.0101569 0.00737943i
\(778\) 0 0
\(779\) 4.02260 + 25.5445i 0.144125 + 0.915227i
\(780\) 0 0
\(781\) 2.57068 3.53824i 0.0919862 0.126608i
\(782\) 0 0
\(783\) −5.12706 + 1.66588i −0.183226 + 0.0595337i
\(784\) 0 0
\(785\) −5.60401 + 21.4431i −0.200016 + 0.765337i
\(786\) 0 0
\(787\) −11.0264 + 33.9359i −0.393050 + 1.20968i 0.537420 + 0.843315i \(0.319399\pi\)
−0.930470 + 0.366369i \(0.880601\pi\)
\(788\) 0 0
\(789\) −17.7189 + 54.5332i −0.630809 + 1.94143i
\(790\) 0 0
\(791\) 0.310472 0.609335i 0.0110391 0.0216654i
\(792\) 0 0
\(793\) −26.9640 26.9640i −0.957519 0.957519i
\(794\) 0 0
\(795\) 57.8461 12.6693i 2.05159 0.449334i
\(796\) 0 0
\(797\) 11.7238 16.1364i 0.415277 0.571579i −0.549219 0.835679i \(-0.685075\pi\)
0.964495 + 0.264099i \(0.0850747\pi\)
\(798\) 0 0
\(799\) 34.5166 + 47.5081i 1.22111 + 1.68071i
\(800\) 0 0
\(801\) −2.68448 + 16.9491i −0.0948513 + 0.598868i
\(802\) 0 0
\(803\) 9.19307 4.68410i 0.324416 0.165298i
\(804\) 0 0
\(805\) 0.322917 + 0.393773i 0.0113813 + 0.0138787i
\(806\) 0 0
\(807\) 66.2152 10.4875i 2.33088 0.369176i
\(808\) 0 0
\(809\) 9.22423 4.69998i 0.324307 0.165243i −0.284256 0.958748i \(-0.591746\pi\)
0.608562 + 0.793506i \(0.291746\pi\)
\(810\) 0 0
\(811\) 15.0239i 0.527561i −0.964583 0.263781i \(-0.915030\pi\)
0.964583 0.263781i \(-0.0849695\pi\)
\(812\) 0 0
\(813\) −3.97982 + 25.1276i −0.139578 + 0.881263i
\(814\) 0 0
\(815\) −2.04430 + 20.6774i −0.0716088 + 0.724297i
\(816\) 0 0
\(817\) −28.9197 + 28.9197i −1.01177 + 1.01177i
\(818\) 0 0
\(819\) −0.937981 −0.0327757
\(820\) 0 0
\(821\) −37.8471 −1.32087 −0.660436 0.750883i \(-0.729628\pi\)
−0.660436 + 0.750883i \(0.729628\pi\)
\(822\) 0 0
\(823\) 24.3907 24.3907i 0.850205 0.850205i −0.139953 0.990158i \(-0.544695\pi\)
0.990158 + 0.139953i \(0.0446952\pi\)
\(824\) 0 0
\(825\) 46.0748 82.1293i 1.60412 2.85938i
\(826\) 0 0
\(827\) −2.57498 + 16.2578i −0.0895409 + 0.565339i 0.901605 + 0.432561i \(0.142390\pi\)
−0.991146 + 0.132779i \(0.957610\pi\)
\(828\) 0 0
\(829\) 6.17858i 0.214591i −0.994227 0.107296i \(-0.965781\pi\)
0.994227 0.107296i \(-0.0342191\pi\)
\(830\) 0 0
\(831\) 16.0069 8.15591i 0.555272 0.282925i
\(832\) 0 0
\(833\) −51.4574 + 8.15005i −1.78289 + 0.282382i
\(834\) 0 0
\(835\) −3.77485 + 3.09559i −0.130634 + 0.107127i
\(836\) 0 0
\(837\) −34.2647 + 17.4588i −1.18436 + 0.603463i
\(838\) 0 0
\(839\) 6.57741 41.5281i 0.227077 1.43371i −0.565908 0.824468i \(-0.691474\pi\)
0.792985 0.609241i \(-0.208526\pi\)
\(840\) 0 0
\(841\) 16.8163 + 23.1457i 0.579873 + 0.798126i
\(842\) 0 0
\(843\) 46.9915 64.6782i 1.61847 2.22764i
\(844\) 0 0
\(845\) −7.52192 + 1.64743i −0.258762 + 0.0566734i
\(846\) 0 0
\(847\) −1.05168 1.05168i −0.0361363 0.0361363i
\(848\) 0 0
\(849\) −10.5609 + 20.7270i −0.362450 + 0.711348i
\(850\) 0 0
\(851\) 3.11544 9.58834i 0.106796 0.328684i
\(852\) 0 0
\(853\) −15.2573 + 46.9570i −0.522399 + 1.60778i 0.247005 + 0.969014i \(0.420554\pi\)
−0.769403 + 0.638763i \(0.779446\pi\)
\(854\) 0 0
\(855\) −51.4890 13.4563i −1.76089 0.460196i
\(856\) 0 0
\(857\) −45.1206 + 14.6606i −1.54129 + 0.500796i −0.951732 0.306929i \(-0.900699\pi\)
−0.589559 + 0.807725i \(0.700699\pi\)
\(858\) 0 0
\(859\) −29.0780 + 40.0224i −0.992129 + 1.36555i −0.0620964 + 0.998070i \(0.519779\pi\)
−0.930032 + 0.367478i \(0.880221\pi\)
\(860\) 0 0
\(861\) −0.794867 0.578583i −0.0270890 0.0197181i
\(862\) 0 0
\(863\) 27.9466 + 20.3044i 0.951312 + 0.691169i 0.951117 0.308831i \(-0.0999378\pi\)
0.000195367 1.00000i \(0.499938\pi\)
\(864\) 0 0
\(865\) −32.3702 3.20033i −1.10062 0.108815i
\(866\) 0 0
\(867\) 17.9306 + 113.209i 0.608954 + 3.84479i
\(868\) 0 0
\(869\) −78.8960 25.6349i −2.67637 0.869604i
\(870\) 0 0
\(871\) 4.37465 13.4638i 0.148229 0.456203i
\(872\) 0 0
\(873\) 60.5350 + 30.8441i 2.04880 + 1.04392i
\(874\) 0 0
\(875\) 0.251792 0.517651i 0.00851211 0.0174998i
\(876\) 0 0
\(877\) −17.7940 24.4913i −0.600861 0.827014i 0.394926 0.918713i \(-0.370770\pi\)
−0.995787 + 0.0916991i \(0.970770\pi\)
\(878\) 0 0
\(879\) −0.0379865 0.0275988i −0.00128125 0.000930886i
\(880\) 0 0
\(881\) 3.63692 + 5.00579i 0.122531 + 0.168649i 0.865876 0.500259i \(-0.166762\pi\)
−0.743345 + 0.668908i \(0.766762\pi\)
\(882\) 0 0
\(883\) −4.51338 0.714849i −0.151887 0.0240566i 0.0800277 0.996793i \(-0.474499\pi\)
−0.231915 + 0.972736i \(0.574499\pi\)
\(884\) 0 0
\(885\) −24.3923 + 1.42940i −0.819938 + 0.0480486i
\(886\) 0 0
\(887\) 10.9827 21.5547i 0.368762 0.723737i −0.629832 0.776731i \(-0.716876\pi\)
0.998595 + 0.0529941i \(0.0168765\pi\)
\(888\) 0 0
\(889\) −0.0178429 0.112656i −0.000598431 0.00377835i
\(890\) 0 0
\(891\) 45.3010 23.0820i 1.51764 0.773276i
\(892\) 0 0
\(893\) −31.8523 −1.06590
\(894\) 0 0
\(895\) −29.5808 18.9514i −0.988775 0.633474i
\(896\) 0 0
\(897\) −12.6010 38.7819i −0.420736 1.29489i
\(898\) 0 0
\(899\) −1.96923 1.96923i −0.0656774 0.0656774i
\(900\) 0 0
\(901\) 66.1193 2.20275
\(902\) 0 0
\(903\) 1.55492i 0.0517446i
\(904\) 0 0
\(905\) 6.69325 + 17.1199i 0.222491 + 0.569083i
\(906\) 0 0
\(907\) −12.5948 38.7629i −0.418204 1.28710i −0.909353 0.416025i \(-0.863423\pi\)
0.491149 0.871075i \(-0.336577\pi\)
\(908\) 0 0
\(909\) 72.4311 + 11.4720i 2.40239 + 0.380501i
\(910\) 0 0
\(911\) 40.5150i 1.34232i −0.741312 0.671161i \(-0.765796\pi\)
0.741312 0.671161i \(-0.234204\pi\)
\(912\) 0 0
\(913\) 24.8959 + 48.8610i 0.823935 + 1.61706i
\(914\) 0 0
\(915\) 79.5830 + 20.7985i 2.63093 + 0.687577i
\(916\) 0 0
\(917\) 0.0189532 0.0371978i 0.000625890 0.00122838i
\(918\) 0 0
\(919\) −11.2619 22.1027i −0.371496 0.729102i 0.627268 0.778803i \(-0.284173\pi\)
−0.998764 + 0.0497014i \(0.984173\pi\)
\(920\) 0 0
\(921\) −1.19893 + 7.56976i −0.0395062 + 0.249432i
\(922\) 0 0
\(923\) −1.73188 + 1.25828i −0.0570054 + 0.0414169i
\(924\) 0 0
\(925\) −11.3182 + 1.33107i −0.372140 + 0.0437653i
\(926\) 0 0
\(927\) 4.78167 + 6.58141i 0.157051 + 0.216162i
\(928\) 0 0
\(929\) −12.7798 + 12.7798i −0.419293 + 0.419293i −0.884960 0.465667i \(-0.845814\pi\)
0.465667 + 0.884960i \(0.345814\pi\)
\(930\) 0 0
\(931\) 12.8294 25.1790i 0.420465 0.825209i
\(932\) 0 0
\(933\) −70.4350 22.8857i −2.30594 0.749245i
\(934\) 0 0
\(935\) 69.8731 78.5721i 2.28510 2.56958i
\(936\) 0 0
\(937\) 0.536066 + 3.38459i 0.0175125 + 0.110570i 0.994896 0.100904i \(-0.0321736\pi\)
−0.977384 + 0.211474i \(0.932174\pi\)
\(938\) 0 0
\(939\) −22.7308 69.9581i −0.741790 2.28299i
\(940\) 0 0
\(941\) 25.1844 34.6634i 0.820989 1.12999i −0.168545 0.985694i \(-0.553907\pi\)
0.989534 0.144301i \(-0.0460933\pi\)
\(942\) 0 0
\(943\) 8.77621 26.9290i 0.285793 0.876929i
\(944\) 0 0
\(945\) 0.857159 0.501962i 0.0278834 0.0163288i
\(946\) 0 0
\(947\) 8.39813 2.72872i 0.272903 0.0886715i −0.169369 0.985553i \(-0.554173\pi\)
0.442271 + 0.896881i \(0.354173\pi\)
\(948\) 0 0
\(949\) −4.98803 + 0.790027i −0.161918 + 0.0256454i
\(950\) 0 0
\(951\) −5.63712 1.83161i −0.182796 0.0593940i
\(952\) 0 0
\(953\) −41.0164 13.3270i −1.32865 0.431705i −0.443193 0.896426i \(-0.646154\pi\)
−0.885457 + 0.464721i \(0.846154\pi\)
\(954\) 0 0
\(955\) −35.4438 + 29.0660i −1.14693 + 0.940552i
\(956\) 0 0
\(957\) 8.32115 + 8.32115i 0.268985 + 0.268985i
\(958\) 0 0
\(959\) −0.0737679 + 0.0535955i −0.00238209 + 0.00173069i
\(960\) 0 0
\(961\) 9.00741 + 6.54427i 0.290562 + 0.211105i
\(962\) 0 0
\(963\) 55.3921 40.2447i 1.78499 1.29687i
\(964\) 0 0
\(965\) −9.19280 5.88951i −0.295927 0.189590i
\(966\) 0 0
\(967\) −39.1239 + 19.9346i −1.25814 + 0.641054i −0.950581 0.310475i \(-0.899512\pi\)
−0.307558 + 0.951529i \(0.599512\pi\)
\(968\) 0 0
\(969\) −79.8967 40.7094i −2.56665 1.30777i
\(970\) 0 0
\(971\) 0.681475 + 4.30266i 0.0218696 + 0.138079i 0.996207 0.0870123i \(-0.0277319\pi\)
−0.974338 + 0.225091i \(0.927732\pi\)
\(972\) 0 0
\(973\) 0.119407 + 0.234349i 0.00382800 + 0.00751288i
\(974\) 0 0
\(975\) −33.8712 + 31.2636i −1.08475 + 1.00124i
\(976\) 0 0
\(977\) 5.87042 37.0643i 0.187811 1.18579i −0.696032 0.718011i \(-0.745053\pi\)
0.883843 0.467783i \(-0.154947\pi\)
\(978\) 0 0
\(979\) 17.4903 5.68296i 0.558994 0.181628i
\(980\) 0 0
\(981\) 67.6508 + 67.6508i 2.15992 + 2.15992i
\(982\) 0 0
\(983\) 55.9962i 1.78600i 0.450056 + 0.893000i \(0.351404\pi\)
−0.450056 + 0.893000i \(0.648596\pi\)
\(984\) 0 0
\(985\) 16.1795 36.9520i 0.515521 1.17739i
\(986\) 0 0
\(987\) 0.856300 0.856300i 0.0272563 0.0272563i
\(988\) 0 0
\(989\) 42.6028 13.8425i 1.35469 0.440165i
\(990\) 0 0
\(991\) −18.0480 2.85853i −0.573315 0.0908041i −0.136956 0.990577i \(-0.543732\pi\)
−0.436358 + 0.899773i \(0.643732\pi\)
\(992\) 0 0
\(993\) 14.9840 0.475504
\(994\) 0 0
\(995\) 5.00721 0.293424i 0.158739 0.00930218i
\(996\) 0 0
\(997\) 58.6477 9.28889i 1.85739 0.294182i 0.875442 0.483322i \(-0.160570\pi\)
0.981950 + 0.189140i \(0.0605701\pi\)
\(998\) 0 0
\(999\) −17.5218 8.92781i −0.554366 0.282464i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.3 176
5.4 even 2 inner 820.2.bq.a.49.20 yes 176
41.36 even 20 inner 820.2.bq.a.569.20 yes 176
205.159 even 20 inner 820.2.bq.a.569.3 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.3 176 1.1 even 1 trivial
820.2.bq.a.49.20 yes 176 5.4 even 2 inner
820.2.bq.a.569.3 yes 176 205.159 even 20 inner
820.2.bq.a.569.20 yes 176 41.36 even 20 inner