Properties

Label 820.2.bq.a.49.18
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.18
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42551 - 1.42551i) q^{3} +(1.33373 + 1.79476i) q^{5} +(-0.459361 + 2.90029i) q^{7} -1.06416i q^{9} +(-1.43594 + 0.731647i) q^{11} +(3.86664 - 0.612416i) q^{13} +(4.45969 + 0.657199i) q^{15} +(-2.72415 + 1.38802i) q^{17} +(-0.538081 + 3.39731i) q^{19} +(3.47957 + 4.78922i) q^{21} +(5.36715 - 7.38725i) q^{23} +(-1.44232 + 4.78745i) q^{25} +(2.75957 + 2.75957i) q^{27} +(-1.89458 + 3.71832i) q^{29} +(-1.09553 + 3.37169i) q^{31} +(-1.00397 + 3.08991i) q^{33} +(-5.81799 + 3.04377i) q^{35} +(1.38324 - 0.449443i) q^{37} +(4.63893 - 6.38494i) q^{39} +(2.69801 - 5.80696i) q^{41} +(-3.53323 - 2.56704i) q^{43} +(1.90990 - 1.41930i) q^{45} +(-0.765037 - 4.83025i) q^{47} +(-1.54330 - 0.501447i) q^{49} +(-1.90466 + 5.86194i) q^{51} +(11.0070 + 5.60835i) q^{53} +(-3.22829 - 1.60134i) q^{55} +(4.07585 + 5.60993i) q^{57} +(-5.66244 - 4.11400i) q^{59} +(-8.92059 - 12.2781i) q^{61} +(3.08636 + 0.488832i) q^{63} +(6.25620 + 6.12289i) q^{65} +(3.44191 - 6.75512i) q^{67} +(-2.87967 - 18.1815i) q^{69} +(-3.40900 + 1.73697i) q^{71} +10.6516 q^{73} +(4.76852 + 8.88060i) q^{75} +(-1.46238 - 4.50073i) q^{77} +(-9.11926 - 9.11926i) q^{79} +11.0600 q^{81} -17.0333i q^{83} +(-6.12445 - 3.03794i) q^{85} +(2.59976 + 8.00125i) q^{87} +(14.7710 + 2.33950i) q^{89} +11.4957i q^{91} +(3.24469 + 6.36807i) q^{93} +(-6.81500 + 3.56537i) q^{95} +(-3.73080 + 7.32211i) q^{97} +(0.778586 + 1.52806i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.42551 1.42551i 0.823018 0.823018i −0.163521 0.986540i \(-0.552285\pi\)
0.986540 + 0.163521i \(0.0522853\pi\)
\(4\) 0 0
\(5\) 1.33373 + 1.79476i 0.596463 + 0.802641i
\(6\) 0 0
\(7\) −0.459361 + 2.90029i −0.173622 + 1.09621i 0.734840 + 0.678241i \(0.237257\pi\)
−0.908462 + 0.417967i \(0.862743\pi\)
\(8\) 0 0
\(9\) 1.06416i 0.354718i
\(10\) 0 0
\(11\) −1.43594 + 0.731647i −0.432952 + 0.220600i −0.656863 0.754010i \(-0.728117\pi\)
0.223912 + 0.974609i \(0.428117\pi\)
\(12\) 0 0
\(13\) 3.86664 0.612416i 1.07241 0.169854i 0.404832 0.914391i \(-0.367330\pi\)
0.667581 + 0.744537i \(0.267330\pi\)
\(14\) 0 0
\(15\) 4.45969 + 0.657199i 1.15149 + 0.169688i
\(16\) 0 0
\(17\) −2.72415 + 1.38802i −0.660703 + 0.336645i −0.751985 0.659180i \(-0.770903\pi\)
0.0912823 + 0.995825i \(0.470903\pi\)
\(18\) 0 0
\(19\) −0.538081 + 3.39731i −0.123444 + 0.779396i 0.845837 + 0.533441i \(0.179101\pi\)
−0.969281 + 0.245955i \(0.920899\pi\)
\(20\) 0 0
\(21\) 3.47957 + 4.78922i 0.759305 + 1.04509i
\(22\) 0 0
\(23\) 5.36715 7.38725i 1.11913 1.54035i 0.311895 0.950116i \(-0.399036\pi\)
0.807233 0.590232i \(-0.200964\pi\)
\(24\) 0 0
\(25\) −1.44232 + 4.78745i −0.288464 + 0.957491i
\(26\) 0 0
\(27\) 2.75957 + 2.75957i 0.531079 + 0.531079i
\(28\) 0 0
\(29\) −1.89458 + 3.71832i −0.351815 + 0.690475i −0.997311 0.0732883i \(-0.976651\pi\)
0.645496 + 0.763764i \(0.276651\pi\)
\(30\) 0 0
\(31\) −1.09553 + 3.37169i −0.196763 + 0.605574i 0.803189 + 0.595725i \(0.203135\pi\)
−0.999951 + 0.00984919i \(0.996865\pi\)
\(32\) 0 0
\(33\) −1.00397 + 3.08991i −0.174769 + 0.537885i
\(34\) 0 0
\(35\) −5.81799 + 3.04377i −0.983420 + 0.514491i
\(36\) 0 0
\(37\) 1.38324 0.449443i 0.227404 0.0738879i −0.193099 0.981179i \(-0.561854\pi\)
0.420503 + 0.907291i \(0.361854\pi\)
\(38\) 0 0
\(39\) 4.63893 6.38494i 0.742823 1.02241i
\(40\) 0 0
\(41\) 2.69801 5.80696i 0.421358 0.906895i
\(42\) 0 0
\(43\) −3.53323 2.56704i −0.538812 0.391470i 0.284831 0.958578i \(-0.408062\pi\)
−0.823644 + 0.567108i \(0.808062\pi\)
\(44\) 0 0
\(45\) 1.90990 1.41930i 0.284711 0.211576i
\(46\) 0 0
\(47\) −0.765037 4.83025i −0.111592 0.704565i −0.978523 0.206137i \(-0.933911\pi\)
0.866931 0.498428i \(-0.166089\pi\)
\(48\) 0 0
\(49\) −1.54330 0.501447i −0.220471 0.0716353i
\(50\) 0 0
\(51\) −1.90466 + 5.86194i −0.266706 + 0.820835i
\(52\) 0 0
\(53\) 11.0070 + 5.60835i 1.51193 + 0.770366i 0.996259 0.0864217i \(-0.0275432\pi\)
0.515670 + 0.856788i \(0.327543\pi\)
\(54\) 0 0
\(55\) −3.22829 1.60134i −0.435302 0.215925i
\(56\) 0 0
\(57\) 4.07585 + 5.60993i 0.539860 + 0.743054i
\(58\) 0 0
\(59\) −5.66244 4.11400i −0.737186 0.535597i 0.154642 0.987971i \(-0.450577\pi\)
−0.891829 + 0.452373i \(0.850577\pi\)
\(60\) 0 0
\(61\) −8.92059 12.2781i −1.14216 1.57205i −0.762576 0.646899i \(-0.776065\pi\)
−0.379589 0.925155i \(-0.623935\pi\)
\(62\) 0 0
\(63\) 3.08636 + 0.488832i 0.388845 + 0.0615870i
\(64\) 0 0
\(65\) 6.25620 + 6.12289i 0.775986 + 0.759451i
\(66\) 0 0
\(67\) 3.44191 6.75512i 0.420496 0.825269i −0.579452 0.815007i \(-0.696733\pi\)
0.999947 0.0102628i \(-0.00326679\pi\)
\(68\) 0 0
\(69\) −2.87967 18.1815i −0.346672 2.18880i
\(70\) 0 0
\(71\) −3.40900 + 1.73697i −0.404574 + 0.206141i −0.644422 0.764670i \(-0.722902\pi\)
0.239849 + 0.970810i \(0.422902\pi\)
\(72\) 0 0
\(73\) 10.6516 1.24668 0.623339 0.781951i \(-0.285776\pi\)
0.623339 + 0.781951i \(0.285776\pi\)
\(74\) 0 0
\(75\) 4.76852 + 8.88060i 0.550621 + 1.02544i
\(76\) 0 0
\(77\) −1.46238 4.50073i −0.166653 0.512906i
\(78\) 0 0
\(79\) −9.11926 9.11926i −1.02600 1.02600i −0.999653 0.0263445i \(-0.991613\pi\)
−0.0263445 0.999653i \(-0.508387\pi\)
\(80\) 0 0
\(81\) 11.0600 1.22889
\(82\) 0 0
\(83\) 17.0333i 1.86965i −0.355108 0.934825i \(-0.615556\pi\)
0.355108 0.934825i \(-0.384444\pi\)
\(84\) 0 0
\(85\) −6.12445 3.03794i −0.664290 0.329511i
\(86\) 0 0
\(87\) 2.59976 + 8.00125i 0.278724 + 0.857824i
\(88\) 0 0
\(89\) 14.7710 + 2.33950i 1.56572 + 0.247986i 0.878242 0.478217i \(-0.158717\pi\)
0.687480 + 0.726203i \(0.258717\pi\)
\(90\) 0 0
\(91\) 11.4957i 1.20508i
\(92\) 0 0
\(93\) 3.24469 + 6.36807i 0.336459 + 0.660338i
\(94\) 0 0
\(95\) −6.81500 + 3.56537i −0.699205 + 0.365799i
\(96\) 0 0
\(97\) −3.73080 + 7.32211i −0.378805 + 0.743447i −0.999164 0.0408705i \(-0.986987\pi\)
0.620359 + 0.784318i \(0.286987\pi\)
\(98\) 0 0
\(99\) 0.778586 + 1.52806i 0.0782508 + 0.153576i
\(100\) 0 0
\(101\) −1.74932 + 11.0448i −0.174064 + 1.09900i 0.733686 + 0.679488i \(0.237798\pi\)
−0.907751 + 0.419510i \(0.862202\pi\)
\(102\) 0 0
\(103\) −2.40984 + 1.75085i −0.237448 + 0.172516i −0.700146 0.714000i \(-0.746882\pi\)
0.462697 + 0.886516i \(0.346882\pi\)
\(104\) 0 0
\(105\) −3.95468 + 12.6325i −0.385937 + 1.23281i
\(106\) 0 0
\(107\) −1.34733 1.85444i −0.130251 0.179276i 0.738910 0.673804i \(-0.235341\pi\)
−0.869161 + 0.494528i \(0.835341\pi\)
\(108\) 0 0
\(109\) 2.65742 2.65742i 0.254534 0.254534i −0.568292 0.822827i \(-0.692396\pi\)
0.822827 + 0.568292i \(0.192396\pi\)
\(110\) 0 0
\(111\) 1.33114 2.61251i 0.126346 0.247969i
\(112\) 0 0
\(113\) −12.3944 4.02718i −1.16597 0.378845i −0.338830 0.940848i \(-0.610031\pi\)
−0.827135 + 0.562003i \(0.810031\pi\)
\(114\) 0 0
\(115\) 20.4167 0.219867i 1.90387 0.0205027i
\(116\) 0 0
\(117\) −0.651705 4.11471i −0.0602502 0.380405i
\(118\) 0 0
\(119\) −2.77430 8.53843i −0.254320 0.782717i
\(120\) 0 0
\(121\) −4.93903 + 6.79799i −0.449002 + 0.617999i
\(122\) 0 0
\(123\) −4.43184 12.1239i −0.399606 1.09318i
\(124\) 0 0
\(125\) −10.5160 + 3.79656i −0.940579 + 0.339575i
\(126\) 0 0
\(127\) −7.59038 + 2.46626i −0.673538 + 0.218846i −0.625764 0.780013i \(-0.715213\pi\)
−0.0477737 + 0.998858i \(0.515213\pi\)
\(128\) 0 0
\(129\) −8.69599 + 1.37731i −0.765639 + 0.121265i
\(130\) 0 0
\(131\) 2.06842 + 0.672069i 0.180718 + 0.0587189i 0.397978 0.917395i \(-0.369712\pi\)
−0.217260 + 0.976114i \(0.569712\pi\)
\(132\) 0 0
\(133\) −9.60602 3.12118i −0.832947 0.270641i
\(134\) 0 0
\(135\) −1.27223 + 8.63327i −0.109497 + 0.743034i
\(136\) 0 0
\(137\) 2.97005 + 2.97005i 0.253749 + 0.253749i 0.822506 0.568757i \(-0.192576\pi\)
−0.568757 + 0.822506i \(0.692576\pi\)
\(138\) 0 0
\(139\) 3.15115 2.28944i 0.267277 0.194188i −0.446072 0.894997i \(-0.647177\pi\)
0.713349 + 0.700809i \(0.247177\pi\)
\(140\) 0 0
\(141\) −7.97614 5.79500i −0.671712 0.488027i
\(142\) 0 0
\(143\) −5.10418 + 3.70841i −0.426833 + 0.310113i
\(144\) 0 0
\(145\) −9.20036 + 1.55893i −0.764048 + 0.129462i
\(146\) 0 0
\(147\) −2.91480 + 1.48516i −0.240409 + 0.122494i
\(148\) 0 0
\(149\) −15.0907 7.68907i −1.23627 0.629913i −0.291167 0.956672i \(-0.594044\pi\)
−0.945108 + 0.326759i \(0.894044\pi\)
\(150\) 0 0
\(151\) −1.04904 6.62337i −0.0853695 0.539002i −0.992894 0.119003i \(-0.962030\pi\)
0.907524 0.419999i \(-0.137970\pi\)
\(152\) 0 0
\(153\) 1.47707 + 2.89892i 0.119414 + 0.234363i
\(154\) 0 0
\(155\) −7.51252 + 2.53072i −0.603420 + 0.203273i
\(156\) 0 0
\(157\) −0.879925 + 5.55563i −0.0702257 + 0.443388i 0.927374 + 0.374137i \(0.122061\pi\)
−0.997599 + 0.0692509i \(0.977939\pi\)
\(158\) 0 0
\(159\) 23.6853 7.69583i 1.87837 0.610319i
\(160\) 0 0
\(161\) 18.9597 + 18.9597i 1.49424 + 1.49424i
\(162\) 0 0
\(163\) 17.0756i 1.33747i 0.743503 + 0.668733i \(0.233163\pi\)
−0.743503 + 0.668733i \(0.766837\pi\)
\(164\) 0 0
\(165\) −6.88468 + 2.31922i −0.535972 + 0.180551i
\(166\) 0 0
\(167\) 14.5041 14.5041i 1.12236 1.12236i 0.130974 0.991386i \(-0.458189\pi\)
0.991386 0.130974i \(-0.0418105\pi\)
\(168\) 0 0
\(169\) 2.21212 0.718761i 0.170163 0.0552893i
\(170\) 0 0
\(171\) 3.61526 + 0.572601i 0.276466 + 0.0437879i
\(172\) 0 0
\(173\) −10.5127 −0.799263 −0.399632 0.916676i \(-0.630862\pi\)
−0.399632 + 0.916676i \(0.630862\pi\)
\(174\) 0 0
\(175\) −13.2225 6.38232i −0.999525 0.482458i
\(176\) 0 0
\(177\) −13.9364 + 2.20731i −1.04752 + 0.165912i
\(178\) 0 0
\(179\) 1.94572 + 0.991396i 0.145430 + 0.0741004i 0.525191 0.850984i \(-0.323994\pi\)
−0.379761 + 0.925085i \(0.623994\pi\)
\(180\) 0 0
\(181\) 2.62377 + 5.14943i 0.195023 + 0.382754i 0.967723 0.252018i \(-0.0810941\pi\)
−0.772700 + 0.634772i \(0.781094\pi\)
\(182\) 0 0
\(183\) −30.2190 4.78622i −2.23385 0.353807i
\(184\) 0 0
\(185\) 2.65152 + 1.88315i 0.194943 + 0.138452i
\(186\) 0 0
\(187\) 2.89616 3.98623i 0.211789 0.291502i
\(188\) 0 0
\(189\) −9.27119 + 6.73591i −0.674380 + 0.489966i
\(190\) 0 0
\(191\) 14.6350 14.6350i 1.05895 1.05895i 0.0608035 0.998150i \(-0.480634\pi\)
0.998150 0.0608035i \(-0.0193663\pi\)
\(192\) 0 0
\(193\) 6.54815 + 3.33645i 0.471346 + 0.240163i 0.673495 0.739192i \(-0.264792\pi\)
−0.202149 + 0.979355i \(0.564792\pi\)
\(194\) 0 0
\(195\) 17.6465 0.190035i 1.26369 0.0136087i
\(196\) 0 0
\(197\) 2.49272 7.67181i 0.177599 0.546594i −0.822144 0.569280i \(-0.807222\pi\)
0.999743 + 0.0226866i \(0.00722198\pi\)
\(198\) 0 0
\(199\) 2.18777 0.346509i 0.155087 0.0245634i −0.0784081 0.996921i \(-0.524984\pi\)
0.233495 + 0.972358i \(0.424984\pi\)
\(200\) 0 0
\(201\) −4.72302 14.5360i −0.333136 1.02529i
\(202\) 0 0
\(203\) −9.91393 7.20289i −0.695822 0.505544i
\(204\) 0 0
\(205\) 14.0205 2.90265i 0.979235 0.202730i
\(206\) 0 0
\(207\) −7.86118 5.71148i −0.546390 0.396976i
\(208\) 0 0
\(209\) −1.71298 5.27201i −0.118489 0.364672i
\(210\) 0 0
\(211\) −13.2139 + 2.09287i −0.909681 + 0.144079i −0.593700 0.804686i \(-0.702334\pi\)
−0.315981 + 0.948766i \(0.602334\pi\)
\(212\) 0 0
\(213\) −2.38349 + 7.33563i −0.163314 + 0.502629i
\(214\) 0 0
\(215\) −0.105160 9.76504i −0.00717183 0.665970i
\(216\) 0 0
\(217\) −9.27566 4.72618i −0.629673 0.320834i
\(218\) 0 0
\(219\) 15.1840 15.1840i 1.02604 1.02604i
\(220\) 0 0
\(221\) −9.68325 + 7.03529i −0.651366 + 0.473245i
\(222\) 0 0
\(223\) −3.02714 + 4.16650i −0.202712 + 0.279010i −0.898254 0.439476i \(-0.855164\pi\)
0.695542 + 0.718485i \(0.255164\pi\)
\(224\) 0 0
\(225\) 5.09459 + 1.53485i 0.339640 + 0.102323i
\(226\) 0 0
\(227\) 2.00262 + 0.317184i 0.132919 + 0.0210523i 0.222539 0.974924i \(-0.428565\pi\)
−0.0896206 + 0.995976i \(0.528565\pi\)
\(228\) 0 0
\(229\) −9.51567 18.6755i −0.628813 1.23411i −0.957160 0.289558i \(-0.906492\pi\)
0.328348 0.944557i \(-0.393508\pi\)
\(230\) 0 0
\(231\) −8.50047 4.33121i −0.559290 0.284972i
\(232\) 0 0
\(233\) 12.0122 1.90255i 0.786948 0.124640i 0.249989 0.968249i \(-0.419573\pi\)
0.536959 + 0.843608i \(0.319573\pi\)
\(234\) 0 0
\(235\) 7.64879 7.81532i 0.498952 0.509815i
\(236\) 0 0
\(237\) −25.9992 −1.68883
\(238\) 0 0
\(239\) −18.8128 2.97966i −1.21690 0.192738i −0.485224 0.874390i \(-0.661262\pi\)
−0.731677 + 0.681652i \(0.761262\pi\)
\(240\) 0 0
\(241\) −0.407914 + 0.132539i −0.0262760 + 0.00853761i −0.322126 0.946697i \(-0.604397\pi\)
0.295849 + 0.955235i \(0.404397\pi\)
\(242\) 0 0
\(243\) 7.48750 7.48750i 0.480323 0.480323i
\(244\) 0 0
\(245\) −1.15837 3.43864i −0.0740053 0.219687i
\(246\) 0 0
\(247\) 13.4657i 0.856802i
\(248\) 0 0
\(249\) −24.2812 24.2812i −1.53876 1.53876i
\(250\) 0 0
\(251\) 21.0114 6.82701i 1.32623 0.430917i 0.441597 0.897213i \(-0.354412\pi\)
0.884628 + 0.466296i \(0.154412\pi\)
\(252\) 0 0
\(253\) −2.30204 + 14.5345i −0.144728 + 0.913776i
\(254\) 0 0
\(255\) −13.0611 + 4.39985i −0.817916 + 0.275529i
\(256\) 0 0
\(257\) −0.763264 1.49799i −0.0476111 0.0934420i 0.865975 0.500087i \(-0.166699\pi\)
−0.913586 + 0.406645i \(0.866699\pi\)
\(258\) 0 0
\(259\) 0.668108 + 4.21827i 0.0415142 + 0.262110i
\(260\) 0 0
\(261\) 3.95687 + 2.01613i 0.244924 + 0.124795i
\(262\) 0 0
\(263\) 0.0801095 0.0408178i 0.00493976 0.00251694i −0.451519 0.892262i \(-0.649118\pi\)
0.456459 + 0.889745i \(0.349118\pi\)
\(264\) 0 0
\(265\) 4.61476 + 27.2350i 0.283482 + 1.67303i
\(266\) 0 0
\(267\) 24.3912 17.7212i 1.49272 1.08452i
\(268\) 0 0
\(269\) 2.42076 + 1.75878i 0.147596 + 0.107235i 0.659133 0.752027i \(-0.270924\pi\)
−0.511537 + 0.859262i \(0.670924\pi\)
\(270\) 0 0
\(271\) −21.6365 + 15.7198i −1.31432 + 0.954911i −0.314339 + 0.949311i \(0.601783\pi\)
−0.999984 + 0.00560053i \(0.998217\pi\)
\(272\) 0 0
\(273\) 16.3872 + 16.3872i 0.991801 + 0.991801i
\(274\) 0 0
\(275\) −1.43165 7.92976i −0.0863315 0.478182i
\(276\) 0 0
\(277\) 2.41986 + 0.786260i 0.145395 + 0.0472418i 0.380810 0.924653i \(-0.375645\pi\)
−0.235415 + 0.971895i \(0.575645\pi\)
\(278\) 0 0
\(279\) 3.58801 + 1.16581i 0.214808 + 0.0697954i
\(280\) 0 0
\(281\) 15.0793 2.38832i 0.899554 0.142475i 0.310504 0.950572i \(-0.399502\pi\)
0.589050 + 0.808097i \(0.299502\pi\)
\(282\) 0 0
\(283\) 1.80123 0.585255i 0.107072 0.0347898i −0.254991 0.966943i \(-0.582073\pi\)
0.362063 + 0.932154i \(0.382073\pi\)
\(284\) 0 0
\(285\) −4.63238 + 14.7973i −0.274399 + 0.876518i
\(286\) 0 0
\(287\) 15.6025 + 10.4925i 0.920988 + 0.619353i
\(288\) 0 0
\(289\) −4.49798 + 6.19094i −0.264587 + 0.364173i
\(290\) 0 0
\(291\) 5.11944 + 15.7560i 0.300107 + 0.923635i
\(292\) 0 0
\(293\) −1.78170 11.2492i −0.104088 0.657186i −0.983470 0.181070i \(-0.942044\pi\)
0.879382 0.476117i \(-0.157956\pi\)
\(294\) 0 0
\(295\) −0.168531 15.6497i −0.00981228 0.911160i
\(296\) 0 0
\(297\) −5.98159 1.94354i −0.347087 0.112775i
\(298\) 0 0
\(299\) 16.2288 31.8508i 0.938535 1.84198i
\(300\) 0 0
\(301\) 9.06820 9.06820i 0.522682 0.522682i
\(302\) 0 0
\(303\) 13.2508 + 18.2382i 0.761238 + 1.04775i
\(304\) 0 0
\(305\) 10.1386 32.3860i 0.580536 1.85442i
\(306\) 0 0
\(307\) −12.3948 + 9.00532i −0.707407 + 0.513961i −0.882336 0.470620i \(-0.844030\pi\)
0.174929 + 0.984581i \(0.444030\pi\)
\(308\) 0 0
\(309\) −0.939393 + 5.93110i −0.0534402 + 0.337408i
\(310\) 0 0
\(311\) −0.378685 0.743211i −0.0214732 0.0421436i 0.880021 0.474935i \(-0.157529\pi\)
−0.901494 + 0.432792i \(0.857529\pi\)
\(312\) 0 0
\(313\) −13.7057 + 26.8989i −0.774690 + 1.52041i 0.0773892 + 0.997001i \(0.475342\pi\)
−0.852079 + 0.523413i \(0.824658\pi\)
\(314\) 0 0
\(315\) 3.23904 + 6.19125i 0.182499 + 0.348837i
\(316\) 0 0
\(317\) −3.36448 6.60317i −0.188968 0.370871i 0.777012 0.629485i \(-0.216734\pi\)
−0.965981 + 0.258614i \(0.916734\pi\)
\(318\) 0 0
\(319\) 6.72545i 0.376553i
\(320\) 0 0
\(321\) −4.56416 0.722891i −0.254746 0.0403478i
\(322\) 0 0
\(323\) −3.24973 10.0016i −0.180820 0.556506i
\(324\) 0 0
\(325\) −2.64502 + 19.3947i −0.146719 + 1.07582i
\(326\) 0 0
\(327\) 7.57634i 0.418973i
\(328\) 0 0
\(329\) 14.3606 0.791725
\(330\) 0 0
\(331\) −23.1252 23.1252i −1.27108 1.27108i −0.945524 0.325551i \(-0.894450\pi\)
−0.325551 0.945524i \(-0.605550\pi\)
\(332\) 0 0
\(333\) −0.478277 1.47198i −0.0262094 0.0806643i
\(334\) 0 0
\(335\) 16.7144 2.83213i 0.913205 0.154736i
\(336\) 0 0
\(337\) −22.4956 −1.22541 −0.612707 0.790310i \(-0.709920\pi\)
−0.612707 + 0.790310i \(0.709920\pi\)
\(338\) 0 0
\(339\) −23.4091 + 11.9275i −1.27141 + 0.647814i
\(340\) 0 0
\(341\) −0.893777 5.64308i −0.0484007 0.305590i
\(342\) 0 0
\(343\) −7.16856 + 14.0691i −0.387066 + 0.759659i
\(344\) 0 0
\(345\) 28.7908 29.4176i 1.55004 1.58379i
\(346\) 0 0
\(347\) 30.0804 + 4.76427i 1.61480 + 0.255759i 0.897503 0.441008i \(-0.145379\pi\)
0.717297 + 0.696767i \(0.245379\pi\)
\(348\) 0 0
\(349\) 7.19785 + 9.90700i 0.385292 + 0.530309i 0.956977 0.290164i \(-0.0937099\pi\)
−0.571685 + 0.820473i \(0.693710\pi\)
\(350\) 0 0
\(351\) 12.3602 + 8.98025i 0.659741 + 0.479330i
\(352\) 0 0
\(353\) −5.01301 6.89982i −0.266816 0.367240i 0.654496 0.756066i \(-0.272881\pi\)
−0.921312 + 0.388825i \(0.872881\pi\)
\(354\) 0 0
\(355\) −7.66413 3.80168i −0.406770 0.201772i
\(356\) 0 0
\(357\) −16.1264 8.21682i −0.853500 0.434880i
\(358\) 0 0
\(359\) 6.49416 19.9870i 0.342749 1.05487i −0.620029 0.784579i \(-0.712879\pi\)
0.962778 0.270294i \(-0.0871208\pi\)
\(360\) 0 0
\(361\) 6.81791 + 2.21527i 0.358837 + 0.116593i
\(362\) 0 0
\(363\) 2.64997 + 16.7312i 0.139087 + 0.878162i
\(364\) 0 0
\(365\) 14.2064 + 19.1171i 0.743598 + 1.00063i
\(366\) 0 0
\(367\) 5.02334 + 3.64967i 0.262216 + 0.190511i 0.711123 0.703067i \(-0.248187\pi\)
−0.448907 + 0.893578i \(0.648187\pi\)
\(368\) 0 0
\(369\) −6.17950 2.87110i −0.321692 0.149463i
\(370\) 0 0
\(371\) −21.3221 + 29.3473i −1.10699 + 1.52364i
\(372\) 0 0
\(373\) 4.63621 1.50639i 0.240054 0.0779982i −0.186519 0.982451i \(-0.559721\pi\)
0.426573 + 0.904453i \(0.359721\pi\)
\(374\) 0 0
\(375\) −9.57861 + 20.4027i −0.494637 + 1.05359i
\(376\) 0 0
\(377\) −5.04850 + 15.5377i −0.260011 + 0.800232i
\(378\) 0 0
\(379\) −1.59675 + 4.91428i −0.0820194 + 0.252430i −0.983654 0.180069i \(-0.942368\pi\)
0.901635 + 0.432499i \(0.142368\pi\)
\(380\) 0 0
\(381\) −7.30448 + 14.3358i −0.374220 + 0.734448i
\(382\) 0 0
\(383\) −11.0222 11.0222i −0.563206 0.563206i 0.367011 0.930217i \(-0.380381\pi\)
−0.930217 + 0.367011i \(0.880381\pi\)
\(384\) 0 0
\(385\) 6.12731 8.62738i 0.312277 0.439692i
\(386\) 0 0
\(387\) −2.73173 + 3.75990i −0.138862 + 0.191127i
\(388\) 0 0
\(389\) 13.8130 + 19.0119i 0.700344 + 0.963941i 0.999951 + 0.00987864i \(0.00314452\pi\)
−0.299607 + 0.954063i \(0.596855\pi\)
\(390\) 0 0
\(391\) −4.36724 + 27.5737i −0.220861 + 1.39446i
\(392\) 0 0
\(393\) 3.90659 1.99051i 0.197061 0.100408i
\(394\) 0 0
\(395\) 4.20423 28.5295i 0.211538 1.43548i
\(396\) 0 0
\(397\) 38.5244 6.10167i 1.93349 0.306234i 0.934697 0.355446i \(-0.115671\pi\)
0.998788 + 0.0492123i \(0.0156711\pi\)
\(398\) 0 0
\(399\) −18.1427 + 9.24419i −0.908273 + 0.462788i
\(400\) 0 0
\(401\) 15.8856i 0.793291i 0.917972 + 0.396645i \(0.129826\pi\)
−0.917972 + 0.396645i \(0.870174\pi\)
\(402\) 0 0
\(403\) −2.17114 + 13.7080i −0.108152 + 0.682846i
\(404\) 0 0
\(405\) 14.7511 + 19.8501i 0.732989 + 0.986360i
\(406\) 0 0
\(407\) −1.65742 + 1.65742i −0.0821551 + 0.0821551i
\(408\) 0 0
\(409\) 17.4722 0.863944 0.431972 0.901887i \(-0.357818\pi\)
0.431972 + 0.901887i \(0.357818\pi\)
\(410\) 0 0
\(411\) 8.46767 0.417679
\(412\) 0 0
\(413\) 14.5329 14.5329i 0.715118 0.715118i
\(414\) 0 0
\(415\) 30.5707 22.7179i 1.50066 1.11518i
\(416\) 0 0
\(417\) 1.22837 7.75562i 0.0601535 0.379794i
\(418\) 0 0
\(419\) 33.5338i 1.63823i 0.573627 + 0.819117i \(0.305536\pi\)
−0.573627 + 0.819117i \(0.694464\pi\)
\(420\) 0 0
\(421\) 27.4293 13.9759i 1.33682 0.681145i 0.368215 0.929741i \(-0.379969\pi\)
0.968607 + 0.248596i \(0.0799691\pi\)
\(422\) 0 0
\(423\) −5.14014 + 0.814118i −0.249922 + 0.0395838i
\(424\) 0 0
\(425\) −2.71600 15.0437i −0.131745 0.729727i
\(426\) 0 0
\(427\) 39.7080 20.2322i 1.92160 0.979106i
\(428\) 0 0
\(429\) −1.98969 + 12.5624i −0.0960633 + 0.606520i
\(430\) 0 0
\(431\) −13.0104 17.9073i −0.626691 0.862567i 0.371127 0.928582i \(-0.378971\pi\)
−0.997819 + 0.0660155i \(0.978971\pi\)
\(432\) 0 0
\(433\) −9.90552 + 13.6338i −0.476029 + 0.655198i −0.977736 0.209840i \(-0.932706\pi\)
0.501707 + 0.865038i \(0.332706\pi\)
\(434\) 0 0
\(435\) −10.8929 + 15.3375i −0.522276 + 0.735375i
\(436\) 0 0
\(437\) 22.2088 + 22.2088i 1.06239 + 1.06239i
\(438\) 0 0
\(439\) 8.25521 16.2018i 0.394000 0.773268i −0.605750 0.795655i \(-0.707127\pi\)
0.999749 + 0.0223874i \(0.00712674\pi\)
\(440\) 0 0
\(441\) −0.533618 + 1.64231i −0.0254104 + 0.0782050i
\(442\) 0 0
\(443\) 0.672101 2.06851i 0.0319325 0.0982781i −0.933820 0.357743i \(-0.883546\pi\)
0.965752 + 0.259465i \(0.0835463\pi\)
\(444\) 0 0
\(445\) 15.5017 + 29.6306i 0.734852 + 1.40463i
\(446\) 0 0
\(447\) −32.4727 + 10.5510i −1.53591 + 0.499046i
\(448\) 0 0
\(449\) 0.782337 1.07679i 0.0369207 0.0508171i −0.790158 0.612904i \(-0.790001\pi\)
0.827078 + 0.562087i \(0.190001\pi\)
\(450\) 0 0
\(451\) 0.374474 + 10.3124i 0.0176333 + 0.485593i
\(452\) 0 0
\(453\) −10.9371 7.94626i −0.513869 0.373348i
\(454\) 0 0
\(455\) −20.6320 + 15.3322i −0.967245 + 0.718785i
\(456\) 0 0
\(457\) 3.44136 + 21.7279i 0.160980 + 1.01639i 0.927406 + 0.374055i \(0.122033\pi\)
−0.766427 + 0.642332i \(0.777967\pi\)
\(458\) 0 0
\(459\) −11.3478 3.68712i −0.529670 0.172100i
\(460\) 0 0
\(461\) 0.571669 1.75942i 0.0266253 0.0819441i −0.936861 0.349702i \(-0.886283\pi\)
0.963486 + 0.267758i \(0.0862828\pi\)
\(462\) 0 0
\(463\) 19.8356 + 10.1068i 0.921840 + 0.469701i 0.849446 0.527675i \(-0.176936\pi\)
0.0723938 + 0.997376i \(0.476936\pi\)
\(464\) 0 0
\(465\) −7.10160 + 14.3167i −0.329329 + 0.663923i
\(466\) 0 0
\(467\) −3.43803 4.73204i −0.159093 0.218973i 0.722028 0.691864i \(-0.243210\pi\)
−0.881121 + 0.472891i \(0.843210\pi\)
\(468\) 0 0
\(469\) 18.0108 + 13.0856i 0.831660 + 0.604236i
\(470\) 0 0
\(471\) 6.66526 + 9.17395i 0.307119 + 0.422713i
\(472\) 0 0
\(473\) 6.95166 + 1.10104i 0.319638 + 0.0506257i
\(474\) 0 0
\(475\) −15.4884 7.47604i −0.710655 0.343024i
\(476\) 0 0
\(477\) 5.96815 11.7132i 0.273263 0.536309i
\(478\) 0 0
\(479\) 1.43090 + 9.03432i 0.0653793 + 0.412788i 0.998572 + 0.0534134i \(0.0170101\pi\)
−0.933193 + 0.359375i \(0.882990\pi\)
\(480\) 0 0
\(481\) 5.07326 2.58495i 0.231321 0.117864i
\(482\) 0 0
\(483\) 54.0546 2.45957
\(484\) 0 0
\(485\) −18.1173 + 3.06984i −0.822664 + 0.139394i
\(486\) 0 0
\(487\) 0.233617 + 0.719000i 0.0105862 + 0.0325810i 0.956210 0.292681i \(-0.0945475\pi\)
−0.945624 + 0.325262i \(0.894547\pi\)
\(488\) 0 0
\(489\) 24.3414 + 24.3414i 1.10076 + 1.10076i
\(490\) 0 0
\(491\) −11.2803 −0.509072 −0.254536 0.967063i \(-0.581923\pi\)
−0.254536 + 0.967063i \(0.581923\pi\)
\(492\) 0 0
\(493\) 12.7590i 0.574636i
\(494\) 0 0
\(495\) −1.70408 + 3.43540i −0.0765925 + 0.154410i
\(496\) 0 0
\(497\) −3.47177 10.6850i −0.155730 0.479288i
\(498\) 0 0
\(499\) 33.8462 + 5.36071i 1.51516 + 0.239978i 0.857953 0.513728i \(-0.171736\pi\)
0.657211 + 0.753707i \(0.271736\pi\)
\(500\) 0 0
\(501\) 41.3514i 1.84745i
\(502\) 0 0
\(503\) −2.88721 5.66648i −0.128735 0.252656i 0.817638 0.575732i \(-0.195283\pi\)
−0.946373 + 0.323076i \(0.895283\pi\)
\(504\) 0 0
\(505\) −22.1559 + 11.5912i −0.985924 + 0.515801i
\(506\) 0 0
\(507\) 2.12880 4.17800i 0.0945432 0.185551i
\(508\) 0 0
\(509\) −6.64563 13.0428i −0.294562 0.578111i 0.695535 0.718492i \(-0.255167\pi\)
−0.990098 + 0.140381i \(0.955167\pi\)
\(510\) 0 0
\(511\) −4.89295 + 30.8928i −0.216451 + 1.36662i
\(512\) 0 0
\(513\) −10.8600 + 7.89022i −0.479479 + 0.348362i
\(514\) 0 0
\(515\) −6.35643 1.98991i −0.280098 0.0876860i
\(516\) 0 0
\(517\) 4.63259 + 6.37621i 0.203741 + 0.280425i
\(518\) 0 0
\(519\) −14.9859 + 14.9859i −0.657808 + 0.657808i
\(520\) 0 0
\(521\) 18.0866 35.4969i 0.792388 1.55515i −0.0388582 0.999245i \(-0.512372\pi\)
0.831246 0.555904i \(-0.187628\pi\)
\(522\) 0 0
\(523\) 17.6494 + 5.73463i 0.771753 + 0.250758i 0.668315 0.743878i \(-0.267016\pi\)
0.103438 + 0.994636i \(0.467016\pi\)
\(524\) 0 0
\(525\) −27.9468 + 9.75071i −1.21970 + 0.425556i
\(526\) 0 0
\(527\) −1.69560 10.7056i −0.0738616 0.466344i
\(528\) 0 0
\(529\) −18.6578 57.4227i −0.811208 2.49664i
\(530\) 0 0
\(531\) −4.37793 + 6.02571i −0.189986 + 0.261494i
\(532\) 0 0
\(533\) 6.87595 24.1057i 0.297830 1.04413i
\(534\) 0 0
\(535\) 1.53130 4.89146i 0.0662038 0.211476i
\(536\) 0 0
\(537\) 4.18689 1.36040i 0.180678 0.0587057i
\(538\) 0 0
\(539\) 2.58296 0.409101i 0.111256 0.0176212i
\(540\) 0 0
\(541\) −8.11836 2.63782i −0.349036 0.113409i 0.129252 0.991612i \(-0.458742\pi\)
−0.478288 + 0.878203i \(0.658742\pi\)
\(542\) 0 0
\(543\) 11.0808 + 3.60036i 0.475521 + 0.154506i
\(544\) 0 0
\(545\) 8.31370 + 1.22514i 0.356120 + 0.0524793i
\(546\) 0 0
\(547\) 6.74210 + 6.74210i 0.288271 + 0.288271i 0.836396 0.548125i \(-0.184658\pi\)
−0.548125 + 0.836396i \(0.684658\pi\)
\(548\) 0 0
\(549\) −13.0658 + 9.49289i −0.557637 + 0.405147i
\(550\) 0 0
\(551\) −11.6129 8.43723i −0.494724 0.359438i
\(552\) 0 0
\(553\) 30.6376 22.2595i 1.30284 0.946571i
\(554\) 0 0
\(555\) 6.46421 1.09531i 0.274391 0.0464934i
\(556\) 0 0
\(557\) 22.7462 11.5898i 0.963789 0.491075i 0.100033 0.994984i \(-0.468105\pi\)
0.863757 + 0.503909i \(0.168105\pi\)
\(558\) 0 0
\(559\) −15.2338 7.76202i −0.644322 0.328298i
\(560\) 0 0
\(561\) −1.55390 9.81092i −0.0656056 0.414217i
\(562\) 0 0
\(563\) −12.1762 23.8972i −0.513167 1.00715i −0.991639 0.129044i \(-0.958809\pi\)
0.478472 0.878103i \(-0.341191\pi\)
\(564\) 0 0
\(565\) −9.30296 27.6161i −0.391379 1.16182i
\(566\) 0 0
\(567\) −5.08056 + 32.0774i −0.213363 + 1.34712i
\(568\) 0 0
\(569\) −29.3553 + 9.53811i −1.23064 + 0.399858i −0.850945 0.525255i \(-0.823970\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(570\) 0 0
\(571\) −15.9440 15.9440i −0.667237 0.667237i 0.289839 0.957076i \(-0.406398\pi\)
−0.957076 + 0.289839i \(0.906398\pi\)
\(572\) 0 0
\(573\) 41.7247i 1.74308i
\(574\) 0 0
\(575\) 27.6250 + 36.3498i 1.15204 + 1.51589i
\(576\) 0 0
\(577\) 31.8623 31.8623i 1.32644 1.32644i 0.417996 0.908449i \(-0.362733\pi\)
0.908449 0.417996i \(-0.137267\pi\)
\(578\) 0 0
\(579\) 14.0906 4.57831i 0.585585 0.190268i
\(580\) 0 0
\(581\) 49.4017 + 7.82445i 2.04953 + 0.324613i
\(582\) 0 0
\(583\) −19.9087 −0.824534
\(584\) 0 0
\(585\) 6.51570 6.65757i 0.269391 0.275257i
\(586\) 0 0
\(587\) 10.4284 1.65170i 0.430426 0.0681728i 0.0625373 0.998043i \(-0.480081\pi\)
0.367889 + 0.929870i \(0.380081\pi\)
\(588\) 0 0
\(589\) −10.8652 5.53609i −0.447693 0.228111i
\(590\) 0 0
\(591\) −7.38284 14.4896i −0.303689 0.596024i
\(592\) 0 0
\(593\) −15.5431 2.46179i −0.638280 0.101094i −0.171097 0.985254i \(-0.554731\pi\)
−0.467183 + 0.884160i \(0.654731\pi\)
\(594\) 0 0
\(595\) 11.6242 16.3672i 0.476548 0.670989i
\(596\) 0 0
\(597\) 2.62474 3.61264i 0.107423 0.147856i
\(598\) 0 0
\(599\) −31.5874 + 22.9496i −1.29063 + 0.937695i −0.999818 0.0190856i \(-0.993925\pi\)
−0.290809 + 0.956781i \(0.593925\pi\)
\(600\) 0 0
\(601\) −5.28846 + 5.28846i −0.215721 + 0.215721i −0.806692 0.590972i \(-0.798745\pi\)
0.590972 + 0.806692i \(0.298745\pi\)
\(602\) 0 0
\(603\) −7.18850 3.66272i −0.292738 0.149158i
\(604\) 0 0
\(605\) −18.7881 + 0.202329i −0.763844 + 0.00822584i
\(606\) 0 0
\(607\) −9.80616 + 30.1802i −0.398020 + 1.22498i 0.528565 + 0.848893i \(0.322730\pi\)
−0.926585 + 0.376086i \(0.877270\pi\)
\(608\) 0 0
\(609\) −24.4002 + 3.86461i −0.988746 + 0.156602i
\(610\) 0 0
\(611\) −5.91625 18.2083i −0.239346 0.736630i
\(612\) 0 0
\(613\) −29.7737 21.6319i −1.20255 0.873703i −0.208016 0.978125i \(-0.566701\pi\)
−0.994533 + 0.104422i \(0.966701\pi\)
\(614\) 0 0
\(615\) 15.8486 24.1241i 0.639077 0.972779i
\(616\) 0 0
\(617\) −18.0071 13.0830i −0.724940 0.526700i 0.163018 0.986623i \(-0.447877\pi\)
−0.887959 + 0.459923i \(0.847877\pi\)
\(618\) 0 0
\(619\) 9.41436 + 28.9744i 0.378395 + 1.16458i 0.941159 + 0.337963i \(0.109738\pi\)
−0.562764 + 0.826617i \(0.690262\pi\)
\(620\) 0 0
\(621\) 35.1966 5.57460i 1.41239 0.223701i
\(622\) 0 0
\(623\) −13.5704 + 41.7655i −0.543689 + 1.67330i
\(624\) 0 0
\(625\) −20.8394 13.8101i −0.833577 0.552403i
\(626\) 0 0
\(627\) −9.95717 5.07343i −0.397651 0.202613i
\(628\) 0 0
\(629\) −3.14432 + 3.14432i −0.125372 + 0.125372i
\(630\) 0 0
\(631\) −13.8801 + 10.0845i −0.552558 + 0.401457i −0.828728 0.559652i \(-0.810935\pi\)
0.276170 + 0.961109i \(0.410935\pi\)
\(632\) 0 0
\(633\) −15.8531 + 21.8199i −0.630104 + 0.867264i
\(634\) 0 0
\(635\) −14.5499 10.3336i −0.577395 0.410075i
\(636\) 0 0
\(637\) −6.27446 0.993777i −0.248603 0.0393749i
\(638\) 0 0
\(639\) 1.84841 + 3.62770i 0.0731219 + 0.143510i
\(640\) 0 0
\(641\) −34.0495 17.3491i −1.34488 0.685249i −0.374586 0.927192i \(-0.622215\pi\)
−0.970290 + 0.241943i \(0.922215\pi\)
\(642\) 0 0
\(643\) 25.4171 4.02567i 1.00235 0.158757i 0.366377 0.930467i \(-0.380598\pi\)
0.635975 + 0.771710i \(0.280598\pi\)
\(644\) 0 0
\(645\) −14.0701 13.7702i −0.554008 0.542203i
\(646\) 0 0
\(647\) −19.1353 −0.752287 −0.376143 0.926561i \(-0.622750\pi\)
−0.376143 + 0.926561i \(0.622750\pi\)
\(648\) 0 0
\(649\) 11.1409 + 1.76455i 0.437319 + 0.0692645i
\(650\) 0 0
\(651\) −19.9598 + 6.48532i −0.782285 + 0.254180i
\(652\) 0 0
\(653\) 12.6193 12.6193i 0.493830 0.493830i −0.415681 0.909511i \(-0.636457\pi\)
0.909511 + 0.415681i \(0.136457\pi\)
\(654\) 0 0
\(655\) 1.55251 + 4.60867i 0.0606616 + 0.180076i
\(656\) 0 0
\(657\) 11.3350i 0.442220i
\(658\) 0 0
\(659\) 21.7718 + 21.7718i 0.848108 + 0.848108i 0.989897 0.141789i \(-0.0452855\pi\)
−0.141789 + 0.989897i \(0.545286\pi\)
\(660\) 0 0
\(661\) −13.4999 + 4.38638i −0.525085 + 0.170611i −0.559552 0.828795i \(-0.689027\pi\)
0.0344666 + 0.999406i \(0.489027\pi\)
\(662\) 0 0
\(663\) −3.77469 + 23.8324i −0.146597 + 0.925575i
\(664\) 0 0
\(665\) −7.21008 21.4033i −0.279595 0.829985i
\(666\) 0 0
\(667\) 17.2997 + 33.9526i 0.669847 + 1.31465i
\(668\) 0 0
\(669\) 1.62417 + 10.2546i 0.0627941 + 0.396466i
\(670\) 0 0
\(671\) 21.7927 + 11.1039i 0.841297 + 0.428662i
\(672\) 0 0
\(673\) −19.2324 + 9.79937i −0.741353 + 0.377738i −0.783515 0.621373i \(-0.786575\pi\)
0.0421624 + 0.999111i \(0.486575\pi\)
\(674\) 0 0
\(675\) −17.1915 + 9.23112i −0.661700 + 0.355306i
\(676\) 0 0
\(677\) 27.7124 20.1342i 1.06507 0.773822i 0.0900537 0.995937i \(-0.471296\pi\)
0.975020 + 0.222115i \(0.0712961\pi\)
\(678\) 0 0
\(679\) −19.5225 14.1839i −0.749204 0.544329i
\(680\) 0 0
\(681\) 3.30691 2.40261i 0.126721 0.0920681i
\(682\) 0 0
\(683\) 13.0556 + 13.0556i 0.499558 + 0.499558i 0.911300 0.411742i \(-0.135080\pi\)
−0.411742 + 0.911300i \(0.635080\pi\)
\(684\) 0 0
\(685\) −1.36927 + 9.29177i −0.0523173 + 0.355020i
\(686\) 0 0
\(687\) −40.1868 13.0575i −1.53322 0.498175i
\(688\) 0 0
\(689\) 45.9948 + 14.9446i 1.75226 + 0.569344i
\(690\) 0 0
\(691\) −34.3754 + 5.44453i −1.30770 + 0.207120i −0.771099 0.636715i \(-0.780293\pi\)
−0.536603 + 0.843835i \(0.680293\pi\)
\(692\) 0 0
\(693\) −4.78948 + 1.55620i −0.181937 + 0.0591150i
\(694\) 0 0
\(695\) 8.31179 + 2.60205i 0.315284 + 0.0987014i
\(696\) 0 0
\(697\) 0.710422 + 19.5639i 0.0269092 + 0.741036i
\(698\) 0 0
\(699\) 14.4115 19.8357i 0.545091 0.750254i
\(700\) 0 0
\(701\) −2.15558 6.63418i −0.0814150 0.250570i 0.902061 0.431609i \(-0.142054\pi\)
−0.983476 + 0.181039i \(0.942054\pi\)
\(702\) 0 0
\(703\) 0.782599 + 4.94114i 0.0295163 + 0.186359i
\(704\) 0 0
\(705\) −0.237394 22.0442i −0.00894079 0.830234i
\(706\) 0 0
\(707\) −31.2296 10.1471i −1.17451 0.381621i
\(708\) 0 0
\(709\) −2.12361 + 4.16782i −0.0797539 + 0.156526i −0.927440 0.373973i \(-0.877995\pi\)
0.847686 + 0.530499i \(0.177995\pi\)
\(710\) 0 0
\(711\) −9.70431 + 9.70431i −0.363940 + 0.363940i
\(712\) 0 0
\(713\) 19.0277 + 26.1894i 0.712592 + 0.980799i
\(714\) 0 0
\(715\) −13.4633 4.21476i −0.503499 0.157623i
\(716\) 0 0
\(717\) −31.0654 + 22.5703i −1.16016 + 0.842904i
\(718\) 0 0
\(719\) 0.0282146 0.178140i 0.00105223 0.00664350i −0.987157 0.159755i \(-0.948929\pi\)
0.988209 + 0.153112i \(0.0489295\pi\)
\(720\) 0 0
\(721\) −3.97099 7.79350i −0.147887 0.290245i
\(722\) 0 0
\(723\) −0.392549 + 0.770421i −0.0145991 + 0.0286523i
\(724\) 0 0
\(725\) −15.0687 14.4332i −0.559638 0.536037i
\(726\) 0 0
\(727\) −12.3923 24.3212i −0.459603 0.902022i −0.998230 0.0594774i \(-0.981057\pi\)
0.538626 0.842545i \(-0.318943\pi\)
\(728\) 0 0
\(729\) 11.8331i 0.438264i
\(730\) 0 0
\(731\) 13.1881 + 2.08880i 0.487781 + 0.0772569i
\(732\) 0 0
\(733\) −14.2438 43.8380i −0.526107 1.61919i −0.762116 0.647441i \(-0.775839\pi\)
0.236008 0.971751i \(-0.424161\pi\)
\(734\) 0 0
\(735\) −6.55307 3.25055i −0.241714 0.119898i
\(736\) 0 0
\(737\) 12.2182i 0.450063i
\(738\) 0 0
\(739\) 32.2177 1.18515 0.592575 0.805516i \(-0.298112\pi\)
0.592575 + 0.805516i \(0.298112\pi\)
\(740\) 0 0
\(741\) 19.1955 + 19.1955i 0.705163 + 0.705163i
\(742\) 0 0
\(743\) −7.58733 23.3514i −0.278352 0.856679i −0.988313 0.152438i \(-0.951287\pi\)
0.709961 0.704241i \(-0.248713\pi\)
\(744\) 0 0
\(745\) −6.32685 37.3392i −0.231798 1.36800i
\(746\) 0 0
\(747\) −18.1261 −0.663200
\(748\) 0 0
\(749\) 5.99733 3.05579i 0.219138 0.111656i
\(750\) 0 0
\(751\) −0.259551 1.63874i −0.00947116 0.0597986i 0.982500 0.186262i \(-0.0596373\pi\)
−0.991971 + 0.126463i \(0.959637\pi\)
\(752\) 0 0
\(753\) 20.2199 39.6839i 0.736856 1.44616i
\(754\) 0 0
\(755\) 10.4882 10.7166i 0.381705 0.390016i
\(756\) 0 0
\(757\) −25.0917 3.97413i −0.911973 0.144442i −0.317221 0.948352i \(-0.602750\pi\)
−0.594752 + 0.803909i \(0.702750\pi\)
\(758\) 0 0
\(759\) 17.4375 + 24.0006i 0.632941 + 0.871168i
\(760\) 0 0
\(761\) 25.1012 + 18.2371i 0.909916 + 0.661093i 0.940994 0.338424i \(-0.109894\pi\)
−0.0310775 + 0.999517i \(0.509894\pi\)
\(762\) 0 0
\(763\) 6.48657 + 8.92800i 0.234830 + 0.323215i
\(764\) 0 0
\(765\) −3.23284 + 6.51736i −0.116883 + 0.235636i
\(766\) 0 0
\(767\) −24.4141 12.4396i −0.881541 0.449168i
\(768\) 0 0
\(769\) −14.2917 + 43.9855i −0.515373 + 1.58616i 0.267228 + 0.963633i \(0.413892\pi\)
−0.782602 + 0.622523i \(0.786108\pi\)
\(770\) 0 0
\(771\) −3.22344 1.04736i −0.116089 0.0377197i
\(772\) 0 0
\(773\) 0.233667 + 1.47532i 0.00840443 + 0.0530635i 0.991534 0.129846i \(-0.0414484\pi\)
−0.983130 + 0.182910i \(0.941448\pi\)
\(774\) 0 0
\(775\) −14.5617 10.1079i −0.523073 0.363085i
\(776\) 0 0
\(777\) 6.96557 + 5.06079i 0.249889 + 0.181555i
\(778\) 0 0
\(779\) 18.2763 + 12.2906i 0.654816 + 0.440355i
\(780\) 0 0
\(781\) 3.62426 4.98837i 0.129686 0.178498i
\(782\) 0 0
\(783\) −15.4892 + 5.03274i −0.553538 + 0.179855i
\(784\) 0 0
\(785\) −11.1446 + 5.83047i −0.397768 + 0.208098i
\(786\) 0 0
\(787\) −9.06249 + 27.8915i −0.323043 + 0.994224i 0.649273 + 0.760555i \(0.275073\pi\)
−0.972316 + 0.233669i \(0.924927\pi\)
\(788\) 0 0
\(789\) 0.0560107 0.172383i 0.00199403 0.00613700i
\(790\) 0 0
\(791\) 17.3735 34.0974i 0.617731 1.21236i
\(792\) 0 0
\(793\) −42.0120 42.0120i −1.49189 1.49189i
\(794\) 0 0
\(795\) 45.4021 + 32.2453i 1.61025 + 1.14362i
\(796\) 0 0
\(797\) −22.5762 + 31.0734i −0.799688 + 1.10068i 0.193145 + 0.981170i \(0.438131\pi\)
−0.992833 + 0.119506i \(0.961869\pi\)
\(798\) 0 0
\(799\) 8.78857 + 12.0964i 0.310917 + 0.427941i
\(800\) 0 0
\(801\) 2.48959 15.7186i 0.0879652 0.555390i
\(802\) 0 0
\(803\) −15.2951 + 7.79323i −0.539752 + 0.275017i
\(804\) 0 0
\(805\) −8.74096 + 59.3154i −0.308078 + 2.09059i
\(806\) 0 0
\(807\) 5.95798 0.943651i 0.209731 0.0332181i
\(808\) 0 0
\(809\) −19.5386 + 9.95541i −0.686940 + 0.350014i −0.762373 0.647137i \(-0.775966\pi\)
0.0754332 + 0.997151i \(0.475966\pi\)
\(810\) 0 0
\(811\) 55.3132i 1.94231i −0.238450 0.971155i \(-0.576639\pi\)
0.238450 0.971155i \(-0.423361\pi\)
\(812\) 0 0
\(813\) −8.43425 + 53.2518i −0.295802 + 1.86762i
\(814\) 0 0
\(815\) −30.6466 + 22.7743i −1.07350 + 0.797748i
\(816\) 0 0
\(817\) 10.6222 10.6222i 0.371623 0.371623i
\(818\) 0 0
\(819\) 12.2332 0.427463
\(820\) 0 0
\(821\) 13.7770 0.480820 0.240410 0.970671i \(-0.422718\pi\)
0.240410 + 0.970671i \(0.422718\pi\)
\(822\) 0 0
\(823\) 28.5816 28.5816i 0.996293 0.996293i −0.00370042 0.999993i \(-0.501178\pi\)
0.999993 + 0.00370042i \(0.00117788\pi\)
\(824\) 0 0
\(825\) −13.3448 9.26312i −0.464605 0.322500i
\(826\) 0 0
\(827\) 1.75733 11.0953i 0.0611082 0.385822i −0.938112 0.346333i \(-0.887427\pi\)
0.999220 0.0394894i \(-0.0125731\pi\)
\(828\) 0 0
\(829\) 13.0050i 0.451682i 0.974164 + 0.225841i \(0.0725129\pi\)
−0.974164 + 0.225841i \(0.927487\pi\)
\(830\) 0 0
\(831\) 4.57035 2.32871i 0.158544 0.0807821i
\(832\) 0 0
\(833\) 4.90018 0.776113i 0.169781 0.0268907i
\(834\) 0 0
\(835\) 45.3759 + 6.68678i 1.57030 + 0.231406i
\(836\) 0 0
\(837\) −12.3276 + 6.28122i −0.426104 + 0.217111i
\(838\) 0 0
\(839\) 6.27800 39.6377i 0.216741 1.36845i −0.603927 0.797040i \(-0.706398\pi\)
0.820667 0.571406i \(-0.193602\pi\)
\(840\) 0 0
\(841\) 6.80928 + 9.37217i 0.234803 + 0.323178i
\(842\) 0 0
\(843\) 18.0911 24.9002i 0.623089 0.857609i
\(844\) 0 0
\(845\) 4.24038 + 3.01159i 0.145873 + 0.103602i
\(846\) 0 0
\(847\) −17.4474 17.4474i −0.599498 0.599498i
\(848\) 0 0
\(849\) 1.73338 3.40196i 0.0594896 0.116755i
\(850\) 0 0
\(851\) 4.10393 12.6306i 0.140681 0.432971i
\(852\) 0 0
\(853\) 16.6847 51.3503i 0.571274 1.75820i −0.0772566 0.997011i \(-0.524616\pi\)
0.648530 0.761189i \(-0.275384\pi\)
\(854\) 0 0
\(855\) 3.79411 + 7.25222i 0.129756 + 0.248021i
\(856\) 0 0
\(857\) −0.489814 + 0.159150i −0.0167317 + 0.00543647i −0.317371 0.948301i \(-0.602800\pi\)
0.300639 + 0.953738i \(0.402800\pi\)
\(858\) 0 0
\(859\) −23.0502 + 31.7259i −0.786462 + 1.08247i 0.208077 + 0.978112i \(0.433280\pi\)
−0.994540 + 0.104360i \(0.966720\pi\)
\(860\) 0 0
\(861\) 37.1987 7.28439i 1.26773 0.248251i
\(862\) 0 0
\(863\) 20.5370 + 14.9210i 0.699087 + 0.507916i 0.879635 0.475650i \(-0.157787\pi\)
−0.180548 + 0.983566i \(0.557787\pi\)
\(864\) 0 0
\(865\) −14.0211 18.8677i −0.476731 0.641521i
\(866\) 0 0
\(867\) 2.41333 + 15.2371i 0.0819609 + 0.517481i
\(868\) 0 0
\(869\) 19.7668 + 6.42262i 0.670542 + 0.217872i
\(870\) 0 0
\(871\) 9.17167 28.2275i 0.310770 0.956452i
\(872\) 0 0
\(873\) 7.79186 + 3.97015i 0.263714 + 0.134369i
\(874\) 0 0
\(875\) −6.18051 32.2435i −0.208939 1.09003i
\(876\) 0 0
\(877\) 15.3719 + 21.1576i 0.519071 + 0.714440i 0.985416 0.170163i \(-0.0544295\pi\)
−0.466345 + 0.884603i \(0.654429\pi\)
\(878\) 0 0
\(879\) −18.5757 13.4960i −0.626543 0.455210i
\(880\) 0 0
\(881\) −7.08670 9.75401i −0.238757 0.328621i 0.672777 0.739845i \(-0.265101\pi\)
−0.911534 + 0.411224i \(0.865101\pi\)
\(882\) 0 0
\(883\) −22.8049 3.61195i −0.767448 0.121552i −0.239578 0.970877i \(-0.577009\pi\)
−0.527870 + 0.849325i \(0.677009\pi\)
\(884\) 0 0
\(885\) −22.5490 22.0685i −0.757977 0.741825i
\(886\) 0 0
\(887\) −25.4357 + 49.9203i −0.854046 + 1.67616i −0.124509 + 0.992218i \(0.539736\pi\)
−0.729537 + 0.683941i \(0.760264\pi\)
\(888\) 0 0
\(889\) −3.66616 23.1472i −0.122959 0.776334i
\(890\) 0 0
\(891\) −15.8815 + 8.09204i −0.532051 + 0.271094i
\(892\) 0 0
\(893\) 16.8215 0.562910
\(894\) 0 0
\(895\) 0.815757 + 4.81436i 0.0272677 + 0.160926i
\(896\) 0 0
\(897\) −22.2693 68.5379i −0.743550 2.28841i
\(898\) 0 0
\(899\) −10.4615 10.4615i −0.348910 0.348910i
\(900\) 0 0
\(901\) −37.7692 −1.25827
\(902\) 0 0
\(903\) 25.8536i 0.860354i
\(904\) 0 0
\(905\) −5.74259 + 11.5770i −0.190890 + 0.384832i
\(906\) 0 0
\(907\) 11.7201 + 36.0707i 0.389159 + 1.19771i 0.933418 + 0.358791i \(0.116811\pi\)
−0.544259 + 0.838917i \(0.683189\pi\)
\(908\) 0 0
\(909\) 11.7534 + 1.86155i 0.389835 + 0.0617438i
\(910\) 0 0
\(911\) 36.9855i 1.22538i 0.790322 + 0.612692i \(0.209913\pi\)
−0.790322 + 0.612692i \(0.790087\pi\)
\(912\) 0 0
\(913\) 12.4624 + 24.4588i 0.412445 + 0.809468i
\(914\) 0 0
\(915\) −31.7139 60.6193i −1.04843 2.00401i
\(916\) 0 0
\(917\) −2.89935 + 5.69029i −0.0957449 + 0.187910i
\(918\) 0 0
\(919\) 9.35438 + 18.3590i 0.308573 + 0.605608i 0.992261 0.124166i \(-0.0396255\pi\)
−0.683689 + 0.729774i \(0.739625\pi\)
\(920\) 0 0
\(921\) −4.83168 + 30.5060i −0.159209 + 1.00521i
\(922\) 0 0
\(923\) −12.1176 + 8.80397i −0.398856 + 0.289786i
\(924\) 0 0
\(925\) 0.156609 + 7.27045i 0.00514928 + 0.239051i
\(926\) 0 0
\(927\) 1.86317 + 2.56444i 0.0611947 + 0.0842272i
\(928\) 0 0
\(929\) −9.29173 + 9.29173i −0.304852 + 0.304852i −0.842909 0.538057i \(-0.819159\pi\)
0.538057 + 0.842909i \(0.319159\pi\)
\(930\) 0 0
\(931\) 2.53399 4.97323i 0.0830481 0.162991i
\(932\) 0 0
\(933\) −1.59927 0.519635i −0.0523578 0.0170121i
\(934\) 0 0
\(935\) 11.0170 0.118642i 0.360295 0.00388002i
\(936\) 0 0
\(937\) 2.95732 + 18.6718i 0.0966114 + 0.609980i 0.987725 + 0.156201i \(0.0499247\pi\)
−0.891114 + 0.453780i \(0.850075\pi\)
\(938\) 0 0
\(939\) 18.8071 + 57.8822i 0.613745 + 1.88891i
\(940\) 0 0
\(941\) 6.36826 8.76516i 0.207600 0.285736i −0.692502 0.721416i \(-0.743492\pi\)
0.900102 + 0.435679i \(0.143492\pi\)
\(942\) 0 0
\(943\) −28.4169 51.0977i −0.925380 1.66397i
\(944\) 0 0
\(945\) −24.4546 7.65565i −0.795509 0.249038i
\(946\) 0 0
\(947\) −2.76554 + 0.898579i −0.0898680 + 0.0291999i −0.353606 0.935394i \(-0.615045\pi\)
0.263738 + 0.964594i \(0.415045\pi\)
\(948\) 0 0
\(949\) 41.1860 6.52322i 1.33695 0.211753i
\(950\) 0 0
\(951\) −14.2090 4.61678i −0.460758 0.149709i
\(952\) 0 0
\(953\) 41.8716 + 13.6049i 1.35635 + 0.440706i 0.894825 0.446418i \(-0.147301\pi\)
0.461530 + 0.887124i \(0.347301\pi\)
\(954\) 0 0
\(955\) 45.7855 + 6.74714i 1.48159 + 0.218332i
\(956\) 0 0
\(957\) −9.58719 9.58719i −0.309910 0.309910i
\(958\) 0 0
\(959\) −9.97834 + 7.24969i −0.322218 + 0.234105i
\(960\) 0 0
\(961\) 14.9114 + 10.8338i 0.481013 + 0.349476i
\(962\) 0 0
\(963\) −1.97341 + 1.43377i −0.0635923 + 0.0462025i
\(964\) 0 0
\(965\) 2.74535 + 16.2023i 0.0883760 + 0.521570i
\(966\) 0 0
\(967\) 42.7007 21.7571i 1.37316 0.699661i 0.397226 0.917721i \(-0.369973\pi\)
0.975935 + 0.218060i \(0.0699730\pi\)
\(968\) 0 0
\(969\) −18.8899 9.62491i −0.606832 0.309197i
\(970\) 0 0
\(971\) 3.82825 + 24.1706i 0.122854 + 0.775671i 0.969784 + 0.243966i \(0.0784486\pi\)
−0.846929 + 0.531705i \(0.821551\pi\)
\(972\) 0 0
\(973\) 5.19254 + 10.1909i 0.166465 + 0.326707i
\(974\) 0 0
\(975\) 23.8768 + 31.4178i 0.764669 + 1.00617i
\(976\) 0 0
\(977\) 6.14350 38.7885i 0.196548 1.24095i −0.670190 0.742190i \(-0.733787\pi\)
0.866737 0.498765i \(-0.166213\pi\)
\(978\) 0 0
\(979\) −22.9219 + 7.44778i −0.732588 + 0.238032i
\(980\) 0 0
\(981\) −2.82790 2.82790i −0.0902880 0.0902880i
\(982\) 0 0
\(983\) 30.8494i 0.983943i 0.870611 + 0.491971i \(0.163724\pi\)
−0.870611 + 0.491971i \(0.836276\pi\)
\(984\) 0 0
\(985\) 17.0937 5.75830i 0.544649 0.183475i
\(986\) 0 0
\(987\) 20.4711 20.4711i 0.651604 0.651604i
\(988\) 0 0
\(989\) −37.9268 + 12.3231i −1.20600 + 0.391853i
\(990\) 0 0
\(991\) −48.9516 7.75316i −1.55500 0.246287i −0.681024 0.732261i \(-0.738465\pi\)
−0.873973 + 0.485974i \(0.838465\pi\)
\(992\) 0 0
\(993\) −65.9304 −2.09224
\(994\) 0 0
\(995\) 3.53980 + 3.46437i 0.112219 + 0.109828i
\(996\) 0 0
\(997\) −39.8679 + 6.31445i −1.26263 + 0.199981i −0.751621 0.659595i \(-0.770728\pi\)
−0.511008 + 0.859576i \(0.670728\pi\)
\(998\) 0 0
\(999\) 5.05742 + 2.57688i 0.160010 + 0.0815289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.18 yes 176
5.4 even 2 inner 820.2.bq.a.49.5 176
41.36 even 20 inner 820.2.bq.a.569.5 yes 176
205.159 even 20 inner 820.2.bq.a.569.18 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.5 176 5.4 even 2 inner
820.2.bq.a.49.18 yes 176 1.1 even 1 trivial
820.2.bq.a.569.5 yes 176 41.36 even 20 inner
820.2.bq.a.569.18 yes 176 205.159 even 20 inner