Properties

Label 820.2.bq.a.49.11
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.11
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.142650 + 0.142650i) q^{3} +(1.77418 + 1.36098i) q^{5} +(0.670976 - 4.23638i) q^{7} +2.95930i q^{9} +(-1.96562 + 1.00153i) q^{11} +(2.64628 - 0.419129i) q^{13} +(-0.447231 + 0.0589425i) q^{15} +(6.24745 - 3.18323i) q^{17} +(0.291385 - 1.83973i) q^{19} +(0.508604 + 0.700033i) q^{21} +(-0.316126 + 0.435111i) q^{23} +(1.29544 + 4.82927i) q^{25} +(-0.850094 - 0.850094i) q^{27} +(1.65116 - 3.24059i) q^{29} +(-2.83857 + 8.73621i) q^{31} +(0.137527 - 0.423265i) q^{33} +(6.95607 - 6.60291i) q^{35} +(4.15167 - 1.34896i) q^{37} +(-0.317703 + 0.437280i) q^{39} +(5.88273 - 2.52853i) q^{41} +(-5.48112 - 3.98227i) q^{43} +(-4.02756 + 5.25034i) q^{45} +(-0.372889 - 2.35433i) q^{47} +(-10.8393 - 3.52189i) q^{49} +(-0.437110 + 1.34528i) q^{51} +(4.36779 + 2.22550i) q^{53} +(-4.85045 - 0.898277i) q^{55} +(0.220871 + 0.304003i) q^{57} +(8.79266 + 6.38824i) q^{59} +(6.87237 + 9.45901i) q^{61} +(12.5367 + 1.98562i) q^{63} +(5.26541 + 2.85793i) q^{65} +(-0.712758 + 1.39887i) q^{67} +(-0.0169731 - 0.107164i) q^{69} +(10.6070 - 5.40454i) q^{71} -3.71230 q^{73} +(-0.873689 - 0.504100i) q^{75} +(2.92399 + 8.99912i) q^{77} +(-5.04955 - 5.04955i) q^{79} -8.63537 q^{81} +5.94258i q^{83} +(15.4164 + 2.85504i) q^{85} +(0.226732 + 0.697809i) q^{87} +(-16.8191 - 2.66388i) q^{89} -11.4919i q^{91} +(-0.841298 - 1.65114i) q^{93} +(3.02082 - 2.86745i) q^{95} +(0.513699 - 1.00819i) q^{97} +(-2.96384 - 5.81687i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.142650 + 0.142650i −0.0823589 + 0.0823589i −0.747086 0.664727i \(-0.768548\pi\)
0.664727 + 0.747086i \(0.268548\pi\)
\(4\) 0 0
\(5\) 1.77418 + 1.36098i 0.793438 + 0.608651i
\(6\) 0 0
\(7\) 0.670976 4.23638i 0.253605 1.60120i −0.451616 0.892212i \(-0.649152\pi\)
0.705221 0.708987i \(-0.250848\pi\)
\(8\) 0 0
\(9\) 2.95930i 0.986434i
\(10\) 0 0
\(11\) −1.96562 + 1.00153i −0.592658 + 0.301974i −0.724476 0.689300i \(-0.757918\pi\)
0.131819 + 0.991274i \(0.457918\pi\)
\(12\) 0 0
\(13\) 2.64628 0.419129i 0.733946 0.116246i 0.221737 0.975107i \(-0.428827\pi\)
0.512209 + 0.858861i \(0.328827\pi\)
\(14\) 0 0
\(15\) −0.447231 + 0.0589425i −0.115475 + 0.0152189i
\(16\) 0 0
\(17\) 6.24745 3.18323i 1.51523 0.772047i 0.518672 0.854973i \(-0.326426\pi\)
0.996556 + 0.0829259i \(0.0264265\pi\)
\(18\) 0 0
\(19\) 0.291385 1.83973i 0.0668483 0.422063i −0.931456 0.363854i \(-0.881461\pi\)
0.998304 0.0582096i \(-0.0185392\pi\)
\(20\) 0 0
\(21\) 0.508604 + 0.700033i 0.110986 + 0.152760i
\(22\) 0 0
\(23\) −0.316126 + 0.435111i −0.0659169 + 0.0907268i −0.840703 0.541497i \(-0.817858\pi\)
0.774786 + 0.632224i \(0.217858\pi\)
\(24\) 0 0
\(25\) 1.29544 + 4.82927i 0.259088 + 0.965854i
\(26\) 0 0
\(27\) −0.850094 0.850094i −0.163601 0.163601i
\(28\) 0 0
\(29\) 1.65116 3.24059i 0.306614 0.601763i −0.685361 0.728204i \(-0.740355\pi\)
0.991974 + 0.126441i \(0.0403554\pi\)
\(30\) 0 0
\(31\) −2.83857 + 8.73621i −0.509822 + 1.56907i 0.282689 + 0.959212i \(0.408773\pi\)
−0.792511 + 0.609858i \(0.791227\pi\)
\(32\) 0 0
\(33\) 0.137527 0.423265i 0.0239404 0.0736809i
\(34\) 0 0
\(35\) 6.95607 6.60291i 1.17579 1.11610i
\(36\) 0 0
\(37\) 4.15167 1.34896i 0.682531 0.221768i 0.0528278 0.998604i \(-0.483177\pi\)
0.629703 + 0.776836i \(0.283177\pi\)
\(38\) 0 0
\(39\) −0.317703 + 0.437280i −0.0508731 + 0.0700209i
\(40\) 0 0
\(41\) 5.88273 2.52853i 0.918728 0.394890i
\(42\) 0 0
\(43\) −5.48112 3.98227i −0.835863 0.607290i 0.0853489 0.996351i \(-0.472800\pi\)
−0.921212 + 0.389061i \(0.872800\pi\)
\(44\) 0 0
\(45\) −4.02756 + 5.25034i −0.600394 + 0.782674i
\(46\) 0 0
\(47\) −0.372889 2.35433i −0.0543915 0.343414i −0.999844 0.0176548i \(-0.994380\pi\)
0.945453 0.325760i \(-0.105620\pi\)
\(48\) 0 0
\(49\) −10.8393 3.52189i −1.54847 0.503128i
\(50\) 0 0
\(51\) −0.437110 + 1.34528i −0.0612076 + 0.188378i
\(52\) 0 0
\(53\) 4.36779 + 2.22550i 0.599962 + 0.305696i 0.727468 0.686142i \(-0.240697\pi\)
−0.127505 + 0.991838i \(0.540697\pi\)
\(54\) 0 0
\(55\) −4.85045 0.898277i −0.654034 0.121124i
\(56\) 0 0
\(57\) 0.220871 + 0.304003i 0.0292551 + 0.0402662i
\(58\) 0 0
\(59\) 8.79266 + 6.38824i 1.14471 + 0.831678i 0.987768 0.155930i \(-0.0498374\pi\)
0.156939 + 0.987608i \(0.449837\pi\)
\(60\) 0 0
\(61\) 6.87237 + 9.45901i 0.879917 + 1.21110i 0.976444 + 0.215772i \(0.0692267\pi\)
−0.0965267 + 0.995330i \(0.530773\pi\)
\(62\) 0 0
\(63\) 12.5367 + 1.98562i 1.57948 + 0.250165i
\(64\) 0 0
\(65\) 5.26541 + 2.85793i 0.653094 + 0.354483i
\(66\) 0 0
\(67\) −0.712758 + 1.39887i −0.0870773 + 0.170899i −0.930438 0.366449i \(-0.880574\pi\)
0.843361 + 0.537347i \(0.180574\pi\)
\(68\) 0 0
\(69\) −0.0169731 0.107164i −0.00204332 0.0129010i
\(70\) 0 0
\(71\) 10.6070 5.40454i 1.25882 0.641401i 0.308071 0.951363i \(-0.400316\pi\)
0.950749 + 0.309962i \(0.100316\pi\)
\(72\) 0 0
\(73\) −3.71230 −0.434491 −0.217246 0.976117i \(-0.569707\pi\)
−0.217246 + 0.976117i \(0.569707\pi\)
\(74\) 0 0
\(75\) −0.873689 0.504100i −0.100885 0.0582084i
\(76\) 0 0
\(77\) 2.92399 + 8.99912i 0.333220 + 1.02555i
\(78\) 0 0
\(79\) −5.04955 5.04955i −0.568119 0.568119i 0.363482 0.931601i \(-0.381588\pi\)
−0.931601 + 0.363482i \(0.881588\pi\)
\(80\) 0 0
\(81\) −8.63537 −0.959486
\(82\) 0 0
\(83\) 5.94258i 0.652283i 0.945321 + 0.326141i \(0.105749\pi\)
−0.945321 + 0.326141i \(0.894251\pi\)
\(84\) 0 0
\(85\) 15.4164 + 2.85504i 1.67215 + 0.309673i
\(86\) 0 0
\(87\) 0.226732 + 0.697809i 0.0243082 + 0.0748129i
\(88\) 0 0
\(89\) −16.8191 2.66388i −1.78282 0.282371i −0.824043 0.566527i \(-0.808287\pi\)
−0.958778 + 0.284156i \(0.908287\pi\)
\(90\) 0 0
\(91\) 11.4919i 1.20467i
\(92\) 0 0
\(93\) −0.841298 1.65114i −0.0872385 0.171215i
\(94\) 0 0
\(95\) 3.02082 2.86745i 0.309929 0.294194i
\(96\) 0 0
\(97\) 0.513699 1.00819i 0.0521582 0.102366i −0.863456 0.504424i \(-0.831705\pi\)
0.915614 + 0.402058i \(0.131705\pi\)
\(98\) 0 0
\(99\) −2.96384 5.81687i −0.297878 0.584618i
\(100\) 0 0
\(101\) 1.14689 7.24119i 0.114120 0.720526i −0.862581 0.505920i \(-0.831153\pi\)
0.976701 0.214606i \(-0.0688468\pi\)
\(102\) 0 0
\(103\) 9.99371 7.26086i 0.984710 0.715433i 0.0259534 0.999663i \(-0.491738\pi\)
0.958756 + 0.284230i \(0.0917378\pi\)
\(104\) 0 0
\(105\) −0.0503785 + 1.93419i −0.00491644 + 0.188757i
\(106\) 0 0
\(107\) −2.71223 3.73306i −0.262201 0.360889i 0.657536 0.753423i \(-0.271599\pi\)
−0.919738 + 0.392534i \(0.871599\pi\)
\(108\) 0 0
\(109\) −5.32740 + 5.32740i −0.510272 + 0.510272i −0.914610 0.404338i \(-0.867502\pi\)
0.404338 + 0.914610i \(0.367502\pi\)
\(110\) 0 0
\(111\) −0.399807 + 0.784665i −0.0379480 + 0.0744771i
\(112\) 0 0
\(113\) −10.7438 3.49086i −1.01069 0.328392i −0.243559 0.969886i \(-0.578315\pi\)
−0.767128 + 0.641494i \(0.778315\pi\)
\(114\) 0 0
\(115\) −1.15304 + 0.341722i −0.107522 + 0.0318658i
\(116\) 0 0
\(117\) 1.24033 + 7.83114i 0.114669 + 0.723989i
\(118\) 0 0
\(119\) −9.29348 28.6024i −0.851932 2.62198i
\(120\) 0 0
\(121\) −3.60504 + 4.96191i −0.327731 + 0.451083i
\(122\) 0 0
\(123\) −0.478476 + 1.19987i −0.0431428 + 0.108188i
\(124\) 0 0
\(125\) −4.27421 + 10.3311i −0.382297 + 0.924040i
\(126\) 0 0
\(127\) −18.4064 + 5.98059i −1.63330 + 0.530692i −0.975027 0.222087i \(-0.928713\pi\)
−0.658274 + 0.752779i \(0.728713\pi\)
\(128\) 0 0
\(129\) 1.34995 0.213811i 0.118857 0.0188250i
\(130\) 0 0
\(131\) 13.8523 + 4.50087i 1.21028 + 0.393243i 0.843532 0.537079i \(-0.180472\pi\)
0.366745 + 0.930322i \(0.380472\pi\)
\(132\) 0 0
\(133\) −7.59828 2.46883i −0.658854 0.214075i
\(134\) 0 0
\(135\) −0.351256 2.66518i −0.0302313 0.229383i
\(136\) 0 0
\(137\) −15.5097 15.5097i −1.32509 1.32509i −0.909598 0.415489i \(-0.863610\pi\)
−0.415489 0.909598i \(-0.636390\pi\)
\(138\) 0 0
\(139\) 4.28996 3.11684i 0.363870 0.264367i −0.390795 0.920478i \(-0.627800\pi\)
0.754664 + 0.656111i \(0.227800\pi\)
\(140\) 0 0
\(141\) 0.389037 + 0.282652i 0.0327629 + 0.0238036i
\(142\) 0 0
\(143\) −4.78181 + 3.47419i −0.399875 + 0.290526i
\(144\) 0 0
\(145\) 7.33986 3.50219i 0.609542 0.290841i
\(146\) 0 0
\(147\) 2.04862 1.04382i 0.168967 0.0860931i
\(148\) 0 0
\(149\) −6.76731 3.44811i −0.554399 0.282481i 0.154261 0.988030i \(-0.450700\pi\)
−0.708661 + 0.705550i \(0.750700\pi\)
\(150\) 0 0
\(151\) 0.475308 + 3.00097i 0.0386800 + 0.244216i 0.999451 0.0331265i \(-0.0105464\pi\)
−0.960771 + 0.277342i \(0.910546\pi\)
\(152\) 0 0
\(153\) 9.42015 + 18.4881i 0.761574 + 1.49467i
\(154\) 0 0
\(155\) −16.9260 + 11.6364i −1.35953 + 0.934656i
\(156\) 0 0
\(157\) −3.58994 + 22.6660i −0.286509 + 1.80894i 0.253556 + 0.967321i \(0.418400\pi\)
−0.540065 + 0.841624i \(0.681600\pi\)
\(158\) 0 0
\(159\) −0.940532 + 0.305598i −0.0745891 + 0.0242355i
\(160\) 0 0
\(161\) 1.63118 + 1.63118i 0.128555 + 0.128555i
\(162\) 0 0
\(163\) 10.6120i 0.831194i −0.909549 0.415597i \(-0.863573\pi\)
0.909549 0.415597i \(-0.136427\pi\)
\(164\) 0 0
\(165\) 0.820054 0.563776i 0.0638412 0.0438899i
\(166\) 0 0
\(167\) −10.0861 + 10.0861i −0.780488 + 0.780488i −0.979913 0.199425i \(-0.936092\pi\)
0.199425 + 0.979913i \(0.436092\pi\)
\(168\) 0 0
\(169\) −5.53661 + 1.79895i −0.425893 + 0.138381i
\(170\) 0 0
\(171\) 5.44432 + 0.862296i 0.416338 + 0.0659414i
\(172\) 0 0
\(173\) −14.8793 −1.13125 −0.565625 0.824663i \(-0.691365\pi\)
−0.565625 + 0.824663i \(0.691365\pi\)
\(174\) 0 0
\(175\) 21.3278 2.24766i 1.61223 0.169907i
\(176\) 0 0
\(177\) −2.16555 + 0.342990i −0.162773 + 0.0257807i
\(178\) 0 0
\(179\) −3.04641 1.55222i −0.227700 0.116019i 0.336419 0.941712i \(-0.390784\pi\)
−0.564119 + 0.825694i \(0.690784\pi\)
\(180\) 0 0
\(181\) −6.66193 13.0748i −0.495177 0.971840i −0.994432 0.105384i \(-0.966393\pi\)
0.499254 0.866455i \(-0.333607\pi\)
\(182\) 0 0
\(183\) −2.32967 0.368983i −0.172214 0.0272760i
\(184\) 0 0
\(185\) 9.20174 + 3.25706i 0.676525 + 0.239464i
\(186\) 0 0
\(187\) −9.09200 + 12.5141i −0.664873 + 0.915119i
\(188\) 0 0
\(189\) −4.17171 + 3.03092i −0.303447 + 0.220467i
\(190\) 0 0
\(191\) −15.1209 + 15.1209i −1.09411 + 1.09411i −0.0990225 + 0.995085i \(0.531572\pi\)
−0.995085 + 0.0990225i \(0.968428\pi\)
\(192\) 0 0
\(193\) −6.24563 3.18231i −0.449571 0.229068i 0.214520 0.976720i \(-0.431181\pi\)
−0.664091 + 0.747652i \(0.731181\pi\)
\(194\) 0 0
\(195\) −1.15879 + 0.343426i −0.0829829 + 0.0245933i
\(196\) 0 0
\(197\) 3.14462 9.67813i 0.224045 0.689538i −0.774343 0.632767i \(-0.781919\pi\)
0.998387 0.0567717i \(-0.0180807\pi\)
\(198\) 0 0
\(199\) −8.56298 + 1.35624i −0.607013 + 0.0961415i −0.452372 0.891829i \(-0.649422\pi\)
−0.154641 + 0.987971i \(0.549422\pi\)
\(200\) 0 0
\(201\) −0.0978733 0.301223i −0.00690345 0.0212466i
\(202\) 0 0
\(203\) −12.6205 9.16931i −0.885784 0.643560i
\(204\) 0 0
\(205\) 13.8783 + 3.52023i 0.969304 + 0.245864i
\(206\) 0 0
\(207\) −1.28762 0.935514i −0.0894960 0.0650227i
\(208\) 0 0
\(209\) 1.26980 + 3.90805i 0.0878341 + 0.270325i
\(210\) 0 0
\(211\) −18.7809 + 2.97460i −1.29293 + 0.204780i −0.764736 0.644343i \(-0.777131\pi\)
−0.528195 + 0.849123i \(0.677131\pi\)
\(212\) 0 0
\(213\) −0.742131 + 2.28404i −0.0508500 + 0.156500i
\(214\) 0 0
\(215\) −4.30470 14.5250i −0.293578 0.990596i
\(216\) 0 0
\(217\) 35.1053 + 17.8870i 2.38310 + 1.21425i
\(218\) 0 0
\(219\) 0.529559 0.529559i 0.0357842 0.0357842i
\(220\) 0 0
\(221\) 15.1983 11.0422i 1.02235 0.742779i
\(222\) 0 0
\(223\) −13.9665 + 19.2233i −0.935269 + 1.28729i 0.0224999 + 0.999747i \(0.492837\pi\)
−0.957769 + 0.287540i \(0.907163\pi\)
\(224\) 0 0
\(225\) −14.2913 + 3.83361i −0.952751 + 0.255574i
\(226\) 0 0
\(227\) 6.66878 + 1.05623i 0.442622 + 0.0701045i 0.373768 0.927522i \(-0.378066\pi\)
0.0688543 + 0.997627i \(0.478066\pi\)
\(228\) 0 0
\(229\) −10.6039 20.8113i −0.700723 1.37525i −0.916989 0.398912i \(-0.869388\pi\)
0.216266 0.976335i \(-0.430612\pi\)
\(230\) 0 0
\(231\) −1.70083 0.866616i −0.111906 0.0570192i
\(232\) 0 0
\(233\) 19.6474 3.11184i 1.28714 0.203863i 0.524904 0.851161i \(-0.324101\pi\)
0.762237 + 0.647298i \(0.224101\pi\)
\(234\) 0 0
\(235\) 2.54263 4.68451i 0.165863 0.305584i
\(236\) 0 0
\(237\) 1.44064 0.0935793
\(238\) 0 0
\(239\) 3.53925 + 0.560562i 0.228935 + 0.0362597i 0.269848 0.962903i \(-0.413027\pi\)
−0.0409129 + 0.999163i \(0.513027\pi\)
\(240\) 0 0
\(241\) 4.11887 1.33830i 0.265320 0.0862077i −0.173336 0.984863i \(-0.555455\pi\)
0.438656 + 0.898655i \(0.355455\pi\)
\(242\) 0 0
\(243\) 3.78212 3.78212i 0.242623 0.242623i
\(244\) 0 0
\(245\) −14.4376 21.0006i −0.922384 1.34168i
\(246\) 0 0
\(247\) 4.99057i 0.317542i
\(248\) 0 0
\(249\) −0.847708 0.847708i −0.0537213 0.0537213i
\(250\) 0 0
\(251\) 4.92952 1.60170i 0.311149 0.101098i −0.149280 0.988795i \(-0.547696\pi\)
0.460429 + 0.887697i \(0.347696\pi\)
\(252\) 0 0
\(253\) 0.185607 1.17188i 0.0116690 0.0736752i
\(254\) 0 0
\(255\) −2.60642 + 1.79188i −0.163221 + 0.112212i
\(256\) 0 0
\(257\) −10.1777 19.9748i −0.634865 1.24599i −0.954432 0.298429i \(-0.903537\pi\)
0.319566 0.947564i \(-0.396463\pi\)
\(258\) 0 0
\(259\) −2.92903 18.4932i −0.182001 1.14911i
\(260\) 0 0
\(261\) 9.58989 + 4.88629i 0.593600 + 0.302454i
\(262\) 0 0
\(263\) 10.4063 5.30229i 0.641682 0.326953i −0.102695 0.994713i \(-0.532747\pi\)
0.744377 + 0.667760i \(0.232747\pi\)
\(264\) 0 0
\(265\) 4.72038 + 9.89294i 0.289971 + 0.607719i
\(266\) 0 0
\(267\) 2.77925 2.01924i 0.170087 0.123575i
\(268\) 0 0
\(269\) −2.82521 2.05264i −0.172256 0.125151i 0.498317 0.866995i \(-0.333952\pi\)
−0.670573 + 0.741844i \(0.733952\pi\)
\(270\) 0 0
\(271\) −7.82984 + 5.68871i −0.475629 + 0.345565i −0.799631 0.600492i \(-0.794972\pi\)
0.324002 + 0.946056i \(0.394972\pi\)
\(272\) 0 0
\(273\) 1.63931 + 1.63931i 0.0992157 + 0.0992157i
\(274\) 0 0
\(275\) −7.38303 8.19509i −0.445214 0.494182i
\(276\) 0 0
\(277\) 5.50720 + 1.78940i 0.330895 + 0.107514i 0.469753 0.882798i \(-0.344343\pi\)
−0.138857 + 0.990312i \(0.544343\pi\)
\(278\) 0 0
\(279\) −25.8531 8.40018i −1.54778 0.502905i
\(280\) 0 0
\(281\) 4.27725 0.677450i 0.255159 0.0404133i −0.0275443 0.999621i \(-0.508769\pi\)
0.282704 + 0.959207i \(0.408769\pi\)
\(282\) 0 0
\(283\) 9.32334 3.02934i 0.554215 0.180075i −0.0185016 0.999829i \(-0.505890\pi\)
0.572717 + 0.819753i \(0.305890\pi\)
\(284\) 0 0
\(285\) −0.0218779 + 0.839960i −0.00129593 + 0.0497549i
\(286\) 0 0
\(287\) −6.76463 26.6180i −0.399304 1.57121i
\(288\) 0 0
\(289\) 18.9053 26.0208i 1.11207 1.53064i
\(290\) 0 0
\(291\) 0.0705392 + 0.217097i 0.00413508 + 0.0127265i
\(292\) 0 0
\(293\) 1.58508 + 10.0078i 0.0926014 + 0.584662i 0.989736 + 0.142906i \(0.0456446\pi\)
−0.897135 + 0.441757i \(0.854355\pi\)
\(294\) 0 0
\(295\) 6.90548 + 23.3006i 0.402053 + 1.35661i
\(296\) 0 0
\(297\) 2.52236 + 0.819565i 0.146362 + 0.0475560i
\(298\) 0 0
\(299\) −0.654191 + 1.28392i −0.0378328 + 0.0742511i
\(300\) 0 0
\(301\) −20.5481 + 20.5481i −1.18437 + 1.18437i
\(302\) 0 0
\(303\) 0.869351 + 1.19656i 0.0499429 + 0.0687405i
\(304\) 0 0
\(305\) −0.680727 + 26.1352i −0.0389783 + 1.49650i
\(306\) 0 0
\(307\) 26.4365 19.2072i 1.50881 1.09621i 0.542108 0.840309i \(-0.317626\pi\)
0.966702 0.255906i \(-0.0823736\pi\)
\(308\) 0 0
\(309\) −0.389841 + 2.46136i −0.0221773 + 0.140022i
\(310\) 0 0
\(311\) 3.74955 + 7.35890i 0.212617 + 0.417285i 0.972542 0.232726i \(-0.0747645\pi\)
−0.759925 + 0.650011i \(0.774764\pi\)
\(312\) 0 0
\(313\) −4.48772 + 8.80765i −0.253661 + 0.497838i −0.982361 0.186995i \(-0.940125\pi\)
0.728700 + 0.684833i \(0.240125\pi\)
\(314\) 0 0
\(315\) 19.5400 + 20.5851i 1.10095 + 1.15984i
\(316\) 0 0
\(317\) 0.107691 + 0.211355i 0.00604852 + 0.0118709i 0.894011 0.448045i \(-0.147880\pi\)
−0.887962 + 0.459916i \(0.847880\pi\)
\(318\) 0 0
\(319\) 8.02348i 0.449229i
\(320\) 0 0
\(321\) 0.919420 + 0.145622i 0.0513170 + 0.00812782i
\(322\) 0 0
\(323\) −4.03588 12.4212i −0.224562 0.691132i
\(324\) 0 0
\(325\) 5.45219 + 12.2366i 0.302433 + 0.678766i
\(326\) 0 0
\(327\) 1.51990i 0.0840509i
\(328\) 0 0
\(329\) −10.2240 −0.563669
\(330\) 0 0
\(331\) 24.5994 + 24.5994i 1.35211 + 1.35211i 0.883301 + 0.468806i \(0.155316\pi\)
0.468806 + 0.883301i \(0.344684\pi\)
\(332\) 0 0
\(333\) 3.99198 + 12.2861i 0.218759 + 0.673272i
\(334\) 0 0
\(335\) −3.16840 + 1.51179i −0.173108 + 0.0825980i
\(336\) 0 0
\(337\) −14.5619 −0.793237 −0.396618 0.917984i \(-0.629816\pi\)
−0.396618 + 0.917984i \(0.629816\pi\)
\(338\) 0 0
\(339\) 2.03057 1.03462i 0.110285 0.0561931i
\(340\) 0 0
\(341\) −3.17007 20.0150i −0.171669 1.08387i
\(342\) 0 0
\(343\) −8.56221 + 16.8043i −0.462316 + 0.907347i
\(344\) 0 0
\(345\) 0.115735 0.213228i 0.00623096 0.0114798i
\(346\) 0 0
\(347\) −14.1077 2.23443i −0.757339 0.119951i −0.234189 0.972191i \(-0.575243\pi\)
−0.523150 + 0.852240i \(0.675243\pi\)
\(348\) 0 0
\(349\) 11.3250 + 15.5875i 0.606213 + 0.834381i 0.996259 0.0864146i \(-0.0275410\pi\)
−0.390046 + 0.920795i \(0.627541\pi\)
\(350\) 0 0
\(351\) −2.60588 1.89329i −0.139092 0.101056i
\(352\) 0 0
\(353\) 2.79686 + 3.84955i 0.148862 + 0.204891i 0.876935 0.480608i \(-0.159584\pi\)
−0.728074 + 0.685499i \(0.759584\pi\)
\(354\) 0 0
\(355\) 26.1743 + 4.84733i 1.38919 + 0.257270i
\(356\) 0 0
\(357\) 5.40584 + 2.75441i 0.286107 + 0.145779i
\(358\) 0 0
\(359\) −1.81108 + 5.57393i −0.0955851 + 0.294181i −0.987406 0.158208i \(-0.949428\pi\)
0.891821 + 0.452389i \(0.149428\pi\)
\(360\) 0 0
\(361\) 14.7704 + 4.79918i 0.777388 + 0.252589i
\(362\) 0 0
\(363\) −0.193557 1.22207i −0.0101591 0.0641422i
\(364\) 0 0
\(365\) −6.58629 5.05238i −0.344742 0.264454i
\(366\) 0 0
\(367\) −10.7686 7.82381i −0.562114 0.408400i 0.270118 0.962827i \(-0.412937\pi\)
−0.832232 + 0.554428i \(0.812937\pi\)
\(368\) 0 0
\(369\) 7.48268 + 17.4088i 0.389533 + 0.906265i
\(370\) 0 0
\(371\) 12.3587 17.0103i 0.641634 0.883133i
\(372\) 0 0
\(373\) −1.04171 + 0.338473i −0.0539379 + 0.0175255i −0.335862 0.941911i \(-0.609027\pi\)
0.281924 + 0.959437i \(0.409027\pi\)
\(374\) 0 0
\(375\) −0.864011 2.08344i −0.0446174 0.107588i
\(376\) 0 0
\(377\) 3.01121 9.26757i 0.155085 0.477304i
\(378\) 0 0
\(379\) −5.95092 + 18.3150i −0.305678 + 0.940780i 0.673745 + 0.738964i \(0.264685\pi\)
−0.979423 + 0.201817i \(0.935315\pi\)
\(380\) 0 0
\(381\) 1.77253 3.47880i 0.0908097 0.178224i
\(382\) 0 0
\(383\) −14.6102 14.6102i −0.746546 0.746546i 0.227283 0.973829i \(-0.427016\pi\)
−0.973829 + 0.227283i \(0.927016\pi\)
\(384\) 0 0
\(385\) −7.05997 + 19.9456i −0.359809 + 1.01652i
\(386\) 0 0
\(387\) 11.7847 16.2203i 0.599052 0.824524i
\(388\) 0 0
\(389\) 9.93053 + 13.6682i 0.503498 + 0.693006i 0.982806 0.184641i \(-0.0591123\pi\)
−0.479308 + 0.877647i \(0.659112\pi\)
\(390\) 0 0
\(391\) −0.589924 + 3.72463i −0.0298337 + 0.188363i
\(392\) 0 0
\(393\) −2.61807 + 1.33397i −0.132064 + 0.0672901i
\(394\) 0 0
\(395\) −2.08646 15.8312i −0.104981 0.796553i
\(396\) 0 0
\(397\) −0.999568 + 0.158316i −0.0501669 + 0.00794566i −0.181467 0.983397i \(-0.558085\pi\)
0.131301 + 0.991343i \(0.458085\pi\)
\(398\) 0 0
\(399\) 1.43607 0.731715i 0.0718935 0.0366316i
\(400\) 0 0
\(401\) 5.49410i 0.274362i 0.990546 + 0.137181i \(0.0438042\pi\)
−0.990546 + 0.137181i \(0.956196\pi\)
\(402\) 0 0
\(403\) −3.85004 + 24.3082i −0.191784 + 1.21088i
\(404\) 0 0
\(405\) −15.3207 11.7526i −0.761293 0.583992i
\(406\) 0 0
\(407\) −6.80959 + 6.80959i −0.337539 + 0.337539i
\(408\) 0 0
\(409\) −23.6605 −1.16994 −0.584968 0.811057i \(-0.698893\pi\)
−0.584968 + 0.811057i \(0.698893\pi\)
\(410\) 0 0
\(411\) 4.42493 0.218266
\(412\) 0 0
\(413\) 32.9627 32.9627i 1.62199 1.62199i
\(414\) 0 0
\(415\) −8.08776 + 10.5432i −0.397012 + 0.517546i
\(416\) 0 0
\(417\) −0.167346 + 1.05658i −0.00819495 + 0.0517409i
\(418\) 0 0
\(419\) 6.91560i 0.337849i −0.985629 0.168924i \(-0.945971\pi\)
0.985629 0.168924i \(-0.0540294\pi\)
\(420\) 0 0
\(421\) −13.2138 + 6.73275i −0.643999 + 0.328134i −0.745307 0.666721i \(-0.767697\pi\)
0.101308 + 0.994855i \(0.467697\pi\)
\(422\) 0 0
\(423\) 6.96717 1.10349i 0.338756 0.0536536i
\(424\) 0 0
\(425\) 23.4659 + 26.0469i 1.13826 + 1.26346i
\(426\) 0 0
\(427\) 44.6831 22.7672i 2.16237 1.10178i
\(428\) 0 0
\(429\) 0.186532 1.17772i 0.00900586 0.0568608i
\(430\) 0 0
\(431\) 9.78866 + 13.4729i 0.471503 + 0.648968i 0.976844 0.213951i \(-0.0686333\pi\)
−0.505341 + 0.862920i \(0.668633\pi\)
\(432\) 0 0
\(433\) 15.1074 20.7936i 0.726016 0.999276i −0.273286 0.961933i \(-0.588111\pi\)
0.999303 0.0373431i \(-0.0118894\pi\)
\(434\) 0 0
\(435\) −0.547443 + 1.54662i −0.0262479 + 0.0741546i
\(436\) 0 0
\(437\) 0.708372 + 0.708372i 0.0338860 + 0.0338860i
\(438\) 0 0
\(439\) 4.07361 7.99492i 0.194423 0.381576i −0.773129 0.634249i \(-0.781309\pi\)
0.967552 + 0.252672i \(0.0813095\pi\)
\(440\) 0 0
\(441\) 10.4223 32.0767i 0.496302 1.52746i
\(442\) 0 0
\(443\) 10.4004 32.0092i 0.494138 1.52080i −0.324157 0.946003i \(-0.605081\pi\)
0.818295 0.574798i \(-0.194919\pi\)
\(444\) 0 0
\(445\) −26.2146 27.6168i −1.24269 1.30916i
\(446\) 0 0
\(447\) 1.45723 0.473482i 0.0689245 0.0223949i
\(448\) 0 0
\(449\) 1.79985 2.47728i 0.0849403 0.116910i −0.764432 0.644704i \(-0.776981\pi\)
0.849373 + 0.527794i \(0.176981\pi\)
\(450\) 0 0
\(451\) −9.03082 + 10.8619i −0.425245 + 0.511467i
\(452\) 0 0
\(453\) −0.495891 0.360286i −0.0232990 0.0169277i
\(454\) 0 0
\(455\) 15.6402 20.3886i 0.733226 0.955834i
\(456\) 0 0
\(457\) 1.91764 + 12.1075i 0.0897036 + 0.566366i 0.991074 + 0.133316i \(0.0425626\pi\)
−0.901370 + 0.433050i \(0.857437\pi\)
\(458\) 0 0
\(459\) −8.01696 2.60487i −0.374200 0.121585i
\(460\) 0 0
\(461\) 8.12333 25.0011i 0.378341 1.16442i −0.562855 0.826556i \(-0.690297\pi\)
0.941197 0.337860i \(-0.109703\pi\)
\(462\) 0 0
\(463\) −13.6320 6.94585i −0.633533 0.322801i 0.107565 0.994198i \(-0.465695\pi\)
−0.741098 + 0.671397i \(0.765695\pi\)
\(464\) 0 0
\(465\) 0.754561 4.07442i 0.0349919 0.188947i
\(466\) 0 0
\(467\) 22.0297 + 30.3213i 1.01941 + 1.40310i 0.912614 + 0.408822i \(0.134060\pi\)
0.106800 + 0.994281i \(0.465940\pi\)
\(468\) 0 0
\(469\) 5.44788 + 3.95812i 0.251560 + 0.182769i
\(470\) 0 0
\(471\) −2.72120 3.74541i −0.125386 0.172579i
\(472\) 0 0
\(473\) 14.7622 + 2.33810i 0.678766 + 0.107506i
\(474\) 0 0
\(475\) 9.26203 0.976090i 0.424971 0.0447861i
\(476\) 0 0
\(477\) −6.58593 + 12.9256i −0.301549 + 0.591823i
\(478\) 0 0
\(479\) −4.53168 28.6119i −0.207058 1.30731i −0.843976 0.536381i \(-0.819791\pi\)
0.636918 0.770932i \(-0.280209\pi\)
\(480\) 0 0
\(481\) 10.4211 5.30981i 0.475161 0.242107i
\(482\) 0 0
\(483\) −0.465375 −0.0211753
\(484\) 0 0
\(485\) 2.28353 1.08958i 0.103690 0.0494752i
\(486\) 0 0
\(487\) 8.68449 + 26.7281i 0.393532 + 1.21117i 0.930099 + 0.367309i \(0.119721\pi\)
−0.536567 + 0.843858i \(0.680279\pi\)
\(488\) 0 0
\(489\) 1.51380 + 1.51380i 0.0684562 + 0.0684562i
\(490\) 0 0
\(491\) 3.34369 0.150899 0.0754494 0.997150i \(-0.475961\pi\)
0.0754494 + 0.997150i \(0.475961\pi\)
\(492\) 0 0
\(493\) 25.5015i 1.14853i
\(494\) 0 0
\(495\) 2.65827 14.3539i 0.119481 0.645161i
\(496\) 0 0
\(497\) −15.7786 48.5616i −0.707767 2.17828i
\(498\) 0 0
\(499\) 33.2903 + 5.27267i 1.49028 + 0.236037i 0.847821 0.530283i \(-0.177914\pi\)
0.642459 + 0.766320i \(0.277914\pi\)
\(500\) 0 0
\(501\) 2.87757i 0.128560i
\(502\) 0 0
\(503\) 11.4294 + 22.4315i 0.509613 + 1.00017i 0.992239 + 0.124346i \(0.0396832\pi\)
−0.482625 + 0.875827i \(0.660317\pi\)
\(504\) 0 0
\(505\) 11.8899 11.2863i 0.529096 0.502233i
\(506\) 0 0
\(507\) 0.533176 1.04642i 0.0236792 0.0464730i
\(508\) 0 0
\(509\) 14.1642 + 27.7989i 0.627819 + 1.23216i 0.957598 + 0.288106i \(0.0930257\pi\)
−0.329779 + 0.944058i \(0.606974\pi\)
\(510\) 0 0
\(511\) −2.49086 + 15.7267i −0.110189 + 0.695707i
\(512\) 0 0
\(513\) −1.81165 + 1.31624i −0.0799862 + 0.0581134i
\(514\) 0 0
\(515\) 27.6126 + 0.719207i 1.21676 + 0.0316920i
\(516\) 0 0
\(517\) 3.09090 + 4.25426i 0.135938 + 0.187102i
\(518\) 0 0
\(519\) 2.12252 2.12252i 0.0931685 0.0931685i
\(520\) 0 0
\(521\) −6.67481 + 13.1001i −0.292429 + 0.573924i −0.989746 0.142839i \(-0.954377\pi\)
0.697317 + 0.716763i \(0.254377\pi\)
\(522\) 0 0
\(523\) 5.35906 + 1.74126i 0.234335 + 0.0761401i 0.423831 0.905742i \(-0.360685\pi\)
−0.189495 + 0.981882i \(0.560685\pi\)
\(524\) 0 0
\(525\) −2.72178 + 3.36304i −0.118788 + 0.146775i
\(526\) 0 0
\(527\) 10.0756 + 63.6148i 0.438900 + 2.77110i
\(528\) 0 0
\(529\) 7.01801 + 21.5992i 0.305131 + 0.939096i
\(530\) 0 0
\(531\) −18.9047 + 26.0201i −0.820396 + 1.12918i
\(532\) 0 0
\(533\) 14.5076 9.15682i 0.628393 0.396626i
\(534\) 0 0
\(535\) 0.268653 10.3144i 0.0116149 0.445932i
\(536\) 0 0
\(537\) 0.655995 0.213146i 0.0283083 0.00919791i
\(538\) 0 0
\(539\) 24.8332 3.93320i 1.06964 0.169415i
\(540\) 0 0
\(541\) −41.7059 13.5511i −1.79308 0.582606i −0.793416 0.608680i \(-0.791699\pi\)
−0.999660 + 0.0260745i \(0.991699\pi\)
\(542\) 0 0
\(543\) 2.81544 + 0.914791i 0.120822 + 0.0392574i
\(544\) 0 0
\(545\) −16.7023 + 2.20127i −0.715447 + 0.0942919i
\(546\) 0 0
\(547\) −12.1107 12.1107i −0.517817 0.517817i 0.399094 0.916910i \(-0.369325\pi\)
−0.916910 + 0.399094i \(0.869325\pi\)
\(548\) 0 0
\(549\) −27.9921 + 20.3374i −1.19467 + 0.867980i
\(550\) 0 0
\(551\) −5.48070 3.98196i −0.233486 0.169637i
\(552\) 0 0
\(553\) −24.7799 + 18.0037i −1.05375 + 0.765594i
\(554\) 0 0
\(555\) −1.77725 + 0.848007i −0.0754399 + 0.0359959i
\(556\) 0 0
\(557\) 4.24094 2.16087i 0.179694 0.0915588i −0.361829 0.932244i \(-0.617848\pi\)
0.541524 + 0.840686i \(0.317848\pi\)
\(558\) 0 0
\(559\) −16.1737 8.24089i −0.684073 0.348553i
\(560\) 0 0
\(561\) −0.488157 3.08210i −0.0206100 0.130126i
\(562\) 0 0
\(563\) −14.0891 27.6514i −0.593785 1.16537i −0.970963 0.239228i \(-0.923106\pi\)
0.377178 0.926141i \(-0.376894\pi\)
\(564\) 0 0
\(565\) −14.3104 20.8155i −0.602042 0.875715i
\(566\) 0 0
\(567\) −5.79413 + 36.5827i −0.243331 + 1.53633i
\(568\) 0 0
\(569\) 28.9059 9.39209i 1.21180 0.393737i 0.367709 0.929941i \(-0.380142\pi\)
0.844089 + 0.536204i \(0.180142\pi\)
\(570\) 0 0
\(571\) 4.68344 + 4.68344i 0.195996 + 0.195996i 0.798281 0.602285i \(-0.205743\pi\)
−0.602285 + 0.798281i \(0.705743\pi\)
\(572\) 0 0
\(573\) 4.31398i 0.180219i
\(574\) 0 0
\(575\) −2.51079 0.962998i −0.104707 0.0401598i
\(576\) 0 0
\(577\) −21.8433 + 21.8433i −0.909347 + 0.909347i −0.996219 0.0868724i \(-0.972313\pi\)
0.0868724 + 0.996219i \(0.472313\pi\)
\(578\) 0 0
\(579\) 1.34490 0.436983i 0.0558919 0.0181604i
\(580\) 0 0
\(581\) 25.1750 + 3.98733i 1.04443 + 0.165422i
\(582\) 0 0
\(583\) −10.8143 −0.447885
\(584\) 0 0
\(585\) −8.45749 + 15.5819i −0.349674 + 0.644234i
\(586\) 0 0
\(587\) −40.3185 + 6.38583i −1.66412 + 0.263571i −0.916349 0.400381i \(-0.868878\pi\)
−0.747775 + 0.663953i \(0.768878\pi\)
\(588\) 0 0
\(589\) 15.2452 + 7.76780i 0.628166 + 0.320067i
\(590\) 0 0
\(591\) 0.932005 + 1.82916i 0.0383376 + 0.0752417i
\(592\) 0 0
\(593\) 0.697986 + 0.110550i 0.0286628 + 0.00453975i 0.170749 0.985314i \(-0.445381\pi\)
−0.142087 + 0.989854i \(0.545381\pi\)
\(594\) 0 0
\(595\) 22.4391 63.3941i 0.919913 2.59891i
\(596\) 0 0
\(597\) 1.02804 1.41498i 0.0420749 0.0579111i
\(598\) 0 0
\(599\) −19.9946 + 14.5269i −0.816956 + 0.593553i −0.915839 0.401546i \(-0.868473\pi\)
0.0988828 + 0.995099i \(0.468473\pi\)
\(600\) 0 0
\(601\) 16.3652 16.3652i 0.667549 0.667549i −0.289599 0.957148i \(-0.593522\pi\)
0.957148 + 0.289599i \(0.0935219\pi\)
\(602\) 0 0
\(603\) −4.13967 2.10927i −0.168580 0.0858960i
\(604\) 0 0
\(605\) −13.1491 + 3.89693i −0.534586 + 0.158433i
\(606\) 0 0
\(607\) 1.75150 5.39056i 0.0710911 0.218796i −0.909198 0.416364i \(-0.863304\pi\)
0.980289 + 0.197568i \(0.0633043\pi\)
\(608\) 0 0
\(609\) 3.10831 0.492308i 0.125955 0.0199493i
\(610\) 0 0
\(611\) −1.97354 6.07393i −0.0798408 0.245725i
\(612\) 0 0
\(613\) 6.13955 + 4.46065i 0.247974 + 0.180164i 0.704828 0.709378i \(-0.251024\pi\)
−0.456854 + 0.889542i \(0.651024\pi\)
\(614\) 0 0
\(615\) −2.48190 + 1.47758i −0.100080 + 0.0595818i
\(616\) 0 0
\(617\) −11.7723 8.55307i −0.473935 0.344334i 0.325038 0.945701i \(-0.394623\pi\)
−0.798973 + 0.601367i \(0.794623\pi\)
\(618\) 0 0
\(619\) 11.8976 + 36.6171i 0.478206 + 1.47177i 0.841585 + 0.540124i \(0.181623\pi\)
−0.363380 + 0.931641i \(0.618377\pi\)
\(620\) 0 0
\(621\) 0.638622 0.101148i 0.0256270 0.00405892i
\(622\) 0 0
\(623\) −22.5704 + 69.4646i −0.904265 + 2.78304i
\(624\) 0 0
\(625\) −21.6437 + 12.5121i −0.865746 + 0.500483i
\(626\) 0 0
\(627\) −0.738620 0.376346i −0.0294976 0.0150298i
\(628\) 0 0
\(629\) 21.6433 21.6433i 0.862975 0.862975i
\(630\) 0 0
\(631\) −18.9644 + 13.7785i −0.754961 + 0.548512i −0.897361 0.441298i \(-0.854518\pi\)
0.142399 + 0.989809i \(0.454518\pi\)
\(632\) 0 0
\(633\) 2.25477 3.10342i 0.0896189 0.123350i
\(634\) 0 0
\(635\) −40.7957 14.4401i −1.61893 0.573039i
\(636\) 0 0
\(637\) −30.1599 4.77685i −1.19498 0.189266i
\(638\) 0 0
\(639\) 15.9937 + 31.3893i 0.632700 + 1.24174i
\(640\) 0 0
\(641\) 28.1730 + 14.3548i 1.11277 + 0.566982i 0.910981 0.412448i \(-0.135326\pi\)
0.201784 + 0.979430i \(0.435326\pi\)
\(642\) 0 0
\(643\) 15.1147 2.39394i 0.596066 0.0944076i 0.148891 0.988854i \(-0.452430\pi\)
0.447176 + 0.894446i \(0.352430\pi\)
\(644\) 0 0
\(645\) 2.68605 + 1.45792i 0.105763 + 0.0574056i
\(646\) 0 0
\(647\) 40.6733 1.59903 0.799517 0.600644i \(-0.205089\pi\)
0.799517 + 0.600644i \(0.205089\pi\)
\(648\) 0 0
\(649\) −23.6811 3.75072i −0.929565 0.147229i
\(650\) 0 0
\(651\) −7.55934 + 2.45618i −0.296274 + 0.0962652i
\(652\) 0 0
\(653\) 12.0240 12.0240i 0.470537 0.470537i −0.431551 0.902088i \(-0.642034\pi\)
0.902088 + 0.431551i \(0.142034\pi\)
\(654\) 0 0
\(655\) 18.4508 + 26.8381i 0.720932 + 1.04865i
\(656\) 0 0
\(657\) 10.9858i 0.428597i
\(658\) 0 0
\(659\) 16.5330 + 16.5330i 0.644033 + 0.644033i 0.951544 0.307512i \(-0.0994963\pi\)
−0.307512 + 0.951544i \(0.599496\pi\)
\(660\) 0 0
\(661\) 26.2372 8.52498i 1.02051 0.331583i 0.249477 0.968381i \(-0.419741\pi\)
0.771031 + 0.636798i \(0.219741\pi\)
\(662\) 0 0
\(663\) −0.592865 + 3.74320i −0.0230250 + 0.145374i
\(664\) 0 0
\(665\) −10.1207 14.7213i −0.392464 0.570867i
\(666\) 0 0
\(667\) 0.888040 + 1.74288i 0.0343850 + 0.0674844i
\(668\) 0 0
\(669\) −0.749875 4.73453i −0.0289918 0.183047i
\(670\) 0 0
\(671\) −22.9820 11.7099i −0.887211 0.452057i
\(672\) 0 0
\(673\) −5.49162 + 2.79812i −0.211687 + 0.107860i −0.556619 0.830768i \(-0.687902\pi\)
0.344933 + 0.938627i \(0.387902\pi\)
\(674\) 0 0
\(675\) 3.00408 5.20658i 0.115627 0.200401i
\(676\) 0 0
\(677\) −36.1178 + 26.2411i −1.38812 + 1.00853i −0.392051 + 0.919943i \(0.628234\pi\)
−0.996069 + 0.0885847i \(0.971766\pi\)
\(678\) 0 0
\(679\) −3.92640 2.85269i −0.150681 0.109476i
\(680\) 0 0
\(681\) −1.10197 + 0.800629i −0.0422276 + 0.0306802i
\(682\) 0 0
\(683\) 2.33968 + 2.33968i 0.0895253 + 0.0895253i 0.750451 0.660926i \(-0.229836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(684\) 0 0
\(685\) −6.40859 48.6256i −0.244859 1.85789i
\(686\) 0 0
\(687\) 4.48136 + 1.45608i 0.170975 + 0.0555531i
\(688\) 0 0
\(689\) 12.4912 + 4.05863i 0.475876 + 0.154621i
\(690\) 0 0
\(691\) −38.9592 + 6.17053i −1.48208 + 0.234738i −0.844462 0.535616i \(-0.820079\pi\)
−0.637616 + 0.770354i \(0.720079\pi\)
\(692\) 0 0
\(693\) −26.6311 + 8.65297i −1.01163 + 0.328699i
\(694\) 0 0
\(695\) 11.8531 + 0.308731i 0.449615 + 0.0117108i
\(696\) 0 0
\(697\) 28.7031 34.5230i 1.08721 1.30765i
\(698\) 0 0
\(699\) −2.35879 + 3.24660i −0.0892176 + 0.122798i
\(700\) 0 0
\(701\) −11.4969 35.3838i −0.434231 1.33643i −0.893872 0.448321i \(-0.852022\pi\)
0.459641 0.888105i \(-0.347978\pi\)
\(702\) 0 0
\(703\) −1.27199 8.03103i −0.0479740 0.302896i
\(704\) 0 0
\(705\) 0.305538 + 1.03095i 0.0115072 + 0.0388278i
\(706\) 0 0
\(707\) −29.9069 9.71733i −1.12476 0.365458i
\(708\) 0 0
\(709\) 10.2166 20.0512i 0.383693 0.753040i −0.615696 0.787983i \(-0.711125\pi\)
0.999389 + 0.0349439i \(0.0111253\pi\)
\(710\) 0 0
\(711\) 14.9431 14.9431i 0.560412 0.560412i
\(712\) 0 0
\(713\) −2.90387 3.99684i −0.108751 0.149683i
\(714\) 0 0
\(715\) −13.2121 0.344128i −0.494106 0.0128696i
\(716\) 0 0
\(717\) −0.584837 + 0.424909i −0.0218411 + 0.0158685i
\(718\) 0 0
\(719\) 0.504237 3.18363i 0.0188049 0.118729i −0.976500 0.215516i \(-0.930857\pi\)
0.995305 + 0.0967870i \(0.0308566\pi\)
\(720\) 0 0
\(721\) −24.0542 47.2090i −0.895824 1.75815i
\(722\) 0 0
\(723\) −0.396648 + 0.778465i −0.0147515 + 0.0289514i
\(724\) 0 0
\(725\) 17.7887 + 3.77592i 0.660655 + 0.140234i
\(726\) 0 0
\(727\) −14.9276 29.2970i −0.553633 1.08657i −0.983029 0.183450i \(-0.941274\pi\)
0.429396 0.903116i \(-0.358726\pi\)
\(728\) 0 0
\(729\) 24.8271i 0.919522i
\(730\) 0 0
\(731\) −46.9195 7.43132i −1.73538 0.274857i
\(732\) 0 0
\(733\) −6.95890 21.4173i −0.257033 0.791066i −0.993422 0.114508i \(-0.963471\pi\)
0.736389 0.676558i \(-0.236529\pi\)
\(734\) 0 0
\(735\) 5.05525 + 0.936206i 0.186466 + 0.0345325i
\(736\) 0 0
\(737\) 3.46350i 0.127580i
\(738\) 0 0
\(739\) 0.584696 0.0215084 0.0107542 0.999942i \(-0.496577\pi\)
0.0107542 + 0.999942i \(0.496577\pi\)
\(740\) 0 0
\(741\) 0.711904 + 0.711904i 0.0261525 + 0.0261525i
\(742\) 0 0
\(743\) 5.67103 + 17.4536i 0.208050 + 0.640312i 0.999574 + 0.0291745i \(0.00928786\pi\)
−0.791524 + 0.611138i \(0.790712\pi\)
\(744\) 0 0
\(745\) −7.31360 15.3278i −0.267950 0.561566i
\(746\) 0 0
\(747\) −17.5859 −0.643434
\(748\) 0 0
\(749\) −17.6345 + 8.98522i −0.644350 + 0.328313i
\(750\) 0 0
\(751\) 5.59826 + 35.3460i 0.204284 + 1.28980i 0.850229 + 0.526412i \(0.176463\pi\)
−0.645946 + 0.763383i \(0.723537\pi\)
\(752\) 0 0
\(753\) −0.474714 + 0.931678i −0.0172995 + 0.0339522i
\(754\) 0 0
\(755\) −3.24100 + 5.97116i −0.117952 + 0.217313i
\(756\) 0 0
\(757\) −18.1007 2.86687i −0.657880 0.104198i −0.181436 0.983403i \(-0.558075\pi\)
−0.476444 + 0.879205i \(0.658075\pi\)
\(758\) 0 0
\(759\) 0.140691 + 0.193645i 0.00510676 + 0.00702885i
\(760\) 0 0
\(761\) −36.8614 26.7814i −1.33622 0.970823i −0.999574 0.0291935i \(-0.990706\pi\)
−0.336650 0.941630i \(-0.609294\pi\)
\(762\) 0 0
\(763\) 18.9943 + 26.1434i 0.687640 + 0.946455i
\(764\) 0 0
\(765\) −8.44893 + 45.6219i −0.305472 + 1.64946i
\(766\) 0 0
\(767\) 25.9453 + 13.2198i 0.936832 + 0.477340i
\(768\) 0 0
\(769\) 7.09298 21.8299i 0.255779 0.787208i −0.737896 0.674915i \(-0.764180\pi\)
0.993675 0.112293i \(-0.0358196\pi\)
\(770\) 0 0
\(771\) 4.30124 + 1.39756i 0.154906 + 0.0503318i
\(772\) 0 0
\(773\) 5.21405 + 32.9202i 0.187536 + 1.18406i 0.884357 + 0.466812i \(0.154598\pi\)
−0.696820 + 0.717246i \(0.745402\pi\)
\(774\) 0 0
\(775\) −45.8667 2.39094i −1.64758 0.0858852i
\(776\) 0 0
\(777\) 3.05587 + 2.22022i 0.109629 + 0.0796500i
\(778\) 0 0
\(779\) −2.93768 11.5594i −0.105253 0.414159i
\(780\) 0 0
\(781\) −15.4365 + 21.2466i −0.552363 + 0.760262i
\(782\) 0 0
\(783\) −4.15845 + 1.35116i −0.148611 + 0.0482866i
\(784\) 0 0
\(785\) −37.2173 + 35.3278i −1.32834 + 1.26090i
\(786\) 0 0
\(787\) 12.7638 39.2828i 0.454979 1.40028i −0.416180 0.909282i \(-0.636631\pi\)
0.871160 0.491000i \(-0.163369\pi\)
\(788\) 0 0
\(789\) −0.728091 + 2.24083i −0.0259207 + 0.0797758i
\(790\) 0 0
\(791\) −21.9974 + 43.1723i −0.782137 + 1.53503i
\(792\) 0 0
\(793\) 22.1508 + 22.1508i 0.786597 + 0.786597i
\(794\) 0 0
\(795\) −2.08459 0.737865i −0.0739328 0.0261694i
\(796\) 0 0
\(797\) 10.4137 14.3333i 0.368873 0.507710i −0.583721 0.811954i \(-0.698404\pi\)
0.952594 + 0.304244i \(0.0984038\pi\)
\(798\) 0 0
\(799\) −9.82399 13.5216i −0.347548 0.478358i
\(800\) 0 0
\(801\) 7.88324 49.7728i 0.278541 1.75864i
\(802\) 0 0
\(803\) 7.29697 3.71799i 0.257505 0.131205i
\(804\) 0 0
\(805\) 0.673999 + 5.11402i 0.0237553 + 0.180245i
\(806\) 0 0
\(807\) 0.695824 0.110208i 0.0244942 0.00387950i
\(808\) 0 0
\(809\) 8.65220 4.40851i 0.304195 0.154995i −0.295230 0.955426i \(-0.595396\pi\)
0.599425 + 0.800431i \(0.295396\pi\)
\(810\) 0 0
\(811\) 31.0598i 1.09066i 0.838223 + 0.545328i \(0.183595\pi\)
−0.838223 + 0.545328i \(0.816405\pi\)
\(812\) 0 0
\(813\) 0.305432 1.92842i 0.0107120 0.0676326i
\(814\) 0 0
\(815\) 14.4427 18.8276i 0.505907 0.659501i
\(816\) 0 0
\(817\) −8.92342 + 8.92342i −0.312191 + 0.312191i
\(818\) 0 0
\(819\) 34.0079 1.18833
\(820\) 0 0
\(821\) 38.7621 1.35281 0.676403 0.736532i \(-0.263538\pi\)
0.676403 + 0.736532i \(0.263538\pi\)
\(822\) 0 0
\(823\) 19.0788 19.0788i 0.665047 0.665047i −0.291518 0.956565i \(-0.594160\pi\)
0.956565 + 0.291518i \(0.0941605\pi\)
\(824\) 0 0
\(825\) 2.22222 + 0.115840i 0.0773676 + 0.00403303i
\(826\) 0 0
\(827\) 2.76565 17.4617i 0.0961712 0.607201i −0.891784 0.452461i \(-0.850546\pi\)
0.987955 0.154740i \(-0.0494540\pi\)
\(828\) 0 0
\(829\) 5.31450i 0.184580i 0.995732 + 0.0922901i \(0.0294187\pi\)
−0.995732 + 0.0922901i \(0.970581\pi\)
\(830\) 0 0
\(831\) −1.04086 + 0.530344i −0.0361070 + 0.0183974i
\(832\) 0 0
\(833\) −78.9288 + 12.5011i −2.73472 + 0.433137i
\(834\) 0 0
\(835\) −31.6217 + 4.16756i −1.09431 + 0.144224i
\(836\) 0 0
\(837\) 9.83964 5.01355i 0.340108 0.173294i
\(838\) 0 0
\(839\) 0.707344 4.46599i 0.0244202 0.154183i −0.972465 0.233049i \(-0.925130\pi\)
0.996885 + 0.0788656i \(0.0251298\pi\)
\(840\) 0 0
\(841\) 9.27067 + 12.7600i 0.319678 + 0.440000i
\(842\) 0 0
\(843\) −0.513511 + 0.706787i −0.0176863 + 0.0243430i
\(844\) 0 0
\(845\) −12.2713 4.34357i −0.422146 0.149423i
\(846\) 0 0
\(847\) 18.6016 + 18.6016i 0.639159 + 0.639159i
\(848\) 0 0
\(849\) −0.897839 + 1.76211i −0.0308137 + 0.0604754i
\(850\) 0 0
\(851\) −0.725507 + 2.23288i −0.0248700 + 0.0765421i
\(852\) 0 0
\(853\) −14.8709 + 45.7680i −0.509171 + 1.56707i 0.284472 + 0.958684i \(0.408182\pi\)
−0.793643 + 0.608383i \(0.791818\pi\)
\(854\) 0 0
\(855\) 8.48564 + 8.93951i 0.290203 + 0.305725i
\(856\) 0 0
\(857\) −13.7062 + 4.45341i −0.468195 + 0.152126i −0.533607 0.845733i \(-0.679164\pi\)
0.0654122 + 0.997858i \(0.479164\pi\)
\(858\) 0 0
\(859\) 31.8377 43.8208i 1.08629 1.49515i 0.233881 0.972265i \(-0.424857\pi\)
0.852406 0.522881i \(-0.175143\pi\)
\(860\) 0 0
\(861\) 4.76203 + 2.83209i 0.162290 + 0.0965173i
\(862\) 0 0
\(863\) −31.1859 22.6579i −1.06158 0.771282i −0.0871992 0.996191i \(-0.527792\pi\)
−0.974380 + 0.224909i \(0.927792\pi\)
\(864\) 0 0
\(865\) −26.3985 20.2504i −0.897576 0.688536i
\(866\) 0 0
\(867\) 1.01504 + 6.40870i 0.0344725 + 0.217651i
\(868\) 0 0
\(869\) 14.9828 + 4.86821i 0.508257 + 0.165143i
\(870\) 0 0
\(871\) −1.29985 + 4.00053i −0.0440438 + 0.135553i
\(872\) 0 0
\(873\) 2.98354 + 1.52019i 0.100978 + 0.0514507i
\(874\) 0 0
\(875\) 40.8984 + 25.0391i 1.38262 + 0.846475i
\(876\) 0 0
\(877\) 30.0322 + 41.3358i 1.01412 + 1.39581i 0.916247 + 0.400613i \(0.131203\pi\)
0.0978695 + 0.995199i \(0.468797\pi\)
\(878\) 0 0
\(879\) −1.65372 1.20150i −0.0557787 0.0405256i
\(880\) 0 0
\(881\) −5.31611 7.31700i −0.179104 0.246516i 0.710020 0.704181i \(-0.248686\pi\)
−0.889125 + 0.457665i \(0.848686\pi\)
\(882\) 0 0
\(883\) −32.1796 5.09674i −1.08293 0.171519i −0.410632 0.911801i \(-0.634692\pi\)
−0.672297 + 0.740282i \(0.734692\pi\)
\(884\) 0 0
\(885\) −4.30889 2.33876i −0.144842 0.0786165i
\(886\) 0 0
\(887\) −10.5600 + 20.7252i −0.354571 + 0.695885i −0.997547 0.0700017i \(-0.977700\pi\)
0.642976 + 0.765886i \(0.277700\pi\)
\(888\) 0 0
\(889\) 12.9858 + 81.9891i 0.435530 + 2.74983i
\(890\) 0 0
\(891\) 16.9739 8.64863i 0.568647 0.289740i
\(892\) 0 0
\(893\) −4.43999 −0.148579
\(894\) 0 0
\(895\) −3.29234 6.90005i −0.110051 0.230643i
\(896\) 0 0
\(897\) −0.0898311 0.276472i −0.00299937 0.00923112i
\(898\) 0 0
\(899\) 23.6236 + 23.6236i 0.787890 + 0.787890i
\(900\) 0 0
\(901\) 34.3718 1.14509
\(902\) 0 0
\(903\) 5.86236i 0.195087i
\(904\) 0 0
\(905\) 5.97509 32.2638i 0.198619 1.07248i
\(906\) 0 0
\(907\) −8.29033 25.5150i −0.275276 0.847212i −0.989146 0.146934i \(-0.953059\pi\)
0.713870 0.700278i \(-0.246941\pi\)
\(908\) 0 0
\(909\) 21.4289 + 3.39400i 0.710751 + 0.112572i
\(910\) 0 0
\(911\) 48.9178i 1.62072i −0.585933 0.810359i \(-0.699272\pi\)
0.585933 0.810359i \(-0.300728\pi\)
\(912\) 0 0
\(913\) −5.95170 11.6809i −0.196972 0.386580i
\(914\) 0 0
\(915\) −3.63108 3.82529i −0.120040 0.126460i
\(916\) 0 0
\(917\) 28.3619 55.6634i 0.936592 1.83817i
\(918\) 0 0
\(919\) 11.0254 + 21.6385i 0.363694 + 0.713789i 0.998253 0.0590849i \(-0.0188183\pi\)
−0.634559 + 0.772874i \(0.718818\pi\)
\(920\) 0 0
\(921\) −1.03125 + 6.51107i −0.0339809 + 0.214547i
\(922\) 0 0
\(923\) 25.8039 18.7476i 0.849346 0.617086i
\(924\) 0 0
\(925\) 11.8927 + 18.3020i 0.391031 + 0.601767i
\(926\) 0 0
\(927\) 21.4871 + 29.5744i 0.705728 + 0.971351i
\(928\) 0 0
\(929\) −25.8998 + 25.8998i −0.849744 + 0.849744i −0.990101 0.140357i \(-0.955175\pi\)
0.140357 + 0.990101i \(0.455175\pi\)
\(930\) 0 0
\(931\) −9.63774 + 18.9151i −0.315864 + 0.619918i
\(932\) 0 0
\(933\) −1.58462 0.514874i −0.0518781 0.0168562i
\(934\) 0 0
\(935\) −33.1623 + 9.82816i −1.08452 + 0.321415i
\(936\) 0 0
\(937\) −0.0661085 0.417392i −0.00215967 0.0136356i 0.986585 0.163249i \(-0.0521972\pi\)
−0.988745 + 0.149613i \(0.952197\pi\)
\(938\) 0 0
\(939\) −0.616237 1.89658i −0.0201101 0.0618927i
\(940\) 0 0
\(941\) 20.2935 27.9316i 0.661549 0.910544i −0.337983 0.941152i \(-0.609745\pi\)
0.999531 + 0.0306087i \(0.00974458\pi\)
\(942\) 0 0
\(943\) −0.759496 + 3.35897i −0.0247326 + 0.109383i
\(944\) 0 0
\(945\) −11.5264 0.300221i −0.374954 0.00976619i
\(946\) 0 0
\(947\) 18.5854 6.03875i 0.603943 0.196233i 0.00894495 0.999960i \(-0.497153\pi\)
0.594998 + 0.803727i \(0.297153\pi\)
\(948\) 0 0
\(949\) −9.82377 + 1.55593i −0.318893 + 0.0505077i
\(950\) 0 0
\(951\) −0.0455119 0.0147877i −0.00147582 0.000479524i
\(952\) 0 0
\(953\) −9.95505 3.23459i −0.322476 0.104779i 0.143306 0.989678i \(-0.454227\pi\)
−0.465781 + 0.884900i \(0.654227\pi\)
\(954\) 0 0
\(955\) −47.4064 + 6.24790i −1.53404 + 0.202177i
\(956\) 0 0
\(957\) −1.14455 1.14455i −0.0369980 0.0369980i
\(958\) 0 0
\(959\) −76.1118 + 55.2984i −2.45778 + 1.78568i
\(960\) 0 0
\(961\) −43.1844 31.3753i −1.39304 1.01211i
\(962\) 0 0
\(963\) 11.0473 8.02630i 0.355993 0.258644i
\(964\) 0 0
\(965\) −6.74982 14.1462i −0.217284 0.455383i
\(966\) 0 0
\(967\) −50.0803 + 25.5172i −1.61047 + 0.820578i −0.610891 + 0.791714i \(0.709189\pi\)
−0.999583 + 0.0288635i \(0.990811\pi\)
\(968\) 0 0
\(969\) 2.34760 + 1.19616i 0.0754156 + 0.0384262i
\(970\) 0 0
\(971\) −3.20430 20.2311i −0.102831 0.649248i −0.984232 0.176880i \(-0.943399\pi\)
0.881402 0.472368i \(-0.156601\pi\)
\(972\) 0 0
\(973\) −10.3256 20.2652i −0.331025 0.649672i
\(974\) 0 0
\(975\) −2.52331 0.967800i −0.0808105 0.0309944i
\(976\) 0 0
\(977\) −0.316885 + 2.00073i −0.0101380 + 0.0640090i −0.992239 0.124348i \(-0.960316\pi\)
0.982101 + 0.188357i \(0.0603161\pi\)
\(978\) 0 0
\(979\) 35.7280 11.6087i 1.14187 0.371016i
\(980\) 0 0
\(981\) −15.7654 15.7654i −0.503350 0.503350i
\(982\) 0 0
\(983\) 15.1548i 0.483362i 0.970356 + 0.241681i \(0.0776987\pi\)
−0.970356 + 0.241681i \(0.922301\pi\)
\(984\) 0 0
\(985\) 18.7509 12.8910i 0.597453 0.410741i
\(986\) 0 0
\(987\) 1.45846 1.45846i 0.0464232 0.0464232i
\(988\) 0 0
\(989\) 3.46545 1.12599i 0.110195 0.0358045i
\(990\) 0 0
\(991\) −32.5288 5.15205i −1.03331 0.163660i −0.383330 0.923611i \(-0.625223\pi\)
−0.649980 + 0.759951i \(0.725223\pi\)
\(992\) 0 0
\(993\) −7.01821 −0.222716
\(994\) 0 0
\(995\) −17.0381 9.24786i −0.540144 0.293177i
\(996\) 0 0
\(997\) −61.3485 + 9.71665i −1.94293 + 0.307729i −0.999702 0.0244252i \(-0.992224\pi\)
−0.943225 + 0.332155i \(0.892224\pi\)
\(998\) 0 0
\(999\) −4.67605 2.38257i −0.147944 0.0753811i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.11 176
5.4 even 2 inner 820.2.bq.a.49.12 yes 176
41.36 even 20 inner 820.2.bq.a.569.12 yes 176
205.159 even 20 inner 820.2.bq.a.569.11 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.11 176 1.1 even 1 trivial
820.2.bq.a.49.12 yes 176 5.4 even 2 inner
820.2.bq.a.569.11 yes 176 205.159 even 20 inner
820.2.bq.a.569.12 yes 176 41.36 even 20 inner