Properties

Label 820.2.bq.a.49.10
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.10
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.341338 + 0.341338i) q^{3} +(-0.760852 - 2.10264i) q^{5} +(0.0854014 - 0.539203i) q^{7} +2.76698i q^{9} +(-1.98214 + 1.00995i) q^{11} +(4.21907 - 0.668235i) q^{13} +(0.977418 + 0.458003i) q^{15} +(2.48447 - 1.26590i) q^{17} +(0.450296 - 2.84306i) q^{19} +(0.154900 + 0.213201i) q^{21} +(3.82670 - 5.26700i) q^{23} +(-3.84221 + 3.19960i) q^{25} +(-1.96849 - 1.96849i) q^{27} +(1.54344 - 3.02917i) q^{29} +(2.98497 - 9.18678i) q^{31} +(0.331845 - 1.02131i) q^{33} +(-1.19873 + 0.230685i) q^{35} +(5.19622 - 1.68835i) q^{37} +(-1.21203 + 1.66822i) q^{39} +(-6.40132 - 0.151843i) q^{41} +(-7.14003 - 5.18753i) q^{43} +(5.81796 - 2.10526i) q^{45} +(-0.266460 - 1.68236i) q^{47} +(6.37395 + 2.07102i) q^{49} +(-0.415943 + 1.28014i) q^{51} +(-9.96147 - 5.07562i) q^{53} +(3.63168 + 3.39931i) q^{55} +(0.816739 + 1.12414i) q^{57} +(3.87648 + 2.81643i) q^{59} +(3.47423 + 4.78187i) q^{61} +(1.49196 + 0.236304i) q^{63} +(-4.61515 - 8.36277i) q^{65} +(2.13947 - 4.19894i) q^{67} +(0.491629 + 3.10402i) q^{69} +(0.557185 - 0.283900i) q^{71} +17.0188 q^{73} +(0.219346 - 2.40363i) q^{75} +(0.375292 + 1.15503i) q^{77} +(9.91802 + 9.91802i) q^{79} -6.95710 q^{81} -0.647608i q^{83} +(-4.55204 - 4.26078i) q^{85} +(0.507135 + 1.56080i) q^{87} +(15.3360 + 2.42898i) q^{89} -2.33200i q^{91} +(2.11691 + 4.15468i) q^{93} +(-6.32054 + 1.21633i) q^{95} +(-3.34906 + 6.57290i) q^{97} +(-2.79451 - 5.48454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.341338 + 0.341338i −0.197071 + 0.197071i −0.798743 0.601672i \(-0.794501\pi\)
0.601672 + 0.798743i \(0.294501\pi\)
\(4\) 0 0
\(5\) −0.760852 2.10264i −0.340263 0.940330i
\(6\) 0 0
\(7\) 0.0854014 0.539203i 0.0322787 0.203800i −0.966278 0.257500i \(-0.917101\pi\)
0.998557 + 0.0536999i \(0.0171014\pi\)
\(8\) 0 0
\(9\) 2.76698i 0.922326i
\(10\) 0 0
\(11\) −1.98214 + 1.00995i −0.597638 + 0.304512i −0.726517 0.687148i \(-0.758862\pi\)
0.128879 + 0.991660i \(0.458862\pi\)
\(12\) 0 0
\(13\) 4.21907 0.668235i 1.17016 0.185335i 0.459046 0.888412i \(-0.348191\pi\)
0.711113 + 0.703077i \(0.248191\pi\)
\(14\) 0 0
\(15\) 0.977418 + 0.458003i 0.252368 + 0.118256i
\(16\) 0 0
\(17\) 2.48447 1.26590i 0.602572 0.307026i −0.125963 0.992035i \(-0.540202\pi\)
0.728534 + 0.685009i \(0.240202\pi\)
\(18\) 0 0
\(19\) 0.450296 2.84306i 0.103305 0.652242i −0.880642 0.473782i \(-0.842889\pi\)
0.983947 0.178460i \(-0.0571115\pi\)
\(20\) 0 0
\(21\) 0.154900 + 0.213201i 0.0338019 + 0.0465243i
\(22\) 0 0
\(23\) 3.82670 5.26700i 0.797923 1.09825i −0.195153 0.980773i \(-0.562520\pi\)
0.993076 0.117474i \(-0.0374796\pi\)
\(24\) 0 0
\(25\) −3.84221 + 3.19960i −0.768442 + 0.639920i
\(26\) 0 0
\(27\) −1.96849 1.96849i −0.378835 0.378835i
\(28\) 0 0
\(29\) 1.54344 3.02917i 0.286609 0.562502i −0.702148 0.712031i \(-0.747776\pi\)
0.988757 + 0.149529i \(0.0477757\pi\)
\(30\) 0 0
\(31\) 2.98497 9.18678i 0.536116 1.65000i −0.205109 0.978739i \(-0.565755\pi\)
0.741225 0.671256i \(-0.234245\pi\)
\(32\) 0 0
\(33\) 0.331845 1.02131i 0.0577668 0.177788i
\(34\) 0 0
\(35\) −1.19873 + 0.230685i −0.202622 + 0.0389929i
\(36\) 0 0
\(37\) 5.19622 1.68835i 0.854253 0.277564i 0.151027 0.988530i \(-0.451742\pi\)
0.703226 + 0.710966i \(0.251742\pi\)
\(38\) 0 0
\(39\) −1.21203 + 1.66822i −0.194081 + 0.267129i
\(40\) 0 0
\(41\) −6.40132 0.151843i −0.999719 0.0237139i
\(42\) 0 0
\(43\) −7.14003 5.18753i −1.08884 0.791091i −0.109640 0.993971i \(-0.534970\pi\)
−0.979204 + 0.202880i \(0.934970\pi\)
\(44\) 0 0
\(45\) 5.81796 2.10526i 0.867291 0.313834i
\(46\) 0 0
\(47\) −0.266460 1.68236i −0.0388672 0.245398i 0.960604 0.277921i \(-0.0896455\pi\)
−0.999471 + 0.0325239i \(0.989646\pi\)
\(48\) 0 0
\(49\) 6.37395 + 2.07102i 0.910564 + 0.295860i
\(50\) 0 0
\(51\) −0.415943 + 1.28014i −0.0582436 + 0.179256i
\(52\) 0 0
\(53\) −9.96147 5.07562i −1.36831 0.697190i −0.393315 0.919404i \(-0.628672\pi\)
−0.974998 + 0.222213i \(0.928672\pi\)
\(54\) 0 0
\(55\) 3.63168 + 3.39931i 0.489696 + 0.458363i
\(56\) 0 0
\(57\) 0.816739 + 1.12414i 0.108180 + 0.148897i
\(58\) 0 0
\(59\) 3.87648 + 2.81643i 0.504675 + 0.366668i 0.810800 0.585324i \(-0.199033\pi\)
−0.306125 + 0.951991i \(0.599033\pi\)
\(60\) 0 0
\(61\) 3.47423 + 4.78187i 0.444830 + 0.612255i 0.971277 0.237952i \(-0.0764762\pi\)
−0.526447 + 0.850208i \(0.676476\pi\)
\(62\) 0 0
\(63\) 1.49196 + 0.236304i 0.187970 + 0.0297715i
\(64\) 0 0
\(65\) −4.61515 8.36277i −0.572439 1.03727i
\(66\) 0 0
\(67\) 2.13947 4.19894i 0.261377 0.512982i −0.722602 0.691264i \(-0.757054\pi\)
0.983979 + 0.178282i \(0.0570540\pi\)
\(68\) 0 0
\(69\) 0.491629 + 3.10402i 0.0591852 + 0.373681i
\(70\) 0 0
\(71\) 0.557185 0.283900i 0.0661257 0.0336927i −0.420615 0.907239i \(-0.638186\pi\)
0.486741 + 0.873547i \(0.338186\pi\)
\(72\) 0 0
\(73\) 17.0188 1.99190 0.995949 0.0899155i \(-0.0286597\pi\)
0.995949 + 0.0899155i \(0.0286597\pi\)
\(74\) 0 0
\(75\) 0.219346 2.40363i 0.0253279 0.277548i
\(76\) 0 0
\(77\) 0.375292 + 1.15503i 0.0427684 + 0.131628i
\(78\) 0 0
\(79\) 9.91802 + 9.91802i 1.11586 + 1.11586i 0.992342 + 0.123522i \(0.0394191\pi\)
0.123522 + 0.992342i \(0.460581\pi\)
\(80\) 0 0
\(81\) −6.95710 −0.773011
\(82\) 0 0
\(83\) 0.647608i 0.0710842i −0.999368 0.0355421i \(-0.988684\pi\)
0.999368 0.0355421i \(-0.0113158\pi\)
\(84\) 0 0
\(85\) −4.55204 4.26078i −0.493739 0.462147i
\(86\) 0 0
\(87\) 0.507135 + 1.56080i 0.0543706 + 0.167335i
\(88\) 0 0
\(89\) 15.3360 + 2.42898i 1.62561 + 0.257471i 0.901680 0.432404i \(-0.142334\pi\)
0.723929 + 0.689875i \(0.242334\pi\)
\(90\) 0 0
\(91\) 2.33200i 0.244460i
\(92\) 0 0
\(93\) 2.11691 + 4.15468i 0.219514 + 0.430820i
\(94\) 0 0
\(95\) −6.32054 + 1.21633i −0.648474 + 0.124793i
\(96\) 0 0
\(97\) −3.34906 + 6.57290i −0.340045 + 0.667377i −0.996185 0.0872625i \(-0.972188\pi\)
0.656140 + 0.754639i \(0.272188\pi\)
\(98\) 0 0
\(99\) −2.79451 5.48454i −0.280859 0.551217i
\(100\) 0 0
\(101\) −2.07914 + 13.1272i −0.206882 + 1.30620i 0.637496 + 0.770454i \(0.279970\pi\)
−0.844378 + 0.535748i \(0.820030\pi\)
\(102\) 0 0
\(103\) −14.4632 + 10.5081i −1.42510 + 1.03540i −0.434199 + 0.900817i \(0.642969\pi\)
−0.990903 + 0.134580i \(0.957031\pi\)
\(104\) 0 0
\(105\) 0.330430 0.487913i 0.0322466 0.0476154i
\(106\) 0 0
\(107\) −7.41650 10.2079i −0.716980 0.986839i −0.999619 0.0276124i \(-0.991210\pi\)
0.282638 0.959227i \(-0.408790\pi\)
\(108\) 0 0
\(109\) 11.4300 11.4300i 1.09480 1.09480i 0.0997879 0.995009i \(-0.468184\pi\)
0.995009 0.0997879i \(-0.0318164\pi\)
\(110\) 0 0
\(111\) −1.19737 + 2.34996i −0.113649 + 0.223049i
\(112\) 0 0
\(113\) −5.56639 1.80863i −0.523642 0.170141i 0.0352557 0.999378i \(-0.488775\pi\)
−0.558897 + 0.829237i \(0.688775\pi\)
\(114\) 0 0
\(115\) −13.9862 4.03877i −1.30422 0.376618i
\(116\) 0 0
\(117\) 1.84899 + 11.6741i 0.170939 + 1.07927i
\(118\) 0 0
\(119\) −0.470400 1.44774i −0.0431215 0.132714i
\(120\) 0 0
\(121\) −3.55675 + 4.89545i −0.323341 + 0.445041i
\(122\) 0 0
\(123\) 2.23684 2.13318i 0.201689 0.192343i
\(124\) 0 0
\(125\) 9.65097 + 5.64436i 0.863209 + 0.504847i
\(126\) 0 0
\(127\) 3.05652 0.993122i 0.271222 0.0881254i −0.170248 0.985401i \(-0.554457\pi\)
0.441470 + 0.897276i \(0.354457\pi\)
\(128\) 0 0
\(129\) 4.20786 0.666459i 0.370481 0.0586785i
\(130\) 0 0
\(131\) −9.44817 3.06990i −0.825491 0.268218i −0.134346 0.990935i \(-0.542893\pi\)
−0.691145 + 0.722716i \(0.742893\pi\)
\(132\) 0 0
\(133\) −1.49453 0.485602i −0.129592 0.0421070i
\(134\) 0 0
\(135\) −2.64129 + 5.63675i −0.227326 + 0.485134i
\(136\) 0 0
\(137\) 3.47860 + 3.47860i 0.297196 + 0.297196i 0.839915 0.542718i \(-0.182605\pi\)
−0.542718 + 0.839915i \(0.682605\pi\)
\(138\) 0 0
\(139\) −12.2680 + 8.91321i −1.04056 + 0.756008i −0.970394 0.241527i \(-0.922352\pi\)
−0.0701623 + 0.997536i \(0.522352\pi\)
\(140\) 0 0
\(141\) 0.665206 + 0.483300i 0.0560204 + 0.0407012i
\(142\) 0 0
\(143\) −7.68791 + 5.58560i −0.642896 + 0.467091i
\(144\) 0 0
\(145\) −7.54358 0.940548i −0.626460 0.0781083i
\(146\) 0 0
\(147\) −2.88259 + 1.46875i −0.237752 + 0.121141i
\(148\) 0 0
\(149\) −6.29366 3.20678i −0.515597 0.262710i 0.176774 0.984251i \(-0.443434\pi\)
−0.692371 + 0.721542i \(0.743434\pi\)
\(150\) 0 0
\(151\) −2.23715 14.1248i −0.182057 1.14946i −0.894280 0.447508i \(-0.852312\pi\)
0.712224 0.701953i \(-0.247688\pi\)
\(152\) 0 0
\(153\) 3.50271 + 6.87446i 0.283178 + 0.555767i
\(154\) 0 0
\(155\) −21.5876 + 0.713468i −1.73396 + 0.0573071i
\(156\) 0 0
\(157\) 0.772593 4.87796i 0.0616597 0.389304i −0.937488 0.348018i \(-0.886855\pi\)
0.999147 0.0412855i \(-0.0131453\pi\)
\(158\) 0 0
\(159\) 5.13272 1.66772i 0.407051 0.132259i
\(160\) 0 0
\(161\) −2.51318 2.51318i −0.198066 0.198066i
\(162\) 0 0
\(163\) 1.81166i 0.141900i 0.997480 + 0.0709500i \(0.0226031\pi\)
−0.997480 + 0.0709500i \(0.977397\pi\)
\(164\) 0 0
\(165\) −2.39994 + 0.0793177i −0.186835 + 0.00617487i
\(166\) 0 0
\(167\) −10.8777 + 10.8777i −0.841741 + 0.841741i −0.989085 0.147344i \(-0.952928\pi\)
0.147344 + 0.989085i \(0.452928\pi\)
\(168\) 0 0
\(169\) 4.99028 1.62144i 0.383868 0.124726i
\(170\) 0 0
\(171\) 7.86667 + 1.24596i 0.601579 + 0.0952808i
\(172\) 0 0
\(173\) 10.1507 0.771747 0.385873 0.922552i \(-0.373900\pi\)
0.385873 + 0.922552i \(0.373900\pi\)
\(174\) 0 0
\(175\) 1.39710 + 2.34498i 0.105611 + 0.177264i
\(176\) 0 0
\(177\) −2.28454 + 0.361836i −0.171717 + 0.0271972i
\(178\) 0 0
\(179\) 16.5134 + 8.41397i 1.23427 + 0.628890i 0.944596 0.328237i \(-0.106454\pi\)
0.289670 + 0.957126i \(0.406454\pi\)
\(180\) 0 0
\(181\) −7.89882 15.5023i −0.587115 1.15228i −0.973231 0.229828i \(-0.926184\pi\)
0.386116 0.922450i \(-0.373816\pi\)
\(182\) 0 0
\(183\) −2.81812 0.446346i −0.208321 0.0329948i
\(184\) 0 0
\(185\) −7.50356 9.64120i −0.551672 0.708835i
\(186\) 0 0
\(187\) −3.64607 + 5.01838i −0.266627 + 0.366981i
\(188\) 0 0
\(189\) −1.22953 + 0.893302i −0.0894348 + 0.0649782i
\(190\) 0 0
\(191\) −5.22062 + 5.22062i −0.377751 + 0.377751i −0.870290 0.492539i \(-0.836069\pi\)
0.492539 + 0.870290i \(0.336069\pi\)
\(192\) 0 0
\(193\) 13.3111 + 6.78235i 0.958155 + 0.488204i 0.861859 0.507148i \(-0.169300\pi\)
0.0962963 + 0.995353i \(0.469300\pi\)
\(194\) 0 0
\(195\) 4.42985 + 1.27920i 0.317228 + 0.0916056i
\(196\) 0 0
\(197\) −1.76099 + 5.41976i −0.125465 + 0.386142i −0.993986 0.109511i \(-0.965071\pi\)
0.868520 + 0.495653i \(0.165071\pi\)
\(198\) 0 0
\(199\) 16.1577 2.55912i 1.14539 0.181412i 0.445241 0.895411i \(-0.353118\pi\)
0.700146 + 0.713999i \(0.253118\pi\)
\(200\) 0 0
\(201\) 0.702975 + 2.16354i 0.0495840 + 0.152604i
\(202\) 0 0
\(203\) −1.50152 1.09092i −0.105386 0.0765676i
\(204\) 0 0
\(205\) 4.55119 + 13.5752i 0.317869 + 0.948135i
\(206\) 0 0
\(207\) 14.5737 + 10.5884i 1.01294 + 0.735945i
\(208\) 0 0
\(209\) 1.97880 + 6.09012i 0.136876 + 0.421262i
\(210\) 0 0
\(211\) −10.0839 + 1.59714i −0.694207 + 0.109952i −0.493560 0.869712i \(-0.664305\pi\)
−0.200647 + 0.979664i \(0.564305\pi\)
\(212\) 0 0
\(213\) −0.0932825 + 0.287094i −0.00639161 + 0.0196714i
\(214\) 0 0
\(215\) −5.47502 + 18.9599i −0.373393 + 1.29305i
\(216\) 0 0
\(217\) −4.69862 2.39407i −0.318963 0.162520i
\(218\) 0 0
\(219\) −5.80915 + 5.80915i −0.392546 + 0.392546i
\(220\) 0 0
\(221\) 9.63622 7.00113i 0.648202 0.470947i
\(222\) 0 0
\(223\) −14.8978 + 20.5050i −0.997629 + 1.37312i −0.0708605 + 0.997486i \(0.522575\pi\)
−0.926769 + 0.375633i \(0.877425\pi\)
\(224\) 0 0
\(225\) −8.85322 10.6313i −0.590215 0.708753i
\(226\) 0 0
\(227\) −21.0347 3.33156i −1.39612 0.221124i −0.587390 0.809304i \(-0.699845\pi\)
−0.808730 + 0.588180i \(0.799845\pi\)
\(228\) 0 0
\(229\) 6.53496 + 12.8256i 0.431842 + 0.847538i 0.999702 + 0.0244125i \(0.00777152\pi\)
−0.567860 + 0.823125i \(0.692228\pi\)
\(230\) 0 0
\(231\) −0.522356 0.266153i −0.0343685 0.0175116i
\(232\) 0 0
\(233\) −7.81653 + 1.23802i −0.512078 + 0.0811052i −0.407126 0.913372i \(-0.633469\pi\)
−0.104952 + 0.994477i \(0.533469\pi\)
\(234\) 0 0
\(235\) −3.33467 + 1.84030i −0.217530 + 0.120048i
\(236\) 0 0
\(237\) −6.77078 −0.439810
\(238\) 0 0
\(239\) 8.58525 + 1.35977i 0.555333 + 0.0879562i 0.427792 0.903877i \(-0.359291\pi\)
0.127541 + 0.991833i \(0.459291\pi\)
\(240\) 0 0
\(241\) 8.23556 2.67590i 0.530499 0.172370i −0.0315057 0.999504i \(-0.510030\pi\)
0.562005 + 0.827134i \(0.310030\pi\)
\(242\) 0 0
\(243\) 8.28018 8.28018i 0.531173 0.531173i
\(244\) 0 0
\(245\) −0.495016 14.9779i −0.0316254 0.956901i
\(246\) 0 0
\(247\) 12.2960i 0.782373i
\(248\) 0 0
\(249\) 0.221053 + 0.221053i 0.0140087 + 0.0140087i
\(250\) 0 0
\(251\) 21.0132 6.82761i 1.32634 0.430955i 0.441674 0.897175i \(-0.354385\pi\)
0.884669 + 0.466221i \(0.154385\pi\)
\(252\) 0 0
\(253\) −2.26565 + 14.3047i −0.142440 + 0.899331i
\(254\) 0 0
\(255\) 3.00815 0.0994188i 0.188378 0.00622585i
\(256\) 0 0
\(257\) −4.36110 8.55913i −0.272038 0.533904i 0.714057 0.700087i \(-0.246856\pi\)
−0.986095 + 0.166183i \(0.946856\pi\)
\(258\) 0 0
\(259\) −0.466601 2.94600i −0.0289932 0.183056i
\(260\) 0 0
\(261\) 8.38163 + 4.27065i 0.518810 + 0.264347i
\(262\) 0 0
\(263\) −17.1881 + 8.75776i −1.05986 + 0.540027i −0.894897 0.446273i \(-0.852751\pi\)
−0.164965 + 0.986299i \(0.552751\pi\)
\(264\) 0 0
\(265\) −3.09301 + 24.8072i −0.190002 + 1.52389i
\(266\) 0 0
\(267\) −6.06384 + 4.40564i −0.371101 + 0.269621i
\(268\) 0 0
\(269\) −9.75564 7.08789i −0.594812 0.432156i 0.249222 0.968446i \(-0.419825\pi\)
−0.844034 + 0.536290i \(0.819825\pi\)
\(270\) 0 0
\(271\) −15.1792 + 11.0283i −0.922072 + 0.669924i −0.944039 0.329834i \(-0.893007\pi\)
0.0219669 + 0.999759i \(0.493007\pi\)
\(272\) 0 0
\(273\) 0.796001 + 0.796001i 0.0481761 + 0.0481761i
\(274\) 0 0
\(275\) 4.38436 10.2225i 0.264387 0.616440i
\(276\) 0 0
\(277\) 15.8105 + 5.13715i 0.949962 + 0.308661i 0.742700 0.669624i \(-0.233545\pi\)
0.207262 + 0.978286i \(0.433545\pi\)
\(278\) 0 0
\(279\) 25.4196 + 8.25934i 1.52183 + 0.494474i
\(280\) 0 0
\(281\) −15.7223 + 2.49016i −0.937911 + 0.148551i −0.606632 0.794982i \(-0.707480\pi\)
−0.331279 + 0.943533i \(0.607480\pi\)
\(282\) 0 0
\(283\) 25.6442 8.33229i 1.52439 0.495303i 0.577369 0.816483i \(-0.304079\pi\)
0.947018 + 0.321180i \(0.104079\pi\)
\(284\) 0 0
\(285\) 1.74226 2.57262i 0.103202 0.152389i
\(286\) 0 0
\(287\) −0.628556 + 3.43865i −0.0371025 + 0.202977i
\(288\) 0 0
\(289\) −5.42228 + 7.46312i −0.318957 + 0.439007i
\(290\) 0 0
\(291\) −1.10042 3.38674i −0.0645076 0.198534i
\(292\) 0 0
\(293\) −4.09921 25.8814i −0.239479 1.51201i −0.755338 0.655335i \(-0.772527\pi\)
0.515860 0.856673i \(-0.327473\pi\)
\(294\) 0 0
\(295\) 2.97251 10.2937i 0.173066 0.599325i
\(296\) 0 0
\(297\) 5.88989 + 1.91374i 0.341766 + 0.111047i
\(298\) 0 0
\(299\) 12.6255 24.7790i 0.730153 1.43301i
\(300\) 0 0
\(301\) −3.40690 + 3.40690i −0.196371 + 0.196371i
\(302\) 0 0
\(303\) −3.77111 5.19048i −0.216644 0.298185i
\(304\) 0 0
\(305\) 7.41118 10.9434i 0.424363 0.626615i
\(306\) 0 0
\(307\) 12.2490 8.89944i 0.699089 0.507918i −0.180547 0.983566i \(-0.557787\pi\)
0.879635 + 0.475649i \(0.157787\pi\)
\(308\) 0 0
\(309\) 1.35001 8.52366i 0.0767996 0.484894i
\(310\) 0 0
\(311\) −11.0458 21.6785i −0.626347 1.22928i −0.958242 0.285959i \(-0.907688\pi\)
0.331894 0.943317i \(-0.392312\pi\)
\(312\) 0 0
\(313\) −5.82546 + 11.4331i −0.329274 + 0.646237i −0.994991 0.0999676i \(-0.968126\pi\)
0.665716 + 0.746205i \(0.268126\pi\)
\(314\) 0 0
\(315\) −0.638301 3.31686i −0.0359642 0.186884i
\(316\) 0 0
\(317\) −3.30556 6.48754i −0.185659 0.364376i 0.779352 0.626587i \(-0.215549\pi\)
−0.965011 + 0.262210i \(0.915549\pi\)
\(318\) 0 0
\(319\) 7.56303i 0.423449i
\(320\) 0 0
\(321\) 6.01588 + 0.952822i 0.335774 + 0.0531814i
\(322\) 0 0
\(323\) −2.48028 7.63351i −0.138006 0.424740i
\(324\) 0 0
\(325\) −14.0725 + 16.0668i −0.780600 + 0.891228i
\(326\) 0 0
\(327\) 7.80298i 0.431506i
\(328\) 0 0
\(329\) −0.929890 −0.0512665
\(330\) 0 0
\(331\) −8.32046 8.32046i −0.457334 0.457334i 0.440446 0.897779i \(-0.354820\pi\)
−0.897779 + 0.440446i \(0.854820\pi\)
\(332\) 0 0
\(333\) 4.67164 + 14.3778i 0.256004 + 0.787899i
\(334\) 0 0
\(335\) −10.4567 1.30376i −0.571310 0.0712320i
\(336\) 0 0
\(337\) 22.0474 1.20100 0.600498 0.799626i \(-0.294969\pi\)
0.600498 + 0.799626i \(0.294969\pi\)
\(338\) 0 0
\(339\) 2.51737 1.28266i 0.136725 0.0696647i
\(340\) 0 0
\(341\) 3.36158 + 21.2242i 0.182040 + 1.14935i
\(342\) 0 0
\(343\) 3.39596 6.66494i 0.183364 0.359873i
\(344\) 0 0
\(345\) 6.15259 3.39542i 0.331244 0.182803i
\(346\) 0 0
\(347\) 4.77551 + 0.756367i 0.256363 + 0.0406039i 0.283293 0.959033i \(-0.408573\pi\)
−0.0269300 + 0.999637i \(0.508573\pi\)
\(348\) 0 0
\(349\) 8.29485 + 11.4169i 0.444013 + 0.611132i 0.971098 0.238681i \(-0.0767150\pi\)
−0.527085 + 0.849813i \(0.676715\pi\)
\(350\) 0 0
\(351\) −9.62059 6.98977i −0.513509 0.373086i
\(352\) 0 0
\(353\) −11.9419 16.4366i −0.635601 0.874830i 0.362770 0.931879i \(-0.381831\pi\)
−0.998371 + 0.0570486i \(0.981831\pi\)
\(354\) 0 0
\(355\) −1.02088 0.955555i −0.0541825 0.0507156i
\(356\) 0 0
\(357\) 0.654734 + 0.333603i 0.0346522 + 0.0176562i
\(358\) 0 0
\(359\) −2.66014 + 8.18706i −0.140397 + 0.432097i −0.996390 0.0848896i \(-0.972946\pi\)
0.855994 + 0.516986i \(0.172946\pi\)
\(360\) 0 0
\(361\) 10.1899 + 3.31089i 0.536309 + 0.174257i
\(362\) 0 0
\(363\) −0.456948 2.88505i −0.0239835 0.151426i
\(364\) 0 0
\(365\) −12.9488 35.7844i −0.677770 1.87304i
\(366\) 0 0
\(367\) 11.1033 + 8.06704i 0.579589 + 0.421096i 0.838576 0.544785i \(-0.183389\pi\)
−0.258987 + 0.965881i \(0.583389\pi\)
\(368\) 0 0
\(369\) 0.420147 17.7123i 0.0218720 0.922066i
\(370\) 0 0
\(371\) −3.58751 + 4.93779i −0.186254 + 0.256357i
\(372\) 0 0
\(373\) 8.53605 2.77353i 0.441980 0.143608i −0.0795690 0.996829i \(-0.525354\pi\)
0.521549 + 0.853221i \(0.325354\pi\)
\(374\) 0 0
\(375\) −5.22087 + 1.36760i −0.269605 + 0.0706227i
\(376\) 0 0
\(377\) 4.48767 13.8116i 0.231127 0.711336i
\(378\) 0 0
\(379\) −3.82286 + 11.7656i −0.196367 + 0.604356i 0.803591 + 0.595182i \(0.202920\pi\)
−0.999958 + 0.00917387i \(0.997080\pi\)
\(380\) 0 0
\(381\) −0.704314 + 1.38229i −0.0360831 + 0.0708170i
\(382\) 0 0
\(383\) 7.42978 + 7.42978i 0.379644 + 0.379644i 0.870974 0.491330i \(-0.163489\pi\)
−0.491330 + 0.870974i \(0.663489\pi\)
\(384\) 0 0
\(385\) 2.14307 1.66791i 0.109221 0.0850046i
\(386\) 0 0
\(387\) 14.3538 19.7563i 0.729644 1.00427i
\(388\) 0 0
\(389\) 4.79177 + 6.59531i 0.242953 + 0.334396i 0.913028 0.407898i \(-0.133738\pi\)
−0.670075 + 0.742293i \(0.733738\pi\)
\(390\) 0 0
\(391\) 2.83982 17.9299i 0.143616 0.906755i
\(392\) 0 0
\(393\) 4.27289 2.17714i 0.215539 0.109822i
\(394\) 0 0
\(395\) 13.3079 28.4002i 0.669593 1.42897i
\(396\) 0 0
\(397\) −23.1071 + 3.65980i −1.15971 + 0.183680i −0.706494 0.707719i \(-0.749724\pi\)
−0.453218 + 0.891400i \(0.649724\pi\)
\(398\) 0 0
\(399\) 0.675893 0.344385i 0.0338370 0.0172408i
\(400\) 0 0
\(401\) 15.2382i 0.760961i 0.924789 + 0.380480i \(0.124241\pi\)
−0.924789 + 0.380480i \(0.875759\pi\)
\(402\) 0 0
\(403\) 6.45486 40.7544i 0.321539 2.03012i
\(404\) 0 0
\(405\) 5.29332 + 14.6283i 0.263027 + 0.726885i
\(406\) 0 0
\(407\) −8.59449 + 8.59449i −0.426013 + 0.426013i
\(408\) 0 0
\(409\) −16.3900 −0.810433 −0.405216 0.914221i \(-0.632804\pi\)
−0.405216 + 0.914221i \(0.632804\pi\)
\(410\) 0 0
\(411\) −2.37475 −0.117138
\(412\) 0 0
\(413\) 1.84968 1.84968i 0.0910170 0.0910170i
\(414\) 0 0
\(415\) −1.36169 + 0.492734i −0.0668426 + 0.0241874i
\(416\) 0 0
\(417\) 1.14511 7.22993i 0.0560762 0.354051i
\(418\) 0 0
\(419\) 22.8901i 1.11826i 0.829081 + 0.559128i \(0.188864\pi\)
−0.829081 + 0.559128i \(0.811136\pi\)
\(420\) 0 0
\(421\) −25.5890 + 13.0383i −1.24713 + 0.635446i −0.947849 0.318718i \(-0.896748\pi\)
−0.299283 + 0.954164i \(0.596748\pi\)
\(422\) 0 0
\(423\) 4.65506 0.737288i 0.226337 0.0358482i
\(424\) 0 0
\(425\) −5.49547 + 12.8131i −0.266569 + 0.621529i
\(426\) 0 0
\(427\) 2.87510 1.46494i 0.139136 0.0708933i
\(428\) 0 0
\(429\) 0.717600 4.53075i 0.0346460 0.218746i
\(430\) 0 0
\(431\) 2.57857 + 3.54909i 0.124205 + 0.170954i 0.866591 0.499018i \(-0.166306\pi\)
−0.742386 + 0.669972i \(0.766306\pi\)
\(432\) 0 0
\(433\) 4.64539 6.39383i 0.223243 0.307268i −0.682674 0.730723i \(-0.739183\pi\)
0.905917 + 0.423455i \(0.139183\pi\)
\(434\) 0 0
\(435\) 2.89595 2.25386i 0.138850 0.108064i
\(436\) 0 0
\(437\) −13.2512 13.2512i −0.633893 0.633893i
\(438\) 0 0
\(439\) 2.67759 5.25507i 0.127795 0.250811i −0.818240 0.574877i \(-0.805050\pi\)
0.946035 + 0.324066i \(0.105050\pi\)
\(440\) 0 0
\(441\) −5.73047 + 17.6366i −0.272880 + 0.839837i
\(442\) 0 0
\(443\) −1.24548 + 3.83319i −0.0591745 + 0.182120i −0.976274 0.216537i \(-0.930524\pi\)
0.917100 + 0.398657i \(0.130524\pi\)
\(444\) 0 0
\(445\) −6.56113 34.0941i −0.311027 1.61622i
\(446\) 0 0
\(447\) 3.24286 1.05367i 0.153382 0.0498368i
\(448\) 0 0
\(449\) 5.10920 7.03221i 0.241118 0.331871i −0.671258 0.741224i \(-0.734246\pi\)
0.912376 + 0.409353i \(0.134246\pi\)
\(450\) 0 0
\(451\) 12.8417 6.16405i 0.604691 0.290254i
\(452\) 0 0
\(453\) 5.58495 + 4.05770i 0.262404 + 0.190648i
\(454\) 0 0
\(455\) −4.90337 + 1.77431i −0.229874 + 0.0831810i
\(456\) 0 0
\(457\) −0.223899 1.41364i −0.0104735 0.0661274i 0.981898 0.189410i \(-0.0606577\pi\)
−0.992372 + 0.123283i \(0.960658\pi\)
\(458\) 0 0
\(459\) −7.38254 2.39873i −0.344588 0.111963i
\(460\) 0 0
\(461\) −1.33891 + 4.12076i −0.0623595 + 0.191923i −0.977383 0.211479i \(-0.932172\pi\)
0.915023 + 0.403401i \(0.132172\pi\)
\(462\) 0 0
\(463\) 19.9966 + 10.1888i 0.929319 + 0.473512i 0.852028 0.523497i \(-0.175373\pi\)
0.0772914 + 0.997009i \(0.475373\pi\)
\(464\) 0 0
\(465\) 7.12514 7.61220i 0.330420 0.353008i
\(466\) 0 0
\(467\) −15.7043 21.6152i −0.726710 1.00023i −0.999274 0.0380925i \(-0.987872\pi\)
0.272565 0.962137i \(-0.412128\pi\)
\(468\) 0 0
\(469\) −2.08137 1.51220i −0.0961086 0.0698270i
\(470\) 0 0
\(471\) 1.40132 + 1.92875i 0.0645693 + 0.0888720i
\(472\) 0 0
\(473\) 19.3917 + 3.07134i 0.891632 + 0.141221i
\(474\) 0 0
\(475\) 7.36651 + 12.3644i 0.337999 + 0.567317i
\(476\) 0 0
\(477\) 14.0441 27.5632i 0.643037 1.26203i
\(478\) 0 0
\(479\) −4.17044 26.3311i −0.190552 1.20310i −0.878645 0.477476i \(-0.841552\pi\)
0.688093 0.725623i \(-0.258448\pi\)
\(480\) 0 0
\(481\) 20.7950 10.5956i 0.948170 0.483117i
\(482\) 0 0
\(483\) 1.71569 0.0780664
\(484\) 0 0
\(485\) 16.3686 + 2.04087i 0.743260 + 0.0926711i
\(486\) 0 0
\(487\) 8.37211 + 25.7667i 0.379377 + 1.16760i 0.940478 + 0.339854i \(0.110378\pi\)
−0.561102 + 0.827747i \(0.689622\pi\)
\(488\) 0 0
\(489\) −0.618387 0.618387i −0.0279644 0.0279644i
\(490\) 0 0
\(491\) 29.9081 1.34973 0.674867 0.737940i \(-0.264201\pi\)
0.674867 + 0.737940i \(0.264201\pi\)
\(492\) 0 0
\(493\) 9.47970i 0.426944i
\(494\) 0 0
\(495\) −9.40582 + 10.0488i −0.422760 + 0.451659i
\(496\) 0 0
\(497\) −0.105495 0.324682i −0.00473212 0.0145640i
\(498\) 0 0
\(499\) 4.85417 + 0.768825i 0.217302 + 0.0344173i 0.264136 0.964485i \(-0.414913\pi\)
−0.0468338 + 0.998903i \(0.514913\pi\)
\(500\) 0 0
\(501\) 7.42593i 0.331766i
\(502\) 0 0
\(503\) 2.77755 + 5.45124i 0.123845 + 0.243059i 0.944602 0.328218i \(-0.106448\pi\)
−0.820757 + 0.571277i \(0.806448\pi\)
\(504\) 0 0
\(505\) 29.1837 5.61615i 1.29866 0.249915i
\(506\) 0 0
\(507\) −1.14991 + 2.25683i −0.0510694 + 0.100229i
\(508\) 0 0
\(509\) 4.86459 + 9.54729i 0.215619 + 0.423176i 0.973329 0.229416i \(-0.0736815\pi\)
−0.757709 + 0.652592i \(0.773682\pi\)
\(510\) 0 0
\(511\) 1.45343 9.17659i 0.0642959 0.405948i
\(512\) 0 0
\(513\) −6.48292 + 4.71011i −0.286228 + 0.207957i
\(514\) 0 0
\(515\) 33.0992 + 22.4158i 1.45853 + 0.987759i
\(516\) 0 0
\(517\) 2.22726 + 3.06557i 0.0979550 + 0.134823i
\(518\) 0 0
\(519\) −3.46483 + 3.46483i −0.152089 + 0.152089i
\(520\) 0 0
\(521\) −13.8331 + 27.1490i −0.606040 + 1.18942i 0.360466 + 0.932773i \(0.382618\pi\)
−0.966505 + 0.256647i \(0.917382\pi\)
\(522\) 0 0
\(523\) −8.46331 2.74990i −0.370075 0.120245i 0.118074 0.993005i \(-0.462328\pi\)
−0.488149 + 0.872760i \(0.662328\pi\)
\(524\) 0 0
\(525\) −1.27731 0.323546i −0.0557466 0.0141207i
\(526\) 0 0
\(527\) −4.21349 26.6029i −0.183542 1.15884i
\(528\) 0 0
\(529\) −5.99029 18.4362i −0.260447 0.801575i
\(530\) 0 0
\(531\) −7.79299 + 10.7261i −0.338187 + 0.465475i
\(532\) 0 0
\(533\) −27.1091 + 3.63695i −1.17423 + 0.157534i
\(534\) 0 0
\(535\) −15.8208 + 23.3610i −0.683992 + 1.00998i
\(536\) 0 0
\(537\) −8.50863 + 2.76462i −0.367175 + 0.119302i
\(538\) 0 0
\(539\) −14.7257 + 2.33232i −0.634281 + 0.100460i
\(540\) 0 0
\(541\) 19.4498 + 6.31962i 0.836211 + 0.271702i 0.695659 0.718372i \(-0.255112\pi\)
0.140552 + 0.990073i \(0.455112\pi\)
\(542\) 0 0
\(543\) 7.98768 + 2.59536i 0.342784 + 0.111377i
\(544\) 0 0
\(545\) −32.7298 15.3367i −1.40199 0.656951i
\(546\) 0 0
\(547\) −1.11972 1.11972i −0.0478757 0.0478757i 0.682764 0.730639i \(-0.260778\pi\)
−0.730639 + 0.682764i \(0.760778\pi\)
\(548\) 0 0
\(549\) −13.2313 + 9.61312i −0.564699 + 0.410278i
\(550\) 0 0
\(551\) −7.91708 5.75210i −0.337279 0.245048i
\(552\) 0 0
\(553\) 6.19484 4.50081i 0.263431 0.191394i
\(554\) 0 0
\(555\) 5.85215 + 0.729657i 0.248410 + 0.0309722i
\(556\) 0 0
\(557\) 19.9754 10.1780i 0.846386 0.431255i 0.0236782 0.999720i \(-0.492462\pi\)
0.822708 + 0.568464i \(0.192462\pi\)
\(558\) 0 0
\(559\) −33.5908 17.1154i −1.42074 0.723902i
\(560\) 0 0
\(561\) −0.468422 2.95750i −0.0197768 0.124866i
\(562\) 0 0
\(563\) 17.0788 + 33.5190i 0.719785 + 1.41266i 0.903024 + 0.429589i \(0.141342\pi\)
−0.183240 + 0.983068i \(0.558658\pi\)
\(564\) 0 0
\(565\) 0.432299 + 13.0802i 0.0181870 + 0.550289i
\(566\) 0 0
\(567\) −0.594146 + 3.75129i −0.0249518 + 0.157539i
\(568\) 0 0
\(569\) 23.8827 7.75995i 1.00121 0.325314i 0.237864 0.971299i \(-0.423553\pi\)
0.763351 + 0.645984i \(0.223553\pi\)
\(570\) 0 0
\(571\) −6.35444 6.35444i −0.265925 0.265925i 0.561531 0.827456i \(-0.310213\pi\)
−0.827456 + 0.561531i \(0.810213\pi\)
\(572\) 0 0
\(573\) 3.56399i 0.148888i
\(574\) 0 0
\(575\) 2.14932 + 32.4808i 0.0896329 + 1.35454i
\(576\) 0 0
\(577\) −31.2029 + 31.2029i −1.29899 + 1.29899i −0.369937 + 0.929057i \(0.620621\pi\)
−0.929057 + 0.369937i \(0.879379\pi\)
\(578\) 0 0
\(579\) −6.85866 + 2.22851i −0.285036 + 0.0926138i
\(580\) 0 0
\(581\) −0.349192 0.0553066i −0.0144869 0.00229450i
\(582\) 0 0
\(583\) 24.8712 1.03006
\(584\) 0 0
\(585\) 23.1396 12.7700i 0.956704 0.527975i
\(586\) 0 0
\(587\) 40.8188 6.46506i 1.68477 0.266842i 0.760712 0.649089i \(-0.224850\pi\)
0.924060 + 0.382248i \(0.124850\pi\)
\(588\) 0 0
\(589\) −24.7744 12.6232i −1.02081 0.520130i
\(590\) 0 0
\(591\) −1.24888 2.45106i −0.0513719 0.100823i
\(592\) 0 0
\(593\) −27.9457 4.42617i −1.14759 0.181761i −0.446468 0.894799i \(-0.647318\pi\)
−0.701125 + 0.713038i \(0.747318\pi\)
\(594\) 0 0
\(595\) −2.68618 + 2.09060i −0.110123 + 0.0857062i
\(596\) 0 0
\(597\) −4.64170 + 6.38875i −0.189972 + 0.261474i
\(598\) 0 0
\(599\) −6.32193 + 4.59315i −0.258307 + 0.187671i −0.709400 0.704806i \(-0.751034\pi\)
0.451093 + 0.892477i \(0.351034\pi\)
\(600\) 0 0
\(601\) 7.26733 7.26733i 0.296441 0.296441i −0.543177 0.839618i \(-0.682779\pi\)
0.839618 + 0.543177i \(0.182779\pi\)
\(602\) 0 0
\(603\) 11.6184 + 5.91985i 0.473136 + 0.241075i
\(604\) 0 0
\(605\) 12.9995 + 3.75386i 0.528507 + 0.152616i
\(606\) 0 0
\(607\) 0.0423159 0.130235i 0.00171755 0.00528608i −0.950194 0.311659i \(-0.899115\pi\)
0.951912 + 0.306373i \(0.0991154\pi\)
\(608\) 0 0
\(609\) 0.884899 0.140154i 0.0358579 0.00567933i
\(610\) 0 0
\(611\) −2.24843 6.91994i −0.0909616 0.279951i
\(612\) 0 0
\(613\) −20.4146 14.8321i −0.824538 0.599062i 0.0934709 0.995622i \(-0.470204\pi\)
−0.918009 + 0.396560i \(0.870204\pi\)
\(614\) 0 0
\(615\) −6.18722 3.08024i −0.249493 0.124207i
\(616\) 0 0
\(617\) −16.9469 12.3127i −0.682258 0.495689i 0.191848 0.981425i \(-0.438552\pi\)
−0.874106 + 0.485735i \(0.838552\pi\)
\(618\) 0 0
\(619\) 12.4786 + 38.4053i 0.501559 + 1.54364i 0.806480 + 0.591262i \(0.201370\pi\)
−0.304921 + 0.952378i \(0.598630\pi\)
\(620\) 0 0
\(621\) −17.9008 + 2.83521i −0.718336 + 0.113773i
\(622\) 0 0
\(623\) 2.61943 8.06176i 0.104945 0.322988i
\(624\) 0 0
\(625\) 4.52512 24.5871i 0.181005 0.983482i
\(626\) 0 0
\(627\) −2.75422 1.40335i −0.109993 0.0560443i
\(628\) 0 0
\(629\) 10.7725 10.7725i 0.429529 0.429529i
\(630\) 0 0
\(631\) 35.3430 25.6782i 1.40698 1.02223i 0.413228 0.910628i \(-0.364401\pi\)
0.993753 0.111604i \(-0.0355987\pi\)
\(632\) 0 0
\(633\) 2.89686 3.98719i 0.115140 0.158477i
\(634\) 0 0
\(635\) −4.41374 5.67114i −0.175154 0.225052i
\(636\) 0 0
\(637\) 28.2761 + 4.47849i 1.12034 + 0.177444i
\(638\) 0 0
\(639\) 0.785545 + 1.54172i 0.0310757 + 0.0609895i
\(640\) 0 0
\(641\) 7.95937 + 4.05550i 0.314376 + 0.160183i 0.604058 0.796940i \(-0.293549\pi\)
−0.289682 + 0.957123i \(0.593549\pi\)
\(642\) 0 0
\(643\) −24.1314 + 3.82204i −0.951651 + 0.150727i −0.612910 0.790153i \(-0.710001\pi\)
−0.338741 + 0.940880i \(0.610001\pi\)
\(644\) 0 0
\(645\) −4.60288 8.34054i −0.181238 0.328409i
\(646\) 0 0
\(647\) 2.93270 0.115296 0.0576482 0.998337i \(-0.481640\pi\)
0.0576482 + 0.998337i \(0.481640\pi\)
\(648\) 0 0
\(649\) −10.5282 1.66750i −0.413268 0.0654552i
\(650\) 0 0
\(651\) 2.42100 0.786631i 0.0948865 0.0308305i
\(652\) 0 0
\(653\) 1.04447 1.04447i 0.0408733 0.0408733i −0.686375 0.727248i \(-0.740799\pi\)
0.727248 + 0.686375i \(0.240799\pi\)
\(654\) 0 0
\(655\) 0.733768 + 22.2019i 0.0286707 + 0.867499i
\(656\) 0 0
\(657\) 47.0906i 1.83718i
\(658\) 0 0
\(659\) −17.7979 17.7979i −0.693310 0.693310i 0.269649 0.962959i \(-0.413092\pi\)
−0.962959 + 0.269649i \(0.913092\pi\)
\(660\) 0 0
\(661\) 16.7708 5.44916i 0.652308 0.211948i 0.0358764 0.999356i \(-0.488578\pi\)
0.616432 + 0.787409i \(0.288578\pi\)
\(662\) 0 0
\(663\) −0.899457 + 5.67895i −0.0349320 + 0.220552i
\(664\) 0 0
\(665\) 0.116069 + 3.51193i 0.00450095 + 0.136187i
\(666\) 0 0
\(667\) −10.0484 19.7210i −0.389074 0.763600i
\(668\) 0 0
\(669\) −1.91397 12.0843i −0.0739982 0.467206i
\(670\) 0 0
\(671\) −11.7159 5.96954i −0.452286 0.230451i
\(672\) 0 0
\(673\) −31.4887 + 16.0443i −1.21380 + 0.618462i −0.939291 0.343122i \(-0.888516\pi\)
−0.274510 + 0.961584i \(0.588516\pi\)
\(674\) 0 0
\(675\) 13.8617 + 1.26496i 0.533537 + 0.0486885i
\(676\) 0 0
\(677\) −20.7505 + 15.0762i −0.797508 + 0.579424i −0.910182 0.414208i \(-0.864058\pi\)
0.112674 + 0.993632i \(0.464058\pi\)
\(678\) 0 0
\(679\) 3.25811 + 2.36716i 0.125035 + 0.0908432i
\(680\) 0 0
\(681\) 8.31711 6.04273i 0.318712 0.231558i
\(682\) 0 0
\(683\) −31.0457 31.0457i −1.18793 1.18793i −0.977639 0.210291i \(-0.932559\pi\)
−0.210291 0.977639i \(-0.567441\pi\)
\(684\) 0 0
\(685\) 4.66754 9.96094i 0.178338 0.380588i
\(686\) 0 0
\(687\) −6.60847 2.14722i −0.252129 0.0819217i
\(688\) 0 0
\(689\) −45.4199 14.7578i −1.73036 0.562228i
\(690\) 0 0
\(691\) 28.5218 4.51740i 1.08502 0.171850i 0.411786 0.911281i \(-0.364905\pi\)
0.673233 + 0.739431i \(0.264905\pi\)
\(692\) 0 0
\(693\) −3.19594 + 1.03842i −0.121404 + 0.0394464i
\(694\) 0 0
\(695\) 28.0754 + 19.0135i 1.06496 + 0.721224i
\(696\) 0 0
\(697\) −16.0961 + 7.72618i −0.609683 + 0.292650i
\(698\) 0 0
\(699\) 2.24549 3.09066i 0.0849324 0.116899i
\(700\) 0 0
\(701\) −0.680789 2.09525i −0.0257130 0.0791366i 0.937377 0.348318i \(-0.113247\pi\)
−0.963090 + 0.269181i \(0.913247\pi\)
\(702\) 0 0
\(703\) −2.46025 15.5334i −0.0927900 0.585853i
\(704\) 0 0
\(705\) 0.510084 1.76641i 0.0192109 0.0665268i
\(706\) 0 0
\(707\) 6.90065 + 2.24216i 0.259526 + 0.0843250i
\(708\) 0 0
\(709\) −3.19872 + 6.27784i −0.120130 + 0.235769i −0.943239 0.332115i \(-0.892238\pi\)
0.823109 + 0.567884i \(0.192238\pi\)
\(710\) 0 0
\(711\) −27.4429 + 27.4429i −1.02919 + 1.02919i
\(712\) 0 0
\(713\) −36.9643 50.8769i −1.38432 1.90536i
\(714\) 0 0
\(715\) 17.5939 + 11.9151i 0.657974 + 0.445600i
\(716\) 0 0
\(717\) −3.39461 + 2.46633i −0.126774 + 0.0921066i
\(718\) 0 0
\(719\) −4.85040 + 30.6242i −0.180889 + 1.14209i 0.715431 + 0.698684i \(0.246230\pi\)
−0.896320 + 0.443407i \(0.853770\pi\)
\(720\) 0 0
\(721\) 4.43084 + 8.69602i 0.165013 + 0.323857i
\(722\) 0 0
\(723\) −1.89772 + 3.72449i −0.0705771 + 0.138515i
\(724\) 0 0
\(725\) 3.76191 + 16.5771i 0.139714 + 0.615657i
\(726\) 0 0
\(727\) 22.8238 + 44.7943i 0.846489 + 1.66133i 0.745563 + 0.666435i \(0.232181\pi\)
0.100927 + 0.994894i \(0.467819\pi\)
\(728\) 0 0
\(729\) 15.2186i 0.563653i
\(730\) 0 0
\(731\) −24.3061 3.84970i −0.898992 0.142386i
\(732\) 0 0
\(733\) 6.47352 + 19.9234i 0.239105 + 0.735889i 0.996550 + 0.0829905i \(0.0264471\pi\)
−0.757446 + 0.652898i \(0.773553\pi\)
\(734\) 0 0
\(735\) 5.28148 + 4.94354i 0.194810 + 0.182345i
\(736\) 0 0
\(737\) 10.4836i 0.386170i
\(738\) 0 0
\(739\) −39.3132 −1.44616 −0.723080 0.690764i \(-0.757274\pi\)
−0.723080 + 0.690764i \(0.757274\pi\)
\(740\) 0 0
\(741\) 4.19707 + 4.19707i 0.154183 + 0.154183i
\(742\) 0 0
\(743\) 15.1852 + 46.7352i 0.557090 + 1.71455i 0.690359 + 0.723467i \(0.257452\pi\)
−0.133270 + 0.991080i \(0.542548\pi\)
\(744\) 0 0
\(745\) −1.95417 + 15.6732i −0.0715951 + 0.574222i
\(746\) 0 0
\(747\) 1.79192 0.0655628
\(748\) 0 0
\(749\) −6.13753 + 3.12723i −0.224261 + 0.114266i
\(750\) 0 0
\(751\) −5.98183 37.7678i −0.218280 1.37817i −0.816736 0.577011i \(-0.804219\pi\)
0.598456 0.801156i \(-0.295781\pi\)
\(752\) 0 0
\(753\) −4.84208 + 9.50312i −0.176455 + 0.346313i
\(754\) 0 0
\(755\) −27.9973 + 15.4508i −1.01892 + 0.562313i
\(756\) 0 0
\(757\) −30.0588 4.76085i −1.09251 0.173036i −0.415921 0.909401i \(-0.636541\pi\)
−0.676585 + 0.736365i \(0.736541\pi\)
\(758\) 0 0
\(759\) −4.10939 5.65609i −0.149162 0.205303i
\(760\) 0 0
\(761\) 10.7709 + 7.82549i 0.390444 + 0.283674i 0.765637 0.643273i \(-0.222424\pi\)
−0.375194 + 0.926946i \(0.622424\pi\)
\(762\) 0 0
\(763\) −5.18696 7.13924i −0.187781 0.258458i
\(764\) 0 0
\(765\) 11.7895 12.5954i 0.426250 0.455388i
\(766\) 0 0
\(767\) 18.2372 + 9.29231i 0.658506 + 0.335526i
\(768\) 0 0
\(769\) −3.70408 + 11.4000i −0.133572 + 0.411094i −0.995365 0.0961669i \(-0.969342\pi\)
0.861793 + 0.507260i \(0.169342\pi\)
\(770\) 0 0
\(771\) 4.41016 + 1.43295i 0.158828 + 0.0516063i
\(772\) 0 0
\(773\) 2.77010 + 17.4897i 0.0996337 + 0.629062i 0.986085 + 0.166241i \(0.0531629\pi\)
−0.886451 + 0.462822i \(0.846837\pi\)
\(774\) 0 0
\(775\) 17.9252 + 44.8482i 0.643891 + 1.61100i
\(776\) 0 0
\(777\) 1.16485 + 0.846313i 0.0417888 + 0.0303613i
\(778\) 0 0
\(779\) −3.31419 + 18.1309i −0.118743 + 0.649609i
\(780\) 0 0
\(781\) −0.817695 + 1.12546i −0.0292594 + 0.0402722i
\(782\) 0 0
\(783\) −9.00110 + 2.92464i −0.321673 + 0.104518i
\(784\) 0 0
\(785\) −10.8444 + 2.08692i −0.387055 + 0.0744854i
\(786\) 0 0
\(787\) 9.59451 29.5289i 0.342007 1.05259i −0.621159 0.783684i \(-0.713338\pi\)
0.963167 0.268906i \(-0.0866620\pi\)
\(788\) 0 0
\(789\) 2.87758 8.85629i 0.102445 0.315292i
\(790\) 0 0
\(791\) −1.45060 + 2.84695i −0.0515772 + 0.101226i
\(792\) 0 0
\(793\) 17.8534 + 17.8534i 0.633994 + 0.633994i
\(794\) 0 0
\(795\) −7.41187 9.52339i −0.262872 0.337760i
\(796\) 0 0
\(797\) −4.40018 + 6.05633i −0.155862 + 0.214526i −0.879806 0.475333i \(-0.842328\pi\)
0.723944 + 0.689859i \(0.242328\pi\)
\(798\) 0 0
\(799\) −2.79171 3.84246i −0.0987636 0.135936i
\(800\) 0 0
\(801\) −6.72093 + 42.4343i −0.237472 + 1.49934i
\(802\) 0 0
\(803\) −33.7337 + 17.1882i −1.19044 + 0.606557i
\(804\) 0 0
\(805\) −3.37216 + 7.19648i −0.118853 + 0.253642i
\(806\) 0 0
\(807\) 5.74933 0.910604i 0.202386 0.0320548i
\(808\) 0 0
\(809\) 3.63117 1.85017i 0.127665 0.0650486i −0.388991 0.921241i \(-0.627176\pi\)
0.516656 + 0.856193i \(0.327176\pi\)
\(810\) 0 0
\(811\) 10.3939i 0.364978i −0.983208 0.182489i \(-0.941585\pi\)
0.983208 0.182489i \(-0.0584154\pi\)
\(812\) 0 0
\(813\) 1.41685 8.94563i 0.0496910 0.313737i
\(814\) 0 0
\(815\) 3.80927 1.37840i 0.133433 0.0482834i
\(816\) 0 0
\(817\) −17.9636 + 17.9636i −0.628466 + 0.628466i
\(818\) 0 0
\(819\) 6.45260 0.225472
\(820\) 0 0
\(821\) 41.6424 1.45333 0.726665 0.686992i \(-0.241069\pi\)
0.726665 + 0.686992i \(0.241069\pi\)
\(822\) 0 0
\(823\) 15.0402 15.0402i 0.524267 0.524267i −0.394590 0.918857i \(-0.629113\pi\)
0.918857 + 0.394590i \(0.129113\pi\)
\(824\) 0 0
\(825\) 1.99278 + 4.98587i 0.0693796 + 0.173586i
\(826\) 0 0
\(827\) −8.10241 + 51.1566i −0.281749 + 1.77889i 0.288562 + 0.957461i \(0.406823\pi\)
−0.570311 + 0.821429i \(0.693177\pi\)
\(828\) 0 0
\(829\) 5.10655i 0.177358i 0.996060 + 0.0886789i \(0.0282645\pi\)
−0.996060 + 0.0886789i \(0.971736\pi\)
\(830\) 0 0
\(831\) −7.15022 + 3.64322i −0.248038 + 0.126382i
\(832\) 0 0
\(833\) 18.4576 2.92339i 0.639517 0.101290i
\(834\) 0 0
\(835\) 31.1482 + 14.5956i 1.07793 + 0.505101i
\(836\) 0 0
\(837\) −23.9599 + 12.2082i −0.828176 + 0.421977i
\(838\) 0 0
\(839\) 1.75279 11.0667i 0.0605129 0.382063i −0.938782 0.344512i \(-0.888044\pi\)
0.999295 0.0375510i \(-0.0119557\pi\)
\(840\) 0 0
\(841\) 10.2521 + 14.1108i 0.353522 + 0.486581i
\(842\) 0 0
\(843\) 4.51661 6.21658i 0.155560 0.214110i
\(844\) 0 0
\(845\) −7.20618 9.25910i −0.247900 0.318523i
\(846\) 0 0
\(847\) 2.33589 + 2.33589i 0.0802622 + 0.0802622i
\(848\) 0 0
\(849\) −5.90919 + 11.5974i −0.202803 + 0.398023i
\(850\) 0 0
\(851\) 10.9918 33.8293i 0.376795 1.15965i
\(852\) 0 0
\(853\) −9.37925 + 28.8664i −0.321140 + 0.988366i 0.652014 + 0.758207i \(0.273924\pi\)
−0.973153 + 0.230159i \(0.926076\pi\)
\(854\) 0 0
\(855\) −3.36557 17.4888i −0.115100 0.598104i
\(856\) 0 0
\(857\) 40.2005 13.0619i 1.37322 0.446187i 0.472788 0.881176i \(-0.343248\pi\)
0.900436 + 0.434989i \(0.143248\pi\)
\(858\) 0 0
\(859\) 4.56719 6.28620i 0.155831 0.214482i −0.723962 0.689839i \(-0.757681\pi\)
0.879793 + 0.475357i \(0.157681\pi\)
\(860\) 0 0
\(861\) −0.959189 1.38829i −0.0326891 0.0473128i
\(862\) 0 0
\(863\) 33.6103 + 24.4193i 1.14411 + 0.831244i 0.987686 0.156447i \(-0.0500040\pi\)
0.156422 + 0.987690i \(0.450004\pi\)
\(864\) 0 0
\(865\) −7.72322 21.3434i −0.262597 0.725697i
\(866\) 0 0
\(867\) −0.696617 4.39827i −0.0236584 0.149373i
\(868\) 0 0
\(869\) −29.6756 9.64220i −1.00668 0.327089i
\(870\) 0 0
\(871\) 6.22068 19.1453i 0.210780 0.648713i
\(872\) 0 0
\(873\) −18.1871 9.26677i −0.615539 0.313633i
\(874\) 0 0
\(875\) 3.86767 4.72179i 0.130751 0.159626i
\(876\) 0 0
\(877\) −17.1232 23.5681i −0.578210 0.795838i 0.415287 0.909690i \(-0.363681\pi\)
−0.993498 + 0.113852i \(0.963681\pi\)
\(878\) 0 0
\(879\) 10.2335 + 7.43508i 0.345168 + 0.250779i
\(880\) 0 0
\(881\) 15.2724 + 21.0207i 0.514541 + 0.708205i 0.984677 0.174389i \(-0.0557950\pi\)
−0.470136 + 0.882594i \(0.655795\pi\)
\(882\) 0 0
\(883\) 9.07270 + 1.43697i 0.305321 + 0.0483581i 0.307215 0.951640i \(-0.400603\pi\)
−0.00189421 + 0.999998i \(0.500603\pi\)
\(884\) 0 0
\(885\) 2.49901 + 4.52827i 0.0840033 + 0.152216i
\(886\) 0 0
\(887\) −16.8193 + 33.0097i −0.564736 + 1.10836i 0.415328 + 0.909672i \(0.363667\pi\)
−0.980064 + 0.198684i \(0.936333\pi\)
\(888\) 0 0
\(889\) −0.274464 1.73290i −0.00920523 0.0581195i
\(890\) 0 0
\(891\) 13.7900 7.02633i 0.461981 0.235391i
\(892\) 0 0
\(893\) −4.90303 −0.164074
\(894\) 0 0
\(895\) 5.12735 41.1235i 0.171389 1.37461i
\(896\) 0 0
\(897\) 4.14844 + 12.7676i 0.138512 + 0.426297i
\(898\) 0 0
\(899\) −23.2212 23.2212i −0.774470 0.774470i
\(900\) 0 0
\(901\) −31.1742 −1.03856
\(902\) 0 0
\(903\) 2.32581i 0.0773980i
\(904\) 0 0
\(905\) −26.5860 + 28.4034i −0.883748 + 0.944160i
\(906\) 0 0
\(907\) −1.60103 4.92745i −0.0531612 0.163613i 0.920951 0.389678i \(-0.127414\pi\)
−0.974112 + 0.226065i \(0.927414\pi\)
\(908\) 0 0
\(909\) −36.3226 5.75293i −1.20474 0.190813i
\(910\) 0 0
\(911\) 22.5784i 0.748055i 0.927418 + 0.374027i \(0.122023\pi\)
−0.927418 + 0.374027i \(0.877977\pi\)
\(912\) 0 0
\(913\) 0.654053 + 1.28365i 0.0216460 + 0.0424826i
\(914\) 0 0
\(915\) 1.20566 + 6.26509i 0.0398580 + 0.207118i
\(916\) 0 0
\(917\) −2.46219 + 4.83231i −0.0813085 + 0.159577i
\(918\) 0 0
\(919\) −1.39741 2.74257i −0.0460964 0.0904692i 0.866809 0.498640i \(-0.166167\pi\)
−0.912906 + 0.408170i \(0.866167\pi\)
\(920\) 0 0
\(921\) −1.14334 + 7.21876i −0.0376743 + 0.237866i
\(922\) 0 0
\(923\) 2.16109 1.57013i 0.0711332 0.0516813i
\(924\) 0 0
\(925\) −14.5629 + 23.1128i −0.478825 + 0.759945i
\(926\) 0 0
\(927\) −29.0758 40.0194i −0.954974 1.31441i
\(928\) 0 0
\(929\) −6.11571 + 6.11571i −0.200650 + 0.200650i −0.800278 0.599629i \(-0.795315\pi\)
0.599629 + 0.800278i \(0.295315\pi\)
\(930\) 0 0
\(931\) 8.75819 17.1889i 0.287038 0.563344i
\(932\) 0 0
\(933\) 11.1700 + 3.62936i 0.365690 + 0.118820i
\(934\) 0 0
\(935\) 13.3260 + 3.84813i 0.435806 + 0.125847i
\(936\) 0 0
\(937\) −6.84261 43.2025i −0.223538 1.41137i −0.802812 0.596232i \(-0.796664\pi\)
0.579274 0.815133i \(-0.303336\pi\)
\(938\) 0 0
\(939\) −1.91410 5.89100i −0.0624643 0.192245i
\(940\) 0 0
\(941\) −14.7334 + 20.2788i −0.480295 + 0.661070i −0.978562 0.205954i \(-0.933970\pi\)
0.498266 + 0.867024i \(0.333970\pi\)
\(942\) 0 0
\(943\) −25.2957 + 33.1347i −0.823742 + 1.07902i
\(944\) 0 0
\(945\) 2.81378 + 1.90558i 0.0915323 + 0.0619885i
\(946\) 0 0
\(947\) −0.918992 + 0.298598i −0.0298632 + 0.00970315i −0.323911 0.946088i \(-0.604998\pi\)
0.294047 + 0.955791i \(0.404998\pi\)
\(948\) 0 0
\(949\) 71.8035 11.3726i 2.33084 0.369169i
\(950\) 0 0
\(951\) 3.34275 + 1.08613i 0.108396 + 0.0352201i
\(952\) 0 0
\(953\) 34.1721 + 11.1032i 1.10694 + 0.359668i 0.804771 0.593585i \(-0.202288\pi\)
0.302173 + 0.953253i \(0.402288\pi\)
\(954\) 0 0
\(955\) 14.9492 + 7.00498i 0.483746 + 0.226676i
\(956\) 0 0
\(957\) −2.58155 2.58155i −0.0834496 0.0834496i
\(958\) 0 0
\(959\) 2.17275 1.57859i 0.0701617 0.0509754i
\(960\) 0 0
\(961\) −50.4075 36.6232i −1.62605 1.18139i
\(962\) 0 0
\(963\) 28.2451 20.5213i 0.910187 0.661290i
\(964\) 0 0
\(965\) 4.13307 33.1489i 0.133048 1.06710i
\(966\) 0 0
\(967\) −3.14458 + 1.60224i −0.101123 + 0.0515247i −0.503820 0.863808i \(-0.668073\pi\)
0.402697 + 0.915333i \(0.368073\pi\)
\(968\) 0 0
\(969\) 3.45221 + 1.75899i 0.110901 + 0.0565069i
\(970\) 0 0
\(971\) −0.260837 1.64686i −0.00837066 0.0528503i 0.983149 0.182804i \(-0.0585172\pi\)
−0.991520 + 0.129953i \(0.958517\pi\)
\(972\) 0 0
\(973\) 3.75833 + 7.37613i 0.120486 + 0.236468i
\(974\) 0 0
\(975\) −0.680755 10.2877i −0.0218016 0.329469i
\(976\) 0 0
\(977\) 9.17888 57.9532i 0.293659 1.85409i −0.193933 0.981015i \(-0.562124\pi\)
0.487591 0.873072i \(-0.337876\pi\)
\(978\) 0 0
\(979\) −32.8512 + 10.6740i −1.04993 + 0.341143i
\(980\) 0 0
\(981\) 31.6266 + 31.6266i 1.00976 + 1.00976i
\(982\) 0 0
\(983\) 7.75638i 0.247390i −0.992320 0.123695i \(-0.960526\pi\)
0.992320 0.123695i \(-0.0394745\pi\)
\(984\) 0 0
\(985\) 12.7357 0.420912i 0.405792 0.0134114i
\(986\) 0 0
\(987\) 0.317406 0.317406i 0.0101032 0.0101032i
\(988\) 0 0
\(989\) −54.6455 + 17.7554i −1.73763 + 0.564589i
\(990\) 0 0
\(991\) 15.9770 + 2.53050i 0.507525 + 0.0803840i 0.404946 0.914341i \(-0.367290\pi\)
0.102579 + 0.994725i \(0.467290\pi\)
\(992\) 0 0
\(993\) 5.68017 0.180255
\(994\) 0 0
\(995\) −17.6745 32.0267i −0.560320 1.01531i
\(996\) 0 0
\(997\) −13.3585 + 2.11578i −0.423068 + 0.0670074i −0.364339 0.931267i \(-0.618705\pi\)
−0.0587293 + 0.998274i \(0.518705\pi\)
\(998\) 0 0
\(999\) −13.5522 6.90518i −0.428772 0.218470i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.10 176
5.4 even 2 inner 820.2.bq.a.49.13 yes 176
41.36 even 20 inner 820.2.bq.a.569.13 yes 176
205.159 even 20 inner 820.2.bq.a.569.10 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.10 176 1.1 even 1 trivial
820.2.bq.a.49.13 yes 176 5.4 even 2 inner
820.2.bq.a.569.10 yes 176 205.159 even 20 inner
820.2.bq.a.569.13 yes 176 41.36 even 20 inner