Properties

Label 820.2.bq.a.49.1
Level $820$
Weight $2$
Character 820.49
Analytic conductor $6.548$
Analytic rank $0$
Dimension $176$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(49,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 10, 19])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bq (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(176\)
Relative dimension: \(22\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 49.1
Character \(\chi\) \(=\) 820.49
Dual form 820.2.bq.a.569.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28615 + 2.28615i) q^{3} +(-0.249857 + 2.22206i) q^{5} +(0.324162 - 2.04668i) q^{7} -7.45299i q^{9} +(3.82132 - 1.94706i) q^{11} +(-2.11039 + 0.334253i) q^{13} +(-4.50877 - 5.65119i) q^{15} +(5.32295 - 2.71218i) q^{17} +(1.28670 - 8.12389i) q^{19} +(3.93794 + 5.42011i) q^{21} +(0.847314 - 1.16623i) q^{23} +(-4.87514 - 1.11040i) q^{25} +(10.1802 + 10.1802i) q^{27} +(-4.73011 + 9.28337i) q^{29} +(1.47200 - 4.53036i) q^{31} +(-4.28485 + 13.1874i) q^{33} +(4.46686 + 1.23169i) q^{35} +(-3.88208 + 1.26136i) q^{37} +(4.06052 - 5.58883i) q^{39} +(-0.375244 - 6.39212i) q^{41} +(3.89132 + 2.82721i) q^{43} +(16.5610 + 1.86219i) q^{45} +(-0.929626 - 5.86942i) q^{47} +(2.57358 + 0.836207i) q^{49} +(-5.96863 + 18.3695i) q^{51} +(-3.38397 - 1.72422i) q^{53} +(3.37171 + 8.97771i) q^{55} +(15.6309 + 21.5140i) q^{57} +(11.0277 + 8.01213i) q^{59} +(-0.261551 - 0.359994i) q^{61} +(-15.2539 - 2.41598i) q^{63} +(-0.215435 - 4.77294i) q^{65} +(1.75412 - 3.44265i) q^{67} +(0.729086 + 4.60326i) q^{69} +(0.559555 - 0.285107i) q^{71} +4.27944 q^{73} +(13.6839 - 8.60678i) q^{75} +(-2.74628 - 8.45218i) q^{77} +(-4.31181 - 4.31181i) q^{79} -24.1881 q^{81} -11.9600i q^{83} +(4.69666 + 12.5056i) q^{85} +(-10.4094 - 32.0370i) q^{87} +(10.6487 + 1.68659i) q^{89} +4.42764i q^{91} +(6.99187 + 13.7223i) q^{93} +(17.7303 + 4.88894i) q^{95} +(-0.175861 + 0.345147i) q^{97} +(-14.5114 - 28.4803i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 176 q + 4 q^{11} - 10 q^{15} - 4 q^{19} + 12 q^{25} + 8 q^{29} - 8 q^{31} - 6 q^{35} + 40 q^{39} + 28 q^{41} - 4 q^{45} + 20 q^{49} - 32 q^{51} - 50 q^{55} + 12 q^{59} + 40 q^{61} - 10 q^{65} - 28 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.28615 + 2.28615i −1.31991 + 1.31991i −0.406069 + 0.913843i \(0.633101\pi\)
−0.913843 + 0.406069i \(0.866899\pi\)
\(4\) 0 0
\(5\) −0.249857 + 2.22206i −0.111740 + 0.993738i
\(6\) 0 0
\(7\) 0.324162 2.04668i 0.122522 0.773572i −0.847543 0.530727i \(-0.821919\pi\)
0.970065 0.242846i \(-0.0780809\pi\)
\(8\) 0 0
\(9\) 7.45299i 2.48433i
\(10\) 0 0
\(11\) 3.82132 1.94706i 1.15217 0.587061i 0.229752 0.973249i \(-0.426209\pi\)
0.922420 + 0.386189i \(0.126209\pi\)
\(12\) 0 0
\(13\) −2.11039 + 0.334253i −0.585317 + 0.0927050i −0.442068 0.896982i \(-0.645755\pi\)
−0.143249 + 0.989687i \(0.545755\pi\)
\(14\) 0 0
\(15\) −4.50877 5.65119i −1.16416 1.45913i
\(16\) 0 0
\(17\) 5.32295 2.71218i 1.29101 0.657800i 0.332562 0.943081i \(-0.392087\pi\)
0.958444 + 0.285281i \(0.0920870\pi\)
\(18\) 0 0
\(19\) 1.28670 8.12389i 0.295189 1.86375i −0.179727 0.983717i \(-0.557521\pi\)
0.474915 0.880032i \(-0.342479\pi\)
\(20\) 0 0
\(21\) 3.93794 + 5.42011i 0.859329 + 1.18276i
\(22\) 0 0
\(23\) 0.847314 1.16623i 0.176677 0.243175i −0.711489 0.702697i \(-0.751979\pi\)
0.888167 + 0.459521i \(0.151979\pi\)
\(24\) 0 0
\(25\) −4.87514 1.11040i −0.975029 0.222080i
\(26\) 0 0
\(27\) 10.1802 + 10.1802i 1.95919 + 1.95919i
\(28\) 0 0
\(29\) −4.73011 + 9.28337i −0.878360 + 1.72388i −0.213450 + 0.976954i \(0.568470\pi\)
−0.664910 + 0.746924i \(0.731530\pi\)
\(30\) 0 0
\(31\) 1.47200 4.53036i 0.264379 0.813676i −0.727456 0.686154i \(-0.759298\pi\)
0.991836 0.127522i \(-0.0407024\pi\)
\(32\) 0 0
\(33\) −4.28485 + 13.1874i −0.745896 + 2.29563i
\(34\) 0 0
\(35\) 4.46686 + 1.23169i 0.755037 + 0.208193i
\(36\) 0 0
\(37\) −3.88208 + 1.26136i −0.638210 + 0.207367i −0.610209 0.792241i \(-0.708914\pi\)
−0.0280016 + 0.999608i \(0.508914\pi\)
\(38\) 0 0
\(39\) 4.06052 5.58883i 0.650203 0.894928i
\(40\) 0 0
\(41\) −0.375244 6.39212i −0.0586033 0.998281i
\(42\) 0 0
\(43\) 3.89132 + 2.82721i 0.593421 + 0.431146i 0.843538 0.537070i \(-0.180469\pi\)
−0.250116 + 0.968216i \(0.580469\pi\)
\(44\) 0 0
\(45\) 16.5610 + 1.86219i 2.46877 + 0.277598i
\(46\) 0 0
\(47\) −0.929626 5.86942i −0.135600 0.856144i −0.957903 0.287093i \(-0.907311\pi\)
0.822303 0.569050i \(-0.192689\pi\)
\(48\) 0 0
\(49\) 2.57358 + 0.836207i 0.367654 + 0.119458i
\(50\) 0 0
\(51\) −5.96863 + 18.3695i −0.835775 + 2.57225i
\(52\) 0 0
\(53\) −3.38397 1.72422i −0.464824 0.236840i 0.205862 0.978581i \(-0.434000\pi\)
−0.670686 + 0.741741i \(0.734000\pi\)
\(54\) 0 0
\(55\) 3.37171 + 8.97771i 0.454641 + 1.21055i
\(56\) 0 0
\(57\) 15.6309 + 21.5140i 2.07036 + 2.84961i
\(58\) 0 0
\(59\) 11.0277 + 8.01213i 1.43569 + 1.04309i 0.988921 + 0.148441i \(0.0474254\pi\)
0.446769 + 0.894649i \(0.352575\pi\)
\(60\) 0 0
\(61\) −0.261551 0.359994i −0.0334881 0.0460924i 0.791945 0.610593i \(-0.209069\pi\)
−0.825433 + 0.564500i \(0.809069\pi\)
\(62\) 0 0
\(63\) −15.2539 2.41598i −1.92181 0.304385i
\(64\) 0 0
\(65\) −0.215435 4.77294i −0.0267214 0.592010i
\(66\) 0 0
\(67\) 1.75412 3.44265i 0.214299 0.420586i −0.758685 0.651458i \(-0.774158\pi\)
0.972984 + 0.230872i \(0.0741577\pi\)
\(68\) 0 0
\(69\) 0.729086 + 4.60326i 0.0877716 + 0.554168i
\(70\) 0 0
\(71\) 0.559555 0.285107i 0.0664069 0.0338360i −0.420472 0.907306i \(-0.638135\pi\)
0.486879 + 0.873470i \(0.338135\pi\)
\(72\) 0 0
\(73\) 4.27944 0.500870 0.250435 0.968133i \(-0.419426\pi\)
0.250435 + 0.968133i \(0.419426\pi\)
\(74\) 0 0
\(75\) 13.6839 8.60678i 1.58008 0.993826i
\(76\) 0 0
\(77\) −2.74628 8.45218i −0.312968 0.963216i
\(78\) 0 0
\(79\) −4.31181 4.31181i −0.485116 0.485116i 0.421645 0.906761i \(-0.361453\pi\)
−0.906761 + 0.421645i \(0.861453\pi\)
\(80\) 0 0
\(81\) −24.1881 −2.68757
\(82\) 0 0
\(83\) 11.9600i 1.31278i −0.754421 0.656391i \(-0.772082\pi\)
0.754421 0.656391i \(-0.227918\pi\)
\(84\) 0 0
\(85\) 4.69666 + 12.5056i 0.509424 + 1.35642i
\(86\) 0 0
\(87\) −10.4094 32.0370i −1.11601 3.43472i
\(88\) 0 0
\(89\) 10.6487 + 1.68659i 1.12876 + 0.178778i 0.692760 0.721168i \(-0.256394\pi\)
0.436001 + 0.899946i \(0.356394\pi\)
\(90\) 0 0
\(91\) 4.42764i 0.464143i
\(92\) 0 0
\(93\) 6.99187 + 13.7223i 0.725023 + 1.42294i
\(94\) 0 0
\(95\) 17.7303 + 4.88894i 1.81909 + 0.501595i
\(96\) 0 0
\(97\) −0.175861 + 0.345147i −0.0178560 + 0.0350444i −0.899762 0.436381i \(-0.856260\pi\)
0.881906 + 0.471425i \(0.156260\pi\)
\(98\) 0 0
\(99\) −14.5114 28.4803i −1.45845 2.86238i
\(100\) 0 0
\(101\) 1.19131 7.52162i 0.118539 0.748429i −0.854783 0.518986i \(-0.826310\pi\)
0.973322 0.229443i \(-0.0736904\pi\)
\(102\) 0 0
\(103\) −10.3066 + 7.48817i −1.01554 + 0.737831i −0.965363 0.260909i \(-0.915978\pi\)
−0.0501744 + 0.998740i \(0.515978\pi\)
\(104\) 0 0
\(105\) −13.0278 + 7.39610i −1.27138 + 0.721786i
\(106\) 0 0
\(107\) −7.05907 9.71597i −0.682426 0.939278i 0.317534 0.948247i \(-0.397145\pi\)
−0.999960 + 0.00896845i \(0.997145\pi\)
\(108\) 0 0
\(109\) 5.28923 5.28923i 0.506616 0.506616i −0.406870 0.913486i \(-0.633380\pi\)
0.913486 + 0.406870i \(0.133380\pi\)
\(110\) 0 0
\(111\) 5.99136 11.7587i 0.568675 1.11609i
\(112\) 0 0
\(113\) −6.73154 2.18721i −0.633250 0.205755i −0.0252359 0.999682i \(-0.508034\pi\)
−0.608014 + 0.793926i \(0.708034\pi\)
\(114\) 0 0
\(115\) 2.37973 + 2.17418i 0.221911 + 0.202743i
\(116\) 0 0
\(117\) 2.49118 + 15.7287i 0.230310 + 1.45412i
\(118\) 0 0
\(119\) −3.82546 11.7736i −0.350680 1.07928i
\(120\) 0 0
\(121\) 4.34581 5.98149i 0.395074 0.543772i
\(122\) 0 0
\(123\) 15.4712 + 13.7555i 1.39499 + 1.24029i
\(124\) 0 0
\(125\) 3.68547 10.5554i 0.329638 0.944107i
\(126\) 0 0
\(127\) −10.4507 + 3.39565i −0.927353 + 0.301315i −0.733480 0.679711i \(-0.762105\pi\)
−0.193873 + 0.981027i \(0.562105\pi\)
\(128\) 0 0
\(129\) −15.3596 + 2.43272i −1.35234 + 0.214189i
\(130\) 0 0
\(131\) −0.330425 0.107362i −0.0288694 0.00938023i 0.294547 0.955637i \(-0.404831\pi\)
−0.323416 + 0.946257i \(0.604831\pi\)
\(132\) 0 0
\(133\) −16.2099 5.26692i −1.40558 0.456700i
\(134\) 0 0
\(135\) −25.1647 + 20.0775i −2.16584 + 1.72800i
\(136\) 0 0
\(137\) 11.4665 + 11.4665i 0.979653 + 0.979653i 0.999797 0.0201438i \(-0.00641242\pi\)
−0.0201438 + 0.999797i \(0.506412\pi\)
\(138\) 0 0
\(139\) 7.42078 5.39151i 0.629422 0.457302i −0.226778 0.973946i \(-0.572819\pi\)
0.856200 + 0.516645i \(0.172819\pi\)
\(140\) 0 0
\(141\) 15.5437 + 11.2931i 1.30901 + 0.951054i
\(142\) 0 0
\(143\) −7.41366 + 5.38634i −0.619962 + 0.450428i
\(144\) 0 0
\(145\) −19.4464 12.8301i −1.61493 1.06548i
\(146\) 0 0
\(147\) −7.79529 + 3.97190i −0.642945 + 0.327597i
\(148\) 0 0
\(149\) 7.68967 + 3.91808i 0.629962 + 0.320982i 0.739657 0.672984i \(-0.234988\pi\)
−0.109695 + 0.993965i \(0.534988\pi\)
\(150\) 0 0
\(151\) 2.82187 + 17.8166i 0.229641 + 1.44990i 0.785625 + 0.618702i \(0.212341\pi\)
−0.555985 + 0.831193i \(0.687659\pi\)
\(152\) 0 0
\(153\) −20.2139 39.6719i −1.63419 3.20729i
\(154\) 0 0
\(155\) 9.69895 + 4.40283i 0.779039 + 0.353644i
\(156\) 0 0
\(157\) −2.13928 + 13.5069i −0.170733 + 1.07797i 0.742295 + 0.670073i \(0.233737\pi\)
−0.913029 + 0.407895i \(0.866263\pi\)
\(158\) 0 0
\(159\) 11.6781 3.79445i 0.926135 0.300919i
\(160\) 0 0
\(161\) −2.11223 2.11223i −0.166467 0.166467i
\(162\) 0 0
\(163\) 4.95273i 0.387928i 0.981009 + 0.193964i \(0.0621345\pi\)
−0.981009 + 0.193964i \(0.937866\pi\)
\(164\) 0 0
\(165\) −28.2327 12.8162i −2.19791 0.997738i
\(166\) 0 0
\(167\) 12.2932 12.2932i 0.951276 0.951276i −0.0475906 0.998867i \(-0.515154\pi\)
0.998867 + 0.0475906i \(0.0151543\pi\)
\(168\) 0 0
\(169\) −8.02172 + 2.60641i −0.617055 + 0.200493i
\(170\) 0 0
\(171\) −60.5473 9.58975i −4.63017 0.733347i
\(172\) 0 0
\(173\) 7.54325 0.573502 0.286751 0.958005i \(-0.407425\pi\)
0.286751 + 0.958005i \(0.407425\pi\)
\(174\) 0 0
\(175\) −3.85297 + 9.61791i −0.291257 + 0.727045i
\(176\) 0 0
\(177\) −43.5281 + 6.89417i −3.27177 + 0.518198i
\(178\) 0 0
\(179\) −1.85822 0.946810i −0.138890 0.0707679i 0.383165 0.923680i \(-0.374834\pi\)
−0.522054 + 0.852912i \(0.674834\pi\)
\(180\) 0 0
\(181\) 3.86443 + 7.58437i 0.287241 + 0.563742i 0.988867 0.148804i \(-0.0475422\pi\)
−0.701626 + 0.712545i \(0.747542\pi\)
\(182\) 0 0
\(183\) 1.42095 + 0.225056i 0.105039 + 0.0166366i
\(184\) 0 0
\(185\) −1.83287 8.94140i −0.134755 0.657384i
\(186\) 0 0
\(187\) 15.0599 20.7282i 1.10129 1.51580i
\(188\) 0 0
\(189\) 24.1357 17.5356i 1.75561 1.27553i
\(190\) 0 0
\(191\) 1.71634 1.71634i 0.124190 0.124190i −0.642280 0.766470i \(-0.722011\pi\)
0.766470 + 0.642280i \(0.222011\pi\)
\(192\) 0 0
\(193\) −0.153502 0.0782131i −0.0110493 0.00562990i 0.448457 0.893804i \(-0.351974\pi\)
−0.459506 + 0.888174i \(0.651974\pi\)
\(194\) 0 0
\(195\) 11.4042 + 10.4191i 0.816670 + 0.746131i
\(196\) 0 0
\(197\) 6.03541 18.5751i 0.430005 1.32342i −0.468114 0.883668i \(-0.655066\pi\)
0.898119 0.439752i \(-0.144934\pi\)
\(198\) 0 0
\(199\) 18.5272 2.93442i 1.31336 0.208015i 0.539828 0.841775i \(-0.318489\pi\)
0.773530 + 0.633760i \(0.218489\pi\)
\(200\) 0 0
\(201\) 3.86024 + 11.8806i 0.272280 + 0.837993i
\(202\) 0 0
\(203\) 17.4668 + 12.6903i 1.22593 + 0.890687i
\(204\) 0 0
\(205\) 14.2975 + 0.763301i 0.998578 + 0.0533112i
\(206\) 0 0
\(207\) −8.69189 6.31503i −0.604128 0.438925i
\(208\) 0 0
\(209\) −10.9008 33.5493i −0.754025 2.32065i
\(210\) 0 0
\(211\) 8.77210 1.38936i 0.603896 0.0956477i 0.153003 0.988226i \(-0.451106\pi\)
0.450893 + 0.892578i \(0.351106\pi\)
\(212\) 0 0
\(213\) −0.627429 + 1.93103i −0.0429907 + 0.132312i
\(214\) 0 0
\(215\) −7.25452 + 7.94037i −0.494754 + 0.541529i
\(216\) 0 0
\(217\) −8.79502 4.48129i −0.597045 0.304210i
\(218\) 0 0
\(219\) −9.78345 + 9.78345i −0.661104 + 0.661104i
\(220\) 0 0
\(221\) −10.3269 + 7.50297i −0.694666 + 0.504704i
\(222\) 0 0
\(223\) 9.09212 12.5142i 0.608853 0.838015i −0.387629 0.921815i \(-0.626706\pi\)
0.996483 + 0.0838008i \(0.0267059\pi\)
\(224\) 0 0
\(225\) −8.27579 + 36.3344i −0.551720 + 2.42229i
\(226\) 0 0
\(227\) −24.5471 3.88788i −1.62925 0.258048i −0.726168 0.687517i \(-0.758701\pi\)
−0.903081 + 0.429470i \(0.858701\pi\)
\(228\) 0 0
\(229\) 3.45303 + 6.77694i 0.228182 + 0.447833i 0.976503 0.215504i \(-0.0691395\pi\)
−0.748321 + 0.663337i \(0.769139\pi\)
\(230\) 0 0
\(231\) 25.6014 + 13.0446i 1.68445 + 0.858269i
\(232\) 0 0
\(233\) 6.28901 0.996081i 0.412007 0.0652554i 0.0530092 0.998594i \(-0.483119\pi\)
0.358997 + 0.933339i \(0.383119\pi\)
\(234\) 0 0
\(235\) 13.2745 0.599169i 0.865934 0.0390855i
\(236\) 0 0
\(237\) 19.7149 1.28062
\(238\) 0 0
\(239\) −14.1850 2.24668i −0.917551 0.145326i −0.320241 0.947336i \(-0.603764\pi\)
−0.597310 + 0.802011i \(0.703764\pi\)
\(240\) 0 0
\(241\) 0.703202 0.228484i 0.0452972 0.0147180i −0.286281 0.958146i \(-0.592419\pi\)
0.331578 + 0.943428i \(0.392419\pi\)
\(242\) 0 0
\(243\) 24.7571 24.7571i 1.58817 1.58817i
\(244\) 0 0
\(245\) −2.50113 + 5.50973i −0.159792 + 0.352004i
\(246\) 0 0
\(247\) 17.5746i 1.11825i
\(248\) 0 0
\(249\) 27.3424 + 27.3424i 1.73276 + 1.73276i
\(250\) 0 0
\(251\) −20.5307 + 6.67083i −1.29589 + 0.421059i −0.874148 0.485659i \(-0.838580\pi\)
−0.421737 + 0.906718i \(0.638580\pi\)
\(252\) 0 0
\(253\) 0.967143 6.10630i 0.0608038 0.383900i
\(254\) 0 0
\(255\) −39.3270 17.8524i −2.46275 1.11796i
\(256\) 0 0
\(257\) 1.27592 + 2.50413i 0.0795894 + 0.156203i 0.927372 0.374142i \(-0.122063\pi\)
−0.847782 + 0.530345i \(0.822063\pi\)
\(258\) 0 0
\(259\) 1.32319 + 8.35426i 0.0822187 + 0.519109i
\(260\) 0 0
\(261\) 69.1889 + 35.2535i 4.28268 + 2.18214i
\(262\) 0 0
\(263\) 20.6070 10.4998i 1.27068 0.647444i 0.317046 0.948410i \(-0.397309\pi\)
0.953635 + 0.300966i \(0.0973089\pi\)
\(264\) 0 0
\(265\) 4.67684 7.08860i 0.287296 0.435449i
\(266\) 0 0
\(267\) −28.2004 + 20.4888i −1.72584 + 1.25389i
\(268\) 0 0
\(269\) −16.2615 11.8147i −0.991483 0.720355i −0.0312379 0.999512i \(-0.509945\pi\)
−0.960245 + 0.279157i \(0.909945\pi\)
\(270\) 0 0
\(271\) −11.3919 + 8.27669i −0.692008 + 0.502773i −0.877319 0.479907i \(-0.840670\pi\)
0.185312 + 0.982680i \(0.440670\pi\)
\(272\) 0 0
\(273\) −10.1223 10.1223i −0.612628 0.612628i
\(274\) 0 0
\(275\) −20.7915 + 5.24901i −1.25377 + 0.316527i
\(276\) 0 0
\(277\) −8.34196 2.71047i −0.501220 0.162856i 0.0474857 0.998872i \(-0.484879\pi\)
−0.548705 + 0.836016i \(0.684879\pi\)
\(278\) 0 0
\(279\) −33.7647 10.9708i −2.02144 0.656806i
\(280\) 0 0
\(281\) 11.4189 1.80858i 0.681197 0.107891i 0.193760 0.981049i \(-0.437932\pi\)
0.487437 + 0.873158i \(0.337932\pi\)
\(282\) 0 0
\(283\) 15.6863 5.09678i 0.932453 0.302972i 0.196888 0.980426i \(-0.436917\pi\)
0.735565 + 0.677454i \(0.236917\pi\)
\(284\) 0 0
\(285\) −51.7111 + 29.3574i −3.06310 + 1.73898i
\(286\) 0 0
\(287\) −13.2043 1.30408i −0.779423 0.0769773i
\(288\) 0 0
\(289\) 10.9856 15.1203i 0.646209 0.889431i
\(290\) 0 0
\(291\) −0.387013 1.19110i −0.0226871 0.0698238i
\(292\) 0 0
\(293\) 1.09051 + 6.88523i 0.0637085 + 0.402239i 0.998849 + 0.0479627i \(0.0152729\pi\)
−0.935141 + 0.354277i \(0.884727\pi\)
\(294\) 0 0
\(295\) −20.5588 + 22.5025i −1.19698 + 1.31014i
\(296\) 0 0
\(297\) 58.7234 + 19.0804i 3.40748 + 1.10716i
\(298\) 0 0
\(299\) −1.39835 + 2.74441i −0.0808685 + 0.158713i
\(300\) 0 0
\(301\) 7.04782 7.04782i 0.406229 0.406229i
\(302\) 0 0
\(303\) 14.4721 + 19.9191i 0.831398 + 1.14432i
\(304\) 0 0
\(305\) 0.865279 0.491235i 0.0495457 0.0281281i
\(306\) 0 0
\(307\) 7.90327 5.74207i 0.451064 0.327717i −0.338952 0.940804i \(-0.610072\pi\)
0.790016 + 0.613087i \(0.210072\pi\)
\(308\) 0 0
\(309\) 6.44332 40.6815i 0.366548 2.31429i
\(310\) 0 0
\(311\) 0.329562 + 0.646803i 0.0186878 + 0.0366768i 0.900162 0.435556i \(-0.143448\pi\)
−0.881474 + 0.472233i \(0.843448\pi\)
\(312\) 0 0
\(313\) 5.23725 10.2787i 0.296027 0.580985i −0.694309 0.719677i \(-0.744290\pi\)
0.990336 + 0.138692i \(0.0442898\pi\)
\(314\) 0 0
\(315\) 9.17976 33.2915i 0.517221 1.87576i
\(316\) 0 0
\(317\) −0.0752101 0.147608i −0.00422422 0.00829050i 0.888885 0.458131i \(-0.151481\pi\)
−0.893109 + 0.449840i \(0.851481\pi\)
\(318\) 0 0
\(319\) 44.6845i 2.50185i
\(320\) 0 0
\(321\) 38.3503 + 6.07409i 2.14051 + 0.339023i
\(322\) 0 0
\(323\) −15.1844 46.7328i −0.844884 2.60028i
\(324\) 0 0
\(325\) 10.6596 + 0.713843i 0.591288 + 0.0395969i
\(326\) 0 0
\(327\) 24.1840i 1.33738i
\(328\) 0 0
\(329\) −12.3142 −0.678903
\(330\) 0 0
\(331\) 1.91409 + 1.91409i 0.105208 + 0.105208i 0.757751 0.652543i \(-0.226298\pi\)
−0.652543 + 0.757751i \(0.726298\pi\)
\(332\) 0 0
\(333\) 9.40094 + 28.9331i 0.515168 + 1.58553i
\(334\) 0 0
\(335\) 7.21151 + 4.75793i 0.394007 + 0.259954i
\(336\) 0 0
\(337\) −9.90226 −0.539411 −0.269705 0.962943i \(-0.586926\pi\)
−0.269705 + 0.962943i \(0.586926\pi\)
\(338\) 0 0
\(339\) 20.3896 10.3890i 1.10741 0.564255i
\(340\) 0 0
\(341\) −3.19588 20.1780i −0.173067 1.09270i
\(342\) 0 0
\(343\) 9.13099 17.9206i 0.493027 0.967620i
\(344\) 0 0
\(345\) −10.4109 + 0.469916i −0.560505 + 0.0252994i
\(346\) 0 0
\(347\) 14.8883 + 2.35808i 0.799246 + 0.126588i 0.542681 0.839939i \(-0.317409\pi\)
0.256565 + 0.966527i \(0.417409\pi\)
\(348\) 0 0
\(349\) −7.53768 10.3747i −0.403483 0.555346i 0.558131 0.829753i \(-0.311519\pi\)
−0.961614 + 0.274406i \(0.911519\pi\)
\(350\) 0 0
\(351\) −24.8870 18.0815i −1.32837 0.965118i
\(352\) 0 0
\(353\) 17.6980 + 24.3592i 0.941970 + 1.29651i 0.955003 + 0.296595i \(0.0958511\pi\)
−0.0130338 + 0.999915i \(0.504149\pi\)
\(354\) 0 0
\(355\) 0.493718 + 1.31460i 0.0262038 + 0.0697719i
\(356\) 0 0
\(357\) 35.6618 + 18.1706i 1.88742 + 0.961689i
\(358\) 0 0
\(359\) −3.24920 + 10.0000i −0.171486 + 0.527781i −0.999456 0.0329927i \(-0.989496\pi\)
0.827969 + 0.560774i \(0.189496\pi\)
\(360\) 0 0
\(361\) −46.2719 15.0347i −2.43536 0.791298i
\(362\) 0 0
\(363\) 3.73942 + 23.6098i 0.196269 + 1.23919i
\(364\) 0 0
\(365\) −1.06925 + 9.50918i −0.0559670 + 0.497733i
\(366\) 0 0
\(367\) −10.3492 7.51913i −0.540223 0.392495i 0.283945 0.958841i \(-0.408357\pi\)
−0.824168 + 0.566345i \(0.808357\pi\)
\(368\) 0 0
\(369\) −47.6404 + 2.79670i −2.48006 + 0.145590i
\(370\) 0 0
\(371\) −4.62588 + 6.36698i −0.240164 + 0.330557i
\(372\) 0 0
\(373\) 15.6502 5.08504i 0.810334 0.263294i 0.125595 0.992082i \(-0.459916\pi\)
0.684739 + 0.728788i \(0.259916\pi\)
\(374\) 0 0
\(375\) 15.7058 + 32.5569i 0.811045 + 1.68123i
\(376\) 0 0
\(377\) 6.87938 21.1726i 0.354306 1.09044i
\(378\) 0 0
\(379\) −5.46388 + 16.8161i −0.280660 + 0.863784i 0.707006 + 0.707208i \(0.250046\pi\)
−0.987666 + 0.156576i \(0.949954\pi\)
\(380\) 0 0
\(381\) 16.1290 31.6550i 0.826314 1.62173i
\(382\) 0 0
\(383\) 1.51852 + 1.51852i 0.0775928 + 0.0775928i 0.744838 0.667245i \(-0.232527\pi\)
−0.667245 + 0.744838i \(0.732527\pi\)
\(384\) 0 0
\(385\) 19.4675 3.99057i 0.992154 0.203378i
\(386\) 0 0
\(387\) 21.0712 29.0020i 1.07111 1.47425i
\(388\) 0 0
\(389\) 7.59759 + 10.4572i 0.385213 + 0.530200i 0.956956 0.290232i \(-0.0937326\pi\)
−0.571743 + 0.820433i \(0.693733\pi\)
\(390\) 0 0
\(391\) 1.34719 8.50584i 0.0681305 0.430159i
\(392\) 0 0
\(393\) 1.00085 0.509957i 0.0504861 0.0257239i
\(394\) 0 0
\(395\) 10.6585 8.50378i 0.536285 0.427871i
\(396\) 0 0
\(397\) −5.24472 + 0.830682i −0.263225 + 0.0416907i −0.286652 0.958035i \(-0.592542\pi\)
0.0234270 + 0.999726i \(0.492542\pi\)
\(398\) 0 0
\(399\) 49.0993 25.0173i 2.45804 1.25243i
\(400\) 0 0
\(401\) 5.68028i 0.283660i 0.989891 + 0.141830i \(0.0452986\pi\)
−0.989891 + 0.141830i \(0.954701\pi\)
\(402\) 0 0
\(403\) −1.59221 + 10.0528i −0.0793137 + 0.500767i
\(404\) 0 0
\(405\) 6.04359 53.7476i 0.300308 2.67074i
\(406\) 0 0
\(407\) −12.3787 + 12.3787i −0.613590 + 0.613590i
\(408\) 0 0
\(409\) 9.40096 0.464848 0.232424 0.972615i \(-0.425334\pi\)
0.232424 + 0.972615i \(0.425334\pi\)
\(410\) 0 0
\(411\) −52.4286 −2.58611
\(412\) 0 0
\(413\) 19.9730 19.9730i 0.982809 0.982809i
\(414\) 0 0
\(415\) 26.5759 + 2.98830i 1.30456 + 0.146690i
\(416\) 0 0
\(417\) −4.63922 + 29.2909i −0.227183 + 1.43438i
\(418\) 0 0
\(419\) 21.3260i 1.04184i −0.853604 0.520922i \(-0.825588\pi\)
0.853604 0.520922i \(-0.174412\pi\)
\(420\) 0 0
\(421\) −25.7075 + 13.0986i −1.25291 + 0.638389i −0.949289 0.314405i \(-0.898195\pi\)
−0.303619 + 0.952793i \(0.598195\pi\)
\(422\) 0 0
\(423\) −43.7448 + 6.92849i −2.12694 + 0.336875i
\(424\) 0 0
\(425\) −28.9618 + 7.31167i −1.40485 + 0.354668i
\(426\) 0 0
\(427\) −0.821576 + 0.418614i −0.0397589 + 0.0202582i
\(428\) 0 0
\(429\) 4.63477 29.2628i 0.223769 1.41282i
\(430\) 0 0
\(431\) −3.34046 4.59775i −0.160904 0.221466i 0.720951 0.692986i \(-0.243705\pi\)
−0.881855 + 0.471520i \(0.843705\pi\)
\(432\) 0 0
\(433\) −6.71198 + 9.23825i −0.322557 + 0.443962i −0.939246 0.343245i \(-0.888474\pi\)
0.616689 + 0.787207i \(0.288474\pi\)
\(434\) 0 0
\(435\) 73.7891 15.1258i 3.53792 0.725225i
\(436\) 0 0
\(437\) −8.38407 8.38407i −0.401064 0.401064i
\(438\) 0 0
\(439\) −13.6324 + 26.7550i −0.650637 + 1.27695i 0.296168 + 0.955136i \(0.404291\pi\)
−0.946804 + 0.321810i \(0.895709\pi\)
\(440\) 0 0
\(441\) 6.23224 19.1809i 0.296773 0.913375i
\(442\) 0 0
\(443\) −11.4356 + 35.1953i −0.543324 + 1.67218i 0.181618 + 0.983369i \(0.441867\pi\)
−0.724942 + 0.688810i \(0.758133\pi\)
\(444\) 0 0
\(445\) −6.40837 + 23.2407i −0.303786 + 1.10172i
\(446\) 0 0
\(447\) −26.5371 + 8.62242i −1.25516 + 0.407827i
\(448\) 0 0
\(449\) 14.7522 20.3047i 0.696201 0.958238i −0.303784 0.952741i \(-0.598250\pi\)
0.999985 0.00549712i \(-0.00174980\pi\)
\(450\) 0 0
\(451\) −13.8798 23.6957i −0.653573 1.11579i
\(452\) 0 0
\(453\) −47.1827 34.2803i −2.21684 1.61063i
\(454\) 0 0
\(455\) −9.83851 1.10628i −0.461236 0.0518632i
\(456\) 0 0
\(457\) −1.04677 6.60904i −0.0489658 0.309158i −1.00000 7.21698e-5i \(-0.999977\pi\)
0.951034 0.309086i \(-0.100023\pi\)
\(458\) 0 0
\(459\) 81.7995 + 26.5783i 3.81807 + 1.24057i
\(460\) 0 0
\(461\) 2.01555 6.20321i 0.0938734 0.288912i −0.893085 0.449888i \(-0.851464\pi\)
0.986958 + 0.160975i \(0.0514640\pi\)
\(462\) 0 0
\(463\) 33.2366 + 16.9349i 1.54464 + 0.787031i 0.998709 0.0508023i \(-0.0161778\pi\)
0.545926 + 0.837833i \(0.316178\pi\)
\(464\) 0 0
\(465\) −32.2388 + 12.1078i −1.49504 + 0.561484i
\(466\) 0 0
\(467\) −10.0345 13.8112i −0.464339 0.639108i 0.511062 0.859544i \(-0.329252\pi\)
−0.975402 + 0.220435i \(0.929252\pi\)
\(468\) 0 0
\(469\) −6.47738 4.70609i −0.299098 0.217307i
\(470\) 0 0
\(471\) −25.9881 35.7696i −1.19747 1.64818i
\(472\) 0 0
\(473\) 20.3747 + 3.22704i 0.936832 + 0.148380i
\(474\) 0 0
\(475\) −15.2936 + 38.1764i −0.701718 + 1.75165i
\(476\) 0 0
\(477\) −12.8506 + 25.2207i −0.588389 + 1.15478i
\(478\) 0 0
\(479\) −1.89880 11.9886i −0.0867585 0.547771i −0.992334 0.123586i \(-0.960560\pi\)
0.905575 0.424185i \(-0.139440\pi\)
\(480\) 0 0
\(481\) 7.77108 3.95957i 0.354331 0.180541i
\(482\) 0 0
\(483\) 9.65775 0.439443
\(484\) 0 0
\(485\) −0.722998 0.477012i −0.0328297 0.0216600i
\(486\) 0 0
\(487\) 5.27994 + 16.2500i 0.239257 + 0.736357i 0.996528 + 0.0832562i \(0.0265320\pi\)
−0.757271 + 0.653100i \(0.773468\pi\)
\(488\) 0 0
\(489\) −11.3227 11.3227i −0.512030 0.512030i
\(490\) 0 0
\(491\) −27.5635 −1.24392 −0.621962 0.783047i \(-0.713664\pi\)
−0.621962 + 0.783047i \(0.713664\pi\)
\(492\) 0 0
\(493\) 62.2438i 2.80332i
\(494\) 0 0
\(495\) 66.9108 25.1293i 3.00742 1.12948i
\(496\) 0 0
\(497\) −0.402137 1.23765i −0.0180383 0.0555162i
\(498\) 0 0
\(499\) 2.15968 + 0.342059i 0.0966805 + 0.0153127i 0.204587 0.978848i \(-0.434415\pi\)
−0.107907 + 0.994161i \(0.534415\pi\)
\(500\) 0 0
\(501\) 56.2083i 2.51120i
\(502\) 0 0
\(503\) 1.42494 + 2.79661i 0.0635350 + 0.124694i 0.920590 0.390530i \(-0.127708\pi\)
−0.857055 + 0.515225i \(0.827708\pi\)
\(504\) 0 0
\(505\) 16.4159 + 4.52649i 0.730496 + 0.201426i
\(506\) 0 0
\(507\) 12.3802 24.2975i 0.549825 1.07909i
\(508\) 0 0
\(509\) 11.3241 + 22.2248i 0.501933 + 0.985099i 0.993454 + 0.114233i \(0.0364411\pi\)
−0.491521 + 0.870866i \(0.663559\pi\)
\(510\) 0 0
\(511\) 1.38723 8.75863i 0.0613675 0.387459i
\(512\) 0 0
\(513\) 95.8019 69.6042i 4.22976 3.07310i
\(514\) 0 0
\(515\) −14.0640 24.7729i −0.619735 1.09162i
\(516\) 0 0
\(517\) −14.9805 20.6189i −0.658842 0.906819i
\(518\) 0 0
\(519\) −17.2450 + 17.2450i −0.756972 + 0.756972i
\(520\) 0 0
\(521\) 3.87796 7.61092i 0.169896 0.333441i −0.790321 0.612692i \(-0.790086\pi\)
0.960218 + 0.279252i \(0.0900864\pi\)
\(522\) 0 0
\(523\) −28.4767 9.25263i −1.24520 0.404589i −0.389000 0.921238i \(-0.627179\pi\)
−0.856198 + 0.516649i \(0.827179\pi\)
\(524\) 0 0
\(525\) −13.1795 30.7965i −0.575202 1.34407i
\(526\) 0 0
\(527\) −4.45174 28.1072i −0.193921 1.22437i
\(528\) 0 0
\(529\) 6.46525 + 19.8980i 0.281098 + 0.865129i
\(530\) 0 0
\(531\) 59.7143 82.1897i 2.59138 3.56673i
\(532\) 0 0
\(533\) 2.92850 + 13.3644i 0.126847 + 0.578878i
\(534\) 0 0
\(535\) 23.3533 13.2581i 1.00965 0.573197i
\(536\) 0 0
\(537\) 6.41273 2.08362i 0.276730 0.0899149i
\(538\) 0 0
\(539\) 11.4626 1.81550i 0.493730 0.0781991i
\(540\) 0 0
\(541\) −37.6147 12.2218i −1.61718 0.525455i −0.645909 0.763415i \(-0.723521\pi\)
−0.971275 + 0.237960i \(0.923521\pi\)
\(542\) 0 0
\(543\) −26.1737 8.50435i −1.12322 0.364957i
\(544\) 0 0
\(545\) 10.4314 + 13.0746i 0.446834 + 0.560052i
\(546\) 0 0
\(547\) −0.344193 0.344193i −0.0147166 0.0147166i 0.699710 0.714427i \(-0.253312\pi\)
−0.714427 + 0.699710i \(0.753312\pi\)
\(548\) 0 0
\(549\) −2.68303 + 1.94934i −0.114509 + 0.0831956i
\(550\) 0 0
\(551\) 69.3308 + 50.3718i 2.95359 + 2.14591i
\(552\) 0 0
\(553\) −10.2226 + 7.42716i −0.434710 + 0.315835i
\(554\) 0 0
\(555\) 24.6316 + 16.2512i 1.04555 + 0.689824i
\(556\) 0 0
\(557\) 25.6426 13.0656i 1.08651 0.553606i 0.183412 0.983036i \(-0.441286\pi\)
0.903100 + 0.429430i \(0.141286\pi\)
\(558\) 0 0
\(559\) −9.15721 4.66583i −0.387309 0.197344i
\(560\) 0 0
\(561\) 12.9586 + 81.8172i 0.547111 + 3.45433i
\(562\) 0 0
\(563\) 11.0703 + 21.7267i 0.466558 + 0.915672i 0.997660 + 0.0683646i \(0.0217781\pi\)
−0.531102 + 0.847308i \(0.678222\pi\)
\(564\) 0 0
\(565\) 6.54205 14.4114i 0.275226 0.606293i
\(566\) 0 0
\(567\) −7.84088 + 49.5054i −0.329286 + 2.07903i
\(568\) 0 0
\(569\) −29.4612 + 9.57252i −1.23508 + 0.401301i −0.852551 0.522644i \(-0.824946\pi\)
−0.382526 + 0.923945i \(0.624946\pi\)
\(570\) 0 0
\(571\) 9.85372 + 9.85372i 0.412365 + 0.412365i 0.882562 0.470196i \(-0.155817\pi\)
−0.470196 + 0.882562i \(0.655817\pi\)
\(572\) 0 0
\(573\) 7.84761i 0.327839i
\(574\) 0 0
\(575\) −5.42575 + 4.74467i −0.226270 + 0.197866i
\(576\) 0 0
\(577\) −11.4980 + 11.4980i −0.478670 + 0.478670i −0.904706 0.426036i \(-0.859910\pi\)
0.426036 + 0.904706i \(0.359910\pi\)
\(578\) 0 0
\(579\) 0.529736 0.172122i 0.0220151 0.00715313i
\(580\) 0 0
\(581\) −24.4783 3.87698i −1.01553 0.160844i
\(582\) 0 0
\(583\) −16.2884 −0.674597
\(584\) 0 0
\(585\) −35.5727 + 1.60564i −1.47075 + 0.0663849i
\(586\) 0 0
\(587\) 33.5144 5.30816i 1.38329 0.219091i 0.579967 0.814640i \(-0.303065\pi\)
0.803319 + 0.595549i \(0.203065\pi\)
\(588\) 0 0
\(589\) −34.9101 17.7876i −1.43845 0.732924i
\(590\) 0 0
\(591\) 28.6676 + 56.2634i 1.17923 + 2.31437i
\(592\) 0 0
\(593\) −15.7642 2.49680i −0.647358 0.102531i −0.175883 0.984411i \(-0.556278\pi\)
−0.471475 + 0.881880i \(0.656278\pi\)
\(594\) 0 0
\(595\) 27.1174 5.55872i 1.11171 0.227885i
\(596\) 0 0
\(597\) −35.6475 + 49.0645i −1.45895 + 2.00808i
\(598\) 0 0
\(599\) −9.24557 + 6.71730i −0.377764 + 0.274461i −0.760423 0.649428i \(-0.775008\pi\)
0.382659 + 0.923890i \(0.375008\pi\)
\(600\) 0 0
\(601\) 2.48030 2.48030i 0.101174 0.101174i −0.654708 0.755882i \(-0.727208\pi\)
0.755882 + 0.654708i \(0.227208\pi\)
\(602\) 0 0
\(603\) −25.6580 13.0734i −1.04488 0.532391i
\(604\) 0 0
\(605\) 12.2054 + 11.1512i 0.496221 + 0.453360i
\(606\) 0 0
\(607\) 7.94215 24.4434i 0.322362 0.992129i −0.650255 0.759716i \(-0.725338\pi\)
0.972617 0.232413i \(-0.0746620\pi\)
\(608\) 0 0
\(609\) −68.9437 + 10.9196i −2.79374 + 0.442485i
\(610\) 0 0
\(611\) 3.92374 + 12.0760i 0.158738 + 0.488544i
\(612\) 0 0
\(613\) −23.4739 17.0548i −0.948101 0.688836i 0.00225583 0.999997i \(-0.499282\pi\)
−0.950357 + 0.311162i \(0.899282\pi\)
\(614\) 0 0
\(615\) −34.4312 + 30.9412i −1.38840 + 1.24767i
\(616\) 0 0
\(617\) −13.8249 10.0444i −0.556571 0.404372i 0.273632 0.961835i \(-0.411775\pi\)
−0.830202 + 0.557462i \(0.811775\pi\)
\(618\) 0 0
\(619\) 3.05607 + 9.40561i 0.122834 + 0.378043i 0.993500 0.113831i \(-0.0363121\pi\)
−0.870666 + 0.491874i \(0.836312\pi\)
\(620\) 0 0
\(621\) 20.4983 3.24661i 0.822569 0.130282i
\(622\) 0 0
\(623\) 6.90382 21.2478i 0.276596 0.851274i
\(624\) 0 0
\(625\) 22.5340 + 10.8267i 0.901361 + 0.433068i
\(626\) 0 0
\(627\) 101.620 + 51.7778i 4.05830 + 2.06781i
\(628\) 0 0
\(629\) −17.2431 + 17.2431i −0.687527 + 0.687527i
\(630\) 0 0
\(631\) −20.8117 + 15.1206i −0.828500 + 0.601940i −0.919135 0.393944i \(-0.871110\pi\)
0.0906346 + 0.995884i \(0.471110\pi\)
\(632\) 0 0
\(633\) −16.8781 + 23.2307i −0.670843 + 0.923336i
\(634\) 0 0
\(635\) −4.93416 24.0706i −0.195806 0.955214i
\(636\) 0 0
\(637\) −5.71076 0.904495i −0.226268 0.0358374i
\(638\) 0 0
\(639\) −2.12490 4.17036i −0.0840599 0.164977i
\(640\) 0 0
\(641\) 10.3734 + 5.28550i 0.409724 + 0.208765i 0.646690 0.762753i \(-0.276153\pi\)
−0.236966 + 0.971518i \(0.576153\pi\)
\(642\) 0 0
\(643\) −34.5471 + 5.47172i −1.36240 + 0.215783i −0.794476 0.607296i \(-0.792254\pi\)
−0.567927 + 0.823079i \(0.692254\pi\)
\(644\) 0 0
\(645\) −1.56796 34.7379i −0.0617382 1.36780i
\(646\) 0 0
\(647\) 2.94741 0.115875 0.0579374 0.998320i \(-0.481548\pi\)
0.0579374 + 0.998320i \(0.481548\pi\)
\(648\) 0 0
\(649\) 57.7406 + 9.14522i 2.26652 + 0.358981i
\(650\) 0 0
\(651\) 30.3517 9.86186i 1.18958 0.386517i
\(652\) 0 0
\(653\) −32.6248 + 32.6248i −1.27671 + 1.27671i −0.334205 + 0.942500i \(0.608468\pi\)
−0.942500 + 0.334205i \(0.891532\pi\)
\(654\) 0 0
\(655\) 0.321124 0.707401i 0.0125473 0.0276404i
\(656\) 0 0
\(657\) 31.8946i 1.24433i
\(658\) 0 0
\(659\) 4.18301 + 4.18301i 0.162947 + 0.162947i 0.783871 0.620924i \(-0.213242\pi\)
−0.620924 + 0.783871i \(0.713242\pi\)
\(660\) 0 0
\(661\) −16.4610 + 5.34850i −0.640259 + 0.208033i −0.611114 0.791543i \(-0.709278\pi\)
−0.0291447 + 0.999575i \(0.509278\pi\)
\(662\) 0 0
\(663\) 6.45605 40.7619i 0.250732 1.58306i
\(664\) 0 0
\(665\) 15.7536 34.7035i 0.610898 1.34574i
\(666\) 0 0
\(667\) 6.81863 + 13.3823i 0.264018 + 0.518165i
\(668\) 0 0
\(669\) 7.82347 + 49.3954i 0.302473 + 1.90974i
\(670\) 0 0
\(671\) −1.70040 0.866396i −0.0656431 0.0334468i
\(672\) 0 0
\(673\) −25.9857 + 13.2404i −1.00168 + 0.510380i −0.876319 0.481732i \(-0.840008\pi\)
−0.125358 + 0.992112i \(0.540008\pi\)
\(674\) 0 0
\(675\) −38.3260 60.9342i −1.47517 2.34536i
\(676\) 0 0
\(677\) 36.4115 26.4545i 1.39941 1.01673i 0.404651 0.914471i \(-0.367393\pi\)
0.994758 0.102259i \(-0.0326071\pi\)
\(678\) 0 0
\(679\) 0.649398 + 0.471815i 0.0249216 + 0.0181066i
\(680\) 0 0
\(681\) 65.0068 47.2302i 2.49106 1.80986i
\(682\) 0 0
\(683\) 19.2696 + 19.2696i 0.737332 + 0.737332i 0.972061 0.234729i \(-0.0754202\pi\)
−0.234729 + 0.972061i \(0.575420\pi\)
\(684\) 0 0
\(685\) −28.3444 + 22.6144i −1.08298 + 0.864052i
\(686\) 0 0
\(687\) −23.3873 7.59899i −0.892280 0.289919i
\(688\) 0 0
\(689\) 7.71782 + 2.50767i 0.294026 + 0.0955347i
\(690\) 0 0
\(691\) −16.0294 + 2.53880i −0.609786 + 0.0965807i −0.453688 0.891161i \(-0.649892\pi\)
−0.156099 + 0.987741i \(0.549892\pi\)
\(692\) 0 0
\(693\) −62.9941 + 20.4680i −2.39295 + 0.777516i
\(694\) 0 0
\(695\) 10.1261 + 17.8366i 0.384107 + 0.676579i
\(696\) 0 0
\(697\) −19.3340 33.0072i −0.732327 1.25024i
\(698\) 0 0
\(699\) −12.1004 + 16.6548i −0.457681 + 0.629943i
\(700\) 0 0
\(701\) −6.36687 19.5952i −0.240473 0.740101i −0.996348 0.0853847i \(-0.972788\pi\)
0.755875 0.654716i \(-0.227212\pi\)
\(702\) 0 0
\(703\) 5.25212 + 33.1606i 0.198088 + 1.25068i
\(704\) 0 0
\(705\) −28.9778 + 31.7174i −1.09137 + 1.19455i
\(706\) 0 0
\(707\) −15.0082 4.87645i −0.564440 0.183398i
\(708\) 0 0
\(709\) 1.98073 3.88740i 0.0743878 0.145994i −0.850817 0.525462i \(-0.823893\pi\)
0.925205 + 0.379467i \(0.123893\pi\)
\(710\) 0 0
\(711\) −32.1359 + 32.1359i −1.20519 + 1.20519i
\(712\) 0 0
\(713\) −4.03618 5.55532i −0.151156 0.208048i
\(714\) 0 0
\(715\) −10.1164 17.8195i −0.378333 0.666410i
\(716\) 0 0
\(717\) 37.5653 27.2928i 1.40290 1.01927i
\(718\) 0 0
\(719\) 1.05966 6.69043i 0.0395186 0.249511i −0.960018 0.279937i \(-0.909686\pi\)
0.999537 + 0.0304261i \(0.00968642\pi\)
\(720\) 0 0
\(721\) 11.9849 + 23.5217i 0.446340 + 0.875992i
\(722\) 0 0
\(723\) −1.08528 + 2.12998i −0.0403619 + 0.0792147i
\(724\) 0 0
\(725\) 33.3682 40.0054i 1.23926 1.48576i
\(726\) 0 0
\(727\) −16.5463 32.4739i −0.613667 1.20439i −0.963533 0.267590i \(-0.913773\pi\)
0.349866 0.936800i \(-0.386227\pi\)
\(728\) 0 0
\(729\) 40.6328i 1.50492i
\(730\) 0 0
\(731\) 28.3812 + 4.49515i 1.04972 + 0.166259i
\(732\) 0 0
\(733\) 10.8344 + 33.3447i 0.400176 + 1.23162i 0.924856 + 0.380316i \(0.124185\pi\)
−0.524680 + 0.851299i \(0.675815\pi\)
\(734\) 0 0
\(735\) −6.87811 18.3141i −0.253703 0.675524i
\(736\) 0 0
\(737\) 16.5708i 0.610394i
\(738\) 0 0
\(739\) −3.48920 −0.128352 −0.0641762 0.997939i \(-0.520442\pi\)
−0.0641762 + 0.997939i \(0.520442\pi\)
\(740\) 0 0
\(741\) −40.1783 40.1783i −1.47599 1.47599i
\(742\) 0 0
\(743\) −3.95950 12.1861i −0.145260 0.447064i 0.851785 0.523892i \(-0.175521\pi\)
−0.997044 + 0.0768286i \(0.975521\pi\)
\(744\) 0 0
\(745\) −10.6275 + 16.1080i −0.389363 + 0.590150i
\(746\) 0 0
\(747\) −89.1379 −3.26139
\(748\) 0 0
\(749\) −22.1738 + 11.2981i −0.810212 + 0.412823i
\(750\) 0 0
\(751\) −5.83834 36.8618i −0.213044 1.34511i −0.829847 0.557990i \(-0.811573\pi\)
0.616803 0.787117i \(-0.288427\pi\)
\(752\) 0 0
\(753\) 31.6858 62.1868i 1.15469 2.26621i
\(754\) 0 0
\(755\) −40.2947 + 1.81877i −1.46648 + 0.0661920i
\(756\) 0 0
\(757\) −41.6506 6.59681i −1.51382 0.239765i −0.656411 0.754404i \(-0.727926\pi\)
−0.857407 + 0.514638i \(0.827926\pi\)
\(758\) 0 0
\(759\) 11.7489 + 16.1710i 0.426458 + 0.586969i
\(760\) 0 0
\(761\) 41.5808 + 30.2102i 1.50730 + 1.09512i 0.967356 + 0.253423i \(0.0815563\pi\)
0.539949 + 0.841698i \(0.318444\pi\)
\(762\) 0 0
\(763\) −9.11078 12.5399i −0.329832 0.453975i
\(764\) 0 0
\(765\) 93.2042 35.0042i 3.36981 1.26558i
\(766\) 0 0
\(767\) −25.9509 13.2226i −0.937033 0.477442i
\(768\) 0 0
\(769\) 9.29877 28.6187i 0.335322 1.03202i −0.631241 0.775587i \(-0.717454\pi\)
0.966563 0.256429i \(-0.0825459\pi\)
\(770\) 0 0
\(771\) −8.64175 2.80788i −0.311225 0.101123i
\(772\) 0 0
\(773\) 0.247425 + 1.56218i 0.00889926 + 0.0561877i 0.991738 0.128277i \(-0.0409448\pi\)
−0.982839 + 0.184465i \(0.940945\pi\)
\(774\) 0 0
\(775\) −12.2067 + 20.4516i −0.438478 + 0.734644i
\(776\) 0 0
\(777\) −22.1241 16.0741i −0.793699 0.576656i
\(778\) 0 0
\(779\) −52.4117 5.17628i −1.87784 0.185460i
\(780\) 0 0
\(781\) 1.58312 2.17897i 0.0566484 0.0779698i
\(782\) 0 0
\(783\) −142.660 + 46.3532i −5.09827 + 1.65653i
\(784\) 0 0
\(785\) −29.4787 8.12843i −1.05214 0.290116i
\(786\) 0 0
\(787\) −4.39615 + 13.5300i −0.156706 + 0.482291i −0.998330 0.0577728i \(-0.981600\pi\)
0.841624 + 0.540064i \(0.181600\pi\)
\(788\) 0 0
\(789\) −23.1066 + 71.1149i −0.822617 + 2.53176i
\(790\) 0 0
\(791\) −6.65863 + 13.0683i −0.236754 + 0.464655i
\(792\) 0 0
\(793\) 0.672302 + 0.672302i 0.0238742 + 0.0238742i
\(794\) 0 0
\(795\) 5.51365 + 26.8976i 0.195549 + 0.953959i
\(796\) 0 0
\(797\) 8.67850 11.9449i 0.307408 0.423111i −0.627162 0.778888i \(-0.715784\pi\)
0.934571 + 0.355777i \(0.115784\pi\)
\(798\) 0 0
\(799\) −20.8673 28.7214i −0.738232 1.01609i
\(800\) 0 0
\(801\) 12.5701 79.3648i 0.444144 2.80422i
\(802\) 0 0
\(803\) 16.3531 8.33232i 0.577088 0.294041i
\(804\) 0 0
\(805\) 5.22126 4.16575i 0.184025 0.146823i
\(806\) 0 0
\(807\) 64.1866 10.1662i 2.25947 0.357866i
\(808\) 0 0
\(809\) 3.77862 1.92531i 0.132849 0.0676901i −0.386302 0.922372i \(-0.626248\pi\)
0.519152 + 0.854682i \(0.326248\pi\)
\(810\) 0 0
\(811\) 22.4587i 0.788633i −0.918975 0.394316i \(-0.870981\pi\)
0.918975 0.394316i \(-0.129019\pi\)
\(812\) 0 0
\(813\) 7.12181 44.9654i 0.249773 1.57700i
\(814\) 0 0
\(815\) −11.0053 1.23748i −0.385499 0.0433469i
\(816\) 0 0
\(817\) 27.9749 27.9749i 0.978718 0.978718i
\(818\) 0 0
\(819\) 32.9992 1.15309
\(820\) 0 0
\(821\) −3.27105 −0.114160 −0.0570802 0.998370i \(-0.518179\pi\)
−0.0570802 + 0.998370i \(0.518179\pi\)
\(822\) 0 0
\(823\) 31.5012 31.5012i 1.09806 1.09806i 0.103425 0.994637i \(-0.467020\pi\)
0.994637 0.103425i \(-0.0329801\pi\)
\(824\) 0 0
\(825\) 35.5325 59.5326i 1.23708 2.07266i
\(826\) 0 0
\(827\) −1.87420 + 11.8332i −0.0651722 + 0.411481i 0.933436 + 0.358744i \(0.116795\pi\)
−0.998608 + 0.0527377i \(0.983205\pi\)
\(828\) 0 0
\(829\) 46.3914i 1.61124i −0.592432 0.805620i \(-0.701832\pi\)
0.592432 0.805620i \(-0.298168\pi\)
\(830\) 0 0
\(831\) 25.2675 12.8745i 0.876521 0.446610i
\(832\) 0 0
\(833\) 15.9670 2.52892i 0.553223 0.0876220i
\(834\) 0 0
\(835\) 24.2447 + 30.3878i 0.839024 + 1.05161i
\(836\) 0 0
\(837\) 61.1054 31.1347i 2.11211 1.07617i
\(838\) 0 0
\(839\) 2.04774 12.9289i 0.0706958 0.446356i −0.926795 0.375567i \(-0.877448\pi\)
0.997491 0.0707894i \(-0.0225518\pi\)
\(840\) 0 0
\(841\) −46.7612 64.3612i −1.61245 2.21935i
\(842\) 0 0
\(843\) −21.9708 + 30.2402i −0.756713 + 1.04153i
\(844\) 0 0
\(845\) −3.78734 18.4760i −0.130288 0.635594i
\(846\) 0 0
\(847\) −10.8335 10.8335i −0.372242 0.372242i
\(848\) 0 0
\(849\) −24.2092 + 47.5133i −0.830859 + 1.63065i
\(850\) 0 0
\(851\) −1.81830 + 5.59616i −0.0623306 + 0.191834i
\(852\) 0 0
\(853\) −10.5242 + 32.3903i −0.360343 + 1.10902i 0.592503 + 0.805568i \(0.298140\pi\)
−0.952846 + 0.303454i \(0.901860\pi\)
\(854\) 0 0
\(855\) 36.4372 132.144i 1.24613 4.51923i
\(856\) 0 0
\(857\) −20.3005 + 6.59605i −0.693453 + 0.225317i −0.634476 0.772943i \(-0.718784\pi\)
−0.0589775 + 0.998259i \(0.518784\pi\)
\(858\) 0 0
\(859\) −30.0079 + 41.3023i −1.02386 + 1.40922i −0.114392 + 0.993436i \(0.536492\pi\)
−0.909464 + 0.415782i \(0.863508\pi\)
\(860\) 0 0
\(861\) 33.1683 27.2056i 1.13037 0.927166i
\(862\) 0 0
\(863\) −41.9354 30.4679i −1.42750 1.03714i −0.990476 0.137689i \(-0.956033\pi\)
−0.437024 0.899450i \(-0.643967\pi\)
\(864\) 0 0
\(865\) −1.88474 + 16.7616i −0.0640829 + 0.569911i
\(866\) 0 0
\(867\) 9.45271 + 59.6821i 0.321031 + 2.02691i
\(868\) 0 0
\(869\) −24.8721 8.08145i −0.843730 0.274144i
\(870\) 0 0
\(871\) −2.55115 + 7.85164i −0.0864425 + 0.266043i
\(872\) 0 0
\(873\) 2.57238 + 1.31069i 0.0870618 + 0.0443602i
\(874\) 0 0
\(875\) −20.4089 10.9646i −0.689947 0.370673i
\(876\) 0 0
\(877\) 25.3770 + 34.9285i 0.856922 + 1.17945i 0.982295 + 0.187342i \(0.0599872\pi\)
−0.125373 + 0.992110i \(0.540013\pi\)
\(878\) 0 0
\(879\) −18.2338 13.2476i −0.615010 0.446831i
\(880\) 0 0
\(881\) 4.84501 + 6.66858i 0.163232 + 0.224670i 0.882796 0.469756i \(-0.155658\pi\)
−0.719564 + 0.694426i \(0.755658\pi\)
\(882\) 0 0
\(883\) 38.5475 + 6.10532i 1.29723 + 0.205460i 0.766588 0.642139i \(-0.221953\pi\)
0.530637 + 0.847599i \(0.321953\pi\)
\(884\) 0 0
\(885\) −4.44348 98.4448i −0.149366 3.30918i
\(886\) 0 0
\(887\) −18.2292 + 35.7768i −0.612076 + 1.20127i 0.352090 + 0.935966i \(0.385471\pi\)
−0.964166 + 0.265300i \(0.914529\pi\)
\(888\) 0 0
\(889\) 3.56207 + 22.4900i 0.119468 + 0.754292i
\(890\) 0 0
\(891\) −92.4307 + 47.0958i −3.09654 + 1.57777i
\(892\) 0 0
\(893\) −48.8787 −1.63566
\(894\) 0 0
\(895\) 2.56816 3.89251i 0.0858442 0.130112i
\(896\) 0 0
\(897\) −3.07731 9.47098i −0.102748 0.316227i
\(898\) 0 0
\(899\) 35.0942 + 35.0942i 1.17046 + 1.17046i
\(900\) 0 0
\(901\) −22.6891 −0.755884
\(902\) 0 0
\(903\) 32.2248i 1.07237i
\(904\) 0 0
\(905\) −17.8185 + 6.69200i −0.592308 + 0.222450i
\(906\) 0 0
\(907\) 3.32161 + 10.2229i 0.110292 + 0.339444i 0.990936 0.134334i \(-0.0428896\pi\)
−0.880644 + 0.473779i \(0.842890\pi\)
\(908\) 0 0
\(909\) −56.0586 8.87881i −1.85935 0.294491i
\(910\) 0 0
\(911\) 7.54029i 0.249821i 0.992168 + 0.124910i \(0.0398644\pi\)
−0.992168 + 0.124910i \(0.960136\pi\)
\(912\) 0 0
\(913\) −23.2869 45.7030i −0.770683 1.51255i
\(914\) 0 0
\(915\) −0.855122 + 3.10120i −0.0282695 + 0.102523i
\(916\) 0 0
\(917\) −0.326846 + 0.641472i −0.0107934 + 0.0211833i
\(918\) 0 0
\(919\) −9.52548 18.6948i −0.314217 0.616685i 0.678845 0.734282i \(-0.262481\pi\)
−0.993061 + 0.117597i \(0.962481\pi\)
\(920\) 0 0
\(921\) −4.94086 + 31.1953i −0.162807 + 1.02792i
\(922\) 0 0
\(923\) −1.08558 + 0.788720i −0.0357323 + 0.0259610i
\(924\) 0 0
\(925\) 20.3263 1.83868i 0.668325 0.0604553i
\(926\) 0 0
\(927\) 55.8093 + 76.8149i 1.83302 + 2.52293i
\(928\) 0 0
\(929\) −26.9178 + 26.9178i −0.883144 + 0.883144i −0.993853 0.110709i \(-0.964688\pi\)
0.110709 + 0.993853i \(0.464688\pi\)
\(930\) 0 0
\(931\) 10.1047 19.8315i 0.331167 0.649952i
\(932\) 0 0
\(933\) −2.23212 0.725260i −0.0730763 0.0237439i
\(934\) 0 0
\(935\) 42.2966 + 38.6432i 1.38325 + 1.26377i
\(936\) 0 0
\(937\) 3.83767 + 24.2301i 0.125371 + 0.791562i 0.967609 + 0.252455i \(0.0812381\pi\)
−0.842237 + 0.539107i \(0.818762\pi\)
\(938\) 0 0
\(939\) 11.5255 + 35.4718i 0.376120 + 1.15758i
\(940\) 0 0
\(941\) −4.76834 + 6.56306i −0.155444 + 0.213950i −0.879635 0.475649i \(-0.842213\pi\)
0.724192 + 0.689599i \(0.242213\pi\)
\(942\) 0 0
\(943\) −7.77262 4.97851i −0.253111 0.162123i
\(944\) 0 0
\(945\) 32.9348 + 58.0125i 1.07137 + 1.88715i
\(946\) 0 0
\(947\) −29.9023 + 9.71584i −0.971694 + 0.315723i −0.751500 0.659733i \(-0.770669\pi\)
−0.220194 + 0.975456i \(0.570669\pi\)
\(948\) 0 0
\(949\) −9.03127 + 1.43041i −0.293168 + 0.0464332i
\(950\) 0 0
\(951\) 0.509396 + 0.165513i 0.0165183 + 0.00536713i
\(952\) 0 0
\(953\) −10.5902 3.44098i −0.343051 0.111464i 0.132424 0.991193i \(-0.457724\pi\)
−0.475475 + 0.879729i \(0.657724\pi\)
\(954\) 0 0
\(955\) 3.38497 + 4.24265i 0.109535 + 0.137289i
\(956\) 0 0
\(957\) −102.156 102.156i −3.30222 3.30222i
\(958\) 0 0
\(959\) 27.1854 19.7513i 0.877861 0.637804i
\(960\) 0 0
\(961\) 6.72219 + 4.88396i 0.216845 + 0.157547i
\(962\) 0 0
\(963\) −72.4131 + 52.6112i −2.33348 + 1.69537i
\(964\) 0 0
\(965\) 0.212148 0.321549i 0.00682929 0.0103510i
\(966\) 0 0
\(967\) 20.4762 10.4331i 0.658469 0.335507i −0.0926256 0.995701i \(-0.529526\pi\)
0.751095 + 0.660194i \(0.229526\pi\)
\(968\) 0 0
\(969\) 141.552 + 72.1245i 4.54732 + 2.31697i
\(970\) 0 0
\(971\) −0.788409 4.97782i −0.0253012 0.159746i 0.971803 0.235795i \(-0.0757694\pi\)
−0.997104 + 0.0760493i \(0.975769\pi\)
\(972\) 0 0
\(973\) −8.62916 16.9357i −0.276638 0.542933i
\(974\) 0 0
\(975\) −26.0014 + 22.7375i −0.832712 + 0.728184i
\(976\) 0 0
\(977\) −6.24192 + 39.4099i −0.199697 + 1.26084i 0.660482 + 0.750842i \(0.270352\pi\)
−0.860179 + 0.509993i \(0.829648\pi\)
\(978\) 0 0
\(979\) 43.9760 14.2887i 1.40548 0.456668i
\(980\) 0 0
\(981\) −39.4206 39.4206i −1.25860 1.25860i
\(982\) 0 0
\(983\) 4.22330i 0.134702i −0.997729 0.0673512i \(-0.978545\pi\)
0.997729 0.0673512i \(-0.0214548\pi\)
\(984\) 0 0
\(985\) 39.7671 + 18.0522i 1.26708 + 0.575191i
\(986\) 0 0
\(987\) 28.1521 28.1521i 0.896091 0.896091i
\(988\) 0 0
\(989\) 6.59434 2.14263i 0.209688 0.0681317i
\(990\) 0 0
\(991\) −24.0685 3.81208i −0.764561 0.121095i −0.238039 0.971256i \(-0.576504\pi\)
−0.526523 + 0.850161i \(0.676504\pi\)
\(992\) 0 0
\(993\) −8.75182 −0.277731
\(994\) 0 0
\(995\) 1.89131 + 41.9018i 0.0599587 + 1.32838i
\(996\) 0 0
\(997\) 4.52762 0.717104i 0.143391 0.0227109i −0.0843263 0.996438i \(-0.526874\pi\)
0.227717 + 0.973727i \(0.426874\pi\)
\(998\) 0 0
\(999\) −52.3615 26.6795i −1.65664 0.844102i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bq.a.49.1 176
5.4 even 2 inner 820.2.bq.a.49.22 yes 176
41.36 even 20 inner 820.2.bq.a.569.22 yes 176
205.159 even 20 inner 820.2.bq.a.569.1 yes 176
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bq.a.49.1 176 1.1 even 1 trivial
820.2.bq.a.49.22 yes 176 5.4 even 2 inner
820.2.bq.a.569.1 yes 176 205.159 even 20 inner
820.2.bq.a.569.22 yes 176 41.36 even 20 inner