Properties

Label 820.2.bo.b.21.5
Level $820$
Weight $2$
Character 820.21
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 21.5
Character \(\chi\) \(=\) 820.21
Dual form 820.2.bo.b.781.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.335549 + 0.335549i) q^{3} +(0.587785 - 0.809017i) q^{5} +(-1.60673 + 3.15338i) q^{7} -2.77481i q^{9} +(-2.50592 - 0.396899i) q^{11} +(-5.67658 + 2.89236i) q^{13} +(0.468696 - 0.0742341i) q^{15} +(-1.22640 + 7.74315i) q^{17} +(6.40838 + 3.26523i) q^{19} +(-1.59725 + 0.518977i) q^{21} +(-1.77180 + 5.45303i) q^{23} +(-0.309017 - 0.951057i) q^{25} +(1.93773 - 1.93773i) q^{27} +(-0.175572 - 1.10852i) q^{29} +(1.92551 - 1.39897i) q^{31} +(-0.707681 - 0.974039i) q^{33} +(1.60673 + 3.15338i) q^{35} +(-9.02710 - 6.55857i) q^{37} +(-2.87530 - 0.934242i) q^{39} +(-2.64208 + 5.83261i) q^{41} +(9.56664 + 3.10839i) q^{43} +(-2.24487 - 1.63099i) q^{45} +(-4.33116 - 8.50037i) q^{47} +(-3.24772 - 4.47011i) q^{49} +(-3.00972 + 2.18669i) q^{51} +(0.794447 + 5.01594i) q^{53} +(-1.79404 + 1.79404i) q^{55} +(1.05468 + 3.24597i) q^{57} +(-2.65621 + 8.17497i) q^{59} +(4.00604 - 1.30164i) q^{61} +(8.75003 + 4.45836i) q^{63} +(-0.996641 + 6.29254i) q^{65} +(2.69023 - 0.426091i) q^{67} +(-2.42428 + 1.23523i) q^{69} +(3.25817 + 0.516043i) q^{71} +5.65957i q^{73} +(0.215436 - 0.422816i) q^{75} +(5.27790 - 7.26441i) q^{77} +(-3.23457 - 3.23457i) q^{79} -7.02403 q^{81} -6.85729 q^{83} +(5.54349 + 5.54349i) q^{85} +(0.313049 - 0.430875i) q^{87} +(-3.16286 + 6.20747i) q^{89} -22.5476i q^{91} +(1.11553 + 0.176682i) q^{93} +(6.40838 - 3.26523i) q^{95} +(-0.669208 + 0.105992i) q^{97} +(-1.10132 + 6.95347i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.335549 + 0.335549i 0.193729 + 0.193729i 0.797305 0.603576i \(-0.206258\pi\)
−0.603576 + 0.797305i \(0.706258\pi\)
\(4\) 0 0
\(5\) 0.587785 0.809017i 0.262866 0.361803i
\(6\) 0 0
\(7\) −1.60673 + 3.15338i −0.607285 + 1.19186i 0.358745 + 0.933436i \(0.383205\pi\)
−0.966030 + 0.258429i \(0.916795\pi\)
\(8\) 0 0
\(9\) 2.77481i 0.924938i
\(10\) 0 0
\(11\) −2.50592 0.396899i −0.755564 0.119670i −0.233243 0.972418i \(-0.574934\pi\)
−0.522321 + 0.852749i \(0.674934\pi\)
\(12\) 0 0
\(13\) −5.67658 + 2.89236i −1.57440 + 0.802197i −0.999867 0.0162837i \(-0.994817\pi\)
−0.574534 + 0.818481i \(0.694817\pi\)
\(14\) 0 0
\(15\) 0.468696 0.0742341i 0.121017 0.0191672i
\(16\) 0 0
\(17\) −1.22640 + 7.74315i −0.297445 + 1.87799i 0.157571 + 0.987508i \(0.449634\pi\)
−0.455016 + 0.890483i \(0.650366\pi\)
\(18\) 0 0
\(19\) 6.40838 + 3.26523i 1.47018 + 0.749096i 0.991648 0.128972i \(-0.0411677\pi\)
0.478536 + 0.878068i \(0.341168\pi\)
\(20\) 0 0
\(21\) −1.59725 + 0.518977i −0.348548 + 0.113250i
\(22\) 0 0
\(23\) −1.77180 + 5.45303i −0.369445 + 1.13704i 0.577705 + 0.816246i \(0.303948\pi\)
−0.947150 + 0.320790i \(0.896052\pi\)
\(24\) 0 0
\(25\) −0.309017 0.951057i −0.0618034 0.190211i
\(26\) 0 0
\(27\) 1.93773 1.93773i 0.372917 0.372917i
\(28\) 0 0
\(29\) −0.175572 1.10852i −0.0326029 0.205846i 0.966010 0.258506i \(-0.0832302\pi\)
−0.998613 + 0.0526596i \(0.983230\pi\)
\(30\) 0 0
\(31\) 1.92551 1.39897i 0.345832 0.251262i −0.401286 0.915953i \(-0.631437\pi\)
0.747119 + 0.664691i \(0.231437\pi\)
\(32\) 0 0
\(33\) −0.707681 0.974039i −0.123191 0.169558i
\(34\) 0 0
\(35\) 1.60673 + 3.15338i 0.271586 + 0.533018i
\(36\) 0 0
\(37\) −9.02710 6.55857i −1.48405 1.07822i −0.976225 0.216759i \(-0.930451\pi\)
−0.507820 0.861463i \(-0.669549\pi\)
\(38\) 0 0
\(39\) −2.87530 0.934242i −0.460417 0.149598i
\(40\) 0 0
\(41\) −2.64208 + 5.83261i −0.412624 + 0.910901i
\(42\) 0 0
\(43\) 9.56664 + 3.10839i 1.45890 + 0.474025i 0.927734 0.373243i \(-0.121754\pi\)
0.531165 + 0.847268i \(0.321754\pi\)
\(44\) 0 0
\(45\) −2.24487 1.63099i −0.334646 0.243134i
\(46\) 0 0
\(47\) −4.33116 8.50037i −0.631764 1.23991i −0.955843 0.293877i \(-0.905054\pi\)
0.324079 0.946030i \(-0.394946\pi\)
\(48\) 0 0
\(49\) −3.24772 4.47011i −0.463960 0.638586i
\(50\) 0 0
\(51\) −3.00972 + 2.18669i −0.421446 + 0.306198i
\(52\) 0 0
\(53\) 0.794447 + 5.01594i 0.109126 + 0.688992i 0.980225 + 0.197886i \(0.0634075\pi\)
−0.871099 + 0.491107i \(0.836593\pi\)
\(54\) 0 0
\(55\) −1.79404 + 1.79404i −0.241909 + 0.241909i
\(56\) 0 0
\(57\) 1.05468 + 3.24597i 0.139696 + 0.429940i
\(58\) 0 0
\(59\) −2.65621 + 8.17497i −0.345809 + 1.06429i 0.615340 + 0.788262i \(0.289019\pi\)
−0.961149 + 0.276029i \(0.910981\pi\)
\(60\) 0 0
\(61\) 4.00604 1.30164i 0.512921 0.166658i −0.0411093 0.999155i \(-0.513089\pi\)
0.554030 + 0.832497i \(0.313089\pi\)
\(62\) 0 0
\(63\) 8.75003 + 4.45836i 1.10240 + 0.561701i
\(64\) 0 0
\(65\) −0.996641 + 6.29254i −0.123618 + 0.780494i
\(66\) 0 0
\(67\) 2.69023 0.426091i 0.328664 0.0520553i 0.0100781 0.999949i \(-0.496792\pi\)
0.318586 + 0.947894i \(0.396792\pi\)
\(68\) 0 0
\(69\) −2.42428 + 1.23523i −0.291849 + 0.148705i
\(70\) 0 0
\(71\) 3.25817 + 0.516043i 0.386673 + 0.0612430i 0.346745 0.937959i \(-0.387287\pi\)
0.0399285 + 0.999203i \(0.487287\pi\)
\(72\) 0 0
\(73\) 5.65957i 0.662403i 0.943560 + 0.331201i \(0.107454\pi\)
−0.943560 + 0.331201i \(0.892546\pi\)
\(74\) 0 0
\(75\) 0.215436 0.422816i 0.0248764 0.0488226i
\(76\) 0 0
\(77\) 5.27790 7.26441i 0.601473 0.827856i
\(78\) 0 0
\(79\) −3.23457 3.23457i −0.363918 0.363918i 0.501335 0.865253i \(-0.332842\pi\)
−0.865253 + 0.501335i \(0.832842\pi\)
\(80\) 0 0
\(81\) −7.02403 −0.780448
\(82\) 0 0
\(83\) −6.85729 −0.752685 −0.376343 0.926481i \(-0.622818\pi\)
−0.376343 + 0.926481i \(0.622818\pi\)
\(84\) 0 0
\(85\) 5.54349 + 5.54349i 0.601276 + 0.601276i
\(86\) 0 0
\(87\) 0.313049 0.430875i 0.0335623 0.0461946i
\(88\) 0 0
\(89\) −3.16286 + 6.20747i −0.335263 + 0.657990i −0.995674 0.0929136i \(-0.970382\pi\)
0.660411 + 0.750904i \(0.270382\pi\)
\(90\) 0 0
\(91\) 22.5476i 2.36364i
\(92\) 0 0
\(93\) 1.11553 + 0.176682i 0.115675 + 0.0183211i
\(94\) 0 0
\(95\) 6.40838 3.26523i 0.657486 0.335006i
\(96\) 0 0
\(97\) −0.669208 + 0.105992i −0.0679477 + 0.0107619i −0.190316 0.981723i \(-0.560951\pi\)
0.122368 + 0.992485i \(0.460951\pi\)
\(98\) 0 0
\(99\) −1.10132 + 6.95347i −0.110687 + 0.698850i
\(100\) 0 0
\(101\) −1.55392 0.791759i −0.154620 0.0787830i 0.374968 0.927038i \(-0.377654\pi\)
−0.529588 + 0.848255i \(0.677654\pi\)
\(102\) 0 0
\(103\) −3.09793 + 1.00658i −0.305248 + 0.0991810i −0.457636 0.889140i \(-0.651304\pi\)
0.152388 + 0.988321i \(0.451304\pi\)
\(104\) 0 0
\(105\) −0.518977 + 1.59725i −0.0506470 + 0.155875i
\(106\) 0 0
\(107\) −4.37269 13.4577i −0.422724 1.30101i −0.905157 0.425077i \(-0.860247\pi\)
0.482434 0.875932i \(-0.339753\pi\)
\(108\) 0 0
\(109\) 11.7506 11.7506i 1.12550 1.12550i 0.134603 0.990900i \(-0.457024\pi\)
0.990900 0.134603i \(-0.0429760\pi\)
\(110\) 0 0
\(111\) −0.828312 5.22975i −0.0786199 0.496386i
\(112\) 0 0
\(113\) 7.11657 5.17049i 0.669470 0.486399i −0.200378 0.979719i \(-0.564217\pi\)
0.869848 + 0.493320i \(0.164217\pi\)
\(114\) 0 0
\(115\) 3.37016 + 4.63862i 0.314269 + 0.432554i
\(116\) 0 0
\(117\) 8.02577 + 15.7515i 0.741983 + 1.45622i
\(118\) 0 0
\(119\) −22.4466 16.3084i −2.05768 1.49499i
\(120\) 0 0
\(121\) −4.33950 1.40999i −0.394500 0.128181i
\(122\) 0 0
\(123\) −2.84368 + 1.07058i −0.256406 + 0.0965309i
\(124\) 0 0
\(125\) −0.951057 0.309017i −0.0850651 0.0276393i
\(126\) 0 0
\(127\) −2.40858 1.74994i −0.213727 0.155282i 0.475771 0.879569i \(-0.342169\pi\)
−0.689498 + 0.724287i \(0.742169\pi\)
\(128\) 0 0
\(129\) 2.16706 + 4.25309i 0.190799 + 0.374464i
\(130\) 0 0
\(131\) 1.89615 + 2.60982i 0.165667 + 0.228021i 0.883777 0.467909i \(-0.154992\pi\)
−0.718110 + 0.695930i \(0.754992\pi\)
\(132\) 0 0
\(133\) −20.5930 + 14.9617i −1.78564 + 1.29734i
\(134\) 0 0
\(135\) −0.428688 2.70663i −0.0368956 0.232950i
\(136\) 0 0
\(137\) 4.26084 4.26084i 0.364028 0.364028i −0.501265 0.865294i \(-0.667132\pi\)
0.865294 + 0.501265i \(0.167132\pi\)
\(138\) 0 0
\(139\) 5.47195 + 16.8409i 0.464125 + 1.42843i 0.860080 + 0.510159i \(0.170414\pi\)
−0.395955 + 0.918270i \(0.629586\pi\)
\(140\) 0 0
\(141\) 1.39898 4.30561i 0.117815 0.362598i
\(142\) 0 0
\(143\) 15.3731 4.99501i 1.28556 0.417704i
\(144\) 0 0
\(145\) −1.00001 0.509529i −0.0830461 0.0423141i
\(146\) 0 0
\(147\) 0.410170 2.58971i 0.0338302 0.213596i
\(148\) 0 0
\(149\) −8.90861 + 1.41099i −0.729822 + 0.115592i −0.510277 0.860010i \(-0.670457\pi\)
−0.219545 + 0.975602i \(0.570457\pi\)
\(150\) 0 0
\(151\) 7.20210 3.66966i 0.586099 0.298632i −0.135684 0.990752i \(-0.543323\pi\)
0.721783 + 0.692120i \(0.243323\pi\)
\(152\) 0 0
\(153\) 21.4858 + 3.40302i 1.73703 + 0.275118i
\(154\) 0 0
\(155\) 2.38006i 0.191171i
\(156\) 0 0
\(157\) −0.641644 + 1.25930i −0.0512088 + 0.100503i −0.915193 0.403016i \(-0.867962\pi\)
0.863984 + 0.503519i \(0.167962\pi\)
\(158\) 0 0
\(159\) −1.41652 + 1.94967i −0.112337 + 0.154619i
\(160\) 0 0
\(161\) −14.3487 14.3487i −1.13083 1.13083i
\(162\) 0 0
\(163\) 17.6003 1.37856 0.689280 0.724495i \(-0.257927\pi\)
0.689280 + 0.724495i \(0.257927\pi\)
\(164\) 0 0
\(165\) −1.20398 −0.0937296
\(166\) 0 0
\(167\) 5.00032 + 5.00032i 0.386936 + 0.386936i 0.873593 0.486657i \(-0.161784\pi\)
−0.486657 + 0.873593i \(0.661784\pi\)
\(168\) 0 0
\(169\) 16.2166 22.3203i 1.24743 1.71694i
\(170\) 0 0
\(171\) 9.06042 17.7821i 0.692867 1.35983i
\(172\) 0 0
\(173\) 9.02118i 0.685867i −0.939360 0.342934i \(-0.888579\pi\)
0.939360 0.342934i \(-0.111421\pi\)
\(174\) 0 0
\(175\) 3.49555 + 0.553640i 0.264238 + 0.0418512i
\(176\) 0 0
\(177\) −3.63439 + 1.85181i −0.273178 + 0.139191i
\(178\) 0 0
\(179\) 17.7104 2.80505i 1.32373 0.209659i 0.545753 0.837946i \(-0.316244\pi\)
0.777982 + 0.628287i \(0.216244\pi\)
\(180\) 0 0
\(181\) −0.699509 + 4.41652i −0.0519941 + 0.328278i 0.947957 + 0.318398i \(0.103145\pi\)
−0.999951 + 0.00987963i \(0.996855\pi\)
\(182\) 0 0
\(183\) 1.78099 + 0.907458i 0.131654 + 0.0670812i
\(184\) 0 0
\(185\) −10.6120 + 3.44804i −0.780209 + 0.253505i
\(186\) 0 0
\(187\) 6.14650 18.9170i 0.449477 1.38335i
\(188\) 0 0
\(189\) 2.99700 + 9.22381i 0.217999 + 0.670933i
\(190\) 0 0
\(191\) 8.76921 8.76921i 0.634518 0.634518i −0.314680 0.949198i \(-0.601897\pi\)
0.949198 + 0.314680i \(0.101897\pi\)
\(192\) 0 0
\(193\) 2.68951 + 16.9809i 0.193595 + 1.22231i 0.872695 + 0.488266i \(0.162371\pi\)
−0.679099 + 0.734046i \(0.737629\pi\)
\(194\) 0 0
\(195\) −2.44588 + 1.77703i −0.175153 + 0.127256i
\(196\) 0 0
\(197\) −13.0478 17.9587i −0.929617 1.27951i −0.960009 0.279969i \(-0.909676\pi\)
0.0303923 0.999538i \(-0.490324\pi\)
\(198\) 0 0
\(199\) 6.61439 + 12.9815i 0.468881 + 0.920232i 0.997452 + 0.0713421i \(0.0227282\pi\)
−0.528571 + 0.848889i \(0.677272\pi\)
\(200\) 0 0
\(201\) 1.04568 + 0.759730i 0.0737565 + 0.0535873i
\(202\) 0 0
\(203\) 3.77767 + 1.22744i 0.265140 + 0.0861493i
\(204\) 0 0
\(205\) 3.16571 + 5.56582i 0.221103 + 0.388733i
\(206\) 0 0
\(207\) 15.1311 + 4.91641i 1.05169 + 0.341714i
\(208\) 0 0
\(209\) −14.7629 10.7259i −1.02117 0.741926i
\(210\) 0 0
\(211\) 5.15430 + 10.1159i 0.354837 + 0.696406i 0.997569 0.0696844i \(-0.0221992\pi\)
−0.642732 + 0.766091i \(0.722199\pi\)
\(212\) 0 0
\(213\) 0.920117 + 1.26643i 0.0630454 + 0.0867745i
\(214\) 0 0
\(215\) 8.13787 5.91251i 0.554998 0.403230i
\(216\) 0 0
\(217\) 1.31770 + 8.31962i 0.0894512 + 0.564773i
\(218\) 0 0
\(219\) −1.89906 + 1.89906i −0.128327 + 0.128327i
\(220\) 0 0
\(221\) −15.4343 47.5018i −1.03822 3.19532i
\(222\) 0 0
\(223\) −0.374285 + 1.15193i −0.0250639 + 0.0771389i −0.962806 0.270193i \(-0.912912\pi\)
0.937742 + 0.347332i \(0.112912\pi\)
\(224\) 0 0
\(225\) −2.63900 + 0.857465i −0.175934 + 0.0571643i
\(226\) 0 0
\(227\) 1.44758 + 0.737581i 0.0960795 + 0.0489550i 0.501370 0.865233i \(-0.332830\pi\)
−0.405290 + 0.914188i \(0.632830\pi\)
\(228\) 0 0
\(229\) −1.45104 + 9.16149i −0.0958872 + 0.605408i 0.892215 + 0.451611i \(0.149150\pi\)
−0.988102 + 0.153798i \(0.950850\pi\)
\(230\) 0 0
\(231\) 4.20856 0.666570i 0.276903 0.0438571i
\(232\) 0 0
\(233\) −4.82792 + 2.45995i −0.316287 + 0.161156i −0.604926 0.796282i \(-0.706797\pi\)
0.288639 + 0.957438i \(0.406797\pi\)
\(234\) 0 0
\(235\) −9.42274 1.49242i −0.614672 0.0973544i
\(236\) 0 0
\(237\) 2.17071i 0.141003i
\(238\) 0 0
\(239\) 0.110990 0.217830i 0.00717935 0.0140903i −0.887389 0.461021i \(-0.847483\pi\)
0.894568 + 0.446931i \(0.147483\pi\)
\(240\) 0 0
\(241\) 1.02694 1.41346i 0.0661507 0.0910487i −0.774660 0.632378i \(-0.782079\pi\)
0.840810 + 0.541330i \(0.182079\pi\)
\(242\) 0 0
\(243\) −8.17010 8.17010i −0.524112 0.524112i
\(244\) 0 0
\(245\) −5.52535 −0.353002
\(246\) 0 0
\(247\) −45.8220 −2.91558
\(248\) 0 0
\(249\) −2.30096 2.30096i −0.145817 0.145817i
\(250\) 0 0
\(251\) −13.1716 + 18.1291i −0.831382 + 1.14430i 0.156282 + 0.987713i \(0.450049\pi\)
−0.987664 + 0.156587i \(0.949951\pi\)
\(252\) 0 0
\(253\) 6.60429 12.9616i 0.415208 0.814892i
\(254\) 0 0
\(255\) 3.72022i 0.232969i
\(256\) 0 0
\(257\) −1.60838 0.254742i −0.100328 0.0158904i 0.106069 0.994359i \(-0.466174\pi\)
−0.206397 + 0.978468i \(0.566174\pi\)
\(258\) 0 0
\(259\) 35.1857 17.9280i 2.18633 1.11399i
\(260\) 0 0
\(261\) −3.07593 + 0.487179i −0.190395 + 0.0301556i
\(262\) 0 0
\(263\) −2.67291 + 16.8761i −0.164818 + 1.04062i 0.757117 + 0.653279i \(0.226607\pi\)
−0.921936 + 0.387343i \(0.873393\pi\)
\(264\) 0 0
\(265\) 4.52494 + 2.30557i 0.277965 + 0.141630i
\(266\) 0 0
\(267\) −3.14421 + 1.02161i −0.192422 + 0.0625218i
\(268\) 0 0
\(269\) −3.07834 + 9.47417i −0.187690 + 0.577650i −0.999984 0.00559748i \(-0.998218\pi\)
0.812294 + 0.583248i \(0.198218\pi\)
\(270\) 0 0
\(271\) 4.22824 + 13.0132i 0.256847 + 0.790494i 0.993460 + 0.114180i \(0.0364240\pi\)
−0.736613 + 0.676315i \(0.763576\pi\)
\(272\) 0 0
\(273\) 7.56584 7.56584i 0.457905 0.457905i
\(274\) 0 0
\(275\) 0.396899 + 2.50592i 0.0239339 + 0.151113i
\(276\) 0 0
\(277\) −1.26424 + 0.918523i −0.0759607 + 0.0551887i −0.625118 0.780531i \(-0.714949\pi\)
0.549157 + 0.835719i \(0.314949\pi\)
\(278\) 0 0
\(279\) −3.88187 5.34294i −0.232402 0.319873i
\(280\) 0 0
\(281\) 0.0890693 + 0.174808i 0.00531343 + 0.0104282i 0.893648 0.448769i \(-0.148137\pi\)
−0.888335 + 0.459197i \(0.848137\pi\)
\(282\) 0 0
\(283\) −2.20437 1.60157i −0.131036 0.0952035i 0.520336 0.853961i \(-0.325807\pi\)
−0.651373 + 0.758758i \(0.725807\pi\)
\(284\) 0 0
\(285\) 3.24597 + 1.05468i 0.192275 + 0.0624739i
\(286\) 0 0
\(287\) −14.1473 17.7029i −0.835090 1.04497i
\(288\) 0 0
\(289\) −42.2844 13.7390i −2.48732 0.808179i
\(290\) 0 0
\(291\) −0.260117 0.188986i −0.0152484 0.0110786i
\(292\) 0 0
\(293\) 5.84808 + 11.4775i 0.341649 + 0.670523i 0.996350 0.0853646i \(-0.0272055\pi\)
−0.654701 + 0.755888i \(0.727206\pi\)
\(294\) 0 0
\(295\) 5.05241 + 6.95405i 0.294163 + 0.404880i
\(296\) 0 0
\(297\) −5.62489 + 4.08672i −0.326389 + 0.237136i
\(298\) 0 0
\(299\) −5.71439 36.0793i −0.330472 2.08652i
\(300\) 0 0
\(301\) −25.1729 + 25.1729i −1.45094 + 1.45094i
\(302\) 0 0
\(303\) −0.255741 0.787089i −0.0146919 0.0452171i
\(304\) 0 0
\(305\) 1.30164 4.00604i 0.0745318 0.229385i
\(306\) 0 0
\(307\) 26.4900 8.60713i 1.51187 0.491235i 0.568413 0.822743i \(-0.307558\pi\)
0.943452 + 0.331508i \(0.107558\pi\)
\(308\) 0 0
\(309\) −1.37726 0.701750i −0.0783497 0.0399211i
\(310\) 0 0
\(311\) 1.79605 11.3398i 0.101845 0.643022i −0.882972 0.469425i \(-0.844461\pi\)
0.984817 0.173596i \(-0.0555388\pi\)
\(312\) 0 0
\(313\) 18.0866 2.86464i 1.02232 0.161919i 0.377302 0.926090i \(-0.376852\pi\)
0.645013 + 0.764171i \(0.276852\pi\)
\(314\) 0 0
\(315\) 8.75003 4.45836i 0.493009 0.251200i
\(316\) 0 0
\(317\) 23.3600 + 3.69986i 1.31203 + 0.207805i 0.772959 0.634456i \(-0.218776\pi\)
0.539070 + 0.842261i \(0.318776\pi\)
\(318\) 0 0
\(319\) 2.84754i 0.159432i
\(320\) 0 0
\(321\) 3.04848 5.98298i 0.170150 0.333938i
\(322\) 0 0
\(323\) −33.1424 + 45.6166i −1.84409 + 2.53818i
\(324\) 0 0
\(325\) 4.50496 + 4.50496i 0.249890 + 0.249890i
\(326\) 0 0
\(327\) 7.88580 0.436086
\(328\) 0 0
\(329\) 33.7639 1.86146
\(330\) 0 0
\(331\) −0.482730 0.482730i −0.0265332 0.0265332i 0.693716 0.720249i \(-0.255972\pi\)
−0.720249 + 0.693716i \(0.755972\pi\)
\(332\) 0 0
\(333\) −18.1988 + 25.0485i −0.997289 + 1.37265i
\(334\) 0 0
\(335\) 1.23656 2.42689i 0.0675607 0.132595i
\(336\) 0 0
\(337\) 14.7211i 0.801910i 0.916098 + 0.400955i \(0.131322\pi\)
−0.916098 + 0.400955i \(0.868678\pi\)
\(338\) 0 0
\(339\) 4.12291 + 0.653004i 0.223926 + 0.0354663i
\(340\) 0 0
\(341\) −5.38043 + 2.74147i −0.291367 + 0.148459i
\(342\) 0 0
\(343\) −5.15469 + 0.816423i −0.278327 + 0.0440827i
\(344\) 0 0
\(345\) −0.425633 + 2.68734i −0.0229153 + 0.144681i
\(346\) 0 0
\(347\) 21.3176 + 10.8619i 1.14439 + 0.583095i 0.920199 0.391450i \(-0.128026\pi\)
0.224190 + 0.974546i \(0.428026\pi\)
\(348\) 0 0
\(349\) 31.6268 10.2762i 1.69295 0.550071i 0.705594 0.708616i \(-0.250680\pi\)
0.987352 + 0.158545i \(0.0506803\pi\)
\(350\) 0 0
\(351\) −5.39507 + 16.6043i −0.287968 + 0.886273i
\(352\) 0 0
\(353\) 3.34190 + 10.2853i 0.177871 + 0.547432i 0.999753 0.0222267i \(-0.00707557\pi\)
−0.821882 + 0.569658i \(0.807076\pi\)
\(354\) 0 0
\(355\) 2.33259 2.33259i 0.123801 0.123801i
\(356\) 0 0
\(357\) −2.05966 13.0042i −0.109009 0.688256i
\(358\) 0 0
\(359\) −0.598706 + 0.434986i −0.0315985 + 0.0229577i −0.603472 0.797384i \(-0.706217\pi\)
0.571874 + 0.820342i \(0.306217\pi\)
\(360\) 0 0
\(361\) 19.2377 + 26.4784i 1.01251 + 1.39360i
\(362\) 0 0
\(363\) −0.982995 1.92924i −0.0515939 0.101259i
\(364\) 0 0
\(365\) 4.57869 + 3.32661i 0.239660 + 0.174123i
\(366\) 0 0
\(367\) 2.52952 + 0.821891i 0.132040 + 0.0429023i 0.374291 0.927311i \(-0.377886\pi\)
−0.242252 + 0.970213i \(0.577886\pi\)
\(368\) 0 0
\(369\) 16.1844 + 7.33129i 0.842527 + 0.381652i
\(370\) 0 0
\(371\) −17.0936 5.55405i −0.887456 0.288352i
\(372\) 0 0
\(373\) 17.8654 + 12.9800i 0.925037 + 0.672079i 0.944773 0.327727i \(-0.106282\pi\)
−0.0197358 + 0.999805i \(0.506282\pi\)
\(374\) 0 0
\(375\) −0.215436 0.422816i −0.0111251 0.0218341i
\(376\) 0 0
\(377\) 4.20288 + 5.78477i 0.216459 + 0.297931i
\(378\) 0 0
\(379\) 8.73942 6.34956i 0.448914 0.326155i −0.340253 0.940334i \(-0.610513\pi\)
0.789167 + 0.614179i \(0.210513\pi\)
\(380\) 0 0
\(381\) −0.221008 1.39539i −0.0113226 0.0714878i
\(382\) 0 0
\(383\) 5.66501 5.66501i 0.289469 0.289469i −0.547401 0.836870i \(-0.684383\pi\)
0.836870 + 0.547401i \(0.184383\pi\)
\(384\) 0 0
\(385\) −2.77476 8.53983i −0.141415 0.435230i
\(386\) 0 0
\(387\) 8.62520 26.5456i 0.438444 1.34939i
\(388\) 0 0
\(389\) −19.3396 + 6.28382i −0.980557 + 0.318602i −0.755070 0.655644i \(-0.772397\pi\)
−0.225487 + 0.974246i \(0.572397\pi\)
\(390\) 0 0
\(391\) −40.0507 20.4069i −2.02545 1.03202i
\(392\) 0 0
\(393\) −0.239473 + 1.51197i −0.0120798 + 0.0762690i
\(394\) 0 0
\(395\) −4.51806 + 0.715590i −0.227328 + 0.0360052i
\(396\) 0 0
\(397\) −32.4282 + 16.5230i −1.62752 + 0.829265i −0.628864 + 0.777515i \(0.716480\pi\)
−0.998660 + 0.0517502i \(0.983520\pi\)
\(398\) 0 0
\(399\) −11.9304 1.88958i −0.597265 0.0945975i
\(400\) 0 0
\(401\) 28.1565i 1.40607i −0.711157 0.703033i \(-0.751828\pi\)
0.711157 0.703033i \(-0.248172\pi\)
\(402\) 0 0
\(403\) −6.88401 + 13.5106i −0.342917 + 0.673013i
\(404\) 0 0
\(405\) −4.12862 + 5.68256i −0.205153 + 0.282369i
\(406\) 0 0
\(407\) 20.0181 + 20.0181i 0.992261 + 0.992261i
\(408\) 0 0
\(409\) −28.7390 −1.42105 −0.710525 0.703672i \(-0.751543\pi\)
−0.710525 + 0.703672i \(0.751543\pi\)
\(410\) 0 0
\(411\) 2.85944 0.141046
\(412\) 0 0
\(413\) −21.5110 21.5110i −1.05849 1.05849i
\(414\) 0 0
\(415\) −4.03061 + 5.54766i −0.197855 + 0.272324i
\(416\) 0 0
\(417\) −3.81485 + 7.48706i −0.186814 + 0.366643i
\(418\) 0 0
\(419\) 37.9928i 1.85607i 0.372492 + 0.928035i \(0.378503\pi\)
−0.372492 + 0.928035i \(0.621497\pi\)
\(420\) 0 0
\(421\) 27.3024 + 4.32427i 1.33064 + 0.210752i 0.780936 0.624611i \(-0.214742\pi\)
0.549699 + 0.835363i \(0.314742\pi\)
\(422\) 0 0
\(423\) −23.5870 + 12.0182i −1.14684 + 0.584343i
\(424\) 0 0
\(425\) 7.74315 1.22640i 0.375598 0.0594889i
\(426\) 0 0
\(427\) −2.33204 + 14.7239i −0.112855 + 0.712541i
\(428\) 0 0
\(429\) 6.83448 + 3.48234i 0.329972 + 0.168129i
\(430\) 0 0
\(431\) −37.9237 + 12.3222i −1.82672 + 0.593537i −0.827222 + 0.561876i \(0.810080\pi\)
−0.999499 + 0.0316619i \(0.989920\pi\)
\(432\) 0 0
\(433\) 4.67501 14.3882i 0.224666 0.691452i −0.773659 0.633602i \(-0.781576\pi\)
0.998325 0.0578499i \(-0.0184245\pi\)
\(434\) 0 0
\(435\) −0.164579 0.506523i −0.00789098 0.0242859i
\(436\) 0 0
\(437\) −29.1598 + 29.1598i −1.39490 + 1.39490i
\(438\) 0 0
\(439\) 4.49217 + 28.3625i 0.214400 + 1.35367i 0.826522 + 0.562904i \(0.190316\pi\)
−0.612123 + 0.790763i \(0.709684\pi\)
\(440\) 0 0
\(441\) −12.4037 + 9.01182i −0.590653 + 0.429134i
\(442\) 0 0
\(443\) 20.3231 + 27.9724i 0.965581 + 1.32901i 0.944248 + 0.329236i \(0.106791\pi\)
0.0213338 + 0.999772i \(0.493209\pi\)
\(444\) 0 0
\(445\) 3.16286 + 6.20747i 0.149934 + 0.294262i
\(446\) 0 0
\(447\) −3.46273 2.51582i −0.163782 0.118994i
\(448\) 0 0
\(449\) −34.1623 11.1000i −1.61222 0.523841i −0.642130 0.766596i \(-0.721949\pi\)
−0.970088 + 0.242754i \(0.921949\pi\)
\(450\) 0 0
\(451\) 8.93582 13.5674i 0.420771 0.638866i
\(452\) 0 0
\(453\) 3.64801 + 1.18531i 0.171398 + 0.0556907i
\(454\) 0 0
\(455\) −18.2414 13.2532i −0.855171 0.621318i
\(456\) 0 0
\(457\) −18.7725 36.8430i −0.878139 1.72345i −0.665624 0.746287i \(-0.731834\pi\)
−0.212515 0.977158i \(-0.568166\pi\)
\(458\) 0 0
\(459\) 12.6277 + 17.3806i 0.589412 + 0.811256i
\(460\) 0 0
\(461\) 2.72541 1.98013i 0.126935 0.0922237i −0.522506 0.852635i \(-0.675003\pi\)
0.649441 + 0.760412i \(0.275003\pi\)
\(462\) 0 0
\(463\) −1.83854 11.6081i −0.0854443 0.539474i −0.992864 0.119249i \(-0.961951\pi\)
0.907420 0.420225i \(-0.138049\pi\)
\(464\) 0 0
\(465\) 0.798628 0.798628i 0.0370355 0.0370355i
\(466\) 0 0
\(467\) −9.45061 29.0860i −0.437322 1.34594i −0.890688 0.454615i \(-0.849777\pi\)
0.453366 0.891325i \(-0.350223\pi\)
\(468\) 0 0
\(469\) −2.97884 + 9.16793i −0.137550 + 0.423336i
\(470\) 0 0
\(471\) −0.637859 + 0.207253i −0.0293910 + 0.00954971i
\(472\) 0 0
\(473\) −22.7395 11.5864i −1.04557 0.532742i
\(474\) 0 0
\(475\) 1.12512 7.10375i 0.0516242 0.325942i
\(476\) 0 0
\(477\) 13.9183 2.20444i 0.637275 0.100934i
\(478\) 0 0
\(479\) −25.7590 + 13.1249i −1.17696 + 0.599691i −0.929361 0.369171i \(-0.879642\pi\)
−0.247599 + 0.968863i \(0.579642\pi\)
\(480\) 0 0
\(481\) 70.2128 + 11.1206i 3.20143 + 0.507057i
\(482\) 0 0
\(483\) 9.62936i 0.438151i
\(484\) 0 0
\(485\) −0.307601 + 0.603701i −0.0139674 + 0.0274126i
\(486\) 0 0
\(487\) 0.0890756 0.122602i 0.00403640 0.00555563i −0.806994 0.590560i \(-0.798907\pi\)
0.811030 + 0.585004i \(0.198907\pi\)
\(488\) 0 0
\(489\) 5.90575 + 5.90575i 0.267067 + 0.267067i
\(490\) 0 0
\(491\) −9.24647 −0.417287 −0.208644 0.977992i \(-0.566905\pi\)
−0.208644 + 0.977992i \(0.566905\pi\)
\(492\) 0 0
\(493\) 8.79874 0.396275
\(494\) 0 0
\(495\) 4.97813 + 4.97813i 0.223750 + 0.223750i
\(496\) 0 0
\(497\) −6.86226 + 9.44509i −0.307814 + 0.423670i
\(498\) 0 0
\(499\) −11.9027 + 23.3604i −0.532838 + 1.04575i 0.455032 + 0.890475i \(0.349628\pi\)
−0.987871 + 0.155279i \(0.950372\pi\)
\(500\) 0 0
\(501\) 3.35570i 0.149922i
\(502\) 0 0
\(503\) −9.68788 1.53441i −0.431961 0.0684159i −0.0633321 0.997993i \(-0.520173\pi\)
−0.368629 + 0.929577i \(0.620173\pi\)
\(504\) 0 0
\(505\) −1.55392 + 0.791759i −0.0691483 + 0.0352328i
\(506\) 0 0
\(507\) 12.9310 2.04807i 0.574286 0.0909580i
\(508\) 0 0
\(509\) −1.40367 + 8.86240i −0.0622164 + 0.392819i 0.936854 + 0.349720i \(0.113723\pi\)
−0.999071 + 0.0430992i \(0.986277\pi\)
\(510\) 0 0
\(511\) −17.8468 9.09338i −0.789494 0.402267i
\(512\) 0 0
\(513\) 18.7449 6.09058i 0.827607 0.268906i
\(514\) 0 0
\(515\) −1.00658 + 3.09793i −0.0443551 + 0.136511i
\(516\) 0 0
\(517\) 7.47975 + 23.0203i 0.328959 + 1.01243i
\(518\) 0 0
\(519\) 3.02705 3.02705i 0.132873 0.132873i
\(520\) 0 0
\(521\) −0.0797642 0.503611i −0.00349453 0.0220636i 0.985879 0.167457i \(-0.0535554\pi\)
−0.989374 + 0.145393i \(0.953555\pi\)
\(522\) 0 0
\(523\) 31.5807 22.9447i 1.38093 1.00330i 0.384136 0.923277i \(-0.374500\pi\)
0.996793 0.0800264i \(-0.0255005\pi\)
\(524\) 0 0
\(525\) 0.987153 + 1.35870i 0.0430829 + 0.0592985i
\(526\) 0 0
\(527\) 8.47098 + 16.6252i 0.369002 + 0.724206i
\(528\) 0 0
\(529\) −7.98889 5.80427i −0.347343 0.252359i
\(530\) 0 0
\(531\) 22.6840 + 7.37049i 0.984403 + 0.319852i
\(532\) 0 0
\(533\) −1.87203 40.7512i −0.0810868 1.76513i
\(534\) 0 0
\(535\) −13.4577 4.37269i −0.581829 0.189048i
\(536\) 0 0
\(537\) 6.88392 + 5.00146i 0.297063 + 0.215829i
\(538\) 0 0
\(539\) 6.36436 + 12.4908i 0.274132 + 0.538015i
\(540\) 0 0
\(541\) 7.01748 + 9.65873i 0.301705 + 0.415261i 0.932772 0.360467i \(-0.117383\pi\)
−0.631067 + 0.775728i \(0.717383\pi\)
\(542\) 0 0
\(543\) −1.71668 + 1.24724i −0.0736698 + 0.0535242i
\(544\) 0 0
\(545\) −2.59960 16.4133i −0.111355 0.703067i
\(546\) 0 0
\(547\) −24.2547 + 24.2547i −1.03706 + 1.03706i −0.0377695 + 0.999286i \(0.512025\pi\)
−0.999286 + 0.0377695i \(0.987975\pi\)
\(548\) 0 0
\(549\) −3.61181 11.1160i −0.154148 0.474420i
\(550\) 0 0
\(551\) 2.49444 7.67708i 0.106267 0.327055i
\(552\) 0 0
\(553\) 15.3969 5.00275i 0.654742 0.212739i
\(554\) 0 0
\(555\) −4.71783 2.40385i −0.200261 0.102038i
\(556\) 0 0
\(557\) −4.84057 + 30.5621i −0.205101 + 1.29496i 0.643304 + 0.765611i \(0.277563\pi\)
−0.848405 + 0.529348i \(0.822437\pi\)
\(558\) 0 0
\(559\) −63.2964 + 10.0252i −2.67715 + 0.424019i
\(560\) 0 0
\(561\) 8.41003 4.28512i 0.355072 0.180918i
\(562\) 0 0
\(563\) 0.681580 + 0.107952i 0.0287252 + 0.00454962i 0.170781 0.985309i \(-0.445371\pi\)
−0.142055 + 0.989859i \(0.545371\pi\)
\(564\) 0 0
\(565\) 8.79656i 0.370074i
\(566\) 0 0
\(567\) 11.2857 22.1494i 0.473955 0.930188i
\(568\) 0 0
\(569\) −5.04658 + 6.94602i −0.211563 + 0.291192i −0.901590 0.432592i \(-0.857599\pi\)
0.690026 + 0.723784i \(0.257599\pi\)
\(570\) 0 0
\(571\) −0.468988 0.468988i −0.0196265 0.0196265i 0.697225 0.716852i \(-0.254418\pi\)
−0.716852 + 0.697225i \(0.754418\pi\)
\(572\) 0 0
\(573\) 5.88500 0.245849
\(574\) 0 0
\(575\) 5.73366 0.239110
\(576\) 0 0
\(577\) 3.09424 + 3.09424i 0.128815 + 0.128815i 0.768575 0.639760i \(-0.220966\pi\)
−0.639760 + 0.768575i \(0.720966\pi\)
\(578\) 0 0
\(579\) −4.79546 + 6.60039i −0.199293 + 0.274303i
\(580\) 0 0
\(581\) 11.0178 21.6236i 0.457095 0.897099i
\(582\) 0 0
\(583\) 12.8849i 0.533637i
\(584\) 0 0
\(585\) 17.4606 + 2.76549i 0.721908 + 0.114339i
\(586\) 0 0
\(587\) 24.1321 12.2959i 0.996038 0.507507i 0.121566 0.992583i \(-0.461208\pi\)
0.874472 + 0.485077i \(0.161208\pi\)
\(588\) 0 0
\(589\) 16.9074 2.67787i 0.696656 0.110340i
\(590\) 0 0
\(591\) 1.64786 10.4042i 0.0677841 0.427972i
\(592\) 0 0
\(593\) −37.9592 19.3412i −1.55880 0.794248i −0.559400 0.828898i \(-0.688968\pi\)
−0.999400 + 0.0346500i \(0.988968\pi\)
\(594\) 0 0
\(595\) −26.3876 + 8.57384i −1.08178 + 0.351493i
\(596\) 0 0
\(597\) −2.13647 + 6.57537i −0.0874397 + 0.269112i
\(598\) 0 0
\(599\) 0.342022 + 1.05264i 0.0139746 + 0.0430095i 0.957801 0.287433i \(-0.0928019\pi\)
−0.943826 + 0.330443i \(0.892802\pi\)
\(600\) 0 0
\(601\) −18.6896 + 18.6896i −0.762364 + 0.762364i −0.976749 0.214385i \(-0.931225\pi\)
0.214385 + 0.976749i \(0.431225\pi\)
\(602\) 0 0
\(603\) −1.18232 7.46490i −0.0481479 0.303994i
\(604\) 0 0
\(605\) −3.69140 + 2.68196i −0.150077 + 0.109037i
\(606\) 0 0
\(607\) −8.96114 12.3339i −0.363721 0.500620i 0.587459 0.809254i \(-0.300128\pi\)
−0.951181 + 0.308634i \(0.900128\pi\)
\(608\) 0 0
\(609\) 0.855726 + 1.67946i 0.0346758 + 0.0680551i
\(610\) 0 0
\(611\) 49.1724 + 35.7258i 1.98930 + 1.44531i
\(612\) 0 0
\(613\) 20.5900 + 6.69010i 0.831623 + 0.270211i 0.693729 0.720236i \(-0.255967\pi\)
0.137894 + 0.990447i \(0.455967\pi\)
\(614\) 0 0
\(615\) −0.805354 + 2.92985i −0.0324750 + 0.118143i
\(616\) 0 0
\(617\) −15.2876 4.96725i −0.615457 0.199974i −0.0153346 0.999882i \(-0.504881\pi\)
−0.600122 + 0.799908i \(0.704881\pi\)
\(618\) 0 0
\(619\) 17.3954 + 12.6385i 0.699182 + 0.507985i 0.879666 0.475593i \(-0.157766\pi\)
−0.180484 + 0.983578i \(0.557766\pi\)
\(620\) 0 0
\(621\) 7.13325 + 13.9998i 0.286247 + 0.561792i
\(622\) 0 0
\(623\) −14.4926 19.9474i −0.580635 0.799176i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −1.35462 8.55276i −0.0540985 0.341564i
\(628\) 0 0
\(629\) 61.8548 61.8548i 2.46631 2.46631i
\(630\) 0 0
\(631\) 9.66665 + 29.7509i 0.384823 + 1.18436i 0.936608 + 0.350378i \(0.113947\pi\)
−0.551785 + 0.833986i \(0.686053\pi\)
\(632\) 0 0
\(633\) −1.66485 + 5.12390i −0.0661720 + 0.203657i
\(634\) 0 0
\(635\) −2.83146 + 0.919997i −0.112363 + 0.0365090i
\(636\) 0 0
\(637\) 31.3651 + 15.9813i 1.24273 + 0.633203i
\(638\) 0 0
\(639\) 1.43192 9.04081i 0.0566460 0.357649i
\(640\) 0 0
\(641\) −24.5736 + 3.89208i −0.970600 + 0.153728i −0.621548 0.783376i \(-0.713496\pi\)
−0.349051 + 0.937104i \(0.613496\pi\)
\(642\) 0 0
\(643\) 0.837111 0.426530i 0.0330124 0.0168207i −0.437406 0.899264i \(-0.644103\pi\)
0.470419 + 0.882443i \(0.344103\pi\)
\(644\) 0 0
\(645\) 4.71459 + 0.746718i 0.185637 + 0.0294020i
\(646\) 0 0
\(647\) 17.1658i 0.674857i −0.941351 0.337428i \(-0.890443\pi\)
0.941351 0.337428i \(-0.109557\pi\)
\(648\) 0 0
\(649\) 9.90089 19.4316i 0.388644 0.762757i
\(650\) 0 0
\(651\) −2.34949 + 3.23379i −0.0920837 + 0.126742i
\(652\) 0 0
\(653\) 1.58410 + 1.58410i 0.0619908 + 0.0619908i 0.737423 0.675432i \(-0.236043\pi\)
−0.675432 + 0.737423i \(0.736043\pi\)
\(654\) 0 0
\(655\) 3.22592 0.126047
\(656\) 0 0
\(657\) 15.7043 0.612681
\(658\) 0 0
\(659\) −1.99195 1.99195i −0.0775955 0.0775955i 0.667244 0.744839i \(-0.267474\pi\)
−0.744839 + 0.667244i \(0.767474\pi\)
\(660\) 0 0
\(661\) 15.4192 21.2227i 0.599738 0.825469i −0.395946 0.918274i \(-0.629583\pi\)
0.995684 + 0.0928051i \(0.0295834\pi\)
\(662\) 0 0
\(663\) 10.7602 21.1182i 0.417893 0.820161i
\(664\) 0 0
\(665\) 25.4544i 0.987079i
\(666\) 0 0
\(667\) 6.35585 + 1.00667i 0.246100 + 0.0389783i
\(668\) 0 0
\(669\) −0.512119 + 0.260938i −0.0197997 + 0.0100884i
\(670\) 0 0
\(671\) −10.5554 + 1.67182i −0.407489 + 0.0645398i
\(672\) 0 0
\(673\) 3.07047 19.3862i 0.118358 0.747282i −0.855108 0.518450i \(-0.826509\pi\)
0.973466 0.228832i \(-0.0734907\pi\)
\(674\) 0 0
\(675\) −2.44169 1.24410i −0.0939805 0.0478855i
\(676\) 0 0
\(677\) 26.5814 8.63681i 1.02160 0.331939i 0.250139 0.968210i \(-0.419524\pi\)
0.771466 + 0.636271i \(0.219524\pi\)
\(678\) 0 0
\(679\) 0.741000 2.28056i 0.0284370 0.0875200i
\(680\) 0 0
\(681\) 0.238241 + 0.733230i 0.00912941 + 0.0280974i
\(682\) 0 0
\(683\) −7.67050 + 7.67050i −0.293503 + 0.293503i −0.838463 0.544959i \(-0.816545\pi\)
0.544959 + 0.838463i \(0.316545\pi\)
\(684\) 0 0
\(685\) −0.942634 5.95156i −0.0360162 0.227397i
\(686\) 0 0
\(687\) −3.56102 + 2.58723i −0.135861 + 0.0987091i
\(688\) 0 0
\(689\) −19.0177 26.1756i −0.724515 0.997210i
\(690\) 0 0
\(691\) 9.38526 + 18.4196i 0.357032 + 0.700715i 0.997749 0.0670624i \(-0.0213626\pi\)
−0.640717 + 0.767777i \(0.721363\pi\)
\(692\) 0 0
\(693\) −20.1574 14.6452i −0.765716 0.556325i
\(694\) 0 0
\(695\) 16.8409 + 5.47195i 0.638813 + 0.207563i
\(696\) 0 0
\(697\) −41.9226 27.6112i −1.58793 1.04585i
\(698\) 0 0
\(699\) −2.44543 0.794570i −0.0924948 0.0300534i
\(700\) 0 0
\(701\) 8.64786 + 6.28304i 0.326625 + 0.237307i 0.738997 0.673708i \(-0.235300\pi\)
−0.412372 + 0.911015i \(0.635300\pi\)
\(702\) 0 0
\(703\) −36.4338 71.5054i −1.37413 2.69688i
\(704\) 0 0
\(705\) −2.66101 3.66257i −0.100219 0.137940i
\(706\) 0 0
\(707\) 4.99343 3.62794i 0.187797 0.136443i
\(708\) 0 0
\(709\) −7.53314 47.5624i −0.282913 1.78624i −0.563194 0.826325i \(-0.690427\pi\)
0.280280 0.959918i \(-0.409573\pi\)
\(710\) 0 0
\(711\) −8.97533 + 8.97533i −0.336601 + 0.336601i
\(712\) 0 0
\(713\) 4.21699 + 12.9786i 0.157928 + 0.486051i
\(714\) 0 0
\(715\) 4.99501 15.3731i 0.186803 0.574920i
\(716\) 0 0
\(717\) 0.110335 0.0358501i 0.00412055 0.00133885i
\(718\) 0 0
\(719\) 14.8995 + 7.59166i 0.555657 + 0.283121i 0.709184 0.705023i \(-0.249063\pi\)
−0.153528 + 0.988144i \(0.549063\pi\)
\(720\) 0 0
\(721\) 1.80340 11.3862i 0.0671621 0.424045i
\(722\) 0 0
\(723\) 0.818870 0.129696i 0.0304541 0.00482346i
\(724\) 0 0
\(725\) −1.00001 + 0.509529i −0.0371393 + 0.0189234i
\(726\) 0 0
\(727\) −23.1291 3.66330i −0.857813 0.135864i −0.287992 0.957633i \(-0.592988\pi\)
−0.569821 + 0.821769i \(0.692988\pi\)
\(728\) 0 0
\(729\) 15.5892i 0.577376i
\(730\) 0 0
\(731\) −35.8012 + 70.2639i −1.32416 + 2.59880i
\(732\) 0 0
\(733\) −3.34579 + 4.60508i −0.123579 + 0.170092i −0.866324 0.499482i \(-0.833524\pi\)
0.742745 + 0.669575i \(0.233524\pi\)
\(734\) 0 0
\(735\) −1.85403 1.85403i −0.0683868 0.0683868i
\(736\) 0 0
\(737\) −6.91063 −0.254556
\(738\) 0 0
\(739\) −7.71404 −0.283766 −0.141883 0.989883i \(-0.545316\pi\)
−0.141883 + 0.989883i \(0.545316\pi\)
\(740\) 0 0
\(741\) −15.3755 15.3755i −0.564834 0.564834i
\(742\) 0 0
\(743\) −4.56618 + 6.28480i −0.167517 + 0.230567i −0.884519 0.466503i \(-0.845514\pi\)
0.717003 + 0.697070i \(0.245514\pi\)
\(744\) 0 0
\(745\) −4.09484 + 8.03658i −0.150023 + 0.294437i
\(746\) 0 0
\(747\) 19.0277i 0.696187i
\(748\) 0 0
\(749\) 49.4631 + 7.83418i 1.80734 + 0.286255i
\(750\) 0 0
\(751\) 2.10530 1.07270i 0.0768234 0.0391435i −0.415157 0.909750i \(-0.636273\pi\)
0.491980 + 0.870606i \(0.336273\pi\)
\(752\) 0 0
\(753\) −10.5029 + 1.66350i −0.382747 + 0.0606212i
\(754\) 0 0
\(755\) 1.26448 7.98359i 0.0460190 0.290553i
\(756\) 0 0
\(757\) −33.5116 17.0750i −1.21800 0.620602i −0.277608 0.960695i \(-0.589542\pi\)
−0.940392 + 0.340093i \(0.889542\pi\)
\(758\) 0 0
\(759\) 6.56533 2.13320i 0.238306 0.0774304i
\(760\) 0 0
\(761\) −4.02663 + 12.3927i −0.145965 + 0.449235i −0.997134 0.0756573i \(-0.975894\pi\)
0.851169 + 0.524893i \(0.175894\pi\)
\(762\) 0 0
\(763\) 18.1741 + 55.9340i 0.657946 + 2.02495i
\(764\) 0 0
\(765\) 15.3821 15.3821i 0.556143 0.556143i
\(766\) 0 0
\(767\) −8.56680 54.0886i −0.309329 1.95303i
\(768\) 0 0
\(769\) 36.2840 26.3619i 1.30844 0.950634i 0.308436 0.951245i \(-0.400194\pi\)
1.00000 0.000610690i \(0.000194389\pi\)
\(770\) 0 0
\(771\) −0.454211 0.625168i −0.0163580 0.0225149i
\(772\) 0 0
\(773\) −17.3879 34.1258i −0.625401 1.22742i −0.958652 0.284580i \(-0.908146\pi\)
0.333251 0.942838i \(-0.391854\pi\)
\(774\) 0 0
\(775\) −1.92551 1.39897i −0.0691665 0.0502524i
\(776\) 0 0
\(777\) 17.8223 + 5.79080i 0.639370 + 0.207744i
\(778\) 0 0
\(779\) −35.9763 + 28.7506i −1.28899 + 1.03010i
\(780\) 0 0
\(781\) −7.95990 2.58633i −0.284828 0.0925461i
\(782\) 0 0
\(783\) −2.48822 1.80780i −0.0889217 0.0646054i
\(784\) 0 0
\(785\) 0.641644 + 1.25930i 0.0229013 + 0.0449462i
\(786\) 0 0
\(787\) −10.4093 14.3272i −0.371051 0.510709i 0.582135 0.813092i \(-0.302218\pi\)
−0.953186 + 0.302384i \(0.902218\pi\)
\(788\) 0 0
\(789\) −6.55964 + 4.76585i −0.233529 + 0.169669i
\(790\) 0 0
\(791\) 4.87013 + 30.7488i 0.173162 + 1.09330i
\(792\) 0 0
\(793\) −18.9758 + 18.9758i −0.673851 + 0.673851i
\(794\) 0 0
\(795\) 0.744707 + 2.29197i 0.0264120 + 0.0812879i
\(796\) 0 0
\(797\) −7.99686 + 24.6118i −0.283263 + 0.871795i 0.703651 + 0.710546i \(0.251552\pi\)
−0.986914 + 0.161248i \(0.948448\pi\)
\(798\) 0 0
\(799\) 71.1314 23.1120i 2.51645 0.817644i
\(800\) 0 0
\(801\) 17.2246 + 8.77636i 0.608600 + 0.310097i
\(802\) 0 0
\(803\) 2.24628 14.1824i 0.0792695 0.500488i
\(804\) 0 0
\(805\) −20.0423 + 3.17438i −0.706397 + 0.111882i
\(806\) 0 0
\(807\) −4.21198 + 2.14611i −0.148269 + 0.0755467i
\(808\) 0 0
\(809\) 40.3836 + 6.39614i 1.41981 + 0.224876i 0.818670 0.574265i \(-0.194712\pi\)
0.601144 + 0.799141i \(0.294712\pi\)
\(810\) 0 0
\(811\) 45.9950i 1.61510i −0.589797 0.807551i \(-0.700792\pi\)
0.589797 0.807551i \(-0.299208\pi\)
\(812\) 0 0
\(813\) −2.94778 + 5.78534i −0.103383 + 0.202901i
\(814\) 0 0
\(815\) 10.3452 14.2389i 0.362376 0.498768i
\(816\) 0 0
\(817\) 51.1571 + 51.1571i 1.78976 + 1.78976i
\(818\) 0 0
\(819\) −62.5655 −2.18622
\(820\) 0 0
\(821\) 50.8054 1.77312 0.886561 0.462612i \(-0.153088\pi\)
0.886561 + 0.462612i \(0.153088\pi\)
\(822\) 0 0
\(823\) −9.70145 9.70145i −0.338171 0.338171i 0.517507 0.855679i \(-0.326860\pi\)
−0.855679 + 0.517507i \(0.826860\pi\)
\(824\) 0 0
\(825\) −0.707681 + 0.974039i −0.0246383 + 0.0339117i
\(826\) 0 0
\(827\) −8.84085 + 17.3511i −0.307426 + 0.603358i −0.992094 0.125497i \(-0.959947\pi\)
0.684668 + 0.728855i \(0.259947\pi\)
\(828\) 0 0
\(829\) 19.9544i 0.693045i −0.938042 0.346522i \(-0.887362\pi\)
0.938042 0.346522i \(-0.112638\pi\)
\(830\) 0 0
\(831\) −0.732423 0.116004i −0.0254075 0.00402415i
\(832\) 0 0
\(833\) 38.5957 19.6655i 1.33726 0.681369i
\(834\) 0 0
\(835\) 6.98446 1.10623i 0.241707 0.0382826i
\(836\) 0 0
\(837\) 1.02031 6.44195i 0.0352669 0.222666i
\(838\) 0 0
\(839\) −5.60143 2.85407i −0.193383 0.0985335i 0.354618 0.935011i \(-0.384611\pi\)
−0.548001 + 0.836478i \(0.684611\pi\)
\(840\) 0 0
\(841\) 26.3827 8.57224i 0.909747 0.295595i
\(842\) 0 0
\(843\) −0.0287696 + 0.0885438i −0.000990879 + 0.00304961i
\(844\) 0 0
\(845\) −8.52558 26.2390i −0.293289 0.902651i
\(846\) 0 0
\(847\) 11.4186 11.4186i 0.392348 0.392348i
\(848\) 0 0
\(849\) −0.202270 1.27708i −0.00694188 0.0438293i
\(850\) 0 0
\(851\) 51.7583 37.6046i 1.77425 1.28907i
\(852\) 0 0
\(853\) 5.60410 + 7.71338i 0.191881 + 0.264101i 0.894108 0.447852i \(-0.147811\pi\)
−0.702227 + 0.711953i \(0.747811\pi\)
\(854\) 0 0
\(855\) −9.06042 17.7821i −0.309860 0.608134i
\(856\) 0 0
\(857\) 3.57785 + 2.59946i 0.122217 + 0.0887960i 0.647215 0.762308i \(-0.275934\pi\)
−0.524997 + 0.851104i \(0.675934\pi\)
\(858\) 0 0
\(859\) −3.63997 1.18270i −0.124194 0.0403531i 0.246261 0.969204i \(-0.420798\pi\)
−0.370455 + 0.928851i \(0.620798\pi\)
\(860\) 0 0
\(861\) 1.19307 10.6873i 0.0406596 0.364223i
\(862\) 0 0
\(863\) 33.8488 + 10.9981i 1.15223 + 0.374381i 0.821981 0.569515i \(-0.192869\pi\)
0.330244 + 0.943896i \(0.392869\pi\)
\(864\) 0 0
\(865\) −7.29829 5.30251i −0.248149 0.180291i
\(866\) 0 0
\(867\) −9.57838 18.7986i −0.325299 0.638435i
\(868\) 0 0
\(869\) 6.82178 + 9.38938i 0.231413 + 0.318513i
\(870\) 0 0
\(871\) −14.0389 + 10.1999i −0.475691 + 0.345610i
\(872\) 0 0
\(873\) 0.294108 + 1.85693i 0.00995406 + 0.0628474i
\(874\) 0 0
\(875\) 2.50253 2.50253i 0.0846011 0.0846011i
\(876\) 0 0
\(877\) 17.4909 + 53.8313i 0.590625 + 1.81776i 0.575401 + 0.817871i \(0.304846\pi\)
0.0152235 + 0.999884i \(0.495154\pi\)
\(878\) 0 0
\(879\) −1.88895 + 5.81358i −0.0637126 + 0.196087i
\(880\) 0 0
\(881\) −14.9454 + 4.85606i −0.503523 + 0.163605i −0.549755 0.835326i \(-0.685279\pi\)
0.0462314 + 0.998931i \(0.485279\pi\)
\(882\) 0 0
\(883\) 42.7509 + 21.7827i 1.43868 + 0.733046i 0.987238 0.159253i \(-0.0509085\pi\)
0.451446 + 0.892299i \(0.350909\pi\)
\(884\) 0 0
\(885\) −0.638092 + 4.02875i −0.0214492 + 0.135425i
\(886\) 0 0
\(887\) −18.6619 + 2.95575i −0.626604 + 0.0992444i −0.461658 0.887058i \(-0.652745\pi\)
−0.164947 + 0.986303i \(0.552745\pi\)
\(888\) 0 0
\(889\) 9.38814 4.78350i 0.314868 0.160433i
\(890\) 0 0
\(891\) 17.6017 + 2.78783i 0.589679 + 0.0933959i
\(892\) 0 0
\(893\) 68.6159i 2.29614i
\(894\) 0 0
\(895\) 8.14056 15.9767i 0.272109 0.534044i
\(896\) 0 0
\(897\) 10.1889 14.0238i 0.340197 0.468242i
\(898\) 0 0
\(899\) −1.88884 1.88884i −0.0629965 0.0629965i
\(900\) 0 0
\(901\) −39.8135 −1.32638
\(902\) 0 0
\(903\) −16.8935 −0.562180
\(904\) 0 0
\(905\) 3.16188 + 3.16188i 0.105105 + 0.105105i
\(906\) 0 0
\(907\) 13.0203 17.9209i 0.432332 0.595053i −0.536155 0.844120i \(-0.680124\pi\)
0.968486 + 0.249066i \(0.0801237\pi\)
\(908\) 0 0
\(909\) −2.19698 + 4.31183i −0.0728694 + 0.143014i
\(910\) 0 0
\(911\) 18.0734i 0.598799i 0.954128 + 0.299400i \(0.0967864\pi\)
−0.954128 + 0.299400i \(0.903214\pi\)
\(912\) 0 0
\(913\) 17.1838 + 2.72165i 0.568702 + 0.0900735i
\(914\) 0 0
\(915\) 1.78099 0.907458i 0.0588776 0.0299996i
\(916\) 0 0
\(917\) −11.2764 + 1.78600i −0.372378 + 0.0589789i
\(918\) 0 0
\(919\) −5.54008 + 34.9787i −0.182750 + 1.15384i 0.710305 + 0.703894i \(0.248557\pi\)
−0.893055 + 0.449947i \(0.851443\pi\)
\(920\) 0 0
\(921\) 11.7768 + 6.00059i 0.388059 + 0.197726i
\(922\) 0 0
\(923\) −19.9878 + 6.49444i −0.657908 + 0.213767i
\(924\) 0 0
\(925\) −3.44804 + 10.6120i −0.113371 + 0.348920i
\(926\) 0 0
\(927\) 2.79306 + 8.59617i 0.0917362 + 0.282335i
\(928\) 0 0
\(929\) −6.39497 + 6.39497i −0.209812 + 0.209812i −0.804188 0.594375i \(-0.797399\pi\)
0.594375 + 0.804188i \(0.297399\pi\)
\(930\) 0 0
\(931\) −6.21670 39.2507i −0.203744 1.28639i
\(932\) 0 0
\(933\) 4.40772 3.20240i 0.144302 0.104842i
\(934\) 0 0
\(935\) −11.6913 16.0918i −0.382348 0.526257i
\(936\) 0 0
\(937\) 8.02099 + 15.7421i 0.262034 + 0.514271i 0.984114 0.177539i \(-0.0568135\pi\)
−0.722079 + 0.691810i \(0.756814\pi\)
\(938\) 0 0
\(939\) 7.03017 + 5.10772i 0.229421 + 0.166684i
\(940\) 0 0
\(941\) 30.7087 + 9.97786i 1.00108 + 0.325269i 0.763295 0.646050i \(-0.223580\pi\)
0.237780 + 0.971319i \(0.423580\pi\)
\(942\) 0 0
\(943\) −27.1242 24.7416i −0.883285 0.805696i
\(944\) 0 0
\(945\) 9.22381 + 2.99700i 0.300050 + 0.0974923i
\(946\) 0 0
\(947\) −4.82434 3.50509i −0.156770 0.113900i 0.506635 0.862161i \(-0.330889\pi\)
−0.663405 + 0.748261i \(0.730889\pi\)
\(948\) 0 0
\(949\) −16.3695 32.1270i −0.531378 1.04289i
\(950\) 0 0
\(951\) 6.59694 + 9.07991i 0.213920 + 0.294436i
\(952\) 0 0
\(953\) −22.7060 + 16.4968i −0.735518 + 0.534385i −0.891304 0.453406i \(-0.850209\pi\)
0.155786 + 0.987791i \(0.450209\pi\)
\(954\) 0 0
\(955\) −1.94003 12.2489i −0.0627778 0.396364i
\(956\) 0 0
\(957\) −0.955489 + 0.955489i −0.0308866 + 0.0308866i
\(958\) 0 0
\(959\) 6.59004 + 20.2821i 0.212803 + 0.654942i
\(960\) 0 0
\(961\) −7.82904 + 24.0953i −0.252550 + 0.777268i
\(962\) 0 0
\(963\) −37.3427 + 12.1334i −1.20335 + 0.390993i
\(964\) 0 0
\(965\) 15.3187 + 7.80527i 0.493126 + 0.251261i
\(966\) 0 0
\(967\) −3.30788 + 20.8851i −0.106374 + 0.671620i 0.875662 + 0.482925i \(0.160426\pi\)
−0.982036 + 0.188695i \(0.939574\pi\)
\(968\) 0 0
\(969\) −26.4275 + 4.18571i −0.848974 + 0.134464i
\(970\) 0 0
\(971\) 49.3087 25.1240i 1.58239 0.806268i 0.582413 0.812893i \(-0.302109\pi\)
0.999978 + 0.00662465i \(0.00210871\pi\)
\(972\) 0 0
\(973\) −61.8977 9.80364i −1.98435 0.314290i
\(974\) 0 0
\(975\) 3.02327i 0.0968221i
\(976\) 0 0
\(977\) 14.2936 28.0528i 0.457294 0.897489i −0.541107 0.840954i \(-0.681995\pi\)
0.998401 0.0565354i \(-0.0180054\pi\)
\(978\) 0 0
\(979\) 10.3896 14.3001i 0.332054 0.457033i
\(980\) 0 0
\(981\) −32.6057 32.6057i −1.04102 1.04102i
\(982\) 0 0
\(983\) 27.6275 0.881181 0.440591 0.897708i \(-0.354769\pi\)
0.440591 + 0.897708i \(0.354769\pi\)
\(984\) 0 0
\(985\) −22.1982 −0.707294
\(986\) 0 0
\(987\) 11.3294 + 11.3294i 0.360620 + 0.360620i
\(988\) 0 0
\(989\) −33.9003 + 46.6597i −1.07797 + 1.48369i
\(990\) 0 0
\(991\) −24.9742 + 49.0146i −0.793330 + 1.55700i 0.0367299 + 0.999325i \(0.488306\pi\)
−0.830060 + 0.557674i \(0.811694\pi\)
\(992\) 0 0
\(993\) 0.323959i 0.0102805i
\(994\) 0 0
\(995\) 14.3901 + 2.27916i 0.456196 + 0.0722543i
\(996\) 0 0
\(997\) 15.7532 8.02665i 0.498908 0.254207i −0.186381 0.982478i \(-0.559676\pi\)
0.685289 + 0.728271i \(0.259676\pi\)
\(998\) 0 0
\(999\) −30.2009 + 4.78335i −0.955513 + 0.151338i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.21.5 64
41.2 even 20 inner 820.2.bo.b.781.5 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.21.5 64 1.1 even 1 trivial
820.2.bo.b.781.5 yes 64 41.2 even 20 inner