Properties

Label 820.2.bo.b.21.1
Level $820$
Weight $2$
Character 820.21
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 21.1
Character \(\chi\) \(=\) 820.21
Dual form 820.2.bo.b.781.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.39269 - 2.39269i) q^{3} +(0.587785 - 0.809017i) q^{5} +(0.802599 - 1.57519i) q^{7} +8.44996i q^{9} +(-4.02598 - 0.637652i) q^{11} +(-1.54720 + 0.788337i) q^{13} +(-3.34212 + 0.529340i) q^{15} +(-0.103370 + 0.652655i) q^{17} +(-3.61693 - 1.84292i) q^{19} +(-5.68932 + 1.84857i) q^{21} +(-0.980979 + 3.01914i) q^{23} +(-0.309017 - 0.951057i) q^{25} +(13.0401 - 13.0401i) q^{27} +(-0.264069 - 1.66727i) q^{29} +(-5.76817 + 4.19082i) q^{31} +(8.10723 + 11.1586i) q^{33} +(-0.802599 - 1.57519i) q^{35} +(6.28689 + 4.56769i) q^{37} +(5.58822 + 1.81572i) q^{39} +(-5.51297 + 3.25686i) q^{41} +(6.76633 + 2.19851i) q^{43} +(6.83616 + 4.96676i) q^{45} +(-1.29835 - 2.54816i) q^{47} +(2.27744 + 3.13463i) q^{49} +(1.80894 - 1.31427i) q^{51} +(-0.0802020 - 0.506376i) q^{53} +(-2.88228 + 2.88228i) q^{55} +(4.24466 + 13.0637i) q^{57} +(-1.35075 + 4.15719i) q^{59} +(-4.70688 + 1.52936i) q^{61} +(13.3103 + 6.78193i) q^{63} +(-0.271642 + 1.71508i) q^{65} +(-0.0427763 + 0.00677510i) q^{67} +(9.57106 - 4.87670i) q^{69} +(9.96152 + 1.57775i) q^{71} -14.2833i q^{73} +(-1.53620 + 3.01497i) q^{75} +(-4.23567 + 5.82990i) q^{77} +(5.60539 + 5.60539i) q^{79} -37.0520 q^{81} -13.5812 q^{83} +(0.467249 + 0.467249i) q^{85} +(-3.35742 + 4.62109i) q^{87} +(-7.88376 + 15.4727i) q^{89} +3.06985i q^{91} +(23.8288 + 3.77412i) q^{93} +(-3.61693 + 1.84292i) q^{95} +(-14.0220 + 2.22087i) q^{97} +(5.38814 - 34.0194i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.39269 2.39269i −1.38142 1.38142i −0.842099 0.539324i \(-0.818680\pi\)
−0.539324 0.842099i \(-0.681320\pi\)
\(4\) 0 0
\(5\) 0.587785 0.809017i 0.262866 0.361803i
\(6\) 0 0
\(7\) 0.802599 1.57519i 0.303354 0.595366i −0.688131 0.725586i \(-0.741569\pi\)
0.991485 + 0.130221i \(0.0415686\pi\)
\(8\) 0 0
\(9\) 8.44996i 2.81665i
\(10\) 0 0
\(11\) −4.02598 0.637652i −1.21388 0.192259i −0.483526 0.875330i \(-0.660644\pi\)
−0.730352 + 0.683071i \(0.760644\pi\)
\(12\) 0 0
\(13\) −1.54720 + 0.788337i −0.429116 + 0.218645i −0.655189 0.755465i \(-0.727411\pi\)
0.226073 + 0.974110i \(0.427411\pi\)
\(14\) 0 0
\(15\) −3.34212 + 0.529340i −0.862932 + 0.136675i
\(16\) 0 0
\(17\) −0.103370 + 0.652655i −0.0250710 + 0.158292i −0.997048 0.0767853i \(-0.975534\pi\)
0.971977 + 0.235077i \(0.0755344\pi\)
\(18\) 0 0
\(19\) −3.61693 1.84292i −0.829780 0.422794i −0.0131203 0.999914i \(-0.504176\pi\)
−0.816659 + 0.577120i \(0.804176\pi\)
\(20\) 0 0
\(21\) −5.68932 + 1.84857i −1.24151 + 0.403391i
\(22\) 0 0
\(23\) −0.980979 + 3.01914i −0.204548 + 0.629535i 0.795183 + 0.606369i \(0.207375\pi\)
−0.999732 + 0.0231656i \(0.992625\pi\)
\(24\) 0 0
\(25\) −0.309017 0.951057i −0.0618034 0.190211i
\(26\) 0 0
\(27\) 13.0401 13.0401i 2.50957 2.50957i
\(28\) 0 0
\(29\) −0.264069 1.66727i −0.0490364 0.309603i −1.00000 0.000300582i \(-0.999904\pi\)
0.950964 0.309303i \(-0.100096\pi\)
\(30\) 0 0
\(31\) −5.76817 + 4.19082i −1.03599 + 0.752694i −0.969500 0.245093i \(-0.921182\pi\)
−0.0664948 + 0.997787i \(0.521182\pi\)
\(32\) 0 0
\(33\) 8.10723 + 11.1586i 1.41129 + 1.94247i
\(34\) 0 0
\(35\) −0.802599 1.57519i −0.135664 0.266256i
\(36\) 0 0
\(37\) 6.28689 + 4.56769i 1.03356 + 0.750924i 0.969018 0.246991i \(-0.0794419\pi\)
0.0645402 + 0.997915i \(0.479442\pi\)
\(38\) 0 0
\(39\) 5.58822 + 1.81572i 0.894832 + 0.290748i
\(40\) 0 0
\(41\) −5.51297 + 3.25686i −0.860982 + 0.508636i
\(42\) 0 0
\(43\) 6.76633 + 2.19851i 1.03186 + 0.335270i 0.775523 0.631319i \(-0.217486\pi\)
0.256332 + 0.966589i \(0.417486\pi\)
\(44\) 0 0
\(45\) 6.83616 + 4.96676i 1.01908 + 0.740401i
\(46\) 0 0
\(47\) −1.29835 2.54816i −0.189384 0.371688i 0.776717 0.629849i \(-0.216883\pi\)
−0.966102 + 0.258162i \(0.916883\pi\)
\(48\) 0 0
\(49\) 2.27744 + 3.13463i 0.325349 + 0.447804i
\(50\) 0 0
\(51\) 1.80894 1.31427i 0.253302 0.184035i
\(52\) 0 0
\(53\) −0.0802020 0.506376i −0.0110166 0.0695561i 0.981568 0.191115i \(-0.0612105\pi\)
−0.992584 + 0.121559i \(0.961210\pi\)
\(54\) 0 0
\(55\) −2.88228 + 2.88228i −0.388647 + 0.388647i
\(56\) 0 0
\(57\) 4.24466 + 13.0637i 0.562219 + 1.73033i
\(58\) 0 0
\(59\) −1.35075 + 4.15719i −0.175853 + 0.541220i −0.999671 0.0256340i \(-0.991840\pi\)
0.823818 + 0.566854i \(0.191840\pi\)
\(60\) 0 0
\(61\) −4.70688 + 1.52936i −0.602654 + 0.195814i −0.594424 0.804152i \(-0.702620\pi\)
−0.00823036 + 0.999966i \(0.502620\pi\)
\(62\) 0 0
\(63\) 13.3103 + 6.78193i 1.67694 + 0.854443i
\(64\) 0 0
\(65\) −0.271642 + 1.71508i −0.0336931 + 0.212730i
\(66\) 0 0
\(67\) −0.0427763 + 0.00677510i −0.00522596 + 0.000827710i −0.159047 0.987271i \(-0.550842\pi\)
0.153821 + 0.988099i \(0.450842\pi\)
\(68\) 0 0
\(69\) 9.57106 4.87670i 1.15222 0.587086i
\(70\) 0 0
\(71\) 9.96152 + 1.57775i 1.18222 + 0.187245i 0.716434 0.697655i \(-0.245773\pi\)
0.465782 + 0.884900i \(0.345773\pi\)
\(72\) 0 0
\(73\) 14.2833i 1.67173i −0.548933 0.835866i \(-0.684966\pi\)
0.548933 0.835866i \(-0.315034\pi\)
\(74\) 0 0
\(75\) −1.53620 + 3.01497i −0.177386 + 0.348139i
\(76\) 0 0
\(77\) −4.23567 + 5.82990i −0.482699 + 0.664379i
\(78\) 0 0
\(79\) 5.60539 + 5.60539i 0.630656 + 0.630656i 0.948233 0.317577i \(-0.102869\pi\)
−0.317577 + 0.948233i \(0.602869\pi\)
\(80\) 0 0
\(81\) −37.0520 −4.11689
\(82\) 0 0
\(83\) −13.5812 −1.49073 −0.745367 0.666654i \(-0.767726\pi\)
−0.745367 + 0.666654i \(0.767726\pi\)
\(84\) 0 0
\(85\) 0.467249 + 0.467249i 0.0506803 + 0.0506803i
\(86\) 0 0
\(87\) −3.35742 + 4.62109i −0.359953 + 0.495433i
\(88\) 0 0
\(89\) −7.88376 + 15.4727i −0.835676 + 1.64011i −0.0694067 + 0.997588i \(0.522111\pi\)
−0.766270 + 0.642519i \(0.777889\pi\)
\(90\) 0 0
\(91\) 3.06985i 0.321808i
\(92\) 0 0
\(93\) 23.8288 + 3.77412i 2.47093 + 0.391357i
\(94\) 0 0
\(95\) −3.61693 + 1.84292i −0.371089 + 0.189079i
\(96\) 0 0
\(97\) −14.0220 + 2.22087i −1.42372 + 0.225495i −0.820301 0.571931i \(-0.806194\pi\)
−0.603417 + 0.797426i \(0.706194\pi\)
\(98\) 0 0
\(99\) 5.38814 34.0194i 0.541528 3.41908i
\(100\) 0 0
\(101\) −8.60273 4.38331i −0.856004 0.436156i −0.0298193 0.999555i \(-0.509493\pi\)
−0.826185 + 0.563400i \(0.809493\pi\)
\(102\) 0 0
\(103\) 3.43152 1.11497i 0.338118 0.109861i −0.135037 0.990841i \(-0.543115\pi\)
0.473155 + 0.880979i \(0.343115\pi\)
\(104\) 0 0
\(105\) −1.84857 + 5.68932i −0.180402 + 0.555221i
\(106\) 0 0
\(107\) −0.685989 2.11126i −0.0663171 0.204103i 0.912407 0.409284i \(-0.134222\pi\)
−0.978724 + 0.205181i \(0.934222\pi\)
\(108\) 0 0
\(109\) 14.5102 14.5102i 1.38982 1.38982i 0.564156 0.825668i \(-0.309202\pi\)
0.825668 0.564156i \(-0.190798\pi\)
\(110\) 0 0
\(111\) −4.11351 25.9717i −0.390437 2.46512i
\(112\) 0 0
\(113\) −2.32564 + 1.68968i −0.218778 + 0.158951i −0.691776 0.722112i \(-0.743172\pi\)
0.472999 + 0.881063i \(0.343172\pi\)
\(114\) 0 0
\(115\) 1.86593 + 2.56824i 0.173999 + 0.239489i
\(116\) 0 0
\(117\) −6.66142 13.0738i −0.615849 1.20867i
\(118\) 0 0
\(119\) 0.945091 + 0.686648i 0.0866363 + 0.0629450i
\(120\) 0 0
\(121\) 5.34028 + 1.73516i 0.485480 + 0.157742i
\(122\) 0 0
\(123\) 20.9835 + 5.39818i 1.89202 + 0.486738i
\(124\) 0 0
\(125\) −0.951057 0.309017i −0.0850651 0.0276393i
\(126\) 0 0
\(127\) 7.29199 + 5.29794i 0.647060 + 0.470116i 0.862268 0.506452i \(-0.169043\pi\)
−0.215209 + 0.976568i \(0.569043\pi\)
\(128\) 0 0
\(129\) −10.9294 21.4501i −0.962278 1.88858i
\(130\) 0 0
\(131\) −2.53322 3.48668i −0.221329 0.304633i 0.683885 0.729590i \(-0.260289\pi\)
−0.905213 + 0.424957i \(0.860289\pi\)
\(132\) 0 0
\(133\) −5.80588 + 4.21822i −0.503434 + 0.365766i
\(134\) 0 0
\(135\) −2.88488 18.2144i −0.248291 1.56765i
\(136\) 0 0
\(137\) 6.07795 6.07795i 0.519274 0.519274i −0.398077 0.917352i \(-0.630322\pi\)
0.917352 + 0.398077i \(0.130322\pi\)
\(138\) 0 0
\(139\) −3.93667 12.1158i −0.333904 1.02765i −0.967260 0.253789i \(-0.918323\pi\)
0.633356 0.773861i \(-0.281677\pi\)
\(140\) 0 0
\(141\) −2.99041 + 9.20353i −0.251838 + 0.775077i
\(142\) 0 0
\(143\) 6.73167 2.18725i 0.562931 0.182907i
\(144\) 0 0
\(145\) −1.50406 0.766358i −0.124906 0.0636426i
\(146\) 0 0
\(147\) 2.05099 12.9494i 0.169162 1.06805i
\(148\) 0 0
\(149\) 4.23633 0.670968i 0.347054 0.0549679i 0.0195255 0.999809i \(-0.493784\pi\)
0.327528 + 0.944841i \(0.393784\pi\)
\(150\) 0 0
\(151\) −17.5669 + 8.95078i −1.42957 + 0.728404i −0.985830 0.167749i \(-0.946350\pi\)
−0.443744 + 0.896153i \(0.646350\pi\)
\(152\) 0 0
\(153\) −5.51491 0.873476i −0.445854 0.0706164i
\(154\) 0 0
\(155\) 7.12985i 0.572684i
\(156\) 0 0
\(157\) −10.1418 + 19.9044i −0.809402 + 1.58854i −0.000934298 1.00000i \(0.500297\pi\)
−0.808467 + 0.588541i \(0.799703\pi\)
\(158\) 0 0
\(159\) −1.01970 + 1.40350i −0.0808677 + 0.111305i
\(160\) 0 0
\(161\) 3.96839 + 3.96839i 0.312753 + 0.312753i
\(162\) 0 0
\(163\) −18.2099 −1.42631 −0.713155 0.701007i \(-0.752734\pi\)
−0.713155 + 0.701007i \(0.752734\pi\)
\(164\) 0 0
\(165\) 13.7928 1.07377
\(166\) 0 0
\(167\) −16.0818 16.0818i −1.24445 1.24445i −0.958138 0.286308i \(-0.907572\pi\)
−0.286308 0.958138i \(-0.592428\pi\)
\(168\) 0 0
\(169\) −5.86886 + 8.07779i −0.451451 + 0.621369i
\(170\) 0 0
\(171\) 15.5726 30.5629i 1.19086 2.33720i
\(172\) 0 0
\(173\) 6.27081i 0.476761i 0.971172 + 0.238381i \(0.0766165\pi\)
−0.971172 + 0.238381i \(0.923383\pi\)
\(174\) 0 0
\(175\) −1.74611 0.276557i −0.131994 0.0209057i
\(176\) 0 0
\(177\) 13.1788 6.71494i 0.990580 0.504726i
\(178\) 0 0
\(179\) −24.3201 + 3.85192i −1.81777 + 0.287906i −0.970114 0.242648i \(-0.921984\pi\)
−0.847651 + 0.530554i \(0.821984\pi\)
\(180\) 0 0
\(181\) 3.68279 23.2522i 0.273740 1.72832i −0.341411 0.939914i \(-0.610905\pi\)
0.615150 0.788410i \(-0.289095\pi\)
\(182\) 0 0
\(183\) 14.9214 + 7.60284i 1.10302 + 0.562018i
\(184\) 0 0
\(185\) 7.39068 2.40138i 0.543374 0.176553i
\(186\) 0 0
\(187\) 0.832334 2.56166i 0.0608663 0.187327i
\(188\) 0 0
\(189\) −10.0747 31.0066i −0.732823 2.25540i
\(190\) 0 0
\(191\) −6.71941 + 6.71941i −0.486199 + 0.486199i −0.907105 0.420905i \(-0.861712\pi\)
0.420905 + 0.907105i \(0.361712\pi\)
\(192\) 0 0
\(193\) −0.255981 1.61620i −0.0184259 0.116336i 0.976761 0.214331i \(-0.0687572\pi\)
−0.995187 + 0.0979947i \(0.968757\pi\)
\(194\) 0 0
\(195\) 4.75362 3.45371i 0.340414 0.247325i
\(196\) 0 0
\(197\) −6.33184 8.71504i −0.451125 0.620921i 0.521514 0.853243i \(-0.325368\pi\)
−0.972639 + 0.232322i \(0.925368\pi\)
\(198\) 0 0
\(199\) 8.46565 + 16.6148i 0.600114 + 1.17779i 0.968709 + 0.248200i \(0.0798389\pi\)
−0.368595 + 0.929590i \(0.620161\pi\)
\(200\) 0 0
\(201\) 0.118561 + 0.0861398i 0.00836267 + 0.00607583i
\(202\) 0 0
\(203\) −2.83820 0.922187i −0.199203 0.0647249i
\(204\) 0 0
\(205\) −0.605588 + 6.37442i −0.0422961 + 0.445209i
\(206\) 0 0
\(207\) −25.5116 8.28923i −1.77318 0.576142i
\(208\) 0 0
\(209\) 13.3865 + 9.72588i 0.925965 + 0.672753i
\(210\) 0 0
\(211\) 0.294891 + 0.578756i 0.0203011 + 0.0398432i 0.900934 0.433955i \(-0.142882\pi\)
−0.880633 + 0.473799i \(0.842882\pi\)
\(212\) 0 0
\(213\) −20.0598 27.6099i −1.37447 1.89180i
\(214\) 0 0
\(215\) 5.75578 4.18182i 0.392541 0.285198i
\(216\) 0 0
\(217\) 1.97181 + 12.4495i 0.133855 + 0.845128i
\(218\) 0 0
\(219\) −34.1755 + 34.1755i −2.30937 + 2.30937i
\(220\) 0 0
\(221\) −0.354578 1.09128i −0.0238515 0.0734073i
\(222\) 0 0
\(223\) 1.95880 6.02858i 0.131171 0.403703i −0.863804 0.503829i \(-0.831924\pi\)
0.994975 + 0.100125i \(0.0319243\pi\)
\(224\) 0 0
\(225\) 8.03639 2.61118i 0.535760 0.174079i
\(226\) 0 0
\(227\) −9.08778 4.63046i −0.603177 0.307334i 0.125604 0.992080i \(-0.459913\pi\)
−0.728782 + 0.684746i \(0.759913\pi\)
\(228\) 0 0
\(229\) −1.98434 + 12.5286i −0.131129 + 0.827916i 0.831189 + 0.555990i \(0.187661\pi\)
−0.962318 + 0.271926i \(0.912339\pi\)
\(230\) 0 0
\(231\) 24.0838 3.81450i 1.58460 0.250976i
\(232\) 0 0
\(233\) −23.5699 + 12.0094i −1.54411 + 0.786765i −0.998679 0.0513889i \(-0.983635\pi\)
−0.545434 + 0.838154i \(0.683635\pi\)
\(234\) 0 0
\(235\) −2.82466 0.447382i −0.184260 0.0291840i
\(236\) 0 0
\(237\) 26.8240i 1.74240i
\(238\) 0 0
\(239\) −8.40305 + 16.4919i −0.543548 + 1.06677i 0.441943 + 0.897043i \(0.354289\pi\)
−0.985491 + 0.169730i \(0.945711\pi\)
\(240\) 0 0
\(241\) 9.28787 12.7837i 0.598284 0.823467i −0.397266 0.917704i \(-0.630041\pi\)
0.995550 + 0.0942362i \(0.0300409\pi\)
\(242\) 0 0
\(243\) 49.5338 + 49.5338i 3.17759 + 3.17759i
\(244\) 0 0
\(245\) 3.87461 0.247540
\(246\) 0 0
\(247\) 7.04894 0.448513
\(248\) 0 0
\(249\) 32.4957 + 32.4957i 2.05933 + 2.05933i
\(250\) 0 0
\(251\) −4.65017 + 6.40041i −0.293516 + 0.403990i −0.930152 0.367174i \(-0.880325\pi\)
0.636636 + 0.771164i \(0.280325\pi\)
\(252\) 0 0
\(253\) 5.87456 11.5295i 0.369331 0.724852i
\(254\) 0 0
\(255\) 2.23597i 0.140022i
\(256\) 0 0
\(257\) 14.3461 + 2.27219i 0.894882 + 0.141735i 0.586903 0.809658i \(-0.300347\pi\)
0.307980 + 0.951393i \(0.400347\pi\)
\(258\) 0 0
\(259\) 12.2408 6.23701i 0.760608 0.387549i
\(260\) 0 0
\(261\) 14.0883 2.23137i 0.872046 0.138119i
\(262\) 0 0
\(263\) 3.04933 19.2527i 0.188030 1.18717i −0.695404 0.718619i \(-0.744775\pi\)
0.883434 0.468556i \(-0.155225\pi\)
\(264\) 0 0
\(265\) −0.456808 0.232755i −0.0280615 0.0142980i
\(266\) 0 0
\(267\) 55.8849 18.1581i 3.42010 1.11126i
\(268\) 0 0
\(269\) −8.65545 + 26.6387i −0.527732 + 1.62419i 0.231116 + 0.972926i \(0.425762\pi\)
−0.758849 + 0.651267i \(0.774238\pi\)
\(270\) 0 0
\(271\) 1.01832 + 3.13407i 0.0618586 + 0.190381i 0.977210 0.212275i \(-0.0680872\pi\)
−0.915351 + 0.402656i \(0.868087\pi\)
\(272\) 0 0
\(273\) 7.34521 7.34521i 0.444552 0.444552i
\(274\) 0 0
\(275\) 0.637652 + 4.02598i 0.0384519 + 0.242776i
\(276\) 0 0
\(277\) 13.9711 10.1506i 0.839443 0.609891i −0.0827718 0.996569i \(-0.526377\pi\)
0.922215 + 0.386677i \(0.126377\pi\)
\(278\) 0 0
\(279\) −35.4123 48.7409i −2.12008 2.91804i
\(280\) 0 0
\(281\) −8.70368 17.0819i −0.519218 1.01902i −0.990561 0.137072i \(-0.956231\pi\)
0.471343 0.881950i \(-0.343769\pi\)
\(282\) 0 0
\(283\) 18.3790 + 13.3532i 1.09252 + 0.793762i 0.979823 0.199867i \(-0.0640510\pi\)
0.112697 + 0.993629i \(0.464051\pi\)
\(284\) 0 0
\(285\) 13.0637 + 4.24466i 0.773828 + 0.251432i
\(286\) 0 0
\(287\) 0.705467 + 11.2979i 0.0416424 + 0.666896i
\(288\) 0 0
\(289\) 15.7527 + 5.11836i 0.926629 + 0.301080i
\(290\) 0 0
\(291\) 38.8642 + 28.2365i 2.27826 + 1.65525i
\(292\) 0 0
\(293\) −9.29021 18.2331i −0.542740 1.06519i −0.985679 0.168635i \(-0.946064\pi\)
0.442938 0.896552i \(-0.353936\pi\)
\(294\) 0 0
\(295\) 2.56928 + 3.53631i 0.149589 + 0.205892i
\(296\) 0 0
\(297\) −60.8142 + 44.1841i −3.52880 + 2.56382i
\(298\) 0 0
\(299\) −0.862333 5.44455i −0.0498700 0.314867i
\(300\) 0 0
\(301\) 8.89372 8.89372i 0.512626 0.512626i
\(302\) 0 0
\(303\) 10.0958 + 31.0716i 0.579988 + 1.78502i
\(304\) 0 0
\(305\) −1.52936 + 4.70688i −0.0875708 + 0.269515i
\(306\) 0 0
\(307\) −8.93928 + 2.90455i −0.510192 + 0.165771i −0.552789 0.833321i \(-0.686437\pi\)
0.0425977 + 0.999092i \(0.486437\pi\)
\(308\) 0 0
\(309\) −10.8784 5.54280i −0.618848 0.315319i
\(310\) 0 0
\(311\) −2.04991 + 12.9426i −0.116240 + 0.733909i 0.858871 + 0.512192i \(0.171166\pi\)
−0.975111 + 0.221717i \(0.928834\pi\)
\(312\) 0 0
\(313\) 11.6722 1.84870i 0.659755 0.104495i 0.182426 0.983220i \(-0.441605\pi\)
0.477329 + 0.878725i \(0.341605\pi\)
\(314\) 0 0
\(315\) 13.3103 6.78193i 0.749950 0.382119i
\(316\) 0 0
\(317\) −32.9866 5.22457i −1.85271 0.293441i −0.872091 0.489344i \(-0.837236\pi\)
−0.980623 + 0.195902i \(0.937236\pi\)
\(318\) 0 0
\(319\) 6.88076i 0.385249i
\(320\) 0 0
\(321\) −3.41023 + 6.69295i −0.190341 + 0.373564i
\(322\) 0 0
\(323\) 1.57667 2.17010i 0.0877283 0.120748i
\(324\) 0 0
\(325\) 1.22786 + 1.22786i 0.0681096 + 0.0681096i
\(326\) 0 0
\(327\) −69.4369 −3.83987
\(328\) 0 0
\(329\) −5.05590 −0.278741
\(330\) 0 0
\(331\) −13.6326 13.6326i −0.749313 0.749313i 0.225037 0.974350i \(-0.427750\pi\)
−0.974350 + 0.225037i \(0.927750\pi\)
\(332\) 0 0
\(333\) −38.5968 + 53.1240i −2.11509 + 2.91118i
\(334\) 0 0
\(335\) −0.0196621 + 0.0385890i −0.00107426 + 0.00210834i
\(336\) 0 0
\(337\) 11.9233i 0.649505i −0.945799 0.324752i \(-0.894719\pi\)
0.945799 0.324752i \(-0.105281\pi\)
\(338\) 0 0
\(339\) 9.60742 + 1.52167i 0.521803 + 0.0826455i
\(340\) 0 0
\(341\) 25.8948 13.1941i 1.40228 0.714499i
\(342\) 0 0
\(343\) 18.9883 3.00745i 1.02527 0.162387i
\(344\) 0 0
\(345\) 1.68040 10.6096i 0.0904695 0.571202i
\(346\) 0 0
\(347\) 29.9817 + 15.2764i 1.60950 + 0.820082i 0.999619 + 0.0275891i \(0.00878299\pi\)
0.609882 + 0.792493i \(0.291217\pi\)
\(348\) 0 0
\(349\) 4.27006 1.38743i 0.228571 0.0742672i −0.192492 0.981298i \(-0.561657\pi\)
0.421063 + 0.907031i \(0.361657\pi\)
\(350\) 0 0
\(351\) −9.89563 + 30.4556i −0.528189 + 1.62560i
\(352\) 0 0
\(353\) 2.35199 + 7.23868i 0.125184 + 0.385276i 0.993935 0.109973i \(-0.0350766\pi\)
−0.868751 + 0.495250i \(0.835077\pi\)
\(354\) 0 0
\(355\) 7.13166 7.13166i 0.378509 0.378509i
\(356\) 0 0
\(357\) −0.618373 3.90425i −0.0327278 0.206635i
\(358\) 0 0
\(359\) −8.71876 + 6.33455i −0.460159 + 0.334325i −0.793594 0.608448i \(-0.791792\pi\)
0.333435 + 0.942773i \(0.391792\pi\)
\(360\) 0 0
\(361\) −1.48211 2.03995i −0.0780057 0.107366i
\(362\) 0 0
\(363\) −8.62595 16.9294i −0.452745 0.888562i
\(364\) 0 0
\(365\) −11.5554 8.39550i −0.604838 0.439441i
\(366\) 0 0
\(367\) −21.9142 7.12035i −1.14391 0.371679i −0.325064 0.945692i \(-0.605386\pi\)
−0.818846 + 0.574013i \(0.805386\pi\)
\(368\) 0 0
\(369\) −27.5204 46.5844i −1.43265 2.42509i
\(370\) 0 0
\(371\) −0.862008 0.280083i −0.0447532 0.0145412i
\(372\) 0 0
\(373\) −26.4430 19.2120i −1.36917 0.994757i −0.997802 0.0662703i \(-0.978890\pi\)
−0.371364 0.928487i \(-0.621110\pi\)
\(374\) 0 0
\(375\) 1.53620 + 3.01497i 0.0793292 + 0.155692i
\(376\) 0 0
\(377\) 1.72293 + 2.37142i 0.0887356 + 0.122134i
\(378\) 0 0
\(379\) −0.399826 + 0.290490i −0.0205377 + 0.0149215i −0.598007 0.801491i \(-0.704040\pi\)
0.577469 + 0.816413i \(0.304040\pi\)
\(380\) 0 0
\(381\) −4.77115 30.1239i −0.244433 1.54329i
\(382\) 0 0
\(383\) 11.0408 11.0408i 0.564161 0.564161i −0.366326 0.930487i \(-0.619384\pi\)
0.930487 + 0.366326i \(0.119384\pi\)
\(384\) 0 0
\(385\) 2.22682 + 6.85346i 0.113489 + 0.349285i
\(386\) 0 0
\(387\) −18.5774 + 57.1752i −0.944340 + 2.90638i
\(388\) 0 0
\(389\) −8.42482 + 2.73739i −0.427155 + 0.138791i −0.514702 0.857369i \(-0.672097\pi\)
0.0875465 + 0.996160i \(0.472097\pi\)
\(390\) 0 0
\(391\) −1.86905 0.952331i −0.0945221 0.0481614i
\(392\) 0 0
\(393\) −2.28134 + 14.4038i −0.115078 + 0.726575i
\(394\) 0 0
\(395\) 7.82963 1.24009i 0.393951 0.0623957i
\(396\) 0 0
\(397\) 15.3365 7.81432i 0.769715 0.392189i −0.0245986 0.999697i \(-0.507831\pi\)
0.794313 + 0.607508i \(0.207831\pi\)
\(398\) 0 0
\(399\) 23.9846 + 3.79879i 1.20073 + 0.190177i
\(400\) 0 0
\(401\) 29.4688i 1.47160i −0.677198 0.735801i \(-0.736806\pi\)
0.677198 0.735801i \(-0.263194\pi\)
\(402\) 0 0
\(403\) 5.62073 11.0313i 0.279988 0.549508i
\(404\) 0 0
\(405\) −21.7786 + 29.9757i −1.08219 + 1.48950i
\(406\) 0 0
\(407\) −22.3983 22.3983i −1.11024 1.11024i
\(408\) 0 0
\(409\) 32.7527 1.61952 0.809758 0.586764i \(-0.199598\pi\)
0.809758 + 0.586764i \(0.199598\pi\)
\(410\) 0 0
\(411\) −29.0853 −1.43467
\(412\) 0 0
\(413\) 5.46425 + 5.46425i 0.268878 + 0.268878i
\(414\) 0 0
\(415\) −7.98285 + 10.9875i −0.391863 + 0.539353i
\(416\) 0 0
\(417\) −19.5702 + 38.4087i −0.958356 + 1.88088i
\(418\) 0 0
\(419\) 13.3916i 0.654224i 0.944986 + 0.327112i \(0.106075\pi\)
−0.944986 + 0.327112i \(0.893925\pi\)
\(420\) 0 0
\(421\) 28.3759 + 4.49430i 1.38296 + 0.219039i 0.803179 0.595737i \(-0.203140\pi\)
0.579776 + 0.814776i \(0.303140\pi\)
\(422\) 0 0
\(423\) 21.5319 10.9710i 1.04692 0.533430i
\(424\) 0 0
\(425\) 0.652655 0.103370i 0.0316584 0.00501420i
\(426\) 0 0
\(427\) −1.36871 + 8.64169i −0.0662365 + 0.418201i
\(428\) 0 0
\(429\) −21.3403 10.8734i −1.03032 0.524973i
\(430\) 0 0
\(431\) −27.9031 + 9.06627i −1.34405 + 0.436707i −0.890685 0.454620i \(-0.849775\pi\)
−0.453361 + 0.891327i \(0.649775\pi\)
\(432\) 0 0
\(433\) 5.38042 16.5592i 0.258567 0.795786i −0.734539 0.678566i \(-0.762602\pi\)
0.993106 0.117220i \(-0.0373982\pi\)
\(434\) 0 0
\(435\) 1.76510 + 5.43242i 0.0846301 + 0.260465i
\(436\) 0 0
\(437\) 9.11215 9.11215i 0.435893 0.435893i
\(438\) 0 0
\(439\) −2.22558 14.0518i −0.106221 0.670654i −0.982134 0.188184i \(-0.939740\pi\)
0.875912 0.482470i \(-0.160260\pi\)
\(440\) 0 0
\(441\) −26.4875 + 19.2443i −1.26131 + 0.916395i
\(442\) 0 0
\(443\) −4.31764 5.94272i −0.205137 0.282347i 0.694036 0.719941i \(-0.255831\pi\)
−0.899173 + 0.437593i \(0.855831\pi\)
\(444\) 0 0
\(445\) 7.88376 + 15.4727i 0.373726 + 0.733478i
\(446\) 0 0
\(447\) −11.7417 8.53081i −0.555361 0.403494i
\(448\) 0 0
\(449\) −17.5855 5.71387i −0.829910 0.269654i −0.136903 0.990585i \(-0.543715\pi\)
−0.693007 + 0.720930i \(0.743715\pi\)
\(450\) 0 0
\(451\) 24.2719 9.59669i 1.14292 0.451891i
\(452\) 0 0
\(453\) 63.4487 + 20.6157i 2.98108 + 0.968611i
\(454\) 0 0
\(455\) 2.48356 + 1.80441i 0.116431 + 0.0845922i
\(456\) 0 0
\(457\) 16.2947 + 31.9802i 0.762235 + 1.49597i 0.865278 + 0.501293i \(0.167142\pi\)
−0.103043 + 0.994677i \(0.532858\pi\)
\(458\) 0 0
\(459\) 7.16272 + 9.85864i 0.334327 + 0.460162i
\(460\) 0 0
\(461\) 0.691140 0.502143i 0.0321896 0.0233871i −0.571574 0.820550i \(-0.693667\pi\)
0.603764 + 0.797163i \(0.293667\pi\)
\(462\) 0 0
\(463\) −1.53437 9.68761i −0.0713081 0.450222i −0.997347 0.0727936i \(-0.976809\pi\)
0.926039 0.377428i \(-0.123191\pi\)
\(464\) 0 0
\(465\) 17.0596 17.0596i 0.791118 0.791118i
\(466\) 0 0
\(467\) 3.72634 + 11.4685i 0.172435 + 0.530699i 0.999507 0.0313963i \(-0.00999540\pi\)
−0.827072 + 0.562095i \(0.809995\pi\)
\(468\) 0 0
\(469\) −0.0236602 + 0.0728185i −0.00109252 + 0.00336244i
\(470\) 0 0
\(471\) 71.8912 23.3589i 3.31257 1.07632i
\(472\) 0 0
\(473\) −25.8392 13.1657i −1.18809 0.605361i
\(474\) 0 0
\(475\) −0.635025 + 4.00939i −0.0291370 + 0.183964i
\(476\) 0 0
\(477\) 4.27886 0.677704i 0.195915 0.0310299i
\(478\) 0 0
\(479\) 7.08425 3.60961i 0.323688 0.164927i −0.284594 0.958648i \(-0.591859\pi\)
0.608282 + 0.793721i \(0.291859\pi\)
\(480\) 0 0
\(481\) −13.3279 2.11094i −0.607702 0.0962505i
\(482\) 0 0
\(483\) 18.9903i 0.864087i
\(484\) 0 0
\(485\) −6.44520 + 12.6494i −0.292662 + 0.574381i
\(486\) 0 0
\(487\) −0.551957 + 0.759703i −0.0250115 + 0.0344254i −0.821340 0.570439i \(-0.806773\pi\)
0.796328 + 0.604865i \(0.206773\pi\)
\(488\) 0 0
\(489\) 43.5707 + 43.5707i 1.97034 + 1.97034i
\(490\) 0 0
\(491\) −5.59955 −0.252704 −0.126352 0.991985i \(-0.540327\pi\)
−0.126352 + 0.991985i \(0.540327\pi\)
\(492\) 0 0
\(493\) 1.11545 0.0502372
\(494\) 0 0
\(495\) −24.3552 24.3552i −1.09468 1.09468i
\(496\) 0 0
\(497\) 10.4804 14.4250i 0.470109 0.647049i
\(498\) 0 0
\(499\) −5.54357 + 10.8799i −0.248164 + 0.487050i −0.981163 0.193180i \(-0.938120\pi\)
0.732999 + 0.680230i \(0.238120\pi\)
\(500\) 0 0
\(501\) 76.9575i 3.43821i
\(502\) 0 0
\(503\) −24.3763 3.86082i −1.08688 0.172146i −0.412816 0.910814i \(-0.635455\pi\)
−0.674068 + 0.738669i \(0.735455\pi\)
\(504\) 0 0
\(505\) −8.60273 + 4.38331i −0.382817 + 0.195055i
\(506\) 0 0
\(507\) 33.3701 5.28530i 1.48202 0.234728i
\(508\) 0 0
\(509\) −1.60418 + 10.1284i −0.0711039 + 0.448933i 0.926292 + 0.376807i \(0.122978\pi\)
−0.997396 + 0.0721252i \(0.977022\pi\)
\(510\) 0 0
\(511\) −22.4989 11.4638i −0.995292 0.507127i
\(512\) 0 0
\(513\) −71.1968 + 23.1333i −3.14342 + 1.02136i
\(514\) 0 0
\(515\) 1.11497 3.43152i 0.0491314 0.151211i
\(516\) 0 0
\(517\) 3.60230 + 11.0867i 0.158429 + 0.487595i
\(518\) 0 0
\(519\) 15.0041 15.0041i 0.658608 0.658608i
\(520\) 0 0
\(521\) −2.03124 12.8247i −0.0889900 0.561861i −0.991388 0.130957i \(-0.958195\pi\)
0.902398 0.430904i \(-0.141805\pi\)
\(522\) 0 0
\(523\) −13.2860 + 9.65284i −0.580956 + 0.422089i −0.839069 0.544026i \(-0.816899\pi\)
0.258113 + 0.966115i \(0.416899\pi\)
\(524\) 0 0
\(525\) 3.51619 + 4.83962i 0.153459 + 0.211219i
\(526\) 0 0
\(527\) −2.13890 4.19783i −0.0931721 0.182861i
\(528\) 0 0
\(529\) 10.4545 + 7.59563i 0.454543 + 0.330245i
\(530\) 0 0
\(531\) −35.1281 11.4138i −1.52443 0.495317i
\(532\) 0 0
\(533\) 5.96216 9.38509i 0.258250 0.406513i
\(534\) 0 0
\(535\) −2.11126 0.685989i −0.0912776 0.0296579i
\(536\) 0 0
\(537\) 67.4069 + 48.9740i 2.90882 + 2.11338i
\(538\) 0 0
\(539\) −7.17012 14.0722i −0.308839 0.606131i
\(540\) 0 0
\(541\) 21.8657 + 30.0955i 0.940079 + 1.29391i 0.955796 + 0.294031i \(0.0949969\pi\)
−0.0157171 + 0.999876i \(0.505003\pi\)
\(542\) 0 0
\(543\) −64.4472 + 46.8237i −2.76570 + 2.00940i
\(544\) 0 0
\(545\) −3.21011 20.2679i −0.137506 0.868180i
\(546\) 0 0
\(547\) 16.5147 16.5147i 0.706116 0.706116i −0.259600 0.965716i \(-0.583591\pi\)
0.965716 + 0.259600i \(0.0835907\pi\)
\(548\) 0 0
\(549\) −12.9230 39.7730i −0.551541 1.69747i
\(550\) 0 0
\(551\) −2.11751 + 6.51703i −0.0902090 + 0.277635i
\(552\) 0 0
\(553\) 13.3284 4.33067i 0.566783 0.184159i
\(554\) 0 0
\(555\) −23.4294 11.9379i −0.994522 0.506734i
\(556\) 0 0
\(557\) 0.324479 2.04868i 0.0137486 0.0868053i −0.979860 0.199686i \(-0.936008\pi\)
0.993609 + 0.112881i \(0.0360078\pi\)
\(558\) 0 0
\(559\) −12.2020 + 1.93261i −0.516090 + 0.0817407i
\(560\) 0 0
\(561\) −8.12079 + 4.13775i −0.342860 + 0.174696i
\(562\) 0 0
\(563\) 5.16258 + 0.817672i 0.217577 + 0.0344608i 0.264271 0.964448i \(-0.414869\pi\)
−0.0466943 + 0.998909i \(0.514869\pi\)
\(564\) 0 0
\(565\) 2.87465i 0.120937i
\(566\) 0 0
\(567\) −29.7379 + 58.3639i −1.24887 + 2.45105i
\(568\) 0 0
\(569\) 24.1797 33.2805i 1.01367 1.39519i 0.0971157 0.995273i \(-0.469038\pi\)
0.916551 0.399919i \(-0.130962\pi\)
\(570\) 0 0
\(571\) −2.84546 2.84546i −0.119079 0.119079i 0.645056 0.764135i \(-0.276834\pi\)
−0.764135 + 0.645056i \(0.776834\pi\)
\(572\) 0 0
\(573\) 32.1550 1.34329
\(574\) 0 0
\(575\) 3.17451 0.132386
\(576\) 0 0
\(577\) −17.2992 17.2992i −0.720175 0.720175i 0.248465 0.968641i \(-0.420074\pi\)
−0.968641 + 0.248465i \(0.920074\pi\)
\(578\) 0 0
\(579\) −3.25458 + 4.47955i −0.135256 + 0.186164i
\(580\) 0 0
\(581\) −10.9003 + 21.3930i −0.452220 + 0.887532i
\(582\) 0 0
\(583\) 2.08980i 0.0865506i
\(584\) 0 0
\(585\) −14.4924 2.29537i −0.599187 0.0949018i
\(586\) 0 0
\(587\) 9.38915 4.78401i 0.387532 0.197457i −0.249359 0.968411i \(-0.580220\pi\)
0.636891 + 0.770954i \(0.280220\pi\)
\(588\) 0 0
\(589\) 28.5864 4.52764i 1.17788 0.186558i
\(590\) 0 0
\(591\) −5.70225 + 36.0026i −0.234559 + 1.48095i
\(592\) 0 0
\(593\) −10.5451 5.37298i −0.433034 0.220642i 0.223865 0.974620i \(-0.428132\pi\)
−0.656899 + 0.753978i \(0.728132\pi\)
\(594\) 0 0
\(595\) 1.11102 0.360992i 0.0455474 0.0147992i
\(596\) 0 0
\(597\) 19.4983 60.0098i 0.798014 2.45604i
\(598\) 0 0
\(599\) −1.54349 4.75037i −0.0630653 0.194095i 0.914559 0.404451i \(-0.132538\pi\)
−0.977625 + 0.210357i \(0.932538\pi\)
\(600\) 0 0
\(601\) 8.63295 8.63295i 0.352145 0.352145i −0.508762 0.860907i \(-0.669897\pi\)
0.860907 + 0.508762i \(0.169897\pi\)
\(602\) 0 0
\(603\) −0.0572493 0.361458i −0.00233137 0.0147197i
\(604\) 0 0
\(605\) 4.54272 3.30048i 0.184688 0.134183i
\(606\) 0 0
\(607\) −1.59647 2.19735i −0.0647987 0.0891878i 0.775388 0.631486i \(-0.217554\pi\)
−0.840186 + 0.542298i \(0.817554\pi\)
\(608\) 0 0
\(609\) 4.58443 + 8.99746i 0.185771 + 0.364595i
\(610\) 0 0
\(611\) 4.01762 + 2.91897i 0.162536 + 0.118089i
\(612\) 0 0
\(613\) 14.2615 + 4.63383i 0.576015 + 0.187159i 0.582515 0.812820i \(-0.302069\pi\)
−0.00649962 + 0.999979i \(0.502069\pi\)
\(614\) 0 0
\(615\) 16.7010 13.8031i 0.673450 0.556593i
\(616\) 0 0
\(617\) 28.6802 + 9.31877i 1.15462 + 0.375159i 0.822883 0.568212i \(-0.192364\pi\)
0.331740 + 0.943371i \(0.392364\pi\)
\(618\) 0 0
\(619\) −32.4588 23.5827i −1.30463 0.947870i −0.304641 0.952467i \(-0.598537\pi\)
−0.999989 + 0.00459753i \(0.998537\pi\)
\(620\) 0 0
\(621\) 26.5778 + 52.1619i 1.06653 + 2.09319i
\(622\) 0 0
\(623\) 18.0450 + 24.8368i 0.722958 + 0.995066i
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) −8.75880 55.3009i −0.349793 2.20851i
\(628\) 0 0
\(629\) −3.63100 + 3.63100i −0.144778 + 0.144778i
\(630\) 0 0
\(631\) −2.95847 9.10522i −0.117775 0.362473i 0.874741 0.484591i \(-0.161031\pi\)
−0.992516 + 0.122118i \(0.961031\pi\)
\(632\) 0 0
\(633\) 0.679202 2.09037i 0.0269959 0.0830848i
\(634\) 0 0
\(635\) 8.57225 2.78529i 0.340179 0.110531i
\(636\) 0 0
\(637\) −5.99479 3.05450i −0.237522 0.121024i
\(638\) 0 0
\(639\) −13.3319 + 84.1745i −0.527403 + 3.32989i
\(640\) 0 0
\(641\) 9.86828 1.56298i 0.389774 0.0617341i 0.0415279 0.999137i \(-0.486777\pi\)
0.348246 + 0.937403i \(0.386777\pi\)
\(642\) 0 0
\(643\) 6.09230 3.10418i 0.240257 0.122417i −0.329717 0.944080i \(-0.606953\pi\)
0.569974 + 0.821663i \(0.306953\pi\)
\(644\) 0 0
\(645\) −23.7776 3.76601i −0.936243 0.148286i
\(646\) 0 0
\(647\) 14.3747i 0.565129i −0.959248 0.282565i \(-0.908815\pi\)
0.959248 0.282565i \(-0.0911852\pi\)
\(648\) 0 0
\(649\) 8.08894 15.8754i 0.317519 0.623165i
\(650\) 0 0
\(651\) 25.0699 34.5058i 0.982569 1.35239i
\(652\) 0 0
\(653\) −1.20547 1.20547i −0.0471735 0.0471735i 0.683127 0.730300i \(-0.260620\pi\)
−0.730300 + 0.683127i \(0.760620\pi\)
\(654\) 0 0
\(655\) −4.30978 −0.168397
\(656\) 0 0
\(657\) 120.693 4.70869
\(658\) 0 0
\(659\) 16.7820 + 16.7820i 0.653735 + 0.653735i 0.953890 0.300155i \(-0.0970385\pi\)
−0.300155 + 0.953890i \(0.597038\pi\)
\(660\) 0 0
\(661\) 3.00586 4.13721i 0.116914 0.160919i −0.746549 0.665330i \(-0.768291\pi\)
0.863463 + 0.504412i \(0.168291\pi\)
\(662\) 0 0
\(663\) −1.76270 + 3.45949i −0.0684575 + 0.134355i
\(664\) 0 0
\(665\) 7.17647i 0.278291i
\(666\) 0 0
\(667\) 5.29276 + 0.838290i 0.204936 + 0.0324587i
\(668\) 0 0
\(669\) −19.1114 + 9.73772i −0.738887 + 0.376482i
\(670\) 0 0
\(671\) 19.9250 3.15581i 0.769196 0.121829i
\(672\) 0 0
\(673\) −1.65899 + 10.4745i −0.0639494 + 0.403761i 0.934862 + 0.355012i \(0.115523\pi\)
−0.998811 + 0.0487485i \(0.984477\pi\)
\(674\) 0 0
\(675\) −16.4315 8.37226i −0.632448 0.322248i
\(676\) 0 0
\(677\) −30.3214 + 9.85203i −1.16535 + 0.378644i −0.826904 0.562343i \(-0.809900\pi\)
−0.338443 + 0.940987i \(0.609900\pi\)
\(678\) 0 0
\(679\) −7.75576 + 23.8698i −0.297639 + 0.916038i
\(680\) 0 0
\(681\) 10.6650 + 32.8235i 0.408684 + 1.25780i
\(682\) 0 0
\(683\) 31.6371 31.6371i 1.21056 1.21056i 0.239717 0.970843i \(-0.422945\pi\)
0.970843 0.239717i \(-0.0770546\pi\)
\(684\) 0 0
\(685\) −1.34464 8.48970i −0.0513759 0.324375i
\(686\) 0 0
\(687\) 34.7251 25.2293i 1.32485 0.962557i
\(688\) 0 0
\(689\) 0.523283 + 0.720238i 0.0199355 + 0.0274389i
\(690\) 0 0
\(691\) 1.93783 + 3.80320i 0.0737183 + 0.144680i 0.924924 0.380152i \(-0.124128\pi\)
−0.851206 + 0.524832i \(0.824128\pi\)
\(692\) 0 0
\(693\) −49.2625 35.7913i −1.87133 1.35960i
\(694\) 0 0
\(695\) −12.1158 3.93667i −0.459579 0.149326i
\(696\) 0 0
\(697\) −1.55573 3.93473i −0.0589274 0.149039i
\(698\) 0 0
\(699\) 85.1304 + 27.6605i 3.21993 + 1.04622i
\(700\) 0 0
\(701\) −19.7799 14.3709i −0.747075 0.542782i 0.147844 0.989011i \(-0.452767\pi\)
−0.894919 + 0.446229i \(0.852767\pi\)
\(702\) 0 0
\(703\) −14.3213 28.1072i −0.540139 1.06008i
\(704\) 0 0
\(705\) 5.68810 + 7.82899i 0.214226 + 0.294857i
\(706\) 0 0
\(707\) −13.8091 + 10.0329i −0.519344 + 0.377326i
\(708\) 0 0
\(709\) −1.06108 6.69937i −0.0398495 0.251600i 0.959719 0.280960i \(-0.0906530\pi\)
−0.999569 + 0.0293604i \(0.990653\pi\)
\(710\) 0 0
\(711\) −47.3654 + 47.3654i −1.77634 + 1.77634i
\(712\) 0 0
\(713\) −6.99423 21.5260i −0.261936 0.806156i
\(714\) 0 0
\(715\) 2.18725 6.73167i 0.0817986 0.251750i
\(716\) 0 0
\(717\) 59.5660 19.3542i 2.22453 0.722795i
\(718\) 0 0
\(719\) 38.9670 + 19.8547i 1.45322 + 0.740455i 0.989365 0.145454i \(-0.0464642\pi\)
0.463860 + 0.885909i \(0.346464\pi\)
\(720\) 0 0
\(721\) 0.997849 6.30017i 0.0371618 0.234631i
\(722\) 0 0
\(723\) −52.8104 + 8.36434i −1.96404 + 0.311073i
\(724\) 0 0
\(725\) −1.50406 + 0.766358i −0.0558595 + 0.0284618i
\(726\) 0 0
\(727\) 8.99562 + 1.42477i 0.333629 + 0.0528417i 0.321002 0.947079i \(-0.395980\pi\)
0.0126274 + 0.999920i \(0.495980\pi\)
\(728\) 0 0
\(729\) 125.882i 4.66231i
\(730\) 0 0
\(731\) −2.13431 + 4.18882i −0.0789402 + 0.154929i
\(732\) 0 0
\(733\) 5.09559 7.01347i 0.188210 0.259049i −0.704476 0.709727i \(-0.748818\pi\)
0.892686 + 0.450679i \(0.148818\pi\)
\(734\) 0 0
\(735\) −9.27076 9.27076i −0.341957 0.341957i
\(736\) 0 0
\(737\) 0.176537 0.00650281
\(738\) 0 0
\(739\) −18.4634 −0.679188 −0.339594 0.940572i \(-0.610290\pi\)
−0.339594 + 0.940572i \(0.610290\pi\)
\(740\) 0 0
\(741\) −16.8660 16.8660i −0.619586 0.619586i
\(742\) 0 0
\(743\) 8.64510 11.8990i 0.317158 0.436531i −0.620439 0.784255i \(-0.713045\pi\)
0.937597 + 0.347724i \(0.113045\pi\)
\(744\) 0 0
\(745\) 1.94723 3.82165i 0.0713408 0.140014i
\(746\) 0 0
\(747\) 114.761i 4.19888i
\(748\) 0 0
\(749\) −3.87621 0.613931i −0.141633 0.0224325i
\(750\) 0 0
\(751\) −22.8627 + 11.6491i −0.834270 + 0.425082i −0.818301 0.574791i \(-0.805084\pi\)
−0.0159697 + 0.999872i \(0.505084\pi\)
\(752\) 0 0
\(753\) 26.4407 4.18779i 0.963551 0.152612i
\(754\) 0 0
\(755\) −3.08423 + 19.4731i −0.112247 + 0.708697i
\(756\) 0 0
\(757\) −10.6476 5.42522i −0.386993 0.197183i 0.249659 0.968334i \(-0.419681\pi\)
−0.636652 + 0.771151i \(0.719681\pi\)
\(758\) 0 0
\(759\) −41.6425 + 13.5305i −1.51153 + 0.491125i
\(760\) 0 0
\(761\) 3.71369 11.4296i 0.134621 0.414321i −0.860910 0.508758i \(-0.830105\pi\)
0.995531 + 0.0944363i \(0.0301049\pi\)
\(762\) 0 0
\(763\) −11.2104 34.5022i −0.405845 1.24906i
\(764\) 0 0
\(765\) −3.94824 + 3.94824i −0.142749 + 0.142749i
\(766\) 0 0
\(767\) −1.18738 7.49684i −0.0428739 0.270695i
\(768\) 0 0
\(769\) −27.9899 + 20.3359i −1.00934 + 0.733331i −0.964071 0.265644i \(-0.914415\pi\)
−0.0452720 + 0.998975i \(0.514415\pi\)
\(770\) 0 0
\(771\) −28.8890 39.7624i −1.04041 1.43201i
\(772\) 0 0
\(773\) −17.7192 34.7758i −0.637314 1.25080i −0.953297 0.302035i \(-0.902334\pi\)
0.315983 0.948765i \(-0.397666\pi\)
\(774\) 0 0
\(775\) 5.76817 + 4.19082i 0.207199 + 0.150539i
\(776\) 0 0
\(777\) −44.2118 14.3653i −1.58609 0.515352i
\(778\) 0 0
\(779\) 25.9421 1.61988i 0.929473 0.0580383i
\(780\) 0 0
\(781\) −39.0988 12.7040i −1.39907 0.454584i
\(782\) 0 0
\(783\) −25.1848 18.2978i −0.900031 0.653911i
\(784\) 0 0
\(785\) 10.1418 + 19.9044i 0.361975 + 0.710417i
\(786\) 0 0
\(787\) −2.83953 3.90828i −0.101218 0.139315i 0.755403 0.655260i \(-0.227441\pi\)
−0.856622 + 0.515945i \(0.827441\pi\)
\(788\) 0 0
\(789\) −53.3620 + 38.7698i −1.89974 + 1.38024i
\(790\) 0 0
\(791\) 0.795004 + 5.01946i 0.0282671 + 0.178471i
\(792\) 0 0
\(793\) 6.07683 6.07683i 0.215795 0.215795i
\(794\) 0 0
\(795\) 0.536090 + 1.64991i 0.0190131 + 0.0585164i
\(796\) 0 0
\(797\) 2.83509 8.72550i 0.100424 0.309073i −0.888205 0.459447i \(-0.848048\pi\)
0.988629 + 0.150374i \(0.0480477\pi\)
\(798\) 0 0
\(799\) 1.79728 0.583973i 0.0635833 0.0206595i
\(800\) 0 0
\(801\) −130.744 66.6175i −4.61962 2.35381i
\(802\) 0 0
\(803\) −9.10777 + 57.5042i −0.321406 + 2.02928i
\(804\) 0 0
\(805\) 5.54305 0.877933i 0.195367 0.0309431i
\(806\) 0 0
\(807\) 84.4482 43.0285i 2.97272 1.51468i
\(808\) 0 0
\(809\) 11.8976 + 1.88440i 0.418298 + 0.0662519i 0.362036 0.932164i \(-0.382082\pi\)
0.0562622 + 0.998416i \(0.482082\pi\)
\(810\) 0 0
\(811\) 27.4062i 0.962360i 0.876622 + 0.481180i \(0.159792\pi\)
−0.876622 + 0.481180i \(0.840208\pi\)
\(812\) 0 0
\(813\) 5.06234 9.93540i 0.177544 0.348450i
\(814\) 0 0
\(815\) −10.7035 + 14.7321i −0.374928 + 0.516044i
\(816\) 0 0
\(817\) −20.4216 20.4216i −0.714462 0.714462i
\(818\) 0 0
\(819\) −25.9401 −0.906421
\(820\) 0 0
\(821\) −9.88006 −0.344816 −0.172408 0.985026i \(-0.555155\pi\)
−0.172408 + 0.985026i \(0.555155\pi\)
\(822\) 0 0
\(823\) 25.5879 + 25.5879i 0.891938 + 0.891938i 0.994705 0.102767i \(-0.0327696\pi\)
−0.102767 + 0.994705i \(0.532770\pi\)
\(824\) 0 0
\(825\) 8.10723 11.1586i 0.282257 0.388494i
\(826\) 0 0
\(827\) −4.08849 + 8.02412i −0.142171 + 0.279026i −0.951102 0.308878i \(-0.900047\pi\)
0.808931 + 0.587904i \(0.200047\pi\)
\(828\) 0 0
\(829\) 4.64122i 0.161196i −0.996747 0.0805980i \(-0.974317\pi\)
0.996747 0.0805980i \(-0.0256830\pi\)
\(830\) 0 0
\(831\) −57.7159 9.14130i −2.00214 0.317108i
\(832\) 0 0
\(833\) −2.28125 + 1.16236i −0.0790406 + 0.0402732i
\(834\) 0 0
\(835\) −22.4631 + 3.55780i −0.777366 + 0.123123i
\(836\) 0 0
\(837\) −20.5688 + 129.866i −0.710961 + 4.48883i
\(838\) 0 0
\(839\) 24.7299 + 12.6005i 0.853771 + 0.435018i 0.825379 0.564579i \(-0.190961\pi\)
0.0283921 + 0.999597i \(0.490961\pi\)
\(840\) 0 0
\(841\) 24.8706 8.08095i 0.857607 0.278653i
\(842\) 0 0
\(843\) −20.0466 + 61.6970i −0.690441 + 2.12496i
\(844\) 0 0
\(845\) 3.08544 + 9.49601i 0.106142 + 0.326673i
\(846\) 0 0
\(847\) 7.01932 7.01932i 0.241187 0.241187i
\(848\) 0 0
\(849\) −12.0254 75.9254i −0.412711 2.60575i
\(850\) 0 0
\(851\) −19.9578 + 14.5002i −0.684145 + 0.497060i
\(852\) 0 0
\(853\) −10.9430 15.0618i −0.374683 0.515706i 0.579483 0.814984i \(-0.303254\pi\)
−0.954166 + 0.299278i \(0.903254\pi\)
\(854\) 0 0
\(855\) −15.5726 30.5629i −0.532571 1.04523i
\(856\) 0 0
\(857\) 17.3492 + 12.6049i 0.592637 + 0.430576i 0.843258 0.537509i \(-0.180635\pi\)
−0.250621 + 0.968085i \(0.580635\pi\)
\(858\) 0 0
\(859\) 29.6193 + 9.62391i 1.01060 + 0.328363i 0.767093 0.641536i \(-0.221702\pi\)
0.243506 + 0.969899i \(0.421702\pi\)
\(860\) 0 0
\(861\) 25.3445 28.7204i 0.863739 0.978790i
\(862\) 0 0
\(863\) −31.9914 10.3946i −1.08900 0.353837i −0.291139 0.956681i \(-0.594034\pi\)
−0.797859 + 0.602844i \(0.794034\pi\)
\(864\) 0 0
\(865\) 5.07319 + 3.68589i 0.172494 + 0.125324i
\(866\) 0 0
\(867\) −25.4447 49.9380i −0.864147 1.69598i
\(868\) 0 0
\(869\) −18.9929 26.1415i −0.644290 0.886789i
\(870\) 0 0
\(871\) 0.0608424 0.0442046i 0.00206156 0.00149781i
\(872\) 0 0
\(873\) −18.7662 118.485i −0.635141 4.01012i
\(874\) 0 0
\(875\) −1.25008 + 1.25008i −0.0422603 + 0.0422603i
\(876\) 0 0
\(877\) 14.2311 + 43.7988i 0.480550 + 1.47898i 0.838324 + 0.545172i \(0.183536\pi\)
−0.357774 + 0.933808i \(0.616464\pi\)
\(878\) 0 0
\(879\) −21.3975 + 65.8548i −0.721720 + 2.22123i
\(880\) 0 0
\(881\) 19.3164 6.27627i 0.650785 0.211453i 0.0350246 0.999386i \(-0.488849\pi\)
0.615760 + 0.787934i \(0.288849\pi\)
\(882\) 0 0
\(883\) −13.1918 6.72154i −0.443939 0.226198i 0.217708 0.976014i \(-0.430142\pi\)
−0.661646 + 0.749816i \(0.730142\pi\)
\(884\) 0 0
\(885\) 2.31381 14.6088i 0.0777779 0.491070i
\(886\) 0 0
\(887\) −6.59552 + 1.04463i −0.221456 + 0.0350752i −0.266176 0.963924i \(-0.585760\pi\)
0.0447204 + 0.999000i \(0.485760\pi\)
\(888\) 0 0
\(889\) 14.1978 7.23415i 0.476179 0.242625i
\(890\) 0 0
\(891\) 149.171 + 23.6263i 4.99740 + 0.791511i
\(892\) 0 0
\(893\) 11.6093i 0.388489i
\(894\) 0 0
\(895\) −11.1787 + 21.9394i −0.373663 + 0.733354i
\(896\) 0 0
\(897\) −10.9639 + 15.0904i −0.366072 + 0.503855i
\(898\) 0 0
\(899\) 8.51041 + 8.51041i 0.283838 + 0.283838i
\(900\) 0 0
\(901\) 0.338779 0.0112864
\(902\) 0 0
\(903\) −42.5599 −1.41630
\(904\) 0 0
\(905\) −16.6468 16.6468i −0.553357 0.553357i
\(906\) 0 0
\(907\) −25.7736 + 35.4743i −0.855797 + 1.17790i 0.126758 + 0.991934i \(0.459543\pi\)
−0.982555 + 0.185970i \(0.940457\pi\)
\(908\) 0 0
\(909\) 37.0388 72.6928i 1.22850 2.41107i
\(910\) 0 0
\(911\) 50.8258i 1.68393i −0.539528 0.841967i \(-0.681397\pi\)
0.539528 0.841967i \(-0.318603\pi\)
\(912\) 0 0
\(913\) 54.6778 + 8.66011i 1.80957 + 0.286608i
\(914\) 0 0
\(915\) 14.9214 7.60284i 0.493286 0.251342i
\(916\) 0 0
\(917\) −7.52535 + 1.19190i −0.248509 + 0.0393599i
\(918\) 0 0
\(919\) 7.02011 44.3232i 0.231572 1.46209i −0.548370 0.836236i \(-0.684751\pi\)
0.779942 0.625852i \(-0.215249\pi\)
\(920\) 0 0
\(921\) 28.3387 + 14.4393i 0.933790 + 0.475790i
\(922\) 0 0
\(923\) −16.6563 + 5.41195i −0.548247 + 0.178136i
\(924\) 0 0
\(925\) 2.40138 7.39068i 0.0789568 0.243004i
\(926\) 0 0
\(927\) 9.42145 + 28.9962i 0.309441 + 0.952361i
\(928\) 0 0
\(929\) −38.6148 + 38.6148i −1.26691 + 1.26691i −0.319233 + 0.947676i \(0.603425\pi\)
−0.947676 + 0.319233i \(0.896575\pi\)
\(930\) 0 0
\(931\) −2.46048 15.5348i −0.0806389 0.509134i
\(932\) 0 0
\(933\) 35.8726 26.0629i 1.17441 0.853262i
\(934\) 0 0
\(935\) −1.58319 2.17908i −0.0517760 0.0712635i
\(936\) 0 0
\(937\) 6.36478 + 12.4916i 0.207928 + 0.408082i 0.971293 0.237885i \(-0.0764542\pi\)
−0.763365 + 0.645967i \(0.776454\pi\)
\(938\) 0 0
\(939\) −32.3515 23.5047i −1.05575 0.767048i
\(940\) 0 0
\(941\) 4.80343 + 1.56073i 0.156587 + 0.0508783i 0.386262 0.922389i \(-0.373766\pi\)
−0.229674 + 0.973268i \(0.573766\pi\)
\(942\) 0 0
\(943\) −4.42482 19.8394i −0.144092 0.646058i
\(944\) 0 0
\(945\) −31.0066 10.0747i −1.00864 0.327728i
\(946\) 0 0
\(947\) 2.82086 + 2.04948i 0.0916657 + 0.0665990i 0.632674 0.774418i \(-0.281957\pi\)
−0.541008 + 0.841017i \(0.681957\pi\)
\(948\) 0 0
\(949\) 11.2600 + 22.0991i 0.365517 + 0.717367i
\(950\) 0 0
\(951\) 66.4261 + 91.4277i 2.15401 + 2.96475i
\(952\) 0 0
\(953\) 23.6101 17.1538i 0.764808 0.555665i −0.135573 0.990767i \(-0.543288\pi\)
0.900381 + 0.435102i \(0.143288\pi\)
\(954\) 0 0
\(955\) 1.48655 + 9.38568i 0.0481035 + 0.303714i
\(956\) 0 0
\(957\) 16.4635 16.4635i 0.532191 0.532191i
\(958\) 0 0
\(959\) −4.69577 14.4521i −0.151634 0.466682i
\(960\) 0 0
\(961\) 6.12930 18.8640i 0.197719 0.608517i
\(962\) 0 0
\(963\) 17.8401 5.79658i 0.574888 0.186792i
\(964\) 0 0
\(965\) −1.45799 0.742884i −0.0469344 0.0239143i
\(966\) 0 0
\(967\) −8.27441 + 52.2426i −0.266087 + 1.68001i 0.386496 + 0.922291i \(0.373685\pi\)
−0.652583 + 0.757717i \(0.726315\pi\)
\(968\) 0 0
\(969\) −8.96488 + 1.41990i −0.287993 + 0.0456137i
\(970\) 0 0
\(971\) −15.2297 + 7.75992i −0.488744 + 0.249028i −0.680954 0.732326i \(-0.738435\pi\)
0.192210 + 0.981354i \(0.438435\pi\)
\(972\) 0 0
\(973\) −22.2443 3.52315i −0.713118 0.112947i
\(974\) 0 0
\(975\) 5.87580i 0.188176i
\(976\) 0 0
\(977\) −18.4062 + 36.1241i −0.588866 + 1.15571i 0.383781 + 0.923424i \(0.374622\pi\)
−0.972647 + 0.232290i \(0.925378\pi\)
\(978\) 0 0
\(979\) 41.6061 57.2658i 1.32974 1.83022i
\(980\) 0 0
\(981\) 122.611 + 122.611i 3.91465 + 3.91465i
\(982\) 0 0
\(983\) 43.3890 1.38390 0.691948 0.721948i \(-0.256753\pi\)
0.691948 + 0.721948i \(0.256753\pi\)
\(984\) 0 0
\(985\) −10.7724 −0.343236
\(986\) 0 0
\(987\) 12.0972 + 12.0972i 0.385058 + 0.385058i
\(988\) 0 0
\(989\) −13.2752 + 18.2718i −0.422128 + 0.581010i
\(990\) 0 0
\(991\) 12.8670 25.2529i 0.408733 0.802184i −0.591257 0.806483i \(-0.701368\pi\)
0.999991 + 0.00429859i \(0.00136829\pi\)
\(992\) 0 0
\(993\) 65.2371i 2.07024i
\(994\) 0 0
\(995\) 18.4176 + 2.91706i 0.583878 + 0.0924771i
\(996\) 0 0
\(997\) −31.4721 + 16.0358i −0.996730 + 0.507860i −0.874699 0.484667i \(-0.838941\pi\)
−0.122032 + 0.992526i \(0.538941\pi\)
\(998\) 0 0
\(999\) 141.545 22.4185i 4.47828 0.709289i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.21.1 64
41.2 even 20 inner 820.2.bo.b.781.1 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.21.1 64 1.1 even 1 trivial
820.2.bo.b.781.1 yes 64 41.2 even 20 inner