Properties

Label 820.2.bo.b.121.7
Level $820$
Weight $2$
Character 820.121
Analytic conductor $6.548$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(21,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 0, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.21"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bo (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(8\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 121.7
Character \(\chi\) \(=\) 820.121
Dual form 820.2.bo.b.61.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.915716 + 0.915716i) q^{3} +(-0.587785 - 0.809017i) q^{5} +(-3.85694 + 1.96521i) q^{7} -1.32293i q^{9} +(0.298728 + 1.88610i) q^{11} +(-0.991729 + 1.94638i) q^{13} +(0.202586 - 1.27907i) q^{15} +(-5.18836 + 0.821755i) q^{17} +(-2.52870 - 4.96286i) q^{19} +(-5.33144 - 1.73229i) q^{21} +(1.27866 + 3.93532i) q^{23} +(-0.309017 + 0.951057i) q^{25} +(3.95857 - 3.95857i) q^{27} +(-9.75736 - 1.54541i) q^{29} +(3.28016 + 2.38318i) q^{31} +(-1.45358 + 2.00068i) q^{33} +(3.85694 + 1.96521i) q^{35} +(-7.01671 + 5.09794i) q^{37} +(-2.69047 + 0.874188i) q^{39} +(-6.11937 - 1.88503i) q^{41} +(-6.08690 + 1.97775i) q^{43} +(-1.07027 + 0.777597i) q^{45} +(0.329343 + 0.167809i) q^{47} +(6.89947 - 9.49630i) q^{49} +(-5.50356 - 3.99857i) q^{51} +(7.10537 + 1.12538i) q^{53} +(1.35030 - 1.35030i) q^{55} +(2.22900 - 6.86015i) q^{57} +(1.97529 + 6.07933i) q^{59} +(11.4220 + 3.71123i) q^{61} +(2.59983 + 5.10246i) q^{63} +(2.15758 - 0.341727i) q^{65} +(0.679724 - 4.29161i) q^{67} +(-2.43274 + 4.77453i) q^{69} +(-1.61585 - 10.2020i) q^{71} -3.44093i q^{73} +(-1.15387 + 0.587926i) q^{75} +(-4.85875 - 6.68750i) q^{77} +(5.75319 + 5.75319i) q^{79} +3.28108 q^{81} +4.45266 q^{83} +(3.71446 + 3.71446i) q^{85} +(-7.51981 - 10.3501i) q^{87} +(-10.7535 + 5.47918i) q^{89} -9.45603i q^{91} +(0.821384 + 5.18602i) q^{93} +(-2.52870 + 4.96286i) q^{95} +(-0.0847003 + 0.534776i) q^{97} +(2.49517 - 0.395196i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 2 q^{3} - 10 q^{7} + 2 q^{11} + 6 q^{13} - 2 q^{15} + 2 q^{17} + 10 q^{19} - 22 q^{23} + 16 q^{25} + 20 q^{27} - 12 q^{29} + 22 q^{31} + 30 q^{33} + 10 q^{35} + 12 q^{37} + 20 q^{39} - 10 q^{41}+ \cdots - 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.915716 + 0.915716i 0.528689 + 0.528689i 0.920181 0.391492i \(-0.128041\pi\)
−0.391492 + 0.920181i \(0.628041\pi\)
\(4\) 0 0
\(5\) −0.587785 0.809017i −0.262866 0.361803i
\(6\) 0 0
\(7\) −3.85694 + 1.96521i −1.45779 + 0.742780i −0.990001 0.141061i \(-0.954949\pi\)
−0.467787 + 0.883841i \(0.654949\pi\)
\(8\) 0 0
\(9\) 1.32293i 0.440976i
\(10\) 0 0
\(11\) 0.298728 + 1.88610i 0.0900699 + 0.568679i 0.990910 + 0.134528i \(0.0429517\pi\)
−0.900840 + 0.434151i \(0.857048\pi\)
\(12\) 0 0
\(13\) −0.991729 + 1.94638i −0.275056 + 0.539828i −0.986668 0.162744i \(-0.947965\pi\)
0.711612 + 0.702573i \(0.247965\pi\)
\(14\) 0 0
\(15\) 0.202586 1.27907i 0.0523074 0.330256i
\(16\) 0 0
\(17\) −5.18836 + 0.821755i −1.25836 + 0.199305i −0.749768 0.661701i \(-0.769835\pi\)
−0.508594 + 0.861006i \(0.669835\pi\)
\(18\) 0 0
\(19\) −2.52870 4.96286i −0.580125 1.13856i −0.975492 0.220036i \(-0.929383\pi\)
0.395367 0.918523i \(-0.370617\pi\)
\(20\) 0 0
\(21\) −5.33144 1.73229i −1.16342 0.378017i
\(22\) 0 0
\(23\) 1.27866 + 3.93532i 0.266620 + 0.820571i 0.991316 + 0.131502i \(0.0419801\pi\)
−0.724696 + 0.689068i \(0.758020\pi\)
\(24\) 0 0
\(25\) −0.309017 + 0.951057i −0.0618034 + 0.190211i
\(26\) 0 0
\(27\) 3.95857 3.95857i 0.761828 0.761828i
\(28\) 0 0
\(29\) −9.75736 1.54541i −1.81190 0.286976i −0.843635 0.536916i \(-0.819589\pi\)
−0.968261 + 0.249940i \(0.919589\pi\)
\(30\) 0 0
\(31\) 3.28016 + 2.38318i 0.589135 + 0.428032i 0.842006 0.539468i \(-0.181375\pi\)
−0.252871 + 0.967500i \(0.581375\pi\)
\(32\) 0 0
\(33\) −1.45358 + 2.00068i −0.253035 + 0.348273i
\(34\) 0 0
\(35\) 3.85694 + 1.96521i 0.651943 + 0.332181i
\(36\) 0 0
\(37\) −7.01671 + 5.09794i −1.15354 + 0.838096i −0.988947 0.148266i \(-0.952631\pi\)
−0.164592 + 0.986362i \(0.552631\pi\)
\(38\) 0 0
\(39\) −2.69047 + 0.874188i −0.430820 + 0.139982i
\(40\) 0 0
\(41\) −6.11937 1.88503i −0.955685 0.294392i
\(42\) 0 0
\(43\) −6.08690 + 1.97775i −0.928244 + 0.301605i −0.733844 0.679318i \(-0.762276\pi\)
−0.194399 + 0.980922i \(0.562276\pi\)
\(44\) 0 0
\(45\) −1.07027 + 0.777597i −0.159547 + 0.115917i
\(46\) 0 0
\(47\) 0.329343 + 0.167809i 0.0480397 + 0.0244774i 0.477845 0.878444i \(-0.341418\pi\)
−0.429806 + 0.902921i \(0.641418\pi\)
\(48\) 0 0
\(49\) 6.89947 9.49630i 0.985638 1.35661i
\(50\) 0 0
\(51\) −5.50356 3.99857i −0.770653 0.559912i
\(52\) 0 0
\(53\) 7.10537 + 1.12538i 0.975997 + 0.154583i 0.624005 0.781420i \(-0.285504\pi\)
0.351992 + 0.936003i \(0.385504\pi\)
\(54\) 0 0
\(55\) 1.35030 1.35030i 0.182074 0.182074i
\(56\) 0 0
\(57\) 2.22900 6.86015i 0.295238 0.908649i
\(58\) 0 0
\(59\) 1.97529 + 6.07933i 0.257161 + 0.791461i 0.993396 + 0.114735i \(0.0366018\pi\)
−0.736235 + 0.676726i \(0.763398\pi\)
\(60\) 0 0
\(61\) 11.4220 + 3.71123i 1.46244 + 0.475175i 0.928814 0.370547i \(-0.120830\pi\)
0.533624 + 0.845722i \(0.320830\pi\)
\(62\) 0 0
\(63\) 2.59983 + 5.10246i 0.327548 + 0.642849i
\(64\) 0 0
\(65\) 2.15758 0.341727i 0.267614 0.0423860i
\(66\) 0 0
\(67\) 0.679724 4.29161i 0.0830415 0.524304i −0.910742 0.412975i \(-0.864490\pi\)
0.993784 0.111328i \(-0.0355105\pi\)
\(68\) 0 0
\(69\) −2.43274 + 4.77453i −0.292868 + 0.574786i
\(70\) 0 0
\(71\) −1.61585 10.2020i −0.191766 1.21076i −0.876295 0.481775i \(-0.839992\pi\)
0.684529 0.728985i \(-0.260008\pi\)
\(72\) 0 0
\(73\) 3.44093i 0.402731i −0.979516 0.201365i \(-0.935462\pi\)
0.979516 0.201365i \(-0.0645378\pi\)
\(74\) 0 0
\(75\) −1.15387 + 0.587926i −0.133237 + 0.0678879i
\(76\) 0 0
\(77\) −4.85875 6.68750i −0.553706 0.762112i
\(78\) 0 0
\(79\) 5.75319 + 5.75319i 0.647284 + 0.647284i 0.952336 0.305052i \(-0.0986738\pi\)
−0.305052 + 0.952336i \(0.598674\pi\)
\(80\) 0 0
\(81\) 3.28108 0.364565
\(82\) 0 0
\(83\) 4.45266 0.488743 0.244371 0.969682i \(-0.421418\pi\)
0.244371 + 0.969682i \(0.421418\pi\)
\(84\) 0 0
\(85\) 3.71446 + 3.71446i 0.402889 + 0.402889i
\(86\) 0 0
\(87\) −7.51981 10.3501i −0.806209 1.10965i
\(88\) 0 0
\(89\) −10.7535 + 5.47918i −1.13987 + 0.580792i −0.918901 0.394489i \(-0.870922\pi\)
−0.220968 + 0.975281i \(0.570922\pi\)
\(90\) 0 0
\(91\) 9.45603i 0.991261i
\(92\) 0 0
\(93\) 0.821384 + 5.18602i 0.0851736 + 0.537765i
\(94\) 0 0
\(95\) −2.52870 + 4.96286i −0.259440 + 0.509179i
\(96\) 0 0
\(97\) −0.0847003 + 0.534776i −0.00860001 + 0.0542983i −0.991615 0.129226i \(-0.958751\pi\)
0.983015 + 0.183525i \(0.0587507\pi\)
\(98\) 0 0
\(99\) 2.49517 0.395196i 0.250774 0.0397187i
\(100\) 0 0
\(101\) 2.59296 + 5.08897i 0.258009 + 0.506372i 0.983282 0.182090i \(-0.0582863\pi\)
−0.725273 + 0.688462i \(0.758286\pi\)
\(102\) 0 0
\(103\) 1.64566 + 0.534709i 0.162152 + 0.0526864i 0.388968 0.921251i \(-0.372832\pi\)
−0.226816 + 0.973938i \(0.572832\pi\)
\(104\) 0 0
\(105\) 1.73229 + 5.33144i 0.169054 + 0.520296i
\(106\) 0 0
\(107\) −3.42898 + 10.5533i −0.331492 + 1.02023i 0.636932 + 0.770920i \(0.280203\pi\)
−0.968424 + 0.249308i \(0.919797\pi\)
\(108\) 0 0
\(109\) −9.19382 + 9.19382i −0.880608 + 0.880608i −0.993596 0.112988i \(-0.963958\pi\)
0.112988 + 0.993596i \(0.463958\pi\)
\(110\) 0 0
\(111\) −11.0936 1.75705i −1.05296 0.166772i
\(112\) 0 0
\(113\) −10.4451 7.58879i −0.982590 0.713893i −0.0243038 0.999705i \(-0.507737\pi\)
−0.958286 + 0.285811i \(0.907737\pi\)
\(114\) 0 0
\(115\) 2.43216 3.34758i 0.226800 0.312164i
\(116\) 0 0
\(117\) 2.57492 + 1.31199i 0.238051 + 0.121293i
\(118\) 0 0
\(119\) 18.3963 13.3657i 1.68639 1.22523i
\(120\) 0 0
\(121\) 6.99350 2.27233i 0.635773 0.206575i
\(122\) 0 0
\(123\) −3.87746 7.32976i −0.349618 0.660902i
\(124\) 0 0
\(125\) 0.951057 0.309017i 0.0850651 0.0276393i
\(126\) 0 0
\(127\) −10.4460 + 7.58945i −0.926931 + 0.673455i −0.945240 0.326377i \(-0.894172\pi\)
0.0183081 + 0.999832i \(0.494172\pi\)
\(128\) 0 0
\(129\) −7.38494 3.76281i −0.650207 0.331297i
\(130\) 0 0
\(131\) 6.30977 8.68465i 0.551287 0.758781i −0.438899 0.898536i \(-0.644632\pi\)
0.990186 + 0.139755i \(0.0446315\pi\)
\(132\) 0 0
\(133\) 19.5061 + 14.1720i 1.69140 + 1.22887i
\(134\) 0 0
\(135\) −5.52935 0.875762i −0.475890 0.0753736i
\(136\) 0 0
\(137\) 6.87283 6.87283i 0.587186 0.587186i −0.349682 0.936868i \(-0.613711\pi\)
0.936868 + 0.349682i \(0.113711\pi\)
\(138\) 0 0
\(139\) −3.23260 + 9.94892i −0.274185 + 0.843856i 0.715248 + 0.698870i \(0.246314\pi\)
−0.989434 + 0.144986i \(0.953686\pi\)
\(140\) 0 0
\(141\) 0.147920 + 0.455250i 0.0124571 + 0.0383390i
\(142\) 0 0
\(143\) −3.96731 1.28906i −0.331763 0.107796i
\(144\) 0 0
\(145\) 4.48497 + 8.80224i 0.372456 + 0.730987i
\(146\) 0 0
\(147\) 15.0139 2.37796i 1.23832 0.196131i
\(148\) 0 0
\(149\) 2.23299 14.0985i 0.182933 1.15500i −0.709798 0.704406i \(-0.751214\pi\)
0.892731 0.450590i \(-0.148786\pi\)
\(150\) 0 0
\(151\) −0.475263 + 0.932756i −0.0386763 + 0.0759066i −0.909536 0.415625i \(-0.863563\pi\)
0.870860 + 0.491532i \(0.163563\pi\)
\(152\) 0 0
\(153\) 1.08712 + 6.86382i 0.0878887 + 0.554907i
\(154\) 0 0
\(155\) 4.05451i 0.325666i
\(156\) 0 0
\(157\) −2.12234 + 1.08139i −0.169381 + 0.0863040i −0.536626 0.843820i \(-0.680301\pi\)
0.367244 + 0.930124i \(0.380301\pi\)
\(158\) 0 0
\(159\) 5.47597 + 7.53703i 0.434273 + 0.597725i
\(160\) 0 0
\(161\) −12.6655 12.6655i −0.998178 0.998178i
\(162\) 0 0
\(163\) 24.2018 1.89563 0.947815 0.318821i \(-0.103287\pi\)
0.947815 + 0.318821i \(0.103287\pi\)
\(164\) 0 0
\(165\) 2.47297 0.192521
\(166\) 0 0
\(167\) 9.08853 + 9.08853i 0.703291 + 0.703291i 0.965116 0.261824i \(-0.0843241\pi\)
−0.261824 + 0.965116i \(0.584324\pi\)
\(168\) 0 0
\(169\) 4.83635 + 6.65666i 0.372027 + 0.512051i
\(170\) 0 0
\(171\) −6.56551 + 3.34529i −0.502077 + 0.255821i
\(172\) 0 0
\(173\) 23.4135i 1.78009i 0.455869 + 0.890047i \(0.349329\pi\)
−0.455869 + 0.890047i \(0.650671\pi\)
\(174\) 0 0
\(175\) −0.677166 4.27546i −0.0511889 0.323194i
\(176\) 0 0
\(177\) −3.75813 + 7.37574i −0.282478 + 0.554395i
\(178\) 0 0
\(179\) 1.38124 8.72081i 0.103239 0.651824i −0.880748 0.473584i \(-0.842960\pi\)
0.983987 0.178239i \(-0.0570401\pi\)
\(180\) 0 0
\(181\) −18.6995 + 2.96172i −1.38993 + 0.220143i −0.806121 0.591751i \(-0.798437\pi\)
−0.583805 + 0.811894i \(0.698437\pi\)
\(182\) 0 0
\(183\) 7.06088 + 13.8578i 0.521955 + 1.02439i
\(184\) 0 0
\(185\) 8.24863 + 2.68014i 0.606452 + 0.197048i
\(186\) 0 0
\(187\) −3.09982 9.54026i −0.226681 0.697653i
\(188\) 0 0
\(189\) −7.48857 + 23.0474i −0.544713 + 1.67645i
\(190\) 0 0
\(191\) 7.00396 7.00396i 0.506789 0.506789i −0.406750 0.913539i \(-0.633338\pi\)
0.913539 + 0.406750i \(0.133338\pi\)
\(192\) 0 0
\(193\) −8.39411 1.32950i −0.604221 0.0956992i −0.153174 0.988199i \(-0.548949\pi\)
−0.451047 + 0.892500i \(0.648949\pi\)
\(194\) 0 0
\(195\) 2.28865 + 1.66280i 0.163894 + 0.119076i
\(196\) 0 0
\(197\) 14.1527 19.4796i 1.00834 1.38786i 0.0882774 0.996096i \(-0.471864\pi\)
0.920064 0.391767i \(-0.128136\pi\)
\(198\) 0 0
\(199\) 21.2632 + 10.8341i 1.50731 + 0.768011i 0.995825 0.0912840i \(-0.0290971\pi\)
0.511481 + 0.859295i \(0.329097\pi\)
\(200\) 0 0
\(201\) 4.55233 3.30746i 0.321097 0.233290i
\(202\) 0 0
\(203\) 40.6707 13.2147i 2.85452 0.927490i
\(204\) 0 0
\(205\) 2.07186 + 6.05866i 0.144705 + 0.423155i
\(206\) 0 0
\(207\) 5.20614 1.69158i 0.361852 0.117573i
\(208\) 0 0
\(209\) 8.60504 6.25193i 0.595223 0.432455i
\(210\) 0 0
\(211\) −13.8923 7.07848i −0.956385 0.487302i −0.0951238 0.995465i \(-0.530325\pi\)
−0.861261 + 0.508163i \(0.830325\pi\)
\(212\) 0 0
\(213\) 7.86252 10.8218i 0.538731 0.741500i
\(214\) 0 0
\(215\) 5.17783 + 3.76191i 0.353125 + 0.256560i
\(216\) 0 0
\(217\) −17.3349 2.74557i −1.17677 0.186382i
\(218\) 0 0
\(219\) 3.15092 3.15092i 0.212919 0.212919i
\(220\) 0 0
\(221\) 3.54600 10.9135i 0.238530 0.734119i
\(222\) 0 0
\(223\) 4.61287 + 14.1970i 0.308901 + 0.950699i 0.978193 + 0.207699i \(0.0665976\pi\)
−0.669292 + 0.743000i \(0.733402\pi\)
\(224\) 0 0
\(225\) 1.25818 + 0.408807i 0.0838786 + 0.0272538i
\(226\) 0 0
\(227\) −8.38017 16.4470i −0.556212 1.09163i −0.982365 0.186976i \(-0.940131\pi\)
0.426153 0.904651i \(-0.359869\pi\)
\(228\) 0 0
\(229\) −26.5344 + 4.20264i −1.75344 + 0.277718i −0.948762 0.315990i \(-0.897663\pi\)
−0.804680 + 0.593708i \(0.797663\pi\)
\(230\) 0 0
\(231\) 1.67461 10.5731i 0.110181 0.695659i
\(232\) 0 0
\(233\) 1.96657 3.85961i 0.128834 0.252851i −0.817574 0.575823i \(-0.804682\pi\)
0.946409 + 0.322971i \(0.104682\pi\)
\(234\) 0 0
\(235\) −0.0578230 0.365080i −0.00377195 0.0238152i
\(236\) 0 0
\(237\) 10.5366i 0.684424i
\(238\) 0 0
\(239\) 3.70095 1.88573i 0.239394 0.121978i −0.330178 0.943919i \(-0.607109\pi\)
0.569572 + 0.821941i \(0.307109\pi\)
\(240\) 0 0
\(241\) 2.83202 + 3.89794i 0.182426 + 0.251088i 0.890430 0.455121i \(-0.150404\pi\)
−0.708004 + 0.706209i \(0.750404\pi\)
\(242\) 0 0
\(243\) −8.87119 8.87119i −0.569087 0.569087i
\(244\) 0 0
\(245\) −11.7381 −0.749918
\(246\) 0 0
\(247\) 12.1674 0.774193
\(248\) 0 0
\(249\) 4.07737 + 4.07737i 0.258393 + 0.258393i
\(250\) 0 0
\(251\) −4.62434 6.36486i −0.291886 0.401747i 0.637740 0.770252i \(-0.279870\pi\)
−0.929626 + 0.368505i \(0.879870\pi\)
\(252\) 0 0
\(253\) −7.04041 + 3.58727i −0.442627 + 0.225530i
\(254\) 0 0
\(255\) 6.80277i 0.426006i
\(256\) 0 0
\(257\) 2.04912 + 12.9377i 0.127821 + 0.807029i 0.965411 + 0.260731i \(0.0839636\pi\)
−0.837591 + 0.546298i \(0.816036\pi\)
\(258\) 0 0
\(259\) 17.0445 33.4518i 1.05910 2.07859i
\(260\) 0 0
\(261\) −2.04447 + 12.9083i −0.126550 + 0.799003i
\(262\) 0 0
\(263\) −18.2212 + 2.88595i −1.12357 + 0.177955i −0.690448 0.723382i \(-0.742587\pi\)
−0.433118 + 0.901337i \(0.642587\pi\)
\(264\) 0 0
\(265\) −3.26598 6.40984i −0.200627 0.393754i
\(266\) 0 0
\(267\) −14.8645 4.82978i −0.909695 0.295578i
\(268\) 0 0
\(269\) −6.34299 19.5217i −0.386739 1.19026i −0.935211 0.354091i \(-0.884790\pi\)
0.548472 0.836169i \(-0.315210\pi\)
\(270\) 0 0
\(271\) −3.25302 + 10.0118i −0.197607 + 0.608171i 0.802330 + 0.596881i \(0.203594\pi\)
−0.999936 + 0.0112896i \(0.996406\pi\)
\(272\) 0 0
\(273\) 8.65904 8.65904i 0.524069 0.524069i
\(274\) 0 0
\(275\) −1.88610 0.298728i −0.113736 0.0180140i
\(276\) 0 0
\(277\) 16.3076 + 11.8482i 0.979828 + 0.711887i 0.957670 0.287867i \(-0.0929463\pi\)
0.0221582 + 0.999754i \(0.492946\pi\)
\(278\) 0 0
\(279\) 3.15277 4.33942i 0.188752 0.259794i
\(280\) 0 0
\(281\) −12.3700 6.30284i −0.737933 0.375996i 0.0442695 0.999020i \(-0.485904\pi\)
−0.782203 + 0.623024i \(0.785904\pi\)
\(282\) 0 0
\(283\) −2.45387 + 1.78284i −0.145867 + 0.105979i −0.658326 0.752733i \(-0.728735\pi\)
0.512458 + 0.858712i \(0.328735\pi\)
\(284\) 0 0
\(285\) −6.86015 + 2.22900i −0.406360 + 0.132034i
\(286\) 0 0
\(287\) 27.3065 4.75541i 1.61185 0.280703i
\(288\) 0 0
\(289\) 10.0758 3.27384i 0.592696 0.192579i
\(290\) 0 0
\(291\) −0.567265 + 0.412142i −0.0332537 + 0.0241602i
\(292\) 0 0
\(293\) −3.65768 1.86368i −0.213684 0.108878i 0.343873 0.939016i \(-0.388261\pi\)
−0.557557 + 0.830139i \(0.688261\pi\)
\(294\) 0 0
\(295\) 3.75723 5.17138i 0.218754 0.301090i
\(296\) 0 0
\(297\) 8.64879 + 6.28371i 0.501854 + 0.364618i
\(298\) 0 0
\(299\) −8.92770 1.41401i −0.516302 0.0817743i
\(300\) 0 0
\(301\) 19.5901 19.5901i 1.12916 1.12916i
\(302\) 0 0
\(303\) −2.28564 + 7.03447i −0.131306 + 0.404120i
\(304\) 0 0
\(305\) −3.71123 11.4220i −0.212505 0.654022i
\(306\) 0 0
\(307\) −18.6384 6.05597i −1.06375 0.345632i −0.275698 0.961244i \(-0.588909\pi\)
−0.788049 + 0.615612i \(0.788909\pi\)
\(308\) 0 0
\(309\) 1.01732 + 1.99660i 0.0578733 + 0.113583i
\(310\) 0 0
\(311\) −12.5540 + 1.98835i −0.711870 + 0.112749i −0.501859 0.864950i \(-0.667350\pi\)
−0.210012 + 0.977699i \(0.567350\pi\)
\(312\) 0 0
\(313\) −4.43438 + 27.9976i −0.250646 + 1.58252i 0.465811 + 0.884884i \(0.345763\pi\)
−0.716457 + 0.697632i \(0.754237\pi\)
\(314\) 0 0
\(315\) 2.59983 5.10246i 0.146484 0.287491i
\(316\) 0 0
\(317\) −3.97846 25.1190i −0.223453 1.41083i −0.803045 0.595918i \(-0.796788\pi\)
0.579592 0.814907i \(-0.303212\pi\)
\(318\) 0 0
\(319\) 18.8650i 1.05624i
\(320\) 0 0
\(321\) −12.8038 + 6.52387i −0.714640 + 0.364127i
\(322\) 0 0
\(323\) 17.1981 + 23.6711i 0.956927 + 1.31710i
\(324\) 0 0
\(325\) −1.54465 1.54465i −0.0856820 0.0856820i
\(326\) 0 0
\(327\) −16.8379 −0.931136
\(328\) 0 0
\(329\) −1.60004 −0.0882130
\(330\) 0 0
\(331\) 15.8598 + 15.8598i 0.871735 + 0.871735i 0.992661 0.120926i \(-0.0385865\pi\)
−0.120926 + 0.992661i \(0.538586\pi\)
\(332\) 0 0
\(333\) 6.74420 + 9.28259i 0.369580 + 0.508683i
\(334\) 0 0
\(335\) −3.87152 + 1.97264i −0.211524 + 0.107777i
\(336\) 0 0
\(337\) 32.0658i 1.74674i 0.487060 + 0.873369i \(0.338069\pi\)
−0.487060 + 0.873369i \(0.661931\pi\)
\(338\) 0 0
\(339\) −2.61554 16.5139i −0.142057 0.896912i
\(340\) 0 0
\(341\) −3.51503 + 6.89863i −0.190349 + 0.373582i
\(342\) 0 0
\(343\) −3.20846 + 20.2574i −0.173241 + 1.09380i
\(344\) 0 0
\(345\) 5.29260 0.838266i 0.284944 0.0451307i
\(346\) 0 0
\(347\) −0.563956 1.10683i −0.0302747 0.0594175i 0.875374 0.483447i \(-0.160615\pi\)
−0.905648 + 0.424029i \(0.860615\pi\)
\(348\) 0 0
\(349\) −18.2683 5.93572i −0.977877 0.317732i −0.223885 0.974615i \(-0.571874\pi\)
−0.753992 + 0.656884i \(0.771874\pi\)
\(350\) 0 0
\(351\) 3.77905 + 11.6307i 0.201711 + 0.620802i
\(352\) 0 0
\(353\) −3.49656 + 10.7613i −0.186103 + 0.572767i −0.999966 0.00829062i \(-0.997361\pi\)
0.813862 + 0.581058i \(0.197361\pi\)
\(354\) 0 0
\(355\) −7.30386 + 7.30386i −0.387649 + 0.387649i
\(356\) 0 0
\(357\) 29.0850 + 4.60661i 1.53934 + 0.243807i
\(358\) 0 0
\(359\) −11.1666 8.11302i −0.589351 0.428189i 0.252732 0.967536i \(-0.418671\pi\)
−0.842083 + 0.539348i \(0.818671\pi\)
\(360\) 0 0
\(361\) −7.06774 + 9.72791i −0.371986 + 0.511995i
\(362\) 0 0
\(363\) 8.48487 + 4.32326i 0.445340 + 0.226912i
\(364\) 0 0
\(365\) −2.78377 + 2.02253i −0.145709 + 0.105864i
\(366\) 0 0
\(367\) −22.4237 + 7.28590i −1.17051 + 0.380321i −0.828832 0.559497i \(-0.810994\pi\)
−0.341675 + 0.939818i \(0.610994\pi\)
\(368\) 0 0
\(369\) −2.49375 + 8.09548i −0.129820 + 0.421434i
\(370\) 0 0
\(371\) −29.6166 + 9.62302i −1.53762 + 0.499602i
\(372\) 0 0
\(373\) 11.2464 8.17096i 0.582314 0.423076i −0.257243 0.966347i \(-0.582814\pi\)
0.839558 + 0.543271i \(0.182814\pi\)
\(374\) 0 0
\(375\) 1.15387 + 0.587926i 0.0595856 + 0.0303604i
\(376\) 0 0
\(377\) 12.6846 17.4589i 0.653291 0.899178i
\(378\) 0 0
\(379\) 9.56204 + 6.94723i 0.491169 + 0.356855i 0.805634 0.592414i \(-0.201825\pi\)
−0.314465 + 0.949269i \(0.601825\pi\)
\(380\) 0 0
\(381\) −16.5153 2.61577i −0.846107 0.134010i
\(382\) 0 0
\(383\) −15.5968 + 15.5968i −0.796960 + 0.796960i −0.982615 0.185655i \(-0.940559\pi\)
0.185655 + 0.982615i \(0.440559\pi\)
\(384\) 0 0
\(385\) −2.55440 + 7.86163i −0.130184 + 0.400666i
\(386\) 0 0
\(387\) 2.61643 + 8.05253i 0.133000 + 0.409333i
\(388\) 0 0
\(389\) 10.5020 + 3.41232i 0.532474 + 0.173011i 0.562899 0.826526i \(-0.309686\pi\)
−0.0304248 + 0.999537i \(0.509686\pi\)
\(390\) 0 0
\(391\) −9.86803 19.3671i −0.499048 0.979436i
\(392\) 0 0
\(393\) 13.7306 2.17472i 0.692619 0.109700i
\(394\) 0 0
\(395\) 1.27279 8.03606i 0.0640409 0.404338i
\(396\) 0 0
\(397\) 1.17895 2.31382i 0.0591698 0.116127i −0.859528 0.511089i \(-0.829242\pi\)
0.918697 + 0.394962i \(0.129242\pi\)
\(398\) 0 0
\(399\) 4.88452 + 30.8397i 0.244532 + 1.54391i
\(400\) 0 0
\(401\) 6.09768i 0.304504i 0.988342 + 0.152252i \(0.0486525\pi\)
−0.988342 + 0.152252i \(0.951347\pi\)
\(402\) 0 0
\(403\) −7.89160 + 4.02097i −0.393109 + 0.200299i
\(404\) 0 0
\(405\) −1.92857 2.65445i −0.0958315 0.131901i
\(406\) 0 0
\(407\) −11.7113 11.7113i −0.580507 0.580507i
\(408\) 0 0
\(409\) −36.5381 −1.80669 −0.903345 0.428914i \(-0.858896\pi\)
−0.903345 + 0.428914i \(0.858896\pi\)
\(410\) 0 0
\(411\) 12.5871 0.620877
\(412\) 0 0
\(413\) −19.5658 19.5658i −0.962768 0.962768i
\(414\) 0 0
\(415\) −2.61721 3.60228i −0.128474 0.176829i
\(416\) 0 0
\(417\) −12.0705 + 6.15024i −0.591096 + 0.301179i
\(418\) 0 0
\(419\) 19.6680i 0.960845i −0.877037 0.480422i \(-0.840483\pi\)
0.877037 0.480422i \(-0.159517\pi\)
\(420\) 0 0
\(421\) −1.22161 7.71292i −0.0595374 0.375905i −0.999409 0.0343764i \(-0.989056\pi\)
0.939872 0.341528i \(-0.110944\pi\)
\(422\) 0 0
\(423\) 0.221999 0.435697i 0.0107940 0.0211843i
\(424\) 0 0
\(425\) 0.821755 5.18836i 0.0398610 0.251672i
\(426\) 0 0
\(427\) −51.3474 + 8.13263i −2.48487 + 0.393565i
\(428\) 0 0
\(429\) −2.45252 4.81334i −0.118409 0.232390i
\(430\) 0 0
\(431\) −6.97759 2.26716i −0.336099 0.109205i 0.136105 0.990694i \(-0.456541\pi\)
−0.472204 + 0.881489i \(0.656541\pi\)
\(432\) 0 0
\(433\) −10.8705 33.4561i −0.522405 1.60780i −0.769391 0.638778i \(-0.779440\pi\)
0.246986 0.969019i \(-0.420560\pi\)
\(434\) 0 0
\(435\) −3.95340 + 12.1673i −0.189551 + 0.583378i
\(436\) 0 0
\(437\) 16.2971 16.2971i 0.779595 0.779595i
\(438\) 0 0
\(439\) 16.1305 + 2.55481i 0.769865 + 0.121935i 0.528998 0.848623i \(-0.322568\pi\)
0.240868 + 0.970558i \(0.422568\pi\)
\(440\) 0 0
\(441\) −12.5629 9.12750i −0.598234 0.434643i
\(442\) 0 0
\(443\) −10.1206 + 13.9298i −0.480845 + 0.661826i −0.978667 0.205453i \(-0.934133\pi\)
0.497822 + 0.867279i \(0.334133\pi\)
\(444\) 0 0
\(445\) 10.7535 + 5.47918i 0.509765 + 0.259738i
\(446\) 0 0
\(447\) 14.9550 10.8655i 0.707348 0.513919i
\(448\) 0 0
\(449\) −19.3540 + 6.28849i −0.913371 + 0.296772i −0.727745 0.685848i \(-0.759431\pi\)
−0.185626 + 0.982620i \(0.559431\pi\)
\(450\) 0 0
\(451\) 1.72731 12.1048i 0.0813360 0.569994i
\(452\) 0 0
\(453\) −1.28935 + 0.418934i −0.0605787 + 0.0196832i
\(454\) 0 0
\(455\) −7.65009 + 5.55811i −0.358642 + 0.260568i
\(456\) 0 0
\(457\) −7.68093 3.91363i −0.359299 0.183072i 0.265017 0.964244i \(-0.414622\pi\)
−0.624316 + 0.781172i \(0.714622\pi\)
\(458\) 0 0
\(459\) −17.2855 + 23.7915i −0.806819 + 1.11049i
\(460\) 0 0
\(461\) −28.3237 20.5784i −1.31917 0.958430i −0.999942 0.0107501i \(-0.996578\pi\)
−0.319223 0.947680i \(-0.603422\pi\)
\(462\) 0 0
\(463\) −37.6571 5.96430i −1.75007 0.277184i −0.802483 0.596675i \(-0.796488\pi\)
−0.947590 + 0.319490i \(0.896488\pi\)
\(464\) 0 0
\(465\) 3.71278 3.71278i 0.172176 0.172176i
\(466\) 0 0
\(467\) −0.419492 + 1.29106i −0.0194118 + 0.0597433i −0.960293 0.278993i \(-0.909999\pi\)
0.940881 + 0.338736i \(0.109999\pi\)
\(468\) 0 0
\(469\) 5.81226 + 17.8883i 0.268385 + 0.826005i
\(470\) 0 0
\(471\) −2.93370 0.953218i −0.135178 0.0439220i
\(472\) 0 0
\(473\) −5.54856 10.8897i −0.255123 0.500707i
\(474\) 0 0
\(475\) 5.50138 0.871332i 0.252420 0.0399795i
\(476\) 0 0
\(477\) 1.48880 9.39988i 0.0681673 0.430391i
\(478\) 0 0
\(479\) −12.1386 + 23.8233i −0.554626 + 1.08851i 0.428149 + 0.903708i \(0.359166\pi\)
−0.982775 + 0.184806i \(0.940834\pi\)
\(480\) 0 0
\(481\) −2.96384 18.7129i −0.135139 0.853236i
\(482\) 0 0
\(483\) 23.1959i 1.05545i
\(484\) 0 0
\(485\) 0.482429 0.245810i 0.0219060 0.0111616i
\(486\) 0 0
\(487\) −2.53551 3.48983i −0.114895 0.158139i 0.747696 0.664041i \(-0.231160\pi\)
−0.862591 + 0.505902i \(0.831160\pi\)
\(488\) 0 0
\(489\) 22.1620 + 22.1620i 1.00220 + 1.00220i
\(490\) 0 0
\(491\) 28.2343 1.27419 0.637097 0.770783i \(-0.280135\pi\)
0.637097 + 0.770783i \(0.280135\pi\)
\(492\) 0 0
\(493\) 51.8947 2.33722
\(494\) 0 0
\(495\) −1.78634 1.78634i −0.0802901 0.0802901i
\(496\) 0 0
\(497\) 26.2814 + 36.1733i 1.17888 + 1.62259i
\(498\) 0 0
\(499\) −7.10259 + 3.61895i −0.317956 + 0.162007i −0.605683 0.795706i \(-0.707100\pi\)
0.287728 + 0.957712i \(0.407100\pi\)
\(500\) 0 0
\(501\) 16.6450i 0.743645i
\(502\) 0 0
\(503\) −0.994793 6.28088i −0.0443556 0.280050i 0.955534 0.294880i \(-0.0952795\pi\)
−0.999890 + 0.0148292i \(0.995280\pi\)
\(504\) 0 0
\(505\) 2.59296 5.08897i 0.115385 0.226456i
\(506\) 0 0
\(507\) −1.66689 + 10.5243i −0.0740292 + 0.467402i
\(508\) 0 0
\(509\) −10.0179 + 1.58669i −0.444037 + 0.0703286i −0.374450 0.927247i \(-0.622168\pi\)
−0.0695877 + 0.997576i \(0.522168\pi\)
\(510\) 0 0
\(511\) 6.76216 + 13.2715i 0.299140 + 0.587096i
\(512\) 0 0
\(513\) −29.6559 9.63580i −1.30934 0.425431i
\(514\) 0 0
\(515\) −0.534709 1.64566i −0.0235621 0.0725166i
\(516\) 0 0
\(517\) −0.218119 + 0.671302i −0.00959287 + 0.0295238i
\(518\) 0 0
\(519\) −21.4401 + 21.4401i −0.941116 + 0.941116i
\(520\) 0 0
\(521\) −3.51667 0.556986i −0.154068 0.0244020i 0.0789239 0.996881i \(-0.474852\pi\)
−0.232992 + 0.972479i \(0.574852\pi\)
\(522\) 0 0
\(523\) −4.98268 3.62013i −0.217877 0.158297i 0.473493 0.880797i \(-0.342993\pi\)
−0.691371 + 0.722500i \(0.742993\pi\)
\(524\) 0 0
\(525\) 3.29501 4.53520i 0.143806 0.197932i
\(526\) 0 0
\(527\) −18.9771 9.66930i −0.826654 0.421201i
\(528\) 0 0
\(529\) 4.75564 3.45517i 0.206767 0.150225i
\(530\) 0 0
\(531\) 8.04251 2.61317i 0.349015 0.113402i
\(532\) 0 0
\(533\) 9.73773 10.0412i 0.421788 0.434931i
\(534\) 0 0
\(535\) 10.5533 3.42898i 0.456260 0.148248i
\(536\) 0 0
\(537\) 9.25061 6.72096i 0.399193 0.290031i
\(538\) 0 0
\(539\) 19.9720 + 10.1762i 0.860255 + 0.438322i
\(540\) 0 0
\(541\) 14.9913 20.6337i 0.644525 0.887112i −0.354322 0.935123i \(-0.615288\pi\)
0.998847 + 0.0480114i \(0.0152884\pi\)
\(542\) 0 0
\(543\) −19.8356 14.4114i −0.851226 0.618452i
\(544\) 0 0
\(545\) 12.8420 + 2.03397i 0.550089 + 0.0871255i
\(546\) 0 0
\(547\) 13.0105 13.0105i 0.556291 0.556291i −0.371958 0.928249i \(-0.621314\pi\)
0.928249 + 0.371958i \(0.121314\pi\)
\(548\) 0 0
\(549\) 4.90969 15.1105i 0.209541 0.644900i
\(550\) 0 0
\(551\) 17.0038 + 52.3323i 0.724387 + 2.22943i
\(552\) 0 0
\(553\) −33.4959 10.8835i −1.42439 0.462813i
\(554\) 0 0
\(555\) 5.09916 + 10.0077i 0.216447 + 0.424801i
\(556\) 0 0
\(557\) 22.8185 3.61409i 0.966849 0.153134i 0.347009 0.937862i \(-0.387197\pi\)
0.619840 + 0.784728i \(0.287197\pi\)
\(558\) 0 0
\(559\) 2.18710 13.8088i 0.0925045 0.584050i
\(560\) 0 0
\(561\) 5.89762 11.5747i 0.248998 0.488685i
\(562\) 0 0
\(563\) −6.59889 41.6638i −0.278110 1.75592i −0.591511 0.806297i \(-0.701468\pi\)
0.313401 0.949621i \(-0.398532\pi\)
\(564\) 0 0
\(565\) 12.9108i 0.543162i
\(566\) 0 0
\(567\) −12.6549 + 6.44802i −0.531458 + 0.270791i
\(568\) 0 0
\(569\) −9.65168 13.2844i −0.404619 0.556911i 0.557276 0.830327i \(-0.311846\pi\)
−0.961896 + 0.273416i \(0.911846\pi\)
\(570\) 0 0
\(571\) 24.5287 + 24.5287i 1.02649 + 1.02649i 0.999639 + 0.0268534i \(0.00854873\pi\)
0.0268534 + 0.999639i \(0.491451\pi\)
\(572\) 0 0
\(573\) 12.8273 0.535868
\(574\) 0 0
\(575\) −4.13784 −0.172560
\(576\) 0 0
\(577\) −13.8687 13.8687i −0.577362 0.577362i 0.356814 0.934176i \(-0.383863\pi\)
−0.934176 + 0.356814i \(0.883863\pi\)
\(578\) 0 0
\(579\) −6.46918 8.90406i −0.268850 0.370040i
\(580\) 0 0
\(581\) −17.1737 + 8.75042i −0.712483 + 0.363028i
\(582\) 0 0
\(583\) 13.7376i 0.568953i
\(584\) 0 0
\(585\) −0.452079 2.85432i −0.0186912 0.118011i
\(586\) 0 0
\(587\) −6.41684 + 12.5937i −0.264851 + 0.519800i −0.984684 0.174348i \(-0.944218\pi\)
0.719833 + 0.694147i \(0.244218\pi\)
\(588\) 0 0
\(589\) 3.53282 22.3054i 0.145567 0.919077i
\(590\) 0 0
\(591\) 30.7977 4.87787i 1.26685 0.200649i
\(592\) 0 0
\(593\) 7.02404 + 13.7855i 0.288443 + 0.566101i 0.989074 0.147423i \(-0.0470979\pi\)
−0.700631 + 0.713524i \(0.747098\pi\)
\(594\) 0 0
\(595\) −21.6261 7.02676i −0.886585 0.288069i
\(596\) 0 0
\(597\) 9.55004 + 29.3920i 0.390857 + 1.20293i
\(598\) 0 0
\(599\) −12.3724 + 38.0783i −0.505522 + 1.55584i 0.294370 + 0.955692i \(0.404890\pi\)
−0.799892 + 0.600144i \(0.795110\pi\)
\(600\) 0 0
\(601\) 13.4712 13.4712i 0.549501 0.549501i −0.376795 0.926297i \(-0.622974\pi\)
0.926297 + 0.376795i \(0.122974\pi\)
\(602\) 0 0
\(603\) −5.67749 0.899226i −0.231205 0.0366193i
\(604\) 0 0
\(605\) −5.94903 4.32222i −0.241862 0.175723i
\(606\) 0 0
\(607\) −24.1727 + 33.2709i −0.981141 + 1.35042i −0.0449288 + 0.998990i \(0.514306\pi\)
−0.936212 + 0.351435i \(0.885694\pi\)
\(608\) 0 0
\(609\) 49.3437 + 25.1419i 1.99951 + 1.01880i
\(610\) 0 0
\(611\) −0.653239 + 0.474606i −0.0264272 + 0.0192005i
\(612\) 0 0
\(613\) 0.414323 0.134622i 0.0167344 0.00543732i −0.300638 0.953738i \(-0.597200\pi\)
0.317372 + 0.948301i \(0.397200\pi\)
\(614\) 0 0
\(615\) −3.65079 + 7.44525i −0.147214 + 0.300221i
\(616\) 0 0
\(617\) −8.47234 + 2.75283i −0.341083 + 0.110825i −0.474550 0.880229i \(-0.657389\pi\)
0.133466 + 0.991053i \(0.457389\pi\)
\(618\) 0 0
\(619\) 38.5059 27.9761i 1.54768 1.12446i 0.602403 0.798192i \(-0.294210\pi\)
0.945279 0.326264i \(-0.105790\pi\)
\(620\) 0 0
\(621\) 20.6399 + 10.5166i 0.828252 + 0.422015i
\(622\) 0 0
\(623\) 30.7079 42.2658i 1.23029 1.69334i
\(624\) 0 0
\(625\) −0.809017 0.587785i −0.0323607 0.0235114i
\(626\) 0 0
\(627\) 13.6048 + 2.15478i 0.543322 + 0.0860537i
\(628\) 0 0
\(629\) 32.2159 32.2159i 1.28453 1.28453i
\(630\) 0 0
\(631\) 3.43882 10.5836i 0.136897 0.421326i −0.858983 0.512004i \(-0.828903\pi\)
0.995880 + 0.0906777i \(0.0289033\pi\)
\(632\) 0 0
\(633\) −6.23952 19.2033i −0.247999 0.763261i
\(634\) 0 0
\(635\) 12.2800 + 3.99001i 0.487317 + 0.158339i
\(636\) 0 0
\(637\) 11.6410 + 22.8467i 0.461233 + 0.905221i
\(638\) 0 0
\(639\) −13.4966 + 2.13765i −0.533916 + 0.0845640i
\(640\) 0 0
\(641\) −1.85881 + 11.7361i −0.0734187 + 0.463548i 0.923400 + 0.383840i \(0.125399\pi\)
−0.996818 + 0.0797075i \(0.974601\pi\)
\(642\) 0 0
\(643\) −10.8252 + 21.2457i −0.426905 + 0.837849i 0.572928 + 0.819606i \(0.305807\pi\)
−0.999834 + 0.0182433i \(0.994193\pi\)
\(644\) 0 0
\(645\) 1.29658 + 8.18626i 0.0510527 + 0.322334i
\(646\) 0 0
\(647\) 20.6096i 0.810248i −0.914262 0.405124i \(-0.867228\pi\)
0.914262 0.405124i \(-0.132772\pi\)
\(648\) 0 0
\(649\) −10.8761 + 5.54166i −0.426925 + 0.217529i
\(650\) 0 0
\(651\) −13.3597 18.3880i −0.523606 0.720682i
\(652\) 0 0
\(653\) −25.1200 25.1200i −0.983022 0.983022i 0.0168363 0.999858i \(-0.494641\pi\)
−0.999858 + 0.0168363i \(0.994641\pi\)
\(654\) 0 0
\(655\) −10.7348 −0.419444
\(656\) 0 0
\(657\) −4.55210 −0.177594
\(658\) 0 0
\(659\) 18.6654 + 18.6654i 0.727100 + 0.727100i 0.970041 0.242941i \(-0.0781120\pi\)
−0.242941 + 0.970041i \(0.578112\pi\)
\(660\) 0 0
\(661\) 26.7005 + 36.7501i 1.03853 + 1.42941i 0.898346 + 0.439289i \(0.144770\pi\)
0.140185 + 0.990125i \(0.455230\pi\)
\(662\) 0 0
\(663\) 13.2408 6.74651i 0.514229 0.262013i
\(664\) 0 0
\(665\) 24.1109i 0.934982i
\(666\) 0 0
\(667\) −6.39468 40.3744i −0.247603 1.56330i
\(668\) 0 0
\(669\) −8.77631 + 17.2245i −0.339312 + 0.665937i
\(670\) 0 0
\(671\) −3.58767 + 22.6516i −0.138500 + 0.874457i
\(672\) 0 0
\(673\) 43.8343 6.94267i 1.68969 0.267620i 0.763809 0.645443i \(-0.223327\pi\)
0.925878 + 0.377822i \(0.123327\pi\)
\(674\) 0 0
\(675\) 2.54156 + 4.98810i 0.0978248 + 0.191992i
\(676\) 0 0
\(677\) −25.7585 8.36945i −0.989980 0.321664i −0.231126 0.972924i \(-0.574241\pi\)
−0.758855 + 0.651260i \(0.774241\pi\)
\(678\) 0 0
\(679\) −0.724264 2.22906i −0.0277947 0.0855433i
\(680\) 0 0
\(681\) 7.38694 22.7347i 0.283068 0.871194i
\(682\) 0 0
\(683\) −6.62534 + 6.62534i −0.253512 + 0.253512i −0.822409 0.568897i \(-0.807370\pi\)
0.568897 + 0.822409i \(0.307370\pi\)
\(684\) 0 0
\(685\) −9.59999 1.52049i −0.366797 0.0580949i
\(686\) 0 0
\(687\) −28.1464 20.4496i −1.07385 0.780200i
\(688\) 0 0
\(689\) −9.23701 + 12.7137i −0.351902 + 0.484352i
\(690\) 0 0
\(691\) 0.304786 + 0.155296i 0.0115946 + 0.00590774i 0.459778 0.888034i \(-0.347929\pi\)
−0.448184 + 0.893942i \(0.647929\pi\)
\(692\) 0 0
\(693\) −8.84708 + 6.42778i −0.336073 + 0.244171i
\(694\) 0 0
\(695\) 9.94892 3.23260i 0.377384 0.122619i
\(696\) 0 0
\(697\) 33.2985 + 4.75157i 1.26127 + 0.179979i
\(698\) 0 0
\(699\) 5.33513 1.73349i 0.201793 0.0655665i
\(700\) 0 0
\(701\) −17.5659 + 12.7624i −0.663454 + 0.482028i −0.867828 0.496865i \(-0.834484\pi\)
0.204374 + 0.978893i \(0.434484\pi\)
\(702\) 0 0
\(703\) 43.0435 + 21.9318i 1.62342 + 0.827173i
\(704\) 0 0
\(705\) 0.281360 0.387259i 0.0105966 0.0145850i
\(706\) 0 0
\(707\) −20.0018 14.5322i −0.752246 0.546538i
\(708\) 0 0
\(709\) −37.1687 5.88695i −1.39590 0.221089i −0.587263 0.809396i \(-0.699795\pi\)
−0.808637 + 0.588307i \(0.799795\pi\)
\(710\) 0 0
\(711\) 7.61105 7.61105i 0.285437 0.285437i
\(712\) 0 0
\(713\) −5.18435 + 15.9558i −0.194155 + 0.597548i
\(714\) 0 0
\(715\) 1.28906 + 3.96731i 0.0482080 + 0.148369i
\(716\) 0 0
\(717\) 5.11581 + 1.66223i 0.191053 + 0.0620770i
\(718\) 0 0
\(719\) 4.04371 + 7.93624i 0.150805 + 0.295972i 0.954034 0.299699i \(-0.0968863\pi\)
−0.803229 + 0.595671i \(0.796886\pi\)
\(720\) 0 0
\(721\) −7.39805 + 1.17174i −0.275518 + 0.0436377i
\(722\) 0 0
\(723\) −0.976080 + 6.16273i −0.0363008 + 0.229194i
\(724\) 0 0
\(725\) 4.48497 8.80224i 0.166568 0.326907i
\(726\) 0 0
\(727\) 5.71575 + 36.0878i 0.211985 + 1.33842i 0.832411 + 0.554158i \(0.186960\pi\)
−0.620426 + 0.784265i \(0.713040\pi\)
\(728\) 0 0
\(729\) 26.0902i 0.966304i
\(730\) 0 0
\(731\) 29.9558 15.2632i 1.10796 0.564531i
\(732\) 0 0
\(733\) −9.45355 13.0117i −0.349175 0.480598i 0.597918 0.801557i \(-0.295995\pi\)
−0.947093 + 0.320959i \(0.895995\pi\)
\(734\) 0 0
\(735\) −10.7487 10.7487i −0.396474 0.396474i
\(736\) 0 0
\(737\) 8.29744 0.305640
\(738\) 0 0
\(739\) 32.9645 1.21262 0.606309 0.795229i \(-0.292650\pi\)
0.606309 + 0.795229i \(0.292650\pi\)
\(740\) 0 0
\(741\) 11.1419 + 11.1419i 0.409307 + 0.409307i
\(742\) 0 0
\(743\) 0.224658 + 0.309215i 0.00824191 + 0.0113440i 0.813118 0.582099i \(-0.197768\pi\)
−0.804876 + 0.593443i \(0.797768\pi\)
\(744\) 0 0
\(745\) −12.7185 + 6.48038i −0.465968 + 0.237423i
\(746\) 0 0
\(747\) 5.89054i 0.215524i
\(748\) 0 0
\(749\) −7.51411 47.4422i −0.274560 1.73350i
\(750\) 0 0
\(751\) −21.6534 + 42.4972i −0.790143 + 1.55074i 0.0438941 + 0.999036i \(0.486024\pi\)
−0.834038 + 0.551708i \(0.813976\pi\)
\(752\) 0 0
\(753\) 1.59382 10.0630i 0.0580821 0.366716i
\(754\) 0 0
\(755\) 1.03397 0.163764i 0.0376299 0.00596000i
\(756\) 0 0
\(757\) 5.00260 + 9.81816i 0.181823 + 0.356847i 0.963870 0.266371i \(-0.0858248\pi\)
−0.782048 + 0.623218i \(0.785825\pi\)
\(758\) 0 0
\(759\) −9.73194 3.16210i −0.353247 0.114777i
\(760\) 0 0
\(761\) −5.59157 17.2091i −0.202694 0.623829i −0.999800 0.0199895i \(-0.993637\pi\)
0.797106 0.603840i \(-0.206363\pi\)
\(762\) 0 0
\(763\) 17.3923 53.5279i 0.629642 1.93784i
\(764\) 0 0
\(765\) 4.91395 4.91395i 0.177664 0.177664i
\(766\) 0 0
\(767\) −13.7916 2.18438i −0.497987 0.0788733i
\(768\) 0 0
\(769\) 0.0410588 + 0.0298309i 0.00148062 + 0.00107573i 0.588525 0.808479i \(-0.299709\pi\)
−0.587045 + 0.809555i \(0.699709\pi\)
\(770\) 0 0
\(771\) −9.97081 + 13.7236i −0.359090 + 0.494245i
\(772\) 0 0
\(773\) −27.4920 14.0079i −0.988817 0.503827i −0.116722 0.993165i \(-0.537239\pi\)
−0.872095 + 0.489337i \(0.837239\pi\)
\(774\) 0 0
\(775\) −3.28016 + 2.38318i −0.117827 + 0.0856063i
\(776\) 0 0
\(777\) 46.2403 15.0244i 1.65886 0.538997i
\(778\) 0 0
\(779\) 6.11895 + 35.1363i 0.219234 + 1.25889i
\(780\) 0 0
\(781\) 18.7593 6.09528i 0.671262 0.218106i
\(782\) 0 0
\(783\) −44.7429 + 32.5076i −1.59898 + 1.16173i
\(784\) 0 0
\(785\) 2.12234 + 1.08139i 0.0757495 + 0.0385963i
\(786\) 0 0
\(787\) −10.1379 + 13.9536i −0.361376 + 0.497392i −0.950532 0.310628i \(-0.899461\pi\)
0.589155 + 0.808020i \(0.299461\pi\)
\(788\) 0 0
\(789\) −19.3281 14.0427i −0.688100 0.499934i
\(790\) 0 0
\(791\) 55.1996 + 8.74276i 1.96267 + 0.310857i
\(792\) 0 0
\(793\) −18.5510 + 18.5510i −0.658765 + 0.658765i
\(794\) 0 0
\(795\) 2.87889 8.86031i 0.102104 0.314243i
\(796\) 0 0
\(797\) −0.652460 2.00807i −0.0231113 0.0711294i 0.938836 0.344366i \(-0.111906\pi\)
−0.961947 + 0.273236i \(0.911906\pi\)
\(798\) 0 0
\(799\) −1.84665 0.600013i −0.0653297 0.0212269i
\(800\) 0 0
\(801\) 7.24856 + 14.2261i 0.256115 + 0.502655i
\(802\) 0 0
\(803\) 6.48993 1.02790i 0.229024 0.0362739i
\(804\) 0 0
\(805\) −2.80200 + 17.6911i −0.0987576 + 0.623531i
\(806\) 0 0
\(807\) 12.0680 23.6847i 0.424813 0.833742i
\(808\) 0 0
\(809\) 2.02776 + 12.8028i 0.0712923 + 0.450122i 0.997351 + 0.0727418i \(0.0231749\pi\)
−0.926059 + 0.377380i \(0.876825\pi\)
\(810\) 0 0
\(811\) 24.9827i 0.877261i 0.898668 + 0.438630i \(0.144536\pi\)
−0.898668 + 0.438630i \(0.855464\pi\)
\(812\) 0 0
\(813\) −12.1468 + 6.18909i −0.426006 + 0.217061i
\(814\) 0 0
\(815\) −14.2255 19.5797i −0.498296 0.685845i
\(816\) 0 0
\(817\) 25.2073 + 25.2073i 0.881892 + 0.881892i
\(818\) 0 0
\(819\) −12.5096 −0.437122
\(820\) 0 0
\(821\) 47.3895 1.65391 0.826953 0.562271i \(-0.190072\pi\)
0.826953 + 0.562271i \(0.190072\pi\)
\(822\) 0 0
\(823\) 11.2416 + 11.2416i 0.391856 + 0.391856i 0.875349 0.483492i \(-0.160632\pi\)
−0.483492 + 0.875349i \(0.660632\pi\)
\(824\) 0 0
\(825\) −1.45358 2.00068i −0.0506071 0.0696547i
\(826\) 0 0
\(827\) 11.4600 5.83917i 0.398504 0.203048i −0.243241 0.969966i \(-0.578211\pi\)
0.641745 + 0.766918i \(0.278211\pi\)
\(828\) 0 0
\(829\) 18.4458i 0.640648i −0.947308 0.320324i \(-0.896208\pi\)
0.947308 0.320324i \(-0.103792\pi\)
\(830\) 0 0
\(831\) 4.08358 + 25.7827i 0.141658 + 0.894391i
\(832\) 0 0
\(833\) −27.9933 + 54.9399i −0.969910 + 1.90356i
\(834\) 0 0
\(835\) 2.01067 12.6949i 0.0695821 0.439324i
\(836\) 0 0
\(837\) 22.4188 3.55078i 0.774906 0.122733i
\(838\) 0 0
\(839\) −8.10859 15.9140i −0.279940 0.549412i 0.707632 0.706581i \(-0.249763\pi\)
−0.987572 + 0.157169i \(0.949763\pi\)
\(840\) 0 0
\(841\) 65.2372 + 21.1968i 2.24956 + 0.730926i
\(842\) 0 0
\(843\) −5.55581 17.0990i −0.191352 0.588922i
\(844\) 0 0
\(845\) 2.54262 7.82537i 0.0874687 0.269201i
\(846\) 0 0
\(847\) −22.5080 + 22.5080i −0.773382 + 0.773382i
\(848\) 0 0
\(849\) −3.87962 0.614472i −0.133148 0.0210886i
\(850\) 0 0
\(851\) −29.0340 21.0944i −0.995273 0.723108i
\(852\) 0 0
\(853\) −3.58243 + 4.93080i −0.122660 + 0.168827i −0.865931 0.500163i \(-0.833273\pi\)
0.743271 + 0.668991i \(0.233273\pi\)
\(854\) 0 0
\(855\) 6.56551 + 3.34529i 0.224536 + 0.114407i
\(856\) 0 0
\(857\) 14.1120 10.2530i 0.482057 0.350235i −0.320065 0.947396i \(-0.603705\pi\)
0.802121 + 0.597161i \(0.203705\pi\)
\(858\) 0 0
\(859\) 29.8991 9.71482i 1.02015 0.331465i 0.249258 0.968437i \(-0.419813\pi\)
0.770887 + 0.636972i \(0.219813\pi\)
\(860\) 0 0
\(861\) 29.3597 + 20.6504i 1.00057 + 0.703765i
\(862\) 0 0
\(863\) 11.4192 3.71031i 0.388713 0.126301i −0.108139 0.994136i \(-0.534489\pi\)
0.496852 + 0.867835i \(0.334489\pi\)
\(864\) 0 0
\(865\) 18.9419 13.7621i 0.644044 0.467925i
\(866\) 0 0
\(867\) 12.2245 + 6.22870i 0.415166 + 0.211538i
\(868\) 0 0
\(869\) −9.13242 + 12.5697i −0.309796 + 0.426398i
\(870\) 0 0
\(871\) 7.67899 + 5.57912i 0.260193 + 0.189041i
\(872\) 0 0
\(873\) 0.707470 + 0.112052i 0.0239442 + 0.00379240i
\(874\) 0 0
\(875\) −3.06089 + 3.06089i −0.103477 + 0.103477i
\(876\) 0 0
\(877\) −3.84188 + 11.8241i −0.129731 + 0.399271i −0.994733 0.102497i \(-0.967317\pi\)
0.865002 + 0.501768i \(0.167317\pi\)
\(878\) 0 0
\(879\) −1.64280 5.05600i −0.0554101 0.170535i
\(880\) 0 0
\(881\) 52.5292 + 17.0678i 1.76975 + 0.575027i 0.998134 0.0610583i \(-0.0194475\pi\)
0.771618 + 0.636086i \(0.219448\pi\)
\(882\) 0 0
\(883\) −12.4528 24.4400i −0.419071 0.822473i −0.999964 0.00849280i \(-0.997297\pi\)
0.580893 0.813980i \(-0.302703\pi\)
\(884\) 0 0
\(885\) 8.17608 1.29496i 0.274836 0.0435297i
\(886\) 0 0
\(887\) −7.62159 + 48.1208i −0.255908 + 1.61574i 0.440267 + 0.897867i \(0.354884\pi\)
−0.696175 + 0.717872i \(0.745116\pi\)
\(888\) 0 0
\(889\) 25.3747 49.8007i 0.851041 1.67026i
\(890\) 0 0
\(891\) 0.980151 + 6.18843i 0.0328363 + 0.207320i
\(892\) 0 0
\(893\) 2.05882i 0.0688959i
\(894\) 0 0
\(895\) −7.86715 + 4.00852i −0.262970 + 0.133990i
\(896\) 0 0
\(897\) −6.88041 9.47008i −0.229730 0.316197i
\(898\) 0 0
\(899\) −28.3228 28.3228i −0.944617 0.944617i
\(900\) 0 0
\(901\) −37.7900 −1.25897
\(902\) 0 0
\(903\) 35.8780 1.19395
\(904\) 0 0
\(905\) 13.3874 + 13.3874i 0.445012 + 0.445012i
\(906\) 0 0
\(907\) 32.7376 + 45.0594i 1.08703 + 1.49617i 0.851533 + 0.524300i \(0.175673\pi\)
0.235501 + 0.971874i \(0.424327\pi\)
\(908\) 0 0
\(909\) 6.73234 3.43030i 0.223298 0.113776i
\(910\) 0 0
\(911\) 4.99963i 0.165645i −0.996564 0.0828225i \(-0.973607\pi\)
0.996564 0.0828225i \(-0.0263935\pi\)
\(912\) 0 0
\(913\) 1.33013 + 8.39814i 0.0440210 + 0.277938i
\(914\) 0 0
\(915\) 7.06088 13.8578i 0.233425 0.458123i
\(916\) 0 0
\(917\) −7.26925 + 45.8962i −0.240052 + 1.51563i
\(918\) 0 0
\(919\) 16.8239 2.66465i 0.554970 0.0878986i 0.127351 0.991858i \(-0.459353\pi\)
0.427619 + 0.903959i \(0.359353\pi\)
\(920\) 0 0
\(921\) −11.5219 22.6130i −0.379659 0.745123i
\(922\) 0 0
\(923\) 21.4595 + 6.97262i 0.706349 + 0.229507i
\(924\) 0 0
\(925\) −2.68014 8.24863i −0.0881226 0.271213i
\(926\) 0 0
\(927\) 0.707381 2.17709i 0.0232334 0.0715052i
\(928\) 0 0
\(929\) 15.2613 15.2613i 0.500707 0.500707i −0.410950 0.911658i \(-0.634803\pi\)
0.911658 + 0.410950i \(0.134803\pi\)
\(930\) 0 0
\(931\) −64.5756 10.2278i −2.11638 0.335201i
\(932\) 0 0
\(933\) −13.3166 9.67511i −0.435967 0.316749i
\(934\) 0 0
\(935\) −5.89620 + 8.11543i −0.192827 + 0.265403i
\(936\) 0 0
\(937\) −9.07484 4.62386i −0.296462 0.151055i 0.299433 0.954117i \(-0.403203\pi\)
−0.595895 + 0.803062i \(0.703203\pi\)
\(938\) 0 0
\(939\) −29.6985 + 21.5772i −0.969173 + 0.704145i
\(940\) 0 0
\(941\) 1.00304 0.325908i 0.0326983 0.0106243i −0.292622 0.956228i \(-0.594528\pi\)
0.325320 + 0.945604i \(0.394528\pi\)
\(942\) 0 0
\(943\) −0.406427 26.4920i −0.0132351 0.862697i
\(944\) 0 0
\(945\) 23.0474 7.48857i 0.749733 0.243603i
\(946\) 0 0
\(947\) 15.3486 11.1514i 0.498764 0.362373i −0.309781 0.950808i \(-0.600256\pi\)
0.808545 + 0.588435i \(0.200256\pi\)
\(948\) 0 0
\(949\) 6.69735 + 3.41247i 0.217405 + 0.110774i
\(950\) 0 0
\(951\) 19.3588 26.6450i 0.627751 0.864025i
\(952\) 0 0
\(953\) −34.7680 25.2604i −1.12624 0.818265i −0.141101 0.989995i \(-0.545064\pi\)
−0.985144 + 0.171731i \(0.945064\pi\)
\(954\) 0 0
\(955\) −9.78315 1.54950i −0.316575 0.0501406i
\(956\) 0 0
\(957\) 17.2750 17.2750i 0.558420 0.558420i
\(958\) 0 0
\(959\) −13.0016 + 40.0147i −0.419842 + 1.29214i
\(960\) 0 0
\(961\) −4.49959 13.8483i −0.145148 0.446720i
\(962\) 0 0
\(963\) 13.9613 + 4.53629i 0.449896 + 0.146180i
\(964\) 0 0
\(965\) 3.85835 + 7.57243i 0.124205 + 0.243765i
\(966\) 0 0
\(967\) −7.61270 + 1.20573i −0.244808 + 0.0387737i −0.277632 0.960687i \(-0.589550\pi\)
0.0328246 + 0.999461i \(0.489550\pi\)
\(968\) 0 0
\(969\) −5.92748 + 37.4246i −0.190418 + 1.20225i
\(970\) 0 0
\(971\) 9.20128 18.0585i 0.295283 0.579526i −0.694932 0.719075i \(-0.744566\pi\)
0.990215 + 0.139550i \(0.0445656\pi\)
\(972\) 0 0
\(973\) −7.08377 44.7252i −0.227095 1.43382i
\(974\) 0 0
\(975\) 2.82893i 0.0905983i
\(976\) 0 0
\(977\) 2.11251 1.07638i 0.0675851 0.0344363i −0.419871 0.907584i \(-0.637925\pi\)
0.487456 + 0.873147i \(0.337925\pi\)
\(978\) 0 0
\(979\) −13.5466 18.6453i −0.432952 0.595908i
\(980\) 0 0
\(981\) 12.1628 + 12.1628i 0.388327 + 0.388327i
\(982\) 0 0
\(983\) −45.7859 −1.46034 −0.730172 0.683263i \(-0.760560\pi\)
−0.730172 + 0.683263i \(0.760560\pi\)
\(984\) 0 0
\(985\) −24.0781 −0.767192
\(986\) 0 0
\(987\) −1.46518 1.46518i −0.0466372 0.0466372i
\(988\) 0 0
\(989\) −15.5662 21.4250i −0.494976 0.681276i
\(990\) 0 0
\(991\) −11.4270 + 5.82237i −0.362992 + 0.184954i −0.625968 0.779849i \(-0.715296\pi\)
0.262976 + 0.964802i \(0.415296\pi\)
\(992\) 0 0
\(993\) 29.0462i 0.921754i
\(994\) 0 0
\(995\) −3.73318 23.5704i −0.118350 0.747232i
\(996\) 0 0
\(997\) 20.7692 40.7618i 0.657766 1.29094i −0.285333 0.958428i \(-0.592104\pi\)
0.943099 0.332511i \(-0.107896\pi\)
\(998\) 0 0
\(999\) −7.59560 + 47.9567i −0.240314 + 1.51728i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bo.b.121.7 yes 64
41.20 even 20 inner 820.2.bo.b.61.7 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bo.b.61.7 64 41.20 even 20 inner
820.2.bo.b.121.7 yes 64 1.1 even 1 trivial