Properties

Label 820.2.bi.a.189.3
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.3
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.59331 q^{3} +(-2.08605 - 0.805227i) q^{5} +(0.600140 + 1.84704i) q^{7} +3.72526 q^{9} +(-1.11720 - 1.53770i) q^{11} +(-1.70506 + 5.24762i) q^{13} +(5.40978 + 2.08820i) q^{15} +(1.07889 - 0.783861i) q^{17} +(-5.58571 + 1.81491i) q^{19} +(-1.55635 - 4.78995i) q^{21} +(-4.82327 - 1.56717i) q^{23} +(3.70322 + 3.35949i) q^{25} -1.88082 q^{27} +(3.26279 - 4.49085i) q^{29} +(6.41418 - 4.66017i) q^{31} +(2.89726 + 3.98773i) q^{33} +(0.235365 - 4.33627i) q^{35} +(6.78119 - 9.33351i) q^{37} +(4.42174 - 13.6087i) q^{39} +(5.28275 - 3.61837i) q^{41} +(1.44108 + 0.468236i) q^{43} +(-7.77108 - 2.99968i) q^{45} +(-1.40246 + 4.31632i) q^{47} +(2.61173 - 1.89753i) q^{49} +(-2.79790 + 2.03279i) q^{51} +(-4.43214 - 3.22014i) q^{53} +(1.09235 + 4.10732i) q^{55} +(14.4855 - 4.70662i) q^{57} +(1.87921 - 5.78361i) q^{59} +(3.75107 + 11.5446i) q^{61} +(2.23568 + 6.88071i) q^{63} +(7.78236 - 9.57385i) q^{65} +(-11.0524 - 8.03004i) q^{67} +(12.5082 + 4.06417i) q^{69} +(-1.78089 - 2.45118i) q^{71} -5.98378i q^{73} +(-9.60360 - 8.71220i) q^{75} +(2.16971 - 2.98636i) q^{77} +7.30155i q^{79} -6.29822 q^{81} -2.17634i q^{83} +(-2.88181 + 0.766421i) q^{85} +(-8.46143 + 11.6462i) q^{87} +(14.5402 - 4.72438i) q^{89} -10.7158 q^{91} +(-16.6340 + 12.0853i) q^{93} +(13.1135 + 0.711776i) q^{95} +(-3.17524 - 2.30695i) q^{97} +(-4.16188 - 5.72833i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.59331 −1.49725 −0.748624 0.662994i \(-0.769285\pi\)
−0.748624 + 0.662994i \(0.769285\pi\)
\(4\) 0 0
\(5\) −2.08605 0.805227i −0.932910 0.360109i
\(6\) 0 0
\(7\) 0.600140 + 1.84704i 0.226832 + 0.698116i 0.998101 + 0.0616064i \(0.0196224\pi\)
−0.771269 + 0.636509i \(0.780378\pi\)
\(8\) 0 0
\(9\) 3.72526 1.24175
\(10\) 0 0
\(11\) −1.11720 1.53770i −0.336850 0.463634i 0.606668 0.794955i \(-0.292506\pi\)
−0.943518 + 0.331321i \(0.892506\pi\)
\(12\) 0 0
\(13\) −1.70506 + 5.24762i −0.472898 + 1.45543i 0.375875 + 0.926670i \(0.377342\pi\)
−0.848772 + 0.528759i \(0.822658\pi\)
\(14\) 0 0
\(15\) 5.40978 + 2.08820i 1.39680 + 0.539172i
\(16\) 0 0
\(17\) 1.07889 0.783861i 0.261670 0.190114i −0.449213 0.893425i \(-0.648296\pi\)
0.710883 + 0.703310i \(0.248296\pi\)
\(18\) 0 0
\(19\) −5.58571 + 1.81491i −1.28145 + 0.416368i −0.869091 0.494653i \(-0.835295\pi\)
−0.412359 + 0.911021i \(0.635295\pi\)
\(20\) 0 0
\(21\) −1.55635 4.78995i −0.339623 1.04525i
\(22\) 0 0
\(23\) −4.82327 1.56717i −1.00572 0.326779i −0.240572 0.970631i \(-0.577335\pi\)
−0.765149 + 0.643853i \(0.777335\pi\)
\(24\) 0 0
\(25\) 3.70322 + 3.35949i 0.740644 + 0.671898i
\(26\) 0 0
\(27\) −1.88082 −0.361965
\(28\) 0 0
\(29\) 3.26279 4.49085i 0.605885 0.833929i −0.390346 0.920668i \(-0.627645\pi\)
0.996231 + 0.0867390i \(0.0276446\pi\)
\(30\) 0 0
\(31\) 6.41418 4.66017i 1.15202 0.836992i 0.163272 0.986581i \(-0.447795\pi\)
0.988748 + 0.149589i \(0.0477951\pi\)
\(32\) 0 0
\(33\) 2.89726 + 3.98773i 0.504348 + 0.694175i
\(34\) 0 0
\(35\) 0.235365 4.33627i 0.0397839 0.732963i
\(36\) 0 0
\(37\) 6.78119 9.33351i 1.11482 1.53442i 0.300705 0.953717i \(-0.402778\pi\)
0.814116 0.580703i \(-0.197222\pi\)
\(38\) 0 0
\(39\) 4.42174 13.6087i 0.708045 2.17914i
\(40\) 0 0
\(41\) 5.28275 3.61837i 0.825026 0.565094i
\(42\) 0 0
\(43\) 1.44108 + 0.468236i 0.219763 + 0.0714053i 0.416829 0.908985i \(-0.363141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(44\) 0 0
\(45\) −7.77108 2.99968i −1.15844 0.447166i
\(46\) 0 0
\(47\) −1.40246 + 4.31632i −0.204569 + 0.629600i 0.795161 + 0.606398i \(0.207386\pi\)
−0.999731 + 0.0232019i \(0.992614\pi\)
\(48\) 0 0
\(49\) 2.61173 1.89753i 0.373104 0.271076i
\(50\) 0 0
\(51\) −2.79790 + 2.03279i −0.391785 + 0.284648i
\(52\) 0 0
\(53\) −4.43214 3.22014i −0.608801 0.442320i 0.240191 0.970726i \(-0.422790\pi\)
−0.848992 + 0.528406i \(0.822790\pi\)
\(54\) 0 0
\(55\) 1.09235 + 4.10732i 0.147292 + 0.553831i
\(56\) 0 0
\(57\) 14.4855 4.70662i 1.91865 0.623407i
\(58\) 0 0
\(59\) 1.87921 5.78361i 0.244652 0.752962i −0.751041 0.660255i \(-0.770448\pi\)
0.995693 0.0927065i \(-0.0295518\pi\)
\(60\) 0 0
\(61\) 3.75107 + 11.5446i 0.480275 + 1.47814i 0.838709 + 0.544580i \(0.183311\pi\)
−0.358433 + 0.933555i \(0.616689\pi\)
\(62\) 0 0
\(63\) 2.23568 + 6.88071i 0.281669 + 0.866888i
\(64\) 0 0
\(65\) 7.78236 9.57385i 0.965283 1.18749i
\(66\) 0 0
\(67\) −11.0524 8.03004i −1.35027 0.981026i −0.998998 0.0447505i \(-0.985751\pi\)
−0.351268 0.936275i \(-0.614249\pi\)
\(68\) 0 0
\(69\) 12.5082 + 4.06417i 1.50581 + 0.489269i
\(70\) 0 0
\(71\) −1.78089 2.45118i −0.211352 0.290901i 0.690158 0.723658i \(-0.257541\pi\)
−0.901511 + 0.432757i \(0.857541\pi\)
\(72\) 0 0
\(73\) 5.98378i 0.700349i −0.936685 0.350174i \(-0.886122\pi\)
0.936685 0.350174i \(-0.113878\pi\)
\(74\) 0 0
\(75\) −9.60360 8.71220i −1.10893 1.00600i
\(76\) 0 0
\(77\) 2.16971 2.98636i 0.247262 0.340327i
\(78\) 0 0
\(79\) 7.30155i 0.821488i 0.911751 + 0.410744i \(0.134731\pi\)
−0.911751 + 0.410744i \(0.865269\pi\)
\(80\) 0 0
\(81\) −6.29822 −0.699802
\(82\) 0 0
\(83\) 2.17634i 0.238884i −0.992841 0.119442i \(-0.961889\pi\)
0.992841 0.119442i \(-0.0381106\pi\)
\(84\) 0 0
\(85\) −2.88181 + 0.766421i −0.312576 + 0.0831300i
\(86\) 0 0
\(87\) −8.46143 + 11.6462i −0.907161 + 1.24860i
\(88\) 0 0
\(89\) 14.5402 4.72438i 1.54125 0.500784i 0.589531 0.807745i \(-0.299312\pi\)
0.951722 + 0.306962i \(0.0993124\pi\)
\(90\) 0 0
\(91\) −10.7158 −1.12333
\(92\) 0 0
\(93\) −16.6340 + 12.0853i −1.72486 + 1.25319i
\(94\) 0 0
\(95\) 13.1135 + 0.711776i 1.34542 + 0.0730267i
\(96\) 0 0
\(97\) −3.17524 2.30695i −0.322397 0.234235i 0.414801 0.909912i \(-0.363851\pi\)
−0.737198 + 0.675677i \(0.763851\pi\)
\(98\) 0 0
\(99\) −4.16188 5.72833i −0.418284 0.575719i
\(100\) 0 0
\(101\) −3.85449 + 1.25240i −0.383536 + 0.124618i −0.494438 0.869213i \(-0.664626\pi\)
0.110902 + 0.993831i \(0.464626\pi\)
\(102\) 0 0
\(103\) −2.71395 + 0.881816i −0.267414 + 0.0868879i −0.439655 0.898167i \(-0.644899\pi\)
0.172241 + 0.985055i \(0.444899\pi\)
\(104\) 0 0
\(105\) −0.610374 + 11.2453i −0.0595664 + 1.09743i
\(106\) 0 0
\(107\) 17.3433 5.63519i 1.67664 0.544774i 0.692388 0.721525i \(-0.256559\pi\)
0.984256 + 0.176751i \(0.0565587\pi\)
\(108\) 0 0
\(109\) 1.18155i 0.113172i 0.998398 + 0.0565859i \(0.0180215\pi\)
−0.998398 + 0.0565859i \(0.981979\pi\)
\(110\) 0 0
\(111\) −17.5857 + 24.2047i −1.66916 + 2.29741i
\(112\) 0 0
\(113\) 8.20205 + 11.2892i 0.771584 + 1.06199i 0.996161 + 0.0875381i \(0.0278999\pi\)
−0.224577 + 0.974456i \(0.572100\pi\)
\(114\) 0 0
\(115\) 8.79965 + 7.15303i 0.820572 + 0.667024i
\(116\) 0 0
\(117\) −6.35178 + 19.5488i −0.587222 + 1.80728i
\(118\) 0 0
\(119\) 2.09531 + 1.52233i 0.192077 + 0.139552i
\(120\) 0 0
\(121\) 2.28281 7.02577i 0.207528 0.638707i
\(122\) 0 0
\(123\) −13.6998 + 9.38355i −1.23527 + 0.846086i
\(124\) 0 0
\(125\) −5.01995 9.99000i −0.448998 0.893533i
\(126\) 0 0
\(127\) 0.672166 0.925158i 0.0596451 0.0820945i −0.778152 0.628075i \(-0.783843\pi\)
0.837798 + 0.545981i \(0.183843\pi\)
\(128\) 0 0
\(129\) −3.73717 1.21428i −0.329040 0.106912i
\(130\) 0 0
\(131\) −12.6065 + 9.15919i −1.10144 + 0.800242i −0.981294 0.192514i \(-0.938336\pi\)
−0.120145 + 0.992756i \(0.538336\pi\)
\(132\) 0 0
\(133\) −6.70441 9.22784i −0.581346 0.800155i
\(134\) 0 0
\(135\) 3.92350 + 1.51449i 0.337681 + 0.130347i
\(136\) 0 0
\(137\) 7.68018 0.656162 0.328081 0.944650i \(-0.393598\pi\)
0.328081 + 0.944650i \(0.393598\pi\)
\(138\) 0 0
\(139\) 2.59317 + 7.98097i 0.219950 + 0.676937i 0.998765 + 0.0496830i \(0.0158211\pi\)
−0.778815 + 0.627254i \(0.784179\pi\)
\(140\) 0 0
\(141\) 3.63701 11.1936i 0.306291 0.942667i
\(142\) 0 0
\(143\) 9.97417 3.24080i 0.834082 0.271010i
\(144\) 0 0
\(145\) −10.4225 + 6.74085i −0.865542 + 0.559797i
\(146\) 0 0
\(147\) −6.77302 + 4.92089i −0.558629 + 0.405868i
\(148\) 0 0
\(149\) 12.6916 17.4684i 1.03973 1.43107i 0.142350 0.989816i \(-0.454534\pi\)
0.897383 0.441253i \(-0.145466\pi\)
\(150\) 0 0
\(151\) 4.04686 + 1.31490i 0.329329 + 0.107005i 0.469014 0.883191i \(-0.344609\pi\)
−0.139686 + 0.990196i \(0.544609\pi\)
\(152\) 0 0
\(153\) 4.01915 2.92009i 0.324929 0.236075i
\(154\) 0 0
\(155\) −17.1328 + 4.55649i −1.37614 + 0.365986i
\(156\) 0 0
\(157\) 1.80133 + 5.54391i 0.143762 + 0.442452i 0.996850 0.0793144i \(-0.0252731\pi\)
−0.853088 + 0.521767i \(0.825273\pi\)
\(158\) 0 0
\(159\) 11.4939 + 8.35081i 0.911526 + 0.662263i
\(160\) 0 0
\(161\) 9.84930i 0.776233i
\(162\) 0 0
\(163\) 7.69914i 0.603043i −0.953459 0.301521i \(-0.902506\pi\)
0.953459 0.301521i \(-0.0974945\pi\)
\(164\) 0 0
\(165\) −2.83280 10.6516i −0.220533 0.829223i
\(166\) 0 0
\(167\) −2.13468 −0.165187 −0.0825933 0.996583i \(-0.526320\pi\)
−0.0825933 + 0.996583i \(0.526320\pi\)
\(168\) 0 0
\(169\) −14.1131 10.2538i −1.08562 0.788752i
\(170\) 0 0
\(171\) −20.8082 + 6.76100i −1.59124 + 0.517027i
\(172\) 0 0
\(173\) 1.87510i 0.142561i −0.997456 0.0712805i \(-0.977291\pi\)
0.997456 0.0712805i \(-0.0227085\pi\)
\(174\) 0 0
\(175\) −3.98267 + 8.85616i −0.301061 + 0.669463i
\(176\) 0 0
\(177\) −4.87337 + 14.9987i −0.366305 + 1.12737i
\(178\) 0 0
\(179\) −3.65494 + 5.03059i −0.273183 + 0.376004i −0.923461 0.383692i \(-0.874652\pi\)
0.650278 + 0.759696i \(0.274652\pi\)
\(180\) 0 0
\(181\) 13.3904 + 18.4303i 0.995301 + 1.36991i 0.928164 + 0.372171i \(0.121387\pi\)
0.0671373 + 0.997744i \(0.478613\pi\)
\(182\) 0 0
\(183\) −9.72769 29.9388i −0.719092 2.21314i
\(184\) 0 0
\(185\) −21.6615 + 14.0098i −1.59259 + 1.03002i
\(186\) 0 0
\(187\) −2.41068 0.783279i −0.176287 0.0572790i
\(188\) 0 0
\(189\) −1.12876 3.47396i −0.0821051 0.252693i
\(190\) 0 0
\(191\) 9.20965i 0.666387i −0.942859 0.333193i \(-0.891874\pi\)
0.942859 0.333193i \(-0.108126\pi\)
\(192\) 0 0
\(193\) −15.0601 10.9418i −1.08405 0.787607i −0.105664 0.994402i \(-0.533697\pi\)
−0.978384 + 0.206795i \(0.933697\pi\)
\(194\) 0 0
\(195\) −20.1821 + 24.8280i −1.44527 + 1.77797i
\(196\) 0 0
\(197\) 1.41441 + 1.94676i 0.100772 + 0.138701i 0.856425 0.516271i \(-0.172680\pi\)
−0.755653 + 0.654972i \(0.772680\pi\)
\(198\) 0 0
\(199\) 9.25534 + 3.00724i 0.656094 + 0.213178i 0.618099 0.786100i \(-0.287903\pi\)
0.0379947 + 0.999278i \(0.487903\pi\)
\(200\) 0 0
\(201\) 28.6623 + 20.8244i 2.02168 + 1.46884i
\(202\) 0 0
\(203\) 10.2529 + 3.33137i 0.719613 + 0.233816i
\(204\) 0 0
\(205\) −13.9337 + 3.29429i −0.973171 + 0.230083i
\(206\) 0 0
\(207\) −17.9679 5.83813i −1.24886 0.405778i
\(208\) 0 0
\(209\) 9.03116 + 6.56152i 0.624698 + 0.453870i
\(210\) 0 0
\(211\) −5.34024 1.73515i −0.367637 0.119453i 0.119372 0.992850i \(-0.461912\pi\)
−0.487009 + 0.873397i \(0.661912\pi\)
\(212\) 0 0
\(213\) 4.61839 + 6.35667i 0.316447 + 0.435552i
\(214\) 0 0
\(215\) −2.62913 2.13716i −0.179305 0.145753i
\(216\) 0 0
\(217\) 12.4569 + 9.05049i 0.845632 + 0.614388i
\(218\) 0 0
\(219\) 15.5178i 1.04860i
\(220\) 0 0
\(221\) 2.27384 + 6.99814i 0.152955 + 0.470746i
\(222\) 0 0
\(223\) 15.2827 + 4.96565i 1.02340 + 0.332524i 0.772180 0.635404i \(-0.219167\pi\)
0.251225 + 0.967929i \(0.419167\pi\)
\(224\) 0 0
\(225\) 13.7955 + 12.5150i 0.919697 + 0.834332i
\(226\) 0 0
\(227\) −3.98985 12.2795i −0.264816 0.815019i −0.991736 0.128297i \(-0.959049\pi\)
0.726920 0.686722i \(-0.240951\pi\)
\(228\) 0 0
\(229\) −0.616959 0.849171i −0.0407698 0.0561148i 0.788145 0.615489i \(-0.211041\pi\)
−0.828915 + 0.559374i \(0.811041\pi\)
\(230\) 0 0
\(231\) −5.62674 + 7.74455i −0.370213 + 0.509554i
\(232\) 0 0
\(233\) −0.644015 + 1.98207i −0.0421908 + 0.129850i −0.969933 0.243371i \(-0.921747\pi\)
0.927742 + 0.373221i \(0.121747\pi\)
\(234\) 0 0
\(235\) 6.40121 7.87476i 0.417569 0.513693i
\(236\) 0 0
\(237\) 18.9352i 1.22997i
\(238\) 0 0
\(239\) −20.0420 + 6.51204i −1.29641 + 0.421229i −0.874331 0.485331i \(-0.838699\pi\)
−0.422078 + 0.906559i \(0.638699\pi\)
\(240\) 0 0
\(241\) −17.1197 12.4382i −1.10278 0.801213i −0.121265 0.992620i \(-0.538695\pi\)
−0.981511 + 0.191407i \(0.938695\pi\)
\(242\) 0 0
\(243\) 21.9757 1.40974
\(244\) 0 0
\(245\) −6.97614 + 1.85531i −0.445689 + 0.118532i
\(246\) 0 0
\(247\) 32.4062i 2.06196i
\(248\) 0 0
\(249\) 5.64392i 0.357669i
\(250\) 0 0
\(251\) 11.4821 + 8.34226i 0.724746 + 0.526559i 0.887897 0.460042i \(-0.152166\pi\)
−0.163151 + 0.986601i \(0.552166\pi\)
\(252\) 0 0
\(253\) 2.97873 + 9.16759i 0.187271 + 0.576362i
\(254\) 0 0
\(255\) 7.47343 1.98757i 0.468004 0.124466i
\(256\) 0 0
\(257\) 5.04588 3.66605i 0.314754 0.228682i −0.419180 0.907903i \(-0.637682\pi\)
0.733933 + 0.679221i \(0.237682\pi\)
\(258\) 0 0
\(259\) 21.3090 + 6.92373i 1.32408 + 0.430219i
\(260\) 0 0
\(261\) 12.1547 16.7296i 0.752360 1.03553i
\(262\) 0 0
\(263\) 16.9236 12.2957i 1.04356 0.758188i 0.0725797 0.997363i \(-0.476877\pi\)
0.970977 + 0.239175i \(0.0768768\pi\)
\(264\) 0 0
\(265\) 6.65272 + 10.2862i 0.408674 + 0.631879i
\(266\) 0 0
\(267\) −37.7071 + 12.2518i −2.30764 + 0.749797i
\(268\) 0 0
\(269\) 2.42620 7.46709i 0.147928 0.455277i −0.849448 0.527673i \(-0.823065\pi\)
0.997376 + 0.0723964i \(0.0230647\pi\)
\(270\) 0 0
\(271\) −7.63272 23.4911i −0.463654 1.42698i −0.860667 0.509168i \(-0.829953\pi\)
0.397013 0.917813i \(-0.370047\pi\)
\(272\) 0 0
\(273\) 27.7895 1.68190
\(274\) 0 0
\(275\) 1.02864 9.44767i 0.0620291 0.569716i
\(276\) 0 0
\(277\) −5.45788 7.51213i −0.327932 0.451360i 0.612936 0.790133i \(-0.289988\pi\)
−0.940868 + 0.338772i \(0.889988\pi\)
\(278\) 0 0
\(279\) 23.8945 17.3604i 1.43053 1.03934i
\(280\) 0 0
\(281\) 12.8966 + 4.19035i 0.769345 + 0.249975i 0.667285 0.744803i \(-0.267456\pi\)
0.102060 + 0.994778i \(0.467456\pi\)
\(282\) 0 0
\(283\) 12.3164 16.9521i 0.732134 1.00770i −0.266899 0.963724i \(-0.585999\pi\)
0.999033 0.0439711i \(-0.0140009\pi\)
\(284\) 0 0
\(285\) −34.0073 1.84586i −2.01442 0.109339i
\(286\) 0 0
\(287\) 9.85366 + 7.58592i 0.581643 + 0.447783i
\(288\) 0 0
\(289\) −4.70372 + 14.4766i −0.276689 + 0.851562i
\(290\) 0 0
\(291\) 8.23439 + 5.98263i 0.482708 + 0.350708i
\(292\) 0 0
\(293\) −9.06631 + 27.9032i −0.529660 + 1.63012i 0.225254 + 0.974300i \(0.427679\pi\)
−0.754913 + 0.655825i \(0.772321\pi\)
\(294\) 0 0
\(295\) −8.57724 + 10.5517i −0.499386 + 0.614344i
\(296\) 0 0
\(297\) 2.10126 + 2.89214i 0.121928 + 0.167819i
\(298\) 0 0
\(299\) 16.4479 22.6386i 0.951206 1.30922i
\(300\) 0 0
\(301\) 2.94274i 0.169617i
\(302\) 0 0
\(303\) 9.99588 3.24786i 0.574249 0.186585i
\(304\) 0 0
\(305\) 1.47111 27.1031i 0.0842354 1.55192i
\(306\) 0 0
\(307\) 15.7997 5.13364i 0.901737 0.292992i 0.178783 0.983888i \(-0.442784\pi\)
0.722954 + 0.690896i \(0.242784\pi\)
\(308\) 0 0
\(309\) 7.03812 2.28682i 0.400385 0.130093i
\(310\) 0 0
\(311\) −0.0852038 0.117273i −0.00483146 0.00664994i 0.806594 0.591105i \(-0.201308\pi\)
−0.811426 + 0.584455i \(0.801308\pi\)
\(312\) 0 0
\(313\) −21.4450 15.5807i −1.21214 0.880673i −0.216719 0.976234i \(-0.569536\pi\)
−0.995424 + 0.0955607i \(0.969536\pi\)
\(314\) 0 0
\(315\) 0.876795 16.1537i 0.0494018 0.910160i
\(316\) 0 0
\(317\) −4.11178 + 2.98739i −0.230941 + 0.167788i −0.697238 0.716840i \(-0.745588\pi\)
0.466297 + 0.884628i \(0.345588\pi\)
\(318\) 0 0
\(319\) −10.5508 −0.590730
\(320\) 0 0
\(321\) −44.9767 + 14.6138i −2.51035 + 0.815663i
\(322\) 0 0
\(323\) −4.60374 + 6.33651i −0.256159 + 0.352573i
\(324\) 0 0
\(325\) −23.9435 + 13.7050i −1.32815 + 0.760215i
\(326\) 0 0
\(327\) 3.06412i 0.169446i
\(328\) 0 0
\(329\) −8.81409 −0.485936
\(330\) 0 0
\(331\) 7.49537i 0.411983i 0.978554 + 0.205991i \(0.0660419\pi\)
−0.978554 + 0.205991i \(0.933958\pi\)
\(332\) 0 0
\(333\) 25.2617 34.7698i 1.38433 1.90537i
\(334\) 0 0
\(335\) 16.5899 + 25.6508i 0.906401 + 1.40145i
\(336\) 0 0
\(337\) 22.8184i 1.24300i 0.783414 + 0.621500i \(0.213476\pi\)
−0.783414 + 0.621500i \(0.786524\pi\)
\(338\) 0 0
\(339\) −21.2705 29.2763i −1.15525 1.59007i
\(340\) 0 0
\(341\) −14.3319 4.65672i −0.776116 0.252175i
\(342\) 0 0
\(343\) 16.0705 + 11.6759i 0.867727 + 0.630440i
\(344\) 0 0
\(345\) −22.8202 18.5500i −1.22860 0.998700i
\(346\) 0 0
\(347\) −7.09011 21.8211i −0.380617 1.17142i −0.939610 0.342246i \(-0.888812\pi\)
0.558993 0.829172i \(-0.311188\pi\)
\(348\) 0 0
\(349\) 2.47949 + 7.63109i 0.132724 + 0.408483i 0.995229 0.0975659i \(-0.0311057\pi\)
−0.862505 + 0.506049i \(0.831106\pi\)
\(350\) 0 0
\(351\) 3.20691 9.86986i 0.171172 0.526814i
\(352\) 0 0
\(353\) −17.5226 + 5.69345i −0.932636 + 0.303032i −0.735640 0.677373i \(-0.763118\pi\)
−0.196996 + 0.980404i \(0.563118\pi\)
\(354\) 0 0
\(355\) 1.74126 + 6.54730i 0.0924166 + 0.347495i
\(356\) 0 0
\(357\) −5.43379 3.94788i −0.287586 0.208944i
\(358\) 0 0
\(359\) 16.2363 11.7963i 0.856917 0.622587i −0.0701276 0.997538i \(-0.522341\pi\)
0.927044 + 0.374952i \(0.122341\pi\)
\(360\) 0 0
\(361\) 12.5349 9.10717i 0.659734 0.479325i
\(362\) 0 0
\(363\) −5.92004 + 18.2200i −0.310722 + 0.956303i
\(364\) 0 0
\(365\) −4.81830 + 12.4825i −0.252202 + 0.653363i
\(366\) 0 0
\(367\) 13.9347 + 4.52765i 0.727384 + 0.236341i 0.649222 0.760599i \(-0.275095\pi\)
0.0781623 + 0.996941i \(0.475095\pi\)
\(368\) 0 0
\(369\) 19.6796 13.4794i 1.02448 0.701708i
\(370\) 0 0
\(371\) 3.28782 10.1189i 0.170695 0.525346i
\(372\) 0 0
\(373\) 6.24340 8.59330i 0.323271 0.444944i −0.616191 0.787596i \(-0.711325\pi\)
0.939462 + 0.342652i \(0.111325\pi\)
\(374\) 0 0
\(375\) 13.0183 + 25.9072i 0.672262 + 1.33784i
\(376\) 0 0
\(377\) 18.0030 + 24.7790i 0.927203 + 1.27619i
\(378\) 0 0
\(379\) 20.1060 14.6078i 1.03277 0.750354i 0.0639117 0.997956i \(-0.479642\pi\)
0.968862 + 0.247602i \(0.0796424\pi\)
\(380\) 0 0
\(381\) −1.74314 + 2.39922i −0.0893036 + 0.122916i
\(382\) 0 0
\(383\) 0.718225 0.0366996 0.0183498 0.999832i \(-0.494159\pi\)
0.0183498 + 0.999832i \(0.494159\pi\)
\(384\) 0 0
\(385\) −6.93083 + 4.48258i −0.353228 + 0.228453i
\(386\) 0 0
\(387\) 5.36841 + 1.74430i 0.272891 + 0.0886678i
\(388\) 0 0
\(389\) −8.26502 25.4371i −0.419053 1.28971i −0.908575 0.417722i \(-0.862829\pi\)
0.489521 0.871991i \(-0.337171\pi\)
\(390\) 0 0
\(391\) −6.43223 + 2.08996i −0.325292 + 0.105694i
\(392\) 0 0
\(393\) 32.6927 23.7526i 1.64913 1.19816i
\(394\) 0 0
\(395\) 5.87940 15.2314i 0.295825 0.766375i
\(396\) 0 0
\(397\) −1.92555 + 5.92625i −0.0966408 + 0.297430i −0.987678 0.156501i \(-0.949979\pi\)
0.891037 + 0.453931i \(0.149979\pi\)
\(398\) 0 0
\(399\) 17.3866 + 23.9306i 0.870420 + 1.19803i
\(400\) 0 0
\(401\) 9.64036 0.481416 0.240708 0.970598i \(-0.422620\pi\)
0.240708 + 0.970598i \(0.422620\pi\)
\(402\) 0 0
\(403\) 13.5183 + 41.6051i 0.673395 + 2.07250i
\(404\) 0 0
\(405\) 13.1384 + 5.07150i 0.652853 + 0.252005i
\(406\) 0 0
\(407\) −21.9281 −1.08694
\(408\) 0 0
\(409\) −11.9323 −0.590014 −0.295007 0.955495i \(-0.595322\pi\)
−0.295007 + 0.955495i \(0.595322\pi\)
\(410\) 0 0
\(411\) −19.9171 −0.982437
\(412\) 0 0
\(413\) 11.8103 0.581149
\(414\) 0 0
\(415\) −1.75245 + 4.53995i −0.0860242 + 0.222857i
\(416\) 0 0
\(417\) −6.72490 20.6971i −0.329320 1.01354i
\(418\) 0 0
\(419\) −4.14082 −0.202292 −0.101146 0.994872i \(-0.532251\pi\)
−0.101146 + 0.994872i \(0.532251\pi\)
\(420\) 0 0
\(421\) −1.00310 1.38065i −0.0488881 0.0672887i 0.783873 0.620921i \(-0.213241\pi\)
−0.832761 + 0.553632i \(0.813241\pi\)
\(422\) 0 0
\(423\) −5.22452 + 16.0794i −0.254025 + 0.781808i
\(424\) 0 0
\(425\) 6.62874 + 0.721719i 0.321541 + 0.0350085i
\(426\) 0 0
\(427\) −19.0722 + 13.8568i −0.922968 + 0.670576i
\(428\) 0 0
\(429\) −25.8661 + 8.40441i −1.24883 + 0.405769i
\(430\) 0 0
\(431\) −7.51728 23.1358i −0.362094 1.11441i −0.951781 0.306780i \(-0.900749\pi\)
0.589686 0.807633i \(-0.299251\pi\)
\(432\) 0 0
\(433\) −35.2343 11.4483i −1.69325 0.550172i −0.705846 0.708365i \(-0.749433\pi\)
−0.987408 + 0.158194i \(0.949433\pi\)
\(434\) 0 0
\(435\) 27.0288 17.4811i 1.29593 0.838155i
\(436\) 0 0
\(437\) 29.7857 1.42484
\(438\) 0 0
\(439\) 19.9011 27.3915i 0.949826 1.30732i −0.00177921 0.999998i \(-0.500566\pi\)
0.951605 0.307324i \(-0.0994337\pi\)
\(440\) 0 0
\(441\) 9.72936 7.06880i 0.463303 0.336609i
\(442\) 0 0
\(443\) −24.2123 33.3254i −1.15036 1.58334i −0.741826 0.670592i \(-0.766040\pi\)
−0.408534 0.912743i \(-0.633960\pi\)
\(444\) 0 0
\(445\) −34.1357 1.85282i −1.61819 0.0878323i
\(446\) 0 0
\(447\) −32.9131 + 45.3011i −1.55674 + 2.14267i
\(448\) 0 0
\(449\) 1.66219 5.11571i 0.0784438 0.241425i −0.904143 0.427230i \(-0.859489\pi\)
0.982587 + 0.185805i \(0.0594893\pi\)
\(450\) 0 0
\(451\) −11.4659 4.08082i −0.539907 0.192158i
\(452\) 0 0
\(453\) −10.4948 3.40995i −0.493087 0.160214i
\(454\) 0 0
\(455\) 22.3538 + 8.62869i 1.04796 + 0.404519i
\(456\) 0 0
\(457\) −6.32344 + 19.4616i −0.295798 + 0.910373i 0.687154 + 0.726512i \(0.258860\pi\)
−0.982952 + 0.183861i \(0.941140\pi\)
\(458\) 0 0
\(459\) −2.02921 + 1.47430i −0.0947152 + 0.0688146i
\(460\) 0 0
\(461\) 29.5083 21.4390i 1.37434 0.998516i 0.376955 0.926232i \(-0.376971\pi\)
0.997384 0.0722841i \(-0.0230288\pi\)
\(462\) 0 0
\(463\) 13.8244 + 10.0440i 0.642473 + 0.466784i 0.860699 0.509114i \(-0.170027\pi\)
−0.218226 + 0.975898i \(0.570027\pi\)
\(464\) 0 0
\(465\) 44.4307 11.8164i 2.06042 0.547972i
\(466\) 0 0
\(467\) −2.04607 + 0.664808i −0.0946808 + 0.0307637i −0.355974 0.934496i \(-0.615851\pi\)
0.261294 + 0.965259i \(0.415851\pi\)
\(468\) 0 0
\(469\) 8.19882 25.2334i 0.378587 1.16517i
\(470\) 0 0
\(471\) −4.67140 14.3771i −0.215247 0.662461i
\(472\) 0 0
\(473\) −0.889977 2.73907i −0.0409212 0.125942i
\(474\) 0 0
\(475\) −26.7823 12.0441i −1.22885 0.552623i
\(476\) 0 0
\(477\) −16.5109 11.9958i −0.755981 0.549252i
\(478\) 0 0
\(479\) −5.38883 1.75094i −0.246222 0.0800023i 0.183306 0.983056i \(-0.441320\pi\)
−0.429528 + 0.903054i \(0.641320\pi\)
\(480\) 0 0
\(481\) 37.4164 + 51.4993i 1.70604 + 2.34817i
\(482\) 0 0
\(483\) 25.5423i 1.16221i
\(484\) 0 0
\(485\) 4.76610 + 7.36920i 0.216417 + 0.334618i
\(486\) 0 0
\(487\) 4.37493 6.02158i 0.198247 0.272864i −0.698307 0.715799i \(-0.746063\pi\)
0.896554 + 0.442935i \(0.146063\pi\)
\(488\) 0 0
\(489\) 19.9663i 0.902905i
\(490\) 0 0
\(491\) −4.58151 −0.206761 −0.103380 0.994642i \(-0.532966\pi\)
−0.103380 + 0.994642i \(0.532966\pi\)
\(492\) 0 0
\(493\) 7.40271i 0.333401i
\(494\) 0 0
\(495\) 4.06928 + 15.3008i 0.182900 + 0.687722i
\(496\) 0 0
\(497\) 3.45865 4.76042i 0.155141 0.213534i
\(498\) 0 0
\(499\) −31.5751 + 10.2594i −1.41350 + 0.459273i −0.913530 0.406771i \(-0.866655\pi\)
−0.499967 + 0.866044i \(0.666655\pi\)
\(500\) 0 0
\(501\) 5.53589 0.247325
\(502\) 0 0
\(503\) −20.8337 + 15.1366i −0.928928 + 0.674906i −0.945730 0.324953i \(-0.894651\pi\)
0.0168022 + 0.999859i \(0.494651\pi\)
\(504\) 0 0
\(505\) 9.04912 + 0.491170i 0.402681 + 0.0218568i
\(506\) 0 0
\(507\) 36.5997 + 26.5912i 1.62545 + 1.18096i
\(508\) 0 0
\(509\) −6.15695 8.47432i −0.272902 0.375618i 0.650465 0.759537i \(-0.274574\pi\)
−0.923367 + 0.383919i \(0.874574\pi\)
\(510\) 0 0
\(511\) 11.0523 3.59111i 0.488925 0.158861i
\(512\) 0 0
\(513\) 10.5057 3.41352i 0.463840 0.150711i
\(514\) 0 0
\(515\) 6.37150 + 0.345834i 0.280762 + 0.0152393i
\(516\) 0 0
\(517\) 8.20403 2.66565i 0.360813 0.117235i
\(518\) 0 0
\(519\) 4.86271i 0.213449i
\(520\) 0 0
\(521\) −20.0122 + 27.5444i −0.876751 + 1.20674i 0.100560 + 0.994931i \(0.467937\pi\)
−0.977310 + 0.211813i \(0.932063\pi\)
\(522\) 0 0
\(523\) −19.2093 26.4393i −0.839964 1.15611i −0.985986 0.166830i \(-0.946647\pi\)
0.146022 0.989281i \(-0.453353\pi\)
\(524\) 0 0
\(525\) 10.3283 22.9668i 0.450764 1.00235i
\(526\) 0 0
\(527\) 3.26728 10.0556i 0.142325 0.438031i
\(528\) 0 0
\(529\) 2.20049 + 1.59875i 0.0956733 + 0.0695107i
\(530\) 0 0
\(531\) 7.00054 21.5454i 0.303798 0.934993i
\(532\) 0 0
\(533\) 9.98045 + 33.8914i 0.432301 + 1.46800i
\(534\) 0 0
\(535\) −40.7167 2.21003i −1.76034 0.0955479i
\(536\) 0 0
\(537\) 9.47839 13.0459i 0.409023 0.562971i
\(538\) 0 0
\(539\) −5.83567 1.89612i −0.251360 0.0816718i
\(540\) 0 0
\(541\) 8.86425 6.44025i 0.381104 0.276888i −0.380697 0.924700i \(-0.624316\pi\)
0.761800 + 0.647812i \(0.224316\pi\)
\(542\) 0 0
\(543\) −34.7255 47.7955i −1.49021 2.05110i
\(544\) 0 0
\(545\) 0.951414 2.46477i 0.0407541 0.105579i
\(546\) 0 0
\(547\) 40.3334 1.72453 0.862267 0.506455i \(-0.169044\pi\)
0.862267 + 0.506455i \(0.169044\pi\)
\(548\) 0 0
\(549\) 13.9737 + 43.0067i 0.596384 + 1.83548i
\(550\) 0 0
\(551\) −10.0745 + 31.0062i −0.429190 + 1.32091i
\(552\) 0 0
\(553\) −13.4863 + 4.38195i −0.573494 + 0.186339i
\(554\) 0 0
\(555\) 56.1750 36.3317i 2.38450 1.54220i
\(556\) 0 0
\(557\) 37.9158 27.5474i 1.60654 1.16722i 0.733346 0.679856i \(-0.237958\pi\)
0.873198 0.487366i \(-0.162042\pi\)
\(558\) 0 0
\(559\) −4.91425 + 6.76389i −0.207851 + 0.286082i
\(560\) 0 0
\(561\) 6.25165 + 2.03129i 0.263945 + 0.0857609i
\(562\) 0 0
\(563\) −1.51935 + 1.10387i −0.0640330 + 0.0465227i −0.619341 0.785122i \(-0.712600\pi\)
0.555308 + 0.831645i \(0.312600\pi\)
\(564\) 0 0
\(565\) −8.01956 30.1543i −0.337386 1.26860i
\(566\) 0 0
\(567\) −3.77981 11.6331i −0.158737 0.488543i
\(568\) 0 0
\(569\) −16.6138 12.0706i −0.696486 0.506027i 0.182300 0.983243i \(-0.441646\pi\)
−0.878786 + 0.477216i \(0.841646\pi\)
\(570\) 0 0
\(571\) 6.06869i 0.253967i −0.991905 0.126983i \(-0.959471\pi\)
0.991905 0.126983i \(-0.0405295\pi\)
\(572\) 0 0
\(573\) 23.8835i 0.997747i
\(574\) 0 0
\(575\) −12.5967 22.0073i −0.525319 0.917768i
\(576\) 0 0
\(577\) 12.3038 0.512214 0.256107 0.966648i \(-0.417560\pi\)
0.256107 + 0.966648i \(0.417560\pi\)
\(578\) 0 0
\(579\) 39.0555 + 28.3755i 1.62309 + 1.17924i
\(580\) 0 0
\(581\) 4.01978 1.30611i 0.166769 0.0541864i
\(582\) 0 0
\(583\) 10.4128i 0.431256i
\(584\) 0 0
\(585\) 28.9913 35.6651i 1.19864 1.47457i
\(586\) 0 0
\(587\) 0.864226 2.65982i 0.0356704 0.109782i −0.931636 0.363393i \(-0.881618\pi\)
0.967306 + 0.253611i \(0.0816182\pi\)
\(588\) 0 0
\(589\) −27.3700 + 37.6715i −1.12776 + 1.55223i
\(590\) 0 0
\(591\) −3.66800 5.04857i −0.150881 0.207670i
\(592\) 0 0
\(593\) −10.2544 31.5599i −0.421099 1.29601i −0.906680 0.421819i \(-0.861392\pi\)
0.485581 0.874192i \(-0.338608\pi\)
\(594\) 0 0
\(595\) −3.14510 4.86286i −0.128936 0.199358i
\(596\) 0 0
\(597\) −24.0020 7.79872i −0.982336 0.319180i
\(598\) 0 0
\(599\) 11.9521 + 36.7848i 0.488350 + 1.50299i 0.827070 + 0.562099i \(0.190006\pi\)
−0.338720 + 0.940887i \(0.609994\pi\)
\(600\) 0 0
\(601\) 45.9356i 1.87375i −0.349661 0.936876i \(-0.613703\pi\)
0.349661 0.936876i \(-0.386297\pi\)
\(602\) 0 0
\(603\) −41.1731 29.9140i −1.67670 1.21819i
\(604\) 0 0
\(605\) −10.4194 + 12.8179i −0.423609 + 0.521123i
\(606\) 0 0
\(607\) −4.26468 5.86982i −0.173098 0.238249i 0.713650 0.700503i \(-0.247041\pi\)
−0.886748 + 0.462254i \(0.847041\pi\)
\(608\) 0 0
\(609\) −26.5890 8.63928i −1.07744 0.350081i
\(610\) 0 0
\(611\) −20.2591 14.7191i −0.819597 0.595472i
\(612\) 0 0
\(613\) 33.8491 + 10.9982i 1.36715 + 0.444214i 0.898424 0.439129i \(-0.144713\pi\)
0.468727 + 0.883343i \(0.344713\pi\)
\(614\) 0 0
\(615\) 36.1344 8.54311i 1.45708 0.344492i
\(616\) 0 0
\(617\) −17.5502 5.70242i −0.706546 0.229571i −0.0663657 0.997795i \(-0.521140\pi\)
−0.640180 + 0.768225i \(0.721140\pi\)
\(618\) 0 0
\(619\) −12.7474 9.26150i −0.512360 0.372251i 0.301358 0.953511i \(-0.402560\pi\)
−0.813718 + 0.581260i \(0.802560\pi\)
\(620\) 0 0
\(621\) 9.07172 + 2.94758i 0.364036 + 0.118282i
\(622\) 0 0
\(623\) 17.4523 + 24.0210i 0.699210 + 0.962380i
\(624\) 0 0
\(625\) 2.42765 + 24.8819i 0.0971061 + 0.995274i
\(626\) 0 0
\(627\) −23.4206 17.0161i −0.935329 0.679556i
\(628\) 0 0
\(629\) 15.3854i 0.613454i
\(630\) 0 0
\(631\) 4.34919 + 13.3854i 0.173139 + 0.532866i 0.999544 0.0302103i \(-0.00961771\pi\)
−0.826405 + 0.563076i \(0.809618\pi\)
\(632\) 0 0
\(633\) 13.8489 + 4.49978i 0.550444 + 0.178850i
\(634\) 0 0
\(635\) −2.14714 + 1.38868i −0.0852065 + 0.0551081i
\(636\) 0 0
\(637\) 5.50439 + 16.9408i 0.218092 + 0.671217i
\(638\) 0 0
\(639\) −6.63426 9.13128i −0.262447 0.361228i
\(640\) 0 0
\(641\) 17.4729 24.0494i 0.690139 0.949894i −0.309861 0.950782i \(-0.600282\pi\)
1.00000 0.000887439i \(0.000282480\pi\)
\(642\) 0 0
\(643\) 1.89591 5.83500i 0.0747672 0.230110i −0.906688 0.421802i \(-0.861398\pi\)
0.981455 + 0.191692i \(0.0613976\pi\)
\(644\) 0 0
\(645\) 6.81816 + 5.54233i 0.268465 + 0.218229i
\(646\) 0 0
\(647\) 18.5029i 0.727424i 0.931511 + 0.363712i \(0.118491\pi\)
−0.931511 + 0.363712i \(0.881509\pi\)
\(648\) 0 0
\(649\) −10.9929 + 3.57181i −0.431510 + 0.140206i
\(650\) 0 0
\(651\) −32.3047 23.4707i −1.26612 0.919891i
\(652\) 0 0
\(653\) 18.6167 0.728526 0.364263 0.931296i \(-0.381321\pi\)
0.364263 + 0.931296i \(0.381321\pi\)
\(654\) 0 0
\(655\) 33.6731 8.95541i 1.31572 0.349917i
\(656\) 0 0
\(657\) 22.2911i 0.869660i
\(658\) 0 0
\(659\) 33.1407i 1.29098i 0.763769 + 0.645490i \(0.223347\pi\)
−0.763769 + 0.645490i \(0.776653\pi\)
\(660\) 0 0
\(661\) 6.27385 + 4.55822i 0.244024 + 0.177294i 0.703074 0.711116i \(-0.251810\pi\)
−0.459050 + 0.888410i \(0.651810\pi\)
\(662\) 0 0
\(663\) −5.89676 18.1484i −0.229011 0.704824i
\(664\) 0 0
\(665\) 6.55525 + 24.6483i 0.254202 + 0.955821i
\(666\) 0 0
\(667\) −22.7753 + 16.5472i −0.881861 + 0.640710i
\(668\) 0 0
\(669\) −39.6328 12.8775i −1.53229 0.497872i
\(670\) 0 0
\(671\) 13.5614 18.6657i 0.523533 0.720582i
\(672\) 0 0
\(673\) −15.6779 + 11.3907i −0.604340 + 0.439079i −0.847417 0.530928i \(-0.821843\pi\)
0.243077 + 0.970007i \(0.421843\pi\)
\(674\) 0 0
\(675\) −6.96510 6.31861i −0.268087 0.243203i
\(676\) 0 0
\(677\) −19.9637 + 6.48661i −0.767269 + 0.249301i −0.666395 0.745598i \(-0.732164\pi\)
−0.100873 + 0.994899i \(0.532164\pi\)
\(678\) 0 0
\(679\) 2.35544 7.24929i 0.0903934 0.278202i
\(680\) 0 0
\(681\) 10.3469 + 31.8446i 0.396495 + 1.22029i
\(682\) 0 0
\(683\) 5.02934 0.192442 0.0962211 0.995360i \(-0.469324\pi\)
0.0962211 + 0.995360i \(0.469324\pi\)
\(684\) 0 0
\(685\) −16.0212 6.18429i −0.612140 0.236290i
\(686\) 0 0
\(687\) 1.59997 + 2.20216i 0.0610425 + 0.0840178i
\(688\) 0 0
\(689\) 24.4551 17.7677i 0.931665 0.676895i
\(690\) 0 0
\(691\) 33.2696 + 10.8099i 1.26563 + 0.411230i 0.863499 0.504351i \(-0.168268\pi\)
0.402135 + 0.915580i \(0.368268\pi\)
\(692\) 0 0
\(693\) 8.08275 11.1250i 0.307038 0.422602i
\(694\) 0 0
\(695\) 1.01700 18.7368i 0.0385770 0.710727i
\(696\) 0 0
\(697\) 2.86322 8.04477i 0.108452 0.304717i
\(698\) 0 0
\(699\) 1.67013 5.14013i 0.0631701 0.194418i
\(700\) 0 0
\(701\) −37.6337 27.3425i −1.42141 1.03271i −0.991537 0.129821i \(-0.958560\pi\)
−0.429869 0.902891i \(-0.641440\pi\)
\(702\) 0 0
\(703\) −20.9383 + 64.4415i −0.789704 + 2.43046i
\(704\) 0 0
\(705\) −16.6003 + 20.4217i −0.625205 + 0.769126i
\(706\) 0 0
\(707\) −4.62646 6.36778i −0.173996 0.239485i
\(708\) 0 0
\(709\) −18.6809 + 25.7121i −0.701576 + 0.965637i 0.298361 + 0.954453i \(0.403560\pi\)
−0.999937 + 0.0111841i \(0.996440\pi\)
\(710\) 0 0
\(711\) 27.2002i 1.02009i
\(712\) 0 0
\(713\) −38.2406 + 12.4251i −1.43212 + 0.465325i
\(714\) 0 0
\(715\) −23.4162 1.27099i −0.875716 0.0475323i
\(716\) 0 0
\(717\) 51.9751 16.8877i 1.94105 0.630684i
\(718\) 0 0
\(719\) 27.1017 8.80587i 1.01072 0.328404i 0.243580 0.969881i \(-0.421678\pi\)
0.767142 + 0.641477i \(0.221678\pi\)
\(720\) 0 0
\(721\) −3.25750 4.48357i −0.121316 0.166977i
\(722\) 0 0
\(723\) 44.3966 + 32.2560i 1.65113 + 1.19962i
\(724\) 0 0
\(725\) 27.1698 5.66927i 1.00906 0.210551i
\(726\) 0 0
\(727\) 37.4995 27.2450i 1.39078 1.01046i 0.394999 0.918682i \(-0.370745\pi\)
0.995779 0.0917779i \(-0.0292550\pi\)
\(728\) 0 0
\(729\) −38.0952 −1.41093
\(730\) 0 0
\(731\) 1.92180 0.624432i 0.0710805 0.0230954i
\(732\) 0 0
\(733\) 16.2245 22.3311i 0.599264 0.824817i −0.396376 0.918088i \(-0.629732\pi\)
0.995641 + 0.0932714i \(0.0297324\pi\)
\(734\) 0 0
\(735\) 18.0913 4.81140i 0.667308 0.177471i
\(736\) 0 0
\(737\) 25.9665i 0.956487i
\(738\) 0 0
\(739\) −13.5824 −0.499636 −0.249818 0.968293i \(-0.580371\pi\)
−0.249818 + 0.968293i \(0.580371\pi\)
\(740\) 0 0
\(741\) 84.0394i 3.08726i
\(742\) 0 0
\(743\) −13.5292 + 18.6213i −0.496338 + 0.683150i −0.981541 0.191251i \(-0.938746\pi\)
0.485203 + 0.874401i \(0.338746\pi\)
\(744\) 0 0
\(745\) −40.5413 + 26.2204i −1.48532 + 0.960643i
\(746\) 0 0
\(747\) 8.10742i 0.296635i
\(748\) 0 0
\(749\) 20.8169 + 28.6519i 0.760631 + 1.04692i
\(750\) 0 0
\(751\) 36.0055 + 11.6989i 1.31386 + 0.426899i 0.880382 0.474265i \(-0.157286\pi\)
0.433478 + 0.901164i \(0.357286\pi\)
\(752\) 0 0
\(753\) −29.7767 21.6341i −1.08512 0.788389i
\(754\) 0 0
\(755\) −7.38316 6.00160i −0.268701 0.218420i
\(756\) 0 0
\(757\) −4.97055 15.2978i −0.180658 0.556007i 0.819189 0.573524i \(-0.194424\pi\)
−0.999847 + 0.0175166i \(0.994424\pi\)
\(758\) 0 0
\(759\) −7.72477 23.7744i −0.280392 0.862956i
\(760\) 0 0
\(761\) 1.68916 5.19870i 0.0612320 0.188453i −0.915761 0.401723i \(-0.868411\pi\)
0.976993 + 0.213270i \(0.0684115\pi\)
\(762\) 0 0
\(763\) −2.18237 + 0.709094i −0.0790070 + 0.0256709i
\(764\) 0 0
\(765\) −10.7355 + 2.85512i −0.388142 + 0.103227i
\(766\) 0 0
\(767\) 27.1460 + 19.7228i 0.980187 + 0.712147i
\(768\) 0 0
\(769\) −40.5947 + 29.4938i −1.46388 + 1.06357i −0.481554 + 0.876417i \(0.659927\pi\)
−0.982330 + 0.187157i \(0.940073\pi\)
\(770\) 0 0
\(771\) −13.0855 + 9.50720i −0.471264 + 0.342394i
\(772\) 0 0
\(773\) −10.7002 + 32.9318i −0.384859 + 1.18447i 0.551723 + 0.834027i \(0.313970\pi\)
−0.936582 + 0.350447i \(0.886030\pi\)
\(774\) 0 0
\(775\) 39.4089 + 4.29073i 1.41561 + 0.154128i
\(776\) 0 0
\(777\) −55.2610 17.9554i −1.98248 0.644145i
\(778\) 0 0
\(779\) −22.9409 + 29.7988i −0.821943 + 1.06765i
\(780\) 0 0
\(781\) −1.77956 + 5.47693i −0.0636778 + 0.195980i
\(782\) 0 0
\(783\) −6.13674 + 8.44649i −0.219309 + 0.301853i
\(784\) 0 0
\(785\) 0.706450 13.0154i 0.0252143 0.464538i
\(786\) 0 0
\(787\) 27.3356 + 37.6242i 0.974408 + 1.34116i 0.939788 + 0.341757i \(0.111022\pi\)
0.0346195 + 0.999401i \(0.488978\pi\)
\(788\) 0 0
\(789\) −43.8883 + 31.8867i −1.56246 + 1.13520i
\(790\) 0 0
\(791\) −15.9292 + 21.9246i −0.566375 + 0.779549i
\(792\) 0 0
\(793\) −66.9776 −2.37844
\(794\) 0 0
\(795\) −17.2526 26.6754i −0.611886 0.946080i
\(796\) 0 0
\(797\) −44.9082 14.5916i −1.59073 0.516859i −0.625937 0.779873i \(-0.715283\pi\)
−0.964792 + 0.263014i \(0.915283\pi\)
\(798\) 0 0
\(799\) 1.87029 + 5.75617i 0.0661662 + 0.203639i
\(800\) 0 0
\(801\) 54.1659 17.5996i 1.91386 0.621850i
\(802\) 0 0
\(803\) −9.20126 + 6.68511i −0.324705 + 0.235912i
\(804\) 0 0
\(805\) −7.93092 + 20.5461i −0.279528 + 0.724156i
\(806\) 0 0
\(807\) −6.29190 + 19.3645i −0.221485 + 0.681662i
\(808\) 0 0
\(809\) −2.68928 3.70147i −0.0945499 0.130137i 0.759121 0.650949i \(-0.225629\pi\)
−0.853671 + 0.520813i \(0.825629\pi\)
\(810\) 0 0
\(811\) 5.89376 0.206958 0.103479 0.994632i \(-0.467003\pi\)
0.103479 + 0.994632i \(0.467003\pi\)
\(812\) 0 0
\(813\) 19.7940 + 60.9197i 0.694206 + 2.13655i
\(814\) 0 0
\(815\) −6.19955 + 16.0608i −0.217161 + 0.562585i
\(816\) 0 0
\(817\) −8.89927 −0.311346
\(818\) 0 0
\(819\) −39.9193 −1.39489
\(820\) 0 0
\(821\) 29.1465 1.01722 0.508610 0.860997i \(-0.330160\pi\)
0.508610 + 0.860997i \(0.330160\pi\)
\(822\) 0 0
\(823\) −50.2335 −1.75103 −0.875514 0.483193i \(-0.839477\pi\)
−0.875514 + 0.483193i \(0.839477\pi\)
\(824\) 0 0
\(825\) −2.66757 + 24.5008i −0.0928729 + 0.853007i
\(826\) 0 0
\(827\) 4.77688 + 14.7017i 0.166108 + 0.511229i 0.999116 0.0420321i \(-0.0133832\pi\)
−0.833008 + 0.553261i \(0.813383\pi\)
\(828\) 0 0
\(829\) 11.6942 0.406157 0.203079 0.979162i \(-0.434905\pi\)
0.203079 + 0.979162i \(0.434905\pi\)
\(830\) 0 0
\(831\) 14.1540 + 19.4813i 0.490996 + 0.675798i
\(832\) 0 0
\(833\) 1.33037 4.09446i 0.0460946 0.141865i
\(834\) 0 0
\(835\) 4.45305 + 1.71890i 0.154104 + 0.0594851i
\(836\) 0 0
\(837\) −12.0639 + 8.76497i −0.416991 + 0.302962i
\(838\) 0 0
\(839\) −39.6901 + 12.8961i −1.37025 + 0.445222i −0.899453 0.437017i \(-0.856035\pi\)
−0.470800 + 0.882240i \(0.656035\pi\)
\(840\) 0 0
\(841\) −0.560404 1.72475i −0.0193243 0.0594740i
\(842\) 0 0
\(843\) −33.4448 10.8669i −1.15190 0.374275i
\(844\) 0 0
\(845\) 21.1841 + 32.7542i 0.728754 + 1.12678i
\(846\) 0 0
\(847\) 14.3469 0.492965
\(848\) 0 0
\(849\) −31.9402 + 43.9620i −1.09619 + 1.50877i
\(850\) 0 0
\(851\) −47.3348 + 34.3907i −1.62261 + 1.17890i
\(852\) 0 0
\(853\) 20.6171 + 28.3769i 0.705914 + 0.971608i 0.999875 + 0.0157903i \(0.00502643\pi\)
−0.293961 + 0.955817i \(0.594974\pi\)
\(854\) 0 0
\(855\) 48.8512 + 2.65155i 1.67067 + 0.0906812i
\(856\) 0 0
\(857\) 11.2804 15.5261i 0.385330 0.530362i −0.571656 0.820493i \(-0.693699\pi\)
0.956987 + 0.290131i \(0.0936990\pi\)
\(858\) 0 0
\(859\) −16.3602 + 50.3514i −0.558201 + 1.71797i 0.129134 + 0.991627i \(0.458780\pi\)
−0.687336 + 0.726340i \(0.741220\pi\)
\(860\) 0 0
\(861\) −25.5536 19.6727i −0.870864 0.670442i
\(862\) 0 0
\(863\) −4.60463 1.49614i −0.156744 0.0509291i 0.229594 0.973286i \(-0.426260\pi\)
−0.386338 + 0.922357i \(0.626260\pi\)
\(864\) 0 0
\(865\) −1.50988 + 3.91155i −0.0513374 + 0.132997i
\(866\) 0 0
\(867\) 12.1982 37.5422i 0.414273 1.27500i
\(868\) 0 0
\(869\) 11.2276 8.15732i 0.380870 0.276718i
\(870\) 0 0
\(871\) 60.9836 44.3072i 2.06635 1.50129i
\(872\) 0 0
\(873\) −11.8286 8.59398i −0.400337 0.290862i
\(874\) 0 0
\(875\) 15.4393 15.2675i 0.521942 0.516134i
\(876\) 0 0
\(877\) −3.61858 + 1.17575i −0.122191 + 0.0397022i −0.369474 0.929241i \(-0.620462\pi\)
0.247283 + 0.968943i \(0.420462\pi\)
\(878\) 0 0
\(879\) 23.5118 72.3618i 0.793032 2.44070i
\(880\) 0 0
\(881\) −12.0118 36.9685i −0.404688 1.24550i −0.921155 0.389195i \(-0.872753\pi\)
0.516467 0.856307i \(-0.327247\pi\)
\(882\) 0 0
\(883\) −7.71918 23.7572i −0.259771 0.799493i −0.992852 0.119352i \(-0.961918\pi\)
0.733081 0.680141i \(-0.238082\pi\)
\(884\) 0 0
\(885\) 22.2435 27.3639i 0.747706 0.919826i
\(886\) 0 0
\(887\) −5.66017 4.11236i −0.190050 0.138079i 0.488692 0.872457i \(-0.337474\pi\)
−0.678742 + 0.734377i \(0.737474\pi\)
\(888\) 0 0
\(889\) 2.11220 + 0.686295i 0.0708408 + 0.0230176i
\(890\) 0 0
\(891\) 7.03640 + 9.68477i 0.235728 + 0.324452i
\(892\) 0 0
\(893\) 26.6550i 0.891977i
\(894\) 0 0
\(895\) 11.6752 7.55101i 0.390257 0.252402i
\(896\) 0 0
\(897\) −42.6545 + 58.7089i −1.42419 + 1.96023i
\(898\) 0 0
\(899\) 44.0103i 1.46782i
\(900\) 0 0
\(901\) −7.30593 −0.243396
\(902\) 0 0
\(903\) 7.63145i 0.253959i
\(904\) 0 0
\(905\) −13.0925 49.2289i −0.435209 1.63642i
\(906\) 0 0
\(907\) −3.74361 + 5.15263i −0.124304 + 0.171090i −0.866634 0.498945i \(-0.833721\pi\)
0.742329 + 0.670035i \(0.233721\pi\)
\(908\) 0 0
\(909\) −14.3590 + 4.66551i −0.476257 + 0.154745i
\(910\) 0 0
\(911\) −50.7606 −1.68177 −0.840886 0.541212i \(-0.817966\pi\)
−0.840886 + 0.541212i \(0.817966\pi\)
\(912\) 0 0
\(913\) −3.34655 + 2.43141i −0.110755 + 0.0804680i
\(914\) 0 0
\(915\) −3.81504 + 70.2868i −0.126121 + 2.32361i
\(916\) 0 0
\(917\) −24.4831 17.7880i −0.808503 0.587412i
\(918\) 0 0
\(919\) −12.6713 17.4405i −0.417987 0.575309i 0.547157 0.837030i \(-0.315710\pi\)
−0.965144 + 0.261721i \(0.915710\pi\)
\(920\) 0 0
\(921\) −40.9736 + 13.3131i −1.35013 + 0.438682i
\(922\) 0 0
\(923\) 15.8994 5.16602i 0.523334 0.170042i
\(924\) 0 0
\(925\) 56.4681 11.7827i 1.85666 0.387412i
\(926\) 0 0
\(927\) −10.1102 + 3.28499i −0.332062 + 0.107893i
\(928\) 0 0
\(929\) 30.8851i 1.01331i 0.862150 + 0.506654i \(0.169118\pi\)
−0.862150 + 0.506654i \(0.830882\pi\)
\(930\) 0 0
\(931\) −11.1445 + 15.3391i −0.365247 + 0.502719i
\(932\) 0 0
\(933\) 0.220960 + 0.304125i 0.00723390 + 0.00995661i
\(934\) 0 0
\(935\) 4.39809 + 3.57511i 0.143833 + 0.116919i
\(936\) 0 0
\(937\) 2.93004 9.01773i 0.0957202 0.294596i −0.891721 0.452586i \(-0.850501\pi\)
0.987441 + 0.157990i \(0.0505014\pi\)
\(938\) 0 0
\(939\) 55.6135 + 40.4056i 1.81488 + 1.31859i
\(940\) 0 0
\(941\) −1.07874 + 3.32003i −0.0351660 + 0.108230i −0.967099 0.254401i \(-0.918122\pi\)
0.931933 + 0.362631i \(0.118122\pi\)
\(942\) 0 0
\(943\) −31.1507 + 9.17337i −1.01441 + 0.298726i
\(944\) 0 0
\(945\) −0.442680 + 8.15576i −0.0144004 + 0.265307i
\(946\) 0 0
\(947\) 28.4993 39.2260i 0.926104 1.27467i −0.0352564 0.999378i \(-0.511225\pi\)
0.961360 0.275294i \(-0.0887752\pi\)
\(948\) 0 0
\(949\) 31.4006 + 10.2027i 1.01931 + 0.331193i
\(950\) 0 0
\(951\) 10.6631 7.74722i 0.345776 0.251221i
\(952\) 0 0
\(953\) −23.6012 32.4842i −0.764517 1.05227i −0.996825 0.0796255i \(-0.974628\pi\)
0.232308 0.972642i \(-0.425372\pi\)
\(954\) 0 0
\(955\) −7.41586 + 19.2118i −0.239972 + 0.621679i
\(956\) 0 0
\(957\) 27.3614 0.884470
\(958\) 0 0
\(959\) 4.60918 + 14.1856i 0.148838 + 0.458077i
\(960\) 0 0
\(961\) 9.84495 30.2996i 0.317579 0.977408i
\(962\) 0 0
\(963\) 64.6084 20.9926i 2.08198 0.676476i
\(964\) 0 0
\(965\) 22.6055 + 34.9519i 0.727696 + 1.12514i
\(966\) 0 0
\(967\) 7.70962 5.60137i 0.247925 0.180128i −0.456882 0.889527i \(-0.651034\pi\)
0.704807 + 0.709400i \(0.251034\pi\)
\(968\) 0 0
\(969\) 11.9389 16.4325i 0.383534 0.527889i
\(970\) 0 0
\(971\) −31.0351 10.0839i −0.995965 0.323609i −0.234713 0.972065i \(-0.575415\pi\)
−0.761252 + 0.648456i \(0.775415\pi\)
\(972\) 0 0
\(973\) −13.1849 + 9.57939i −0.422689 + 0.307101i
\(974\) 0 0
\(975\) 62.0930 35.5413i 1.98857 1.13823i
\(976\) 0 0
\(977\) −10.3046 31.7144i −0.329674 1.01463i −0.969286 0.245935i \(-0.920905\pi\)
0.639612 0.768698i \(-0.279095\pi\)
\(978\) 0 0
\(979\) −23.5090 17.0803i −0.751351 0.545888i
\(980\) 0 0
\(981\) 4.40157i 0.140531i
\(982\) 0 0
\(983\) 30.9494i 0.987131i −0.869709 0.493566i \(-0.835693\pi\)
0.869709 0.493566i \(-0.164307\pi\)
\(984\) 0 0
\(985\) −1.38294 5.19997i −0.0440641 0.165685i
\(986\) 0 0
\(987\) 22.8577 0.727567
\(988\) 0 0
\(989\) −6.21692 4.51685i −0.197686 0.143628i
\(990\) 0 0
\(991\) −5.85534 + 1.90251i −0.186001 + 0.0604354i −0.400536 0.916281i \(-0.631176\pi\)
0.214536 + 0.976716i \(0.431176\pi\)
\(992\) 0 0
\(993\) 19.4378i 0.616841i
\(994\) 0 0
\(995\) −16.8856 13.7259i −0.535310 0.435141i
\(996\) 0 0
\(997\) 15.7711 48.5384i 0.499475 1.53723i −0.310389 0.950610i \(-0.600459\pi\)
0.809864 0.586617i \(-0.199541\pi\)
\(998\) 0 0
\(999\) −12.7542 + 17.5547i −0.403526 + 0.555406i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.3 80
5.4 even 2 inner 820.2.bi.a.189.18 yes 80
41.23 even 10 inner 820.2.bi.a.269.18 yes 80
205.64 even 10 inner 820.2.bi.a.269.3 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.3 80 1.1 even 1 trivial
820.2.bi.a.189.18 yes 80 5.4 even 2 inner
820.2.bi.a.269.3 yes 80 205.64 even 10 inner
820.2.bi.a.269.18 yes 80 41.23 even 10 inner