Properties

Label 820.2.bi.a.189.15
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.15
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56760 q^{3} +(1.56013 + 1.60188i) q^{5} +(0.633766 + 1.95053i) q^{7} -0.542630 q^{9} +(1.38893 + 1.91169i) q^{11} +(1.71055 - 5.26453i) q^{13} +(2.44565 + 2.51110i) q^{15} +(-2.66273 + 1.93459i) q^{17} +(4.64430 - 1.50902i) q^{19} +(0.993492 + 3.05766i) q^{21} +(3.85536 + 1.25268i) q^{23} +(-0.132010 + 4.99826i) q^{25} -5.55343 q^{27} +(-4.79455 + 6.59914i) q^{29} +(-1.10550 + 0.803189i) q^{31} +(2.17728 + 2.99677i) q^{33} +(-2.13575 + 4.05829i) q^{35} +(2.20655 - 3.03706i) q^{37} +(2.68146 - 8.25267i) q^{39} +(5.74848 + 2.82045i) q^{41} +(-7.75606 - 2.52010i) q^{43} +(-0.846571 - 0.869226i) q^{45} +(2.11720 - 6.51607i) q^{47} +(2.26020 - 1.64213i) q^{49} +(-4.17410 + 3.03266i) q^{51} +(-5.04491 - 3.66534i) q^{53} +(-0.895393 + 5.20737i) q^{55} +(7.28041 - 2.36555i) q^{57} +(-0.236097 + 0.726632i) q^{59} +(4.10788 + 12.6428i) q^{61} +(-0.343901 - 1.05842i) q^{63} +(11.1018 - 5.47324i) q^{65} +(1.01458 + 0.737135i) q^{67} +(6.04366 + 1.96370i) q^{69} +(-4.40729 - 6.06611i) q^{71} -11.5112i q^{73} +(-0.206940 + 7.83527i) q^{75} +(-2.84856 + 3.92071i) q^{77} -7.50717i q^{79} -7.07766 q^{81} -10.8365i q^{83} +(-7.25317 - 1.24716i) q^{85} +(-7.51594 + 10.3448i) q^{87} +(5.11512 - 1.66200i) q^{89} +11.3527 q^{91} +(-1.73297 + 1.25908i) q^{93} +(9.66297 + 5.08532i) q^{95} +(7.36715 + 5.35255i) q^{97} +(-0.753673 - 1.03734i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56760 0.905054 0.452527 0.891751i \(-0.350523\pi\)
0.452527 + 0.891751i \(0.350523\pi\)
\(4\) 0 0
\(5\) 1.56013 + 1.60188i 0.697710 + 0.716381i
\(6\) 0 0
\(7\) 0.633766 + 1.95053i 0.239541 + 0.737232i 0.996486 + 0.0837537i \(0.0266909\pi\)
−0.756945 + 0.653478i \(0.773309\pi\)
\(8\) 0 0
\(9\) −0.542630 −0.180877
\(10\) 0 0
\(11\) 1.38893 + 1.91169i 0.418777 + 0.576397i 0.965332 0.261026i \(-0.0840610\pi\)
−0.546555 + 0.837423i \(0.684061\pi\)
\(12\) 0 0
\(13\) 1.71055 5.26453i 0.474421 1.46012i −0.372317 0.928106i \(-0.621436\pi\)
0.846737 0.532011i \(-0.178564\pi\)
\(14\) 0 0
\(15\) 2.44565 + 2.51110i 0.631465 + 0.648363i
\(16\) 0 0
\(17\) −2.66273 + 1.93459i −0.645808 + 0.469207i −0.861841 0.507179i \(-0.830688\pi\)
0.216033 + 0.976386i \(0.430688\pi\)
\(18\) 0 0
\(19\) 4.64430 1.50902i 1.06548 0.346194i 0.276752 0.960941i \(-0.410742\pi\)
0.788724 + 0.614747i \(0.210742\pi\)
\(20\) 0 0
\(21\) 0.993492 + 3.05766i 0.216798 + 0.667235i
\(22\) 0 0
\(23\) 3.85536 + 1.25268i 0.803897 + 0.261202i 0.682011 0.731342i \(-0.261106\pi\)
0.121886 + 0.992544i \(0.461106\pi\)
\(24\) 0 0
\(25\) −0.132010 + 4.99826i −0.0264021 + 0.999651i
\(26\) 0 0
\(27\) −5.55343 −1.06876
\(28\) 0 0
\(29\) −4.79455 + 6.59914i −0.890326 + 1.22543i 0.0831260 + 0.996539i \(0.473510\pi\)
−0.973452 + 0.228890i \(0.926490\pi\)
\(30\) 0 0
\(31\) −1.10550 + 0.803189i −0.198553 + 0.144257i −0.682619 0.730774i \(-0.739159\pi\)
0.484067 + 0.875031i \(0.339159\pi\)
\(32\) 0 0
\(33\) 2.17728 + 2.99677i 0.379016 + 0.521671i
\(34\) 0 0
\(35\) −2.13575 + 4.05829i −0.361008 + 0.685977i
\(36\) 0 0
\(37\) 2.20655 3.03706i 0.362755 0.499289i −0.588159 0.808745i \(-0.700147\pi\)
0.950914 + 0.309456i \(0.100147\pi\)
\(38\) 0 0
\(39\) 2.68146 8.25267i 0.429377 1.32149i
\(40\) 0 0
\(41\) 5.74848 + 2.82045i 0.897762 + 0.440481i
\(42\) 0 0
\(43\) −7.75606 2.52010i −1.18279 0.384311i −0.349386 0.936979i \(-0.613610\pi\)
−0.833402 + 0.552668i \(0.813610\pi\)
\(44\) 0 0
\(45\) −0.846571 0.869226i −0.126199 0.129576i
\(46\) 0 0
\(47\) 2.11720 6.51607i 0.308825 0.950467i −0.669397 0.742905i \(-0.733447\pi\)
0.978222 0.207562i \(-0.0665527\pi\)
\(48\) 0 0
\(49\) 2.26020 1.64213i 0.322886 0.234590i
\(50\) 0 0
\(51\) −4.17410 + 3.03266i −0.584491 + 0.424658i
\(52\) 0 0
\(53\) −5.04491 3.66534i −0.692972 0.503474i 0.184664 0.982802i \(-0.440880\pi\)
−0.877636 + 0.479328i \(0.840880\pi\)
\(54\) 0 0
\(55\) −0.895393 + 5.20737i −0.120735 + 0.702161i
\(56\) 0 0
\(57\) 7.28041 2.36555i 0.964313 0.313324i
\(58\) 0 0
\(59\) −0.236097 + 0.726632i −0.0307372 + 0.0945994i −0.965248 0.261335i \(-0.915837\pi\)
0.934511 + 0.355934i \(0.115837\pi\)
\(60\) 0 0
\(61\) 4.10788 + 12.6428i 0.525960 + 1.61874i 0.762409 + 0.647096i \(0.224017\pi\)
−0.236448 + 0.971644i \(0.575983\pi\)
\(62\) 0 0
\(63\) −0.343901 1.05842i −0.0433274 0.133348i
\(64\) 0 0
\(65\) 11.1018 5.47324i 1.37701 0.678872i
\(66\) 0 0
\(67\) 1.01458 + 0.737135i 0.123951 + 0.0900554i 0.648033 0.761612i \(-0.275592\pi\)
−0.524083 + 0.851667i \(0.675592\pi\)
\(68\) 0 0
\(69\) 6.04366 + 1.96370i 0.727571 + 0.236402i
\(70\) 0 0
\(71\) −4.40729 6.06611i −0.523049 0.719915i 0.463002 0.886357i \(-0.346772\pi\)
−0.986051 + 0.166442i \(0.946772\pi\)
\(72\) 0 0
\(73\) 11.5112i 1.34728i −0.739058 0.673641i \(-0.764729\pi\)
0.739058 0.673641i \(-0.235271\pi\)
\(74\) 0 0
\(75\) −0.206940 + 7.83527i −0.0238953 + 0.904739i
\(76\) 0 0
\(77\) −2.84856 + 3.92071i −0.324624 + 0.446807i
\(78\) 0 0
\(79\) 7.50717i 0.844623i −0.906451 0.422312i \(-0.861219\pi\)
0.906451 0.422312i \(-0.138781\pi\)
\(80\) 0 0
\(81\) −7.07766 −0.786407
\(82\) 0 0
\(83\) 10.8365i 1.18946i −0.803924 0.594732i \(-0.797258\pi\)
0.803924 0.594732i \(-0.202742\pi\)
\(84\) 0 0
\(85\) −7.25317 1.24716i −0.786717 0.135274i
\(86\) 0 0
\(87\) −7.51594 + 10.3448i −0.805794 + 1.10908i
\(88\) 0 0
\(89\) 5.11512 1.66200i 0.542202 0.176172i −0.0250956 0.999685i \(-0.507989\pi\)
0.567297 + 0.823513i \(0.307989\pi\)
\(90\) 0 0
\(91\) 11.3527 1.19009
\(92\) 0 0
\(93\) −1.73297 + 1.25908i −0.179701 + 0.130560i
\(94\) 0 0
\(95\) 9.66297 + 5.08532i 0.991400 + 0.521743i
\(96\) 0 0
\(97\) 7.36715 + 5.35255i 0.748021 + 0.543469i 0.895213 0.445639i \(-0.147024\pi\)
−0.147192 + 0.989108i \(0.547024\pi\)
\(98\) 0 0
\(99\) −0.753673 1.03734i −0.0757470 0.104257i
\(100\) 0 0
\(101\) −6.32712 + 2.05581i −0.629572 + 0.204560i −0.606386 0.795171i \(-0.707381\pi\)
−0.0231867 + 0.999731i \(0.507381\pi\)
\(102\) 0 0
\(103\) −14.6879 + 4.77238i −1.44724 + 0.470236i −0.924146 0.382039i \(-0.875222\pi\)
−0.523093 + 0.852276i \(0.675222\pi\)
\(104\) 0 0
\(105\) −3.34801 + 6.36178i −0.326732 + 0.620846i
\(106\) 0 0
\(107\) 4.48072 1.45587i 0.433167 0.140745i −0.0843137 0.996439i \(-0.526870\pi\)
0.517481 + 0.855695i \(0.326870\pi\)
\(108\) 0 0
\(109\) 7.45117i 0.713693i −0.934163 0.356847i \(-0.883852\pi\)
0.934163 0.356847i \(-0.116148\pi\)
\(110\) 0 0
\(111\) 3.45899 4.76089i 0.328313 0.451884i
\(112\) 0 0
\(113\) 2.80089 + 3.85509i 0.263485 + 0.362657i 0.920177 0.391503i \(-0.128045\pi\)
−0.656691 + 0.754159i \(0.728045\pi\)
\(114\) 0 0
\(115\) 4.00820 + 8.13014i 0.373767 + 0.758140i
\(116\) 0 0
\(117\) −0.928195 + 2.85669i −0.0858116 + 0.264101i
\(118\) 0 0
\(119\) −5.46103 3.96767i −0.500612 0.363716i
\(120\) 0 0
\(121\) 1.67373 5.15122i 0.152158 0.468293i
\(122\) 0 0
\(123\) 9.01132 + 4.42134i 0.812523 + 0.398659i
\(124\) 0 0
\(125\) −8.21254 + 7.58645i −0.734552 + 0.678553i
\(126\) 0 0
\(127\) 5.06071 6.96546i 0.449065 0.618085i −0.523131 0.852252i \(-0.675236\pi\)
0.972196 + 0.234167i \(0.0752363\pi\)
\(128\) 0 0
\(129\) −12.1584 3.95050i −1.07049 0.347822i
\(130\) 0 0
\(131\) 1.11999 0.813721i 0.0978541 0.0710951i −0.537782 0.843084i \(-0.680738\pi\)
0.635636 + 0.771989i \(0.280738\pi\)
\(132\) 0 0
\(133\) 5.88680 + 8.10249i 0.510451 + 0.702575i
\(134\) 0 0
\(135\) −8.66405 8.89590i −0.745683 0.765637i
\(136\) 0 0
\(137\) −13.9457 −1.19146 −0.595729 0.803185i \(-0.703137\pi\)
−0.595729 + 0.803185i \(0.703137\pi\)
\(138\) 0 0
\(139\) −5.94577 18.2992i −0.504314 1.55212i −0.801921 0.597430i \(-0.796189\pi\)
0.297608 0.954688i \(-0.403811\pi\)
\(140\) 0 0
\(141\) 3.31892 10.2146i 0.279504 0.860224i
\(142\) 0 0
\(143\) 12.4400 4.04199i 1.04028 0.338009i
\(144\) 0 0
\(145\) −18.0511 + 2.61521i −1.49906 + 0.217181i
\(146\) 0 0
\(147\) 3.54309 2.57421i 0.292229 0.212317i
\(148\) 0 0
\(149\) 5.06076 6.96554i 0.414594 0.570639i −0.549738 0.835337i \(-0.685272\pi\)
0.964331 + 0.264698i \(0.0852723\pi\)
\(150\) 0 0
\(151\) −13.4972 4.38551i −1.09839 0.356888i −0.296906 0.954907i \(-0.595955\pi\)
−0.801482 + 0.598019i \(0.795955\pi\)
\(152\) 0 0
\(153\) 1.44488 1.04977i 0.116812 0.0848685i
\(154\) 0 0
\(155\) −3.01132 0.517789i −0.241875 0.0415898i
\(156\) 0 0
\(157\) 6.49607 + 19.9928i 0.518443 + 1.59560i 0.776929 + 0.629588i \(0.216776\pi\)
−0.258486 + 0.966015i \(0.583224\pi\)
\(158\) 0 0
\(159\) −7.90841 5.74579i −0.627178 0.455671i
\(160\) 0 0
\(161\) 8.31391i 0.655228i
\(162\) 0 0
\(163\) 13.9512i 1.09274i −0.837544 0.546370i \(-0.816009\pi\)
0.837544 0.546370i \(-0.183991\pi\)
\(164\) 0 0
\(165\) −1.40362 + 8.16307i −0.109272 + 0.635494i
\(166\) 0 0
\(167\) 12.8433 0.993842 0.496921 0.867796i \(-0.334464\pi\)
0.496921 + 0.867796i \(0.334464\pi\)
\(168\) 0 0
\(169\) −14.2720 10.3692i −1.09785 0.797634i
\(170\) 0 0
\(171\) −2.52014 + 0.818842i −0.192720 + 0.0626184i
\(172\) 0 0
\(173\) 16.0980i 1.22391i 0.790894 + 0.611953i \(0.209616\pi\)
−0.790894 + 0.611953i \(0.790384\pi\)
\(174\) 0 0
\(175\) −9.83293 + 2.91024i −0.743299 + 0.219993i
\(176\) 0 0
\(177\) −0.370106 + 1.13907i −0.0278188 + 0.0856176i
\(178\) 0 0
\(179\) 11.9848 16.4957i 0.895786 1.23294i −0.0760070 0.997107i \(-0.524217\pi\)
0.971793 0.235836i \(-0.0757829\pi\)
\(180\) 0 0
\(181\) −9.84209 13.5465i −0.731557 1.00690i −0.999060 0.0433450i \(-0.986199\pi\)
0.267503 0.963557i \(-0.413801\pi\)
\(182\) 0 0
\(183\) 6.43952 + 19.8188i 0.476023 + 1.46505i
\(184\) 0 0
\(185\) 8.30748 1.20357i 0.610778 0.0884884i
\(186\) 0 0
\(187\) −7.39668 2.40333i −0.540899 0.175749i
\(188\) 0 0
\(189\) −3.51958 10.8321i −0.256011 0.787922i
\(190\) 0 0
\(191\) 23.8932i 1.72885i 0.502762 + 0.864425i \(0.332317\pi\)
−0.502762 + 0.864425i \(0.667683\pi\)
\(192\) 0 0
\(193\) 9.93160 + 7.21573i 0.714892 + 0.519400i 0.884748 0.466069i \(-0.154330\pi\)
−0.169856 + 0.985469i \(0.554330\pi\)
\(194\) 0 0
\(195\) 17.4032 8.57985i 1.24627 0.614416i
\(196\) 0 0
\(197\) −9.78396 13.4665i −0.697078 0.959446i −0.999979 0.00642374i \(-0.997955\pi\)
0.302901 0.953022i \(-0.402045\pi\)
\(198\) 0 0
\(199\) −5.67082 1.84256i −0.401994 0.130616i 0.101040 0.994882i \(-0.467783\pi\)
−0.503034 + 0.864267i \(0.667783\pi\)
\(200\) 0 0
\(201\) 1.59045 + 1.15553i 0.112182 + 0.0815050i
\(202\) 0 0
\(203\) −15.9105 5.16962i −1.11670 0.362836i
\(204\) 0 0
\(205\) 4.45035 + 13.6086i 0.310826 + 0.950467i
\(206\) 0 0
\(207\) −2.09203 0.679742i −0.145406 0.0472454i
\(208\) 0 0
\(209\) 9.33538 + 6.78255i 0.645742 + 0.469159i
\(210\) 0 0
\(211\) −16.4928 5.35884i −1.13541 0.368918i −0.319781 0.947491i \(-0.603609\pi\)
−0.815630 + 0.578574i \(0.803609\pi\)
\(212\) 0 0
\(213\) −6.90887 9.50924i −0.473388 0.651562i
\(214\) 0 0
\(215\) −8.06355 16.3559i −0.549930 1.11546i
\(216\) 0 0
\(217\) −2.26727 1.64727i −0.153912 0.111824i
\(218\) 0 0
\(219\) 18.0449i 1.21936i
\(220\) 0 0
\(221\) 5.62996 + 17.3272i 0.378712 + 1.16556i
\(222\) 0 0
\(223\) −19.0198 6.17992i −1.27366 0.413838i −0.407319 0.913286i \(-0.633536\pi\)
−0.866344 + 0.499448i \(0.833536\pi\)
\(224\) 0 0
\(225\) 0.0716328 2.71220i 0.00477552 0.180814i
\(226\) 0 0
\(227\) 3.34675 + 10.3003i 0.222132 + 0.683652i 0.998570 + 0.0534583i \(0.0170244\pi\)
−0.776438 + 0.630193i \(0.782976\pi\)
\(228\) 0 0
\(229\) −0.814843 1.12154i −0.0538463 0.0741131i 0.781245 0.624225i \(-0.214585\pi\)
−0.835091 + 0.550112i \(0.814585\pi\)
\(230\) 0 0
\(231\) −4.46541 + 6.14611i −0.293802 + 0.404384i
\(232\) 0 0
\(233\) 3.18247 9.79464i 0.208491 0.641668i −0.791061 0.611737i \(-0.790471\pi\)
0.999552 0.0299312i \(-0.00952882\pi\)
\(234\) 0 0
\(235\) 13.7410 6.77441i 0.896366 0.441914i
\(236\) 0 0
\(237\) 11.7682i 0.764430i
\(238\) 0 0
\(239\) −2.35975 + 0.766731i −0.152640 + 0.0495957i −0.384340 0.923191i \(-0.625571\pi\)
0.231701 + 0.972787i \(0.425571\pi\)
\(240\) 0 0
\(241\) 10.5356 + 7.65454i 0.678656 + 0.493072i 0.872912 0.487878i \(-0.162229\pi\)
−0.194256 + 0.980951i \(0.562229\pi\)
\(242\) 0 0
\(243\) 5.56534 0.357016
\(244\) 0 0
\(245\) 6.15669 + 1.05863i 0.393337 + 0.0676332i
\(246\) 0 0
\(247\) 27.0313i 1.71996i
\(248\) 0 0
\(249\) 16.9874i 1.07653i
\(250\) 0 0
\(251\) −2.20252 1.60022i −0.139022 0.101005i 0.516101 0.856528i \(-0.327383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(252\) 0 0
\(253\) 2.96006 + 9.11014i 0.186098 + 0.572749i
\(254\) 0 0
\(255\) −11.3701 1.95505i −0.712022 0.122430i
\(256\) 0 0
\(257\) −14.1017 + 10.2455i −0.879642 + 0.639098i −0.933157 0.359470i \(-0.882958\pi\)
0.0535145 + 0.998567i \(0.482958\pi\)
\(258\) 0 0
\(259\) 7.32231 + 2.37916i 0.454986 + 0.147834i
\(260\) 0 0
\(261\) 2.60167 3.58089i 0.161039 0.221651i
\(262\) 0 0
\(263\) −4.60908 + 3.34869i −0.284208 + 0.206489i −0.720751 0.693194i \(-0.756203\pi\)
0.436543 + 0.899684i \(0.356203\pi\)
\(264\) 0 0
\(265\) −1.99928 13.7997i −0.122815 0.847710i
\(266\) 0 0
\(267\) 8.01846 2.60536i 0.490722 0.159445i
\(268\) 0 0
\(269\) −2.16973 + 6.67774i −0.132291 + 0.407149i −0.995159 0.0982801i \(-0.968666\pi\)
0.862868 + 0.505429i \(0.168666\pi\)
\(270\) 0 0
\(271\) −7.43132 22.8713i −0.451421 1.38933i −0.875287 0.483605i \(-0.839327\pi\)
0.423866 0.905725i \(-0.360673\pi\)
\(272\) 0 0
\(273\) 17.7965 1.07709
\(274\) 0 0
\(275\) −9.73848 + 6.68985i −0.587253 + 0.403413i
\(276\) 0 0
\(277\) −6.37942 8.78052i −0.383302 0.527571i 0.573153 0.819448i \(-0.305720\pi\)
−0.956456 + 0.291878i \(0.905720\pi\)
\(278\) 0 0
\(279\) 0.599875 0.435834i 0.0359136 0.0260927i
\(280\) 0 0
\(281\) 7.76850 + 2.52414i 0.463430 + 0.150577i 0.531420 0.847108i \(-0.321659\pi\)
−0.0679901 + 0.997686i \(0.521659\pi\)
\(282\) 0 0
\(283\) −13.6604 + 18.8019i −0.812026 + 1.11766i 0.178982 + 0.983852i \(0.442720\pi\)
−0.991008 + 0.133805i \(0.957280\pi\)
\(284\) 0 0
\(285\) 15.1477 + 7.97175i 0.897270 + 0.472206i
\(286\) 0 0
\(287\) −1.85819 + 13.0001i −0.109685 + 0.767372i
\(288\) 0 0
\(289\) −1.90577 + 5.86537i −0.112104 + 0.345022i
\(290\) 0 0
\(291\) 11.5487 + 8.39065i 0.676999 + 0.491869i
\(292\) 0 0
\(293\) −7.25696 + 22.3346i −0.423956 + 1.30480i 0.480034 + 0.877250i \(0.340624\pi\)
−0.903990 + 0.427553i \(0.859376\pi\)
\(294\) 0 0
\(295\) −1.53231 + 0.755439i −0.0892148 + 0.0439834i
\(296\) 0 0
\(297\) −7.71330 10.6164i −0.447571 0.616029i
\(298\) 0 0
\(299\) 13.1895 18.1539i 0.762771 1.04986i
\(300\) 0 0
\(301\) 16.7256i 0.964047i
\(302\) 0 0
\(303\) −9.91840 + 3.22268i −0.569797 + 0.185138i
\(304\) 0 0
\(305\) −13.8433 + 26.3046i −0.792666 + 1.50620i
\(306\) 0 0
\(307\) 18.8763 6.13329i 1.07733 0.350045i 0.283991 0.958827i \(-0.408341\pi\)
0.793338 + 0.608781i \(0.208341\pi\)
\(308\) 0 0
\(309\) −23.0247 + 7.48118i −1.30983 + 0.425590i
\(310\) 0 0
\(311\) 12.4283 + 17.1061i 0.704746 + 0.969999i 0.999894 + 0.0145477i \(0.00463083\pi\)
−0.295149 + 0.955451i \(0.595369\pi\)
\(312\) 0 0
\(313\) −20.8454 15.1451i −1.17825 0.856051i −0.186280 0.982497i \(-0.559643\pi\)
−0.991974 + 0.126445i \(0.959643\pi\)
\(314\) 0 0
\(315\) 1.15892 2.20215i 0.0652980 0.124077i
\(316\) 0 0
\(317\) −14.0101 + 10.1789i −0.786886 + 0.571706i −0.907038 0.421049i \(-0.861662\pi\)
0.120152 + 0.992756i \(0.461662\pi\)
\(318\) 0 0
\(319\) −19.2748 −1.07918
\(320\) 0 0
\(321\) 7.02398 2.28223i 0.392040 0.127382i
\(322\) 0 0
\(323\) −9.44719 + 13.0029i −0.525656 + 0.723503i
\(324\) 0 0
\(325\) 26.0876 + 9.24473i 1.44708 + 0.512805i
\(326\) 0 0
\(327\) 11.6805i 0.645931i
\(328\) 0 0
\(329\) 14.0516 0.774691
\(330\) 0 0
\(331\) 3.84564i 0.211375i −0.994399 0.105688i \(-0.966296\pi\)
0.994399 0.105688i \(-0.0337044\pi\)
\(332\) 0 0
\(333\) −1.19734 + 1.64800i −0.0656138 + 0.0903097i
\(334\) 0 0
\(335\) 0.402073 + 2.77525i 0.0219676 + 0.151628i
\(336\) 0 0
\(337\) 7.87239i 0.428836i 0.976742 + 0.214418i \(0.0687855\pi\)
−0.976742 + 0.214418i \(0.931214\pi\)
\(338\) 0 0
\(339\) 4.39067 + 6.04324i 0.238469 + 0.328224i
\(340\) 0 0
\(341\) −3.07090 0.997796i −0.166299 0.0540337i
\(342\) 0 0
\(343\) 16.2500 + 11.8063i 0.877419 + 0.637482i
\(344\) 0 0
\(345\) 6.28326 + 12.7448i 0.338279 + 0.686158i
\(346\) 0 0
\(347\) −9.71323 29.8943i −0.521434 1.60481i −0.771262 0.636518i \(-0.780374\pi\)
0.249829 0.968290i \(-0.419626\pi\)
\(348\) 0 0
\(349\) 3.29132 + 10.1296i 0.176180 + 0.542227i 0.999685 0.0250818i \(-0.00798462\pi\)
−0.823505 + 0.567309i \(0.807985\pi\)
\(350\) 0 0
\(351\) −9.49941 + 29.2362i −0.507041 + 1.56051i
\(352\) 0 0
\(353\) 29.9422 9.72882i 1.59366 0.517813i 0.628134 0.778105i \(-0.283819\pi\)
0.965530 + 0.260292i \(0.0838189\pi\)
\(354\) 0 0
\(355\) 2.84123 16.5238i 0.150797 0.876994i
\(356\) 0 0
\(357\) −8.56071 6.21972i −0.453081 0.329183i
\(358\) 0 0
\(359\) 9.45150 6.86692i 0.498831 0.362422i −0.309739 0.950822i \(-0.600242\pi\)
0.808570 + 0.588399i \(0.200242\pi\)
\(360\) 0 0
\(361\) 3.92105 2.84881i 0.206371 0.149937i
\(362\) 0 0
\(363\) 2.62375 8.07506i 0.137711 0.423831i
\(364\) 0 0
\(365\) 18.4395 17.9589i 0.965167 0.940012i
\(366\) 0 0
\(367\) 8.54981 + 2.77800i 0.446297 + 0.145011i 0.523539 0.852002i \(-0.324611\pi\)
−0.0772422 + 0.997012i \(0.524611\pi\)
\(368\) 0 0
\(369\) −3.11930 1.53046i −0.162384 0.0796727i
\(370\) 0 0
\(371\) 3.95208 12.1632i 0.205182 0.631484i
\(372\) 0 0
\(373\) −10.6417 + 14.6471i −0.551007 + 0.758396i −0.990148 0.140022i \(-0.955283\pi\)
0.439142 + 0.898418i \(0.355283\pi\)
\(374\) 0 0
\(375\) −12.8740 + 11.8925i −0.664809 + 0.614127i
\(376\) 0 0
\(377\) 26.5400 + 36.5292i 1.36688 + 1.88135i
\(378\) 0 0
\(379\) −1.32002 + 0.959053i −0.0678050 + 0.0492632i −0.621171 0.783675i \(-0.713343\pi\)
0.553366 + 0.832938i \(0.313343\pi\)
\(380\) 0 0
\(381\) 7.93316 10.9191i 0.406428 0.559401i
\(382\) 0 0
\(383\) 27.0643 1.38292 0.691459 0.722415i \(-0.256968\pi\)
0.691459 + 0.722415i \(0.256968\pi\)
\(384\) 0 0
\(385\) −10.7246 + 1.55376i −0.546577 + 0.0791870i
\(386\) 0 0
\(387\) 4.20867 + 1.36748i 0.213939 + 0.0695129i
\(388\) 0 0
\(389\) 10.0004 + 30.7781i 0.507042 + 1.56051i 0.797311 + 0.603569i \(0.206255\pi\)
−0.290269 + 0.956945i \(0.593745\pi\)
\(390\) 0 0
\(391\) −12.6892 + 4.12297i −0.641721 + 0.208508i
\(392\) 0 0
\(393\) 1.75570 1.27559i 0.0885632 0.0643450i
\(394\) 0 0
\(395\) 12.0256 11.7121i 0.605072 0.589302i
\(396\) 0 0
\(397\) −4.75458 + 14.6331i −0.238625 + 0.734413i 0.757995 + 0.652261i \(0.226179\pi\)
−0.996620 + 0.0821522i \(0.973821\pi\)
\(398\) 0 0
\(399\) 9.22816 + 12.7015i 0.461986 + 0.635869i
\(400\) 0 0
\(401\) 2.45711 0.122702 0.0613511 0.998116i \(-0.480459\pi\)
0.0613511 + 0.998116i \(0.480459\pi\)
\(402\) 0 0
\(403\) 2.33741 + 7.19380i 0.116435 + 0.358349i
\(404\) 0 0
\(405\) −11.0420 11.3375i −0.548684 0.563367i
\(406\) 0 0
\(407\) 8.87065 0.439702
\(408\) 0 0
\(409\) 23.1016 1.14230 0.571150 0.820845i \(-0.306497\pi\)
0.571150 + 0.820845i \(0.306497\pi\)
\(410\) 0 0
\(411\) −21.8612 −1.07834
\(412\) 0 0
\(413\) −1.56695 −0.0771045
\(414\) 0 0
\(415\) 17.3588 16.9064i 0.852109 0.829901i
\(416\) 0 0
\(417\) −9.32059 28.6858i −0.456431 1.40475i
\(418\) 0 0
\(419\) 15.5028 0.757360 0.378680 0.925528i \(-0.376378\pi\)
0.378680 + 0.925528i \(0.376378\pi\)
\(420\) 0 0
\(421\) −0.991178 1.36424i −0.0483071 0.0664890i 0.784180 0.620533i \(-0.213084\pi\)
−0.832487 + 0.554044i \(0.813084\pi\)
\(422\) 0 0
\(423\) −1.14886 + 3.53582i −0.0558593 + 0.171917i
\(424\) 0 0
\(425\) −9.31807 13.5644i −0.451993 0.657971i
\(426\) 0 0
\(427\) −22.0567 + 16.0251i −1.06740 + 0.775510i
\(428\) 0 0
\(429\) 19.5009 6.33623i 0.941513 0.305916i
\(430\) 0 0
\(431\) 12.3304 + 37.9492i 0.593936 + 1.82795i 0.559951 + 0.828526i \(0.310820\pi\)
0.0339852 + 0.999422i \(0.489180\pi\)
\(432\) 0 0
\(433\) 19.9769 + 6.49088i 0.960027 + 0.311932i 0.746783 0.665067i \(-0.231597\pi\)
0.213244 + 0.976999i \(0.431597\pi\)
\(434\) 0 0
\(435\) −28.2969 + 4.09960i −1.35673 + 0.196561i
\(436\) 0 0
\(437\) 19.7958 0.946960
\(438\) 0 0
\(439\) −4.26443 + 5.86949i −0.203530 + 0.280135i −0.898565 0.438841i \(-0.855389\pi\)
0.695034 + 0.718976i \(0.255389\pi\)
\(440\) 0 0
\(441\) −1.22645 + 0.891070i −0.0584025 + 0.0424319i
\(442\) 0 0
\(443\) −1.24132 1.70852i −0.0589767 0.0811744i 0.778510 0.627632i \(-0.215976\pi\)
−0.837487 + 0.546458i \(0.815976\pi\)
\(444\) 0 0
\(445\) 10.6426 + 5.60085i 0.504506 + 0.265506i
\(446\) 0 0
\(447\) 7.93325 10.9192i 0.375230 0.516459i
\(448\) 0 0
\(449\) −10.8156 + 33.2871i −0.510422 + 1.57092i 0.281039 + 0.959696i \(0.409321\pi\)
−0.791461 + 0.611220i \(0.790679\pi\)
\(450\) 0 0
\(451\) 2.59238 + 14.9067i 0.122070 + 0.701930i
\(452\) 0 0
\(453\) −21.1582 6.87473i −0.994101 0.323003i
\(454\) 0 0
\(455\) 17.7117 + 18.1856i 0.830336 + 0.852556i
\(456\) 0 0
\(457\) −12.7339 + 39.1909i −0.595667 + 1.83328i −0.0442908 + 0.999019i \(0.514103\pi\)
−0.551376 + 0.834257i \(0.685897\pi\)
\(458\) 0 0
\(459\) 14.7873 10.7436i 0.690212 0.501468i
\(460\) 0 0
\(461\) −10.5894 + 7.69366i −0.493198 + 0.358330i −0.806413 0.591353i \(-0.798594\pi\)
0.313215 + 0.949682i \(0.398594\pi\)
\(462\) 0 0
\(463\) 24.7206 + 17.9606i 1.14887 + 0.834699i 0.988330 0.152331i \(-0.0486778\pi\)
0.160536 + 0.987030i \(0.448678\pi\)
\(464\) 0 0
\(465\) −4.72055 0.811686i −0.218910 0.0376410i
\(466\) 0 0
\(467\) 8.00856 2.60214i 0.370592 0.120413i −0.117799 0.993037i \(-0.537584\pi\)
0.488391 + 0.872625i \(0.337584\pi\)
\(468\) 0 0
\(469\) −0.794799 + 2.44614i −0.0367004 + 0.112952i
\(470\) 0 0
\(471\) 10.1832 + 31.3408i 0.469219 + 1.44411i
\(472\) 0 0
\(473\) −5.95494 18.3274i −0.273808 0.842696i
\(474\) 0 0
\(475\) 6.92940 + 23.4126i 0.317943 + 1.07424i
\(476\) 0 0
\(477\) 2.73752 + 1.98893i 0.125342 + 0.0910667i
\(478\) 0 0
\(479\) −10.7336 3.48756i −0.490431 0.159351i 0.0533531 0.998576i \(-0.483009\pi\)
−0.543785 + 0.839225i \(0.683009\pi\)
\(480\) 0 0
\(481\) −12.2143 16.8115i −0.556922 0.766537i
\(482\) 0 0
\(483\) 13.0329i 0.593017i
\(484\) 0 0
\(485\) 2.91957 + 20.1519i 0.132571 + 0.915051i
\(486\) 0 0
\(487\) −20.4628 + 28.1646i −0.927256 + 1.27626i 0.0336641 + 0.999433i \(0.489282\pi\)
−0.960920 + 0.276825i \(0.910718\pi\)
\(488\) 0 0
\(489\) 21.8698i 0.988988i
\(490\) 0 0
\(491\) 16.1040 0.726763 0.363381 0.931640i \(-0.381622\pi\)
0.363381 + 0.931640i \(0.381622\pi\)
\(492\) 0 0
\(493\) 26.8472i 1.20914i
\(494\) 0 0
\(495\) 0.485867 2.82567i 0.0218381 0.127005i
\(496\) 0 0
\(497\) 9.03896 12.4411i 0.405453 0.558058i
\(498\) 0 0
\(499\) −6.63307 + 2.15521i −0.296937 + 0.0964806i −0.453697 0.891156i \(-0.649895\pi\)
0.156760 + 0.987637i \(0.449895\pi\)
\(500\) 0 0
\(501\) 20.1331 0.899481
\(502\) 0 0
\(503\) 15.7940 11.4750i 0.704218 0.511644i −0.177085 0.984196i \(-0.556667\pi\)
0.881303 + 0.472551i \(0.156667\pi\)
\(504\) 0 0
\(505\) −13.1643 6.92795i −0.585802 0.308290i
\(506\) 0 0
\(507\) −22.3729 16.2548i −0.993613 0.721902i
\(508\) 0 0
\(509\) −7.46330 10.2724i −0.330805 0.455314i 0.610923 0.791690i \(-0.290799\pi\)
−0.941728 + 0.336376i \(0.890799\pi\)
\(510\) 0 0
\(511\) 22.4529 7.29540i 0.993260 0.322730i
\(512\) 0 0
\(513\) −25.7918 + 8.38026i −1.13874 + 0.369998i
\(514\) 0 0
\(515\) −30.5597 16.0826i −1.34662 0.708685i
\(516\) 0 0
\(517\) 15.3974 5.00291i 0.677175 0.220028i
\(518\) 0 0
\(519\) 25.2352i 1.10770i
\(520\) 0 0
\(521\) 13.3134 18.3243i 0.583270 0.802802i −0.410780 0.911735i \(-0.634743\pi\)
0.994049 + 0.108933i \(0.0347434\pi\)
\(522\) 0 0
\(523\) −9.05757 12.4667i −0.396060 0.545130i 0.563690 0.825987i \(-0.309381\pi\)
−0.959750 + 0.280857i \(0.909381\pi\)
\(524\) 0 0
\(525\) −15.4141 + 4.56209i −0.672726 + 0.199106i
\(526\) 0 0
\(527\) 1.38980 4.27736i 0.0605405 0.186325i
\(528\) 0 0
\(529\) −5.31283 3.86000i −0.230993 0.167826i
\(530\) 0 0
\(531\) 0.128113 0.394292i 0.00555964 0.0171108i
\(532\) 0 0
\(533\) 24.6814 25.4385i 1.06907 1.10186i
\(534\) 0 0
\(535\) 9.32262 + 4.90621i 0.403052 + 0.212114i
\(536\) 0 0
\(537\) 18.7874 25.8586i 0.810735 1.11588i
\(538\) 0 0
\(539\) 6.27851 + 2.04001i 0.270434 + 0.0878695i
\(540\) 0 0
\(541\) 31.5903 22.9517i 1.35817 0.986771i 0.359614 0.933101i \(-0.382908\pi\)
0.998559 0.0536696i \(-0.0170918\pi\)
\(542\) 0 0
\(543\) −15.4285 21.2355i −0.662099 0.911301i
\(544\) 0 0
\(545\) 11.9359 11.6248i 0.511276 0.497951i
\(546\) 0 0
\(547\) 21.5147 0.919903 0.459951 0.887944i \(-0.347867\pi\)
0.459951 + 0.887944i \(0.347867\pi\)
\(548\) 0 0
\(549\) −2.22906 6.86034i −0.0951340 0.292792i
\(550\) 0 0
\(551\) −12.3091 + 37.8835i −0.524385 + 1.61389i
\(552\) 0 0
\(553\) 14.6430 4.75780i 0.622683 0.202322i
\(554\) 0 0
\(555\) 13.0228 1.88672i 0.552788 0.0800868i
\(556\) 0 0
\(557\) 26.1445 18.9951i 1.10778 0.804849i 0.125467 0.992098i \(-0.459957\pi\)
0.982313 + 0.187249i \(0.0599571\pi\)
\(558\) 0 0
\(559\) −26.5342 + 36.5212i −1.12228 + 1.54468i
\(560\) 0 0
\(561\) −11.5950 3.76746i −0.489543 0.159062i
\(562\) 0 0
\(563\) 2.61774 1.90190i 0.110325 0.0801555i −0.531255 0.847212i \(-0.678279\pi\)
0.641580 + 0.767056i \(0.278279\pi\)
\(564\) 0 0
\(565\) −1.80564 + 10.5011i −0.0759638 + 0.441785i
\(566\) 0 0
\(567\) −4.48559 13.8052i −0.188377 0.579764i
\(568\) 0 0
\(569\) −8.42351 6.12004i −0.353132 0.256565i 0.397050 0.917797i \(-0.370034\pi\)
−0.750182 + 0.661232i \(0.770034\pi\)
\(570\) 0 0
\(571\) 12.6810i 0.530684i 0.964154 + 0.265342i \(0.0854849\pi\)
−0.964154 + 0.265342i \(0.914515\pi\)
\(572\) 0 0
\(573\) 37.4549i 1.56470i
\(574\) 0 0
\(575\) −6.77017 + 19.1047i −0.282336 + 0.796721i
\(576\) 0 0
\(577\) −4.16182 −0.173259 −0.0866295 0.996241i \(-0.527610\pi\)
−0.0866295 + 0.996241i \(0.527610\pi\)
\(578\) 0 0
\(579\) 15.5688 + 11.3114i 0.647016 + 0.470085i
\(580\) 0 0
\(581\) 21.1370 6.86783i 0.876911 0.284926i
\(582\) 0 0
\(583\) 14.7352i 0.610270i
\(584\) 0 0
\(585\) −6.02416 + 2.96994i −0.249068 + 0.122792i
\(586\) 0 0
\(587\) −6.59927 + 20.3105i −0.272381 + 0.838302i 0.717520 + 0.696538i \(0.245277\pi\)
−0.989901 + 0.141764i \(0.954723\pi\)
\(588\) 0 0
\(589\) −3.92222 + 5.39847i −0.161612 + 0.222440i
\(590\) 0 0
\(591\) −15.3373 21.1100i −0.630894 0.868350i
\(592\) 0 0
\(593\) −9.09313 27.9858i −0.373410 1.14924i −0.944545 0.328382i \(-0.893497\pi\)
0.571135 0.820856i \(-0.306503\pi\)
\(594\) 0 0
\(595\) −2.16418 14.9380i −0.0887229 0.612397i
\(596\) 0 0
\(597\) −8.88957 2.88840i −0.363826 0.118214i
\(598\) 0 0
\(599\) 6.56661 + 20.2099i 0.268304 + 0.825756i 0.990914 + 0.134499i \(0.0429425\pi\)
−0.722609 + 0.691257i \(0.757057\pi\)
\(600\) 0 0
\(601\) 22.9007i 0.934139i −0.884221 0.467070i \(-0.845310\pi\)
0.884221 0.467070i \(-0.154690\pi\)
\(602\) 0 0
\(603\) −0.550541 0.399991i −0.0224198 0.0162889i
\(604\) 0 0
\(605\) 10.8629 5.35545i 0.441638 0.217730i
\(606\) 0 0
\(607\) −1.59160 2.19064i −0.0646009 0.0889155i 0.775494 0.631355i \(-0.217501\pi\)
−0.840095 + 0.542439i \(0.817501\pi\)
\(608\) 0 0
\(609\) −24.9412 8.10390i −1.01067 0.328387i
\(610\) 0 0
\(611\) −30.6825 22.2921i −1.24128 0.901842i
\(612\) 0 0
\(613\) −40.5399 13.1722i −1.63739 0.532021i −0.661439 0.749999i \(-0.730054\pi\)
−0.975954 + 0.217978i \(0.930054\pi\)
\(614\) 0 0
\(615\) 6.97636 + 21.3329i 0.281314 + 0.860224i
\(616\) 0 0
\(617\) 7.73429 + 2.51302i 0.311371 + 0.101171i 0.460534 0.887642i \(-0.347658\pi\)
−0.149163 + 0.988813i \(0.547658\pi\)
\(618\) 0 0
\(619\) 7.36503 + 5.35101i 0.296025 + 0.215075i 0.725877 0.687824i \(-0.241434\pi\)
−0.429852 + 0.902900i \(0.641434\pi\)
\(620\) 0 0
\(621\) −21.4104 6.95667i −0.859171 0.279162i
\(622\) 0 0
\(623\) 6.48358 + 8.92389i 0.259759 + 0.357528i
\(624\) 0 0
\(625\) −24.9651 1.31964i −0.998606 0.0527858i
\(626\) 0 0
\(627\) 14.6341 + 10.6323i 0.584431 + 0.424614i
\(628\) 0 0
\(629\) 12.3556i 0.492652i
\(630\) 0 0
\(631\) −6.99561 21.5303i −0.278491 0.857107i −0.988275 0.152687i \(-0.951207\pi\)
0.709784 0.704420i \(-0.248793\pi\)
\(632\) 0 0
\(633\) −25.8541 8.40051i −1.02761 0.333890i
\(634\) 0 0
\(635\) 19.0531 2.76038i 0.756101 0.109543i
\(636\) 0 0
\(637\) −4.77887 14.7078i −0.189346 0.582746i
\(638\) 0 0
\(639\) 2.39153 + 3.29165i 0.0946073 + 0.130216i
\(640\) 0 0
\(641\) 3.46390 4.76765i 0.136816 0.188311i −0.735111 0.677946i \(-0.762870\pi\)
0.871927 + 0.489636i \(0.162870\pi\)
\(642\) 0 0
\(643\) 7.98958 24.5894i 0.315078 0.969711i −0.660644 0.750699i \(-0.729717\pi\)
0.975722 0.219012i \(-0.0702832\pi\)
\(644\) 0 0
\(645\) −12.6404 25.6395i −0.497716 1.00956i
\(646\) 0 0
\(647\) 40.6644i 1.59868i 0.600877 + 0.799341i \(0.294818\pi\)
−0.600877 + 0.799341i \(0.705182\pi\)
\(648\) 0 0
\(649\) −1.71702 + 0.557893i −0.0673988 + 0.0218992i
\(650\) 0 0
\(651\) −3.55418 2.58226i −0.139299 0.101207i
\(652\) 0 0
\(653\) −22.8502 −0.894196 −0.447098 0.894485i \(-0.647542\pi\)
−0.447098 + 0.894485i \(0.647542\pi\)
\(654\) 0 0
\(655\) 3.05081 + 0.524578i 0.119205 + 0.0204970i
\(656\) 0 0
\(657\) 6.24631i 0.243692i
\(658\) 0 0
\(659\) 33.2386i 1.29479i −0.762153 0.647397i \(-0.775858\pi\)
0.762153 0.647397i \(-0.224142\pi\)
\(660\) 0 0
\(661\) −25.4766 18.5098i −0.990923 0.719948i −0.0308001 0.999526i \(-0.509806\pi\)
−0.960123 + 0.279578i \(0.909806\pi\)
\(662\) 0 0
\(663\) 8.82553 + 27.1622i 0.342755 + 1.05489i
\(664\) 0 0
\(665\) −3.79502 + 22.0708i −0.147165 + 0.855870i
\(666\) 0 0
\(667\) −26.7513 + 19.4360i −1.03582 + 0.752564i
\(668\) 0 0
\(669\) −29.8155 9.68764i −1.15273 0.374546i
\(670\) 0 0
\(671\) −18.4635 + 25.4129i −0.712777 + 0.981053i
\(672\) 0 0
\(673\) −21.2431 + 15.4340i −0.818862 + 0.594938i −0.916386 0.400295i \(-0.868908\pi\)
0.0975244 + 0.995233i \(0.468908\pi\)
\(674\) 0 0
\(675\) 0.733110 27.7575i 0.0282174 1.06838i
\(676\) 0 0
\(677\) 3.57989 1.16318i 0.137586 0.0447045i −0.239414 0.970917i \(-0.576955\pi\)
0.377001 + 0.926213i \(0.376955\pi\)
\(678\) 0 0
\(679\) −5.77127 + 17.7621i −0.221481 + 0.681648i
\(680\) 0 0
\(681\) 5.24637 + 16.1467i 0.201041 + 0.618742i
\(682\) 0 0
\(683\) −16.4783 −0.630525 −0.315263 0.949004i \(-0.602093\pi\)
−0.315263 + 0.949004i \(0.602093\pi\)
\(684\) 0 0
\(685\) −21.7570 22.3392i −0.831293 0.853538i
\(686\) 0 0
\(687\) −1.27735 1.75812i −0.0487339 0.0670764i
\(688\) 0 0
\(689\) −27.9259 + 20.2893i −1.06389 + 0.772962i
\(690\) 0 0
\(691\) −19.2415 6.25194i −0.731981 0.237835i −0.0807709 0.996733i \(-0.525738\pi\)
−0.651210 + 0.758898i \(0.725738\pi\)
\(692\) 0 0
\(693\) 1.54572 2.12750i 0.0587169 0.0808169i
\(694\) 0 0
\(695\) 20.0369 38.0734i 0.760042 1.44421i
\(696\) 0 0
\(697\) −20.7631 + 3.61084i −0.786458 + 0.136770i
\(698\) 0 0
\(699\) 4.98884 15.3541i 0.188695 0.580744i
\(700\) 0 0
\(701\) 11.6086 + 8.43414i 0.438451 + 0.318553i 0.785019 0.619472i \(-0.212653\pi\)
−0.346568 + 0.938025i \(0.612653\pi\)
\(702\) 0 0
\(703\) 5.66489 17.4347i 0.213655 0.657564i
\(704\) 0 0
\(705\) 21.5405 10.6196i 0.811260 0.399956i
\(706\) 0 0
\(707\) −8.01984 11.0384i −0.301617 0.415140i
\(708\) 0 0
\(709\) 3.41476 4.70002i 0.128244 0.176513i −0.740067 0.672534i \(-0.765206\pi\)
0.868311 + 0.496021i \(0.165206\pi\)
\(710\) 0 0
\(711\) 4.07362i 0.152773i
\(712\) 0 0
\(713\) −5.26822 + 1.71175i −0.197296 + 0.0641055i
\(714\) 0 0
\(715\) 25.8827 + 13.6213i 0.967959 + 0.509407i
\(716\) 0 0
\(717\) −3.69915 + 1.20193i −0.138147 + 0.0448868i
\(718\) 0 0
\(719\) −46.4003 + 15.0764i −1.73044 + 0.562254i −0.993513 0.113718i \(-0.963724\pi\)
−0.736927 + 0.675972i \(0.763724\pi\)
\(720\) 0 0
\(721\) −18.6174 25.6246i −0.693347 0.954310i
\(722\) 0 0
\(723\) 16.5156 + 11.9993i 0.614221 + 0.446257i
\(724\) 0 0
\(725\) −32.3513 24.8356i −1.20150 0.922370i
\(726\) 0 0
\(727\) 4.36609 3.17215i 0.161929 0.117649i −0.503870 0.863780i \(-0.668091\pi\)
0.665799 + 0.746131i \(0.268091\pi\)
\(728\) 0 0
\(729\) 29.9572 1.10953
\(730\) 0 0
\(731\) 25.5277 8.29444i 0.944175 0.306781i
\(732\) 0 0
\(733\) 7.24203 9.96780i 0.267491 0.368169i −0.654050 0.756451i \(-0.726931\pi\)
0.921541 + 0.388282i \(0.126931\pi\)
\(734\) 0 0
\(735\) 9.65123 + 1.65950i 0.355991 + 0.0612117i
\(736\) 0 0
\(737\) 2.96339i 0.109158i
\(738\) 0 0
\(739\) 39.1685 1.44084 0.720419 0.693539i \(-0.243950\pi\)
0.720419 + 0.693539i \(0.243950\pi\)
\(740\) 0 0
\(741\) 42.3743i 1.55666i
\(742\) 0 0
\(743\) −21.4529 + 29.5274i −0.787031 + 1.08326i 0.207440 + 0.978248i \(0.433487\pi\)
−0.994471 + 0.105008i \(0.966513\pi\)
\(744\) 0 0
\(745\) 19.0534 2.76041i 0.698061 0.101134i
\(746\) 0 0
\(747\) 5.88023i 0.215146i
\(748\) 0 0
\(749\) 5.67946 + 7.81710i 0.207523 + 0.285631i
\(750\) 0 0
\(751\) 17.1294 + 5.56568i 0.625061 + 0.203095i 0.604386 0.796692i \(-0.293418\pi\)
0.0206750 + 0.999786i \(0.493418\pi\)
\(752\) 0 0
\(753\) −3.45266 2.50851i −0.125822 0.0914151i
\(754\) 0 0
\(755\) −14.0323 28.4628i −0.510689 1.03587i
\(756\) 0 0
\(757\) 4.06859 + 12.5218i 0.147875 + 0.455113i 0.997370 0.0724845i \(-0.0230928\pi\)
−0.849494 + 0.527598i \(0.823093\pi\)
\(758\) 0 0
\(759\) 4.64019 + 14.2811i 0.168428 + 0.518369i
\(760\) 0 0
\(761\) 0.493120 1.51767i 0.0178756 0.0550154i −0.941721 0.336395i \(-0.890792\pi\)
0.959596 + 0.281380i \(0.0907921\pi\)
\(762\) 0 0
\(763\) 14.5338 4.72230i 0.526157 0.170959i
\(764\) 0 0
\(765\) 3.93579 + 0.676748i 0.142299 + 0.0244679i
\(766\) 0 0
\(767\) 3.42152 + 2.48588i 0.123544 + 0.0897598i
\(768\) 0 0
\(769\) 20.4743 14.8754i 0.738321 0.536421i −0.153864 0.988092i \(-0.549172\pi\)
0.892185 + 0.451671i \(0.149172\pi\)
\(770\) 0 0
\(771\) −22.1059 + 16.0609i −0.796124 + 0.578418i
\(772\) 0 0
\(773\) −8.04747 + 24.7676i −0.289448 + 0.890828i 0.695583 + 0.718446i \(0.255146\pi\)
−0.985030 + 0.172382i \(0.944854\pi\)
\(774\) 0 0
\(775\) −3.86861 5.63158i −0.138965 0.202292i
\(776\) 0 0
\(777\) 11.4785 + 3.72958i 0.411787 + 0.133798i
\(778\) 0 0
\(779\) 30.9538 + 4.42443i 1.10904 + 0.158522i
\(780\) 0 0
\(781\) 5.47514 16.8508i 0.195916 0.602968i
\(782\) 0 0
\(783\) 26.6262 36.6478i 0.951543 1.30969i
\(784\) 0 0
\(785\) −21.8914 + 41.5973i −0.781336 + 1.48467i
\(786\) 0 0
\(787\) 6.11011 + 8.40984i 0.217802 + 0.299778i 0.903911 0.427720i \(-0.140683\pi\)
−0.686110 + 0.727498i \(0.740683\pi\)
\(788\) 0 0
\(789\) −7.22520 + 5.24941i −0.257224 + 0.186884i
\(790\) 0 0
\(791\) −5.74437 + 7.90645i −0.204246 + 0.281121i
\(792\) 0 0
\(793\) 73.5849 2.61308
\(794\) 0 0
\(795\) −3.13407 21.6325i −0.111154 0.767224i
\(796\) 0 0
\(797\) 15.6376 + 5.08096i 0.553912 + 0.179977i 0.572580 0.819849i \(-0.305943\pi\)
−0.0186681 + 0.999826i \(0.505943\pi\)
\(798\) 0 0
\(799\) 6.96838 + 21.4465i 0.246524 + 0.758722i
\(800\) 0 0
\(801\) −2.77562 + 0.901853i −0.0980716 + 0.0318654i
\(802\) 0 0
\(803\) 22.0058 15.9882i 0.776570 0.564211i
\(804\) 0 0
\(805\) −13.3178 + 12.9707i −0.469392 + 0.457159i
\(806\) 0 0
\(807\) −3.40127 + 10.4680i −0.119730 + 0.368492i
\(808\) 0 0
\(809\) −8.65975 11.9191i −0.304461 0.419054i 0.629183 0.777257i \(-0.283390\pi\)
−0.933644 + 0.358203i \(0.883390\pi\)
\(810\) 0 0
\(811\) −11.4745 −0.402924 −0.201462 0.979496i \(-0.564569\pi\)
−0.201462 + 0.979496i \(0.564569\pi\)
\(812\) 0 0
\(813\) −11.6493 35.8530i −0.408560 1.25742i
\(814\) 0 0
\(815\) 22.3480 21.7656i 0.782817 0.762415i
\(816\) 0 0
\(817\) −39.8243 −1.39328
\(818\) 0 0
\(819\) −6.16032 −0.215259
\(820\) 0 0
\(821\) 39.9447 1.39408 0.697040 0.717032i \(-0.254500\pi\)
0.697040 + 0.717032i \(0.254500\pi\)
\(822\) 0 0
\(823\) −46.9212 −1.63557 −0.817786 0.575523i \(-0.804799\pi\)
−0.817786 + 0.575523i \(0.804799\pi\)
\(824\) 0 0
\(825\) −15.2660 + 10.4870i −0.531496 + 0.365111i
\(826\) 0 0
\(827\) −2.44323 7.51947i −0.0849593 0.261478i 0.899548 0.436822i \(-0.143896\pi\)
−0.984507 + 0.175344i \(0.943896\pi\)
\(828\) 0 0
\(829\) 30.3041 1.05251 0.526253 0.850328i \(-0.323596\pi\)
0.526253 + 0.850328i \(0.323596\pi\)
\(830\) 0 0
\(831\) −10.0004 13.7643i −0.346910 0.477480i
\(832\) 0 0
\(833\) −2.84146 + 8.74512i −0.0984509 + 0.303001i
\(834\) 0 0
\(835\) 20.0371 + 20.5733i 0.693413 + 0.711969i
\(836\) 0 0
\(837\) 6.13929 4.46045i 0.212205 0.154176i
\(838\) 0 0
\(839\) −28.4434 + 9.24184i −0.981977 + 0.319064i −0.755641 0.654986i \(-0.772675\pi\)
−0.226336 + 0.974049i \(0.572675\pi\)
\(840\) 0 0
\(841\) −11.5994 35.6992i −0.399978 1.23101i
\(842\) 0 0
\(843\) 12.1779 + 3.95684i 0.419429 + 0.136281i
\(844\) 0 0
\(845\) −5.65595 39.0394i −0.194571 1.34300i
\(846\) 0 0
\(847\) 11.1084 0.381689
\(848\) 0 0
\(849\) −21.4140 + 29.4739i −0.734927 + 1.01154i
\(850\) 0 0
\(851\) 12.3115 8.94483i 0.422033 0.306625i
\(852\) 0 0
\(853\) 15.2900 + 21.0449i 0.523519 + 0.720562i 0.986126 0.166001i \(-0.0530856\pi\)
−0.462606 + 0.886564i \(0.653086\pi\)
\(854\) 0 0
\(855\) −5.24341 2.75945i −0.179321 0.0943711i
\(856\) 0 0
\(857\) −31.5997 + 43.4933i −1.07943 + 1.48570i −0.219275 + 0.975663i \(0.570369\pi\)
−0.860151 + 0.510040i \(0.829631\pi\)
\(858\) 0 0
\(859\) −6.53175 + 20.1027i −0.222861 + 0.685894i 0.775641 + 0.631174i \(0.217427\pi\)
−0.998502 + 0.0547201i \(0.982573\pi\)
\(860\) 0 0
\(861\) −2.91290 + 20.3790i −0.0992713 + 0.694514i
\(862\) 0 0
\(863\) −24.5772 7.98561i −0.836617 0.271833i −0.140787 0.990040i \(-0.544963\pi\)
−0.695830 + 0.718207i \(0.744963\pi\)
\(864\) 0 0
\(865\) −25.7869 + 25.1149i −0.876782 + 0.853931i
\(866\) 0 0
\(867\) −2.98749 + 9.19455i −0.101461 + 0.312263i
\(868\) 0 0
\(869\) 14.3514 10.4269i 0.486838 0.353709i
\(870\) 0 0
\(871\) 5.61615 4.08037i 0.190296 0.138258i
\(872\) 0 0
\(873\) −3.99764 2.90445i −0.135299 0.0983008i
\(874\) 0 0
\(875\) −20.0024 11.2108i −0.676206 0.378994i
\(876\) 0 0
\(877\) 22.3877 7.27422i 0.755980 0.245633i 0.0944276 0.995532i \(-0.469898\pi\)
0.661552 + 0.749899i \(0.269898\pi\)
\(878\) 0 0
\(879\) −11.3760 + 35.0118i −0.383703 + 1.18092i
\(880\) 0 0
\(881\) −12.5134 38.5124i −0.421588 1.29752i −0.906224 0.422799i \(-0.861048\pi\)
0.484635 0.874716i \(-0.338952\pi\)
\(882\) 0 0
\(883\) 3.92305 + 12.0739i 0.132021 + 0.406319i 0.995115 0.0987246i \(-0.0314763\pi\)
−0.863094 + 0.505044i \(0.831476\pi\)
\(884\) 0 0
\(885\) −2.40206 + 1.18423i −0.0807442 + 0.0398074i
\(886\) 0 0
\(887\) −36.4347 26.4713i −1.22336 0.888820i −0.226982 0.973899i \(-0.572886\pi\)
−0.996374 + 0.0850787i \(0.972886\pi\)
\(888\) 0 0
\(889\) 16.7937 + 5.45659i 0.563242 + 0.183008i
\(890\) 0 0
\(891\) −9.83035 13.5303i −0.329329 0.453283i
\(892\) 0 0
\(893\) 33.4575i 1.11961i
\(894\) 0 0
\(895\) 45.1218 6.53716i 1.50826 0.218513i
\(896\) 0 0
\(897\) 20.6759 28.4580i 0.690349 0.950184i
\(898\) 0 0
\(899\) 11.1462i 0.371748i
\(900\) 0 0
\(901\) 20.5242 0.683760
\(902\) 0 0
\(903\) 26.2190i 0.872515i
\(904\) 0 0
\(905\) 6.34486 36.9000i 0.210910 1.22660i
\(906\) 0 0
\(907\) 19.5539 26.9137i 0.649278 0.893655i −0.349789 0.936828i \(-0.613747\pi\)
0.999068 + 0.0431737i \(0.0137469\pi\)
\(908\) 0 0
\(909\) 3.43329 1.11554i 0.113875 0.0370002i
\(910\) 0 0
\(911\) −39.2530 −1.30051 −0.650255 0.759716i \(-0.725338\pi\)
−0.650255 + 0.759716i \(0.725338\pi\)
\(912\) 0 0
\(913\) 20.7161 15.0511i 0.685604 0.498120i
\(914\) 0 0
\(915\) −21.7008 + 41.2351i −0.717406 + 1.36319i
\(916\) 0 0
\(917\) 2.29700 + 1.66887i 0.0758537 + 0.0551109i
\(918\) 0 0
\(919\) 21.0216 + 28.9337i 0.693438 + 0.954436i 0.999997 + 0.00258414i \(0.000822557\pi\)
−0.306558 + 0.951852i \(0.599177\pi\)
\(920\) 0 0
\(921\) 29.5905 9.61455i 0.975041 0.316810i
\(922\) 0 0
\(923\) −39.4741 + 12.8259i −1.29931 + 0.422170i
\(924\) 0 0
\(925\) 14.8887 + 11.4298i 0.489537 + 0.375810i
\(926\) 0 0
\(927\) 7.97008 2.58964i 0.261772 0.0850548i
\(928\) 0 0
\(929\) 29.4494i 0.966204i 0.875564 + 0.483102i \(0.160490\pi\)
−0.875564 + 0.483102i \(0.839510\pi\)
\(930\) 0 0
\(931\) 8.01904 11.0373i 0.262813 0.361732i
\(932\) 0 0
\(933\) 19.4826 + 26.8156i 0.637833 + 0.877902i
\(934\) 0 0
\(935\) −7.68993 15.5981i −0.251487 0.510111i
\(936\) 0 0
\(937\) −6.72068 + 20.6841i −0.219555 + 0.675721i 0.779244 + 0.626721i \(0.215603\pi\)
−0.998799 + 0.0490002i \(0.984397\pi\)
\(938\) 0 0
\(939\) −32.6773 23.7415i −1.06638 0.774773i
\(940\) 0 0
\(941\) −4.84531 + 14.9123i −0.157952 + 0.486128i −0.998448 0.0556907i \(-0.982264\pi\)
0.840496 + 0.541818i \(0.182264\pi\)
\(942\) 0 0
\(943\) 18.6293 + 18.0749i 0.606654 + 0.588599i
\(944\) 0 0
\(945\) 11.8608 22.5374i 0.385830 0.733143i
\(946\) 0 0
\(947\) 6.68770 9.20484i 0.217321 0.299117i −0.686412 0.727213i \(-0.740815\pi\)
0.903733 + 0.428096i \(0.140815\pi\)
\(948\) 0 0
\(949\) −60.6009 19.6904i −1.96719 0.639179i
\(950\) 0 0
\(951\) −21.9622 + 15.9565i −0.712175 + 0.517425i
\(952\) 0 0
\(953\) 24.8527 + 34.2069i 0.805059 + 1.10807i 0.992067 + 0.125711i \(0.0401211\pi\)
−0.187008 + 0.982358i \(0.559879\pi\)
\(954\) 0 0
\(955\) −38.2739 + 37.2764i −1.23851 + 1.20624i
\(956\) 0 0
\(957\) −30.2152 −0.976718
\(958\) 0 0
\(959\) −8.83830 27.2015i −0.285403 0.878382i
\(960\) 0 0
\(961\) −9.00252 + 27.7069i −0.290404 + 0.893771i
\(962\) 0 0
\(963\) −2.43137 + 0.790001i −0.0783499 + 0.0254574i
\(964\) 0 0
\(965\) 3.93585 + 27.1666i 0.126700 + 0.874525i
\(966\) 0 0
\(967\) −12.0751 + 8.77306i −0.388308 + 0.282123i −0.764762 0.644313i \(-0.777143\pi\)
0.376454 + 0.926435i \(0.377143\pi\)
\(968\) 0 0
\(969\) −14.8094 + 20.3834i −0.475747 + 0.654810i
\(970\) 0 0
\(971\) −18.5600 6.03050i −0.595618 0.193528i −0.00433274 0.999991i \(-0.501379\pi\)
−0.591285 + 0.806463i \(0.701379\pi\)
\(972\) 0 0
\(973\) 31.9250 23.1948i 1.02347 0.743592i
\(974\) 0 0
\(975\) 40.8950 + 14.4920i 1.30969 + 0.464117i
\(976\) 0 0
\(977\) 6.22227 + 19.1502i 0.199068 + 0.612669i 0.999905 + 0.0137862i \(0.00438844\pi\)
−0.800837 + 0.598883i \(0.795612\pi\)
\(978\) 0 0
\(979\) 10.2818 + 7.47014i 0.328607 + 0.238747i
\(980\) 0 0
\(981\) 4.04323i 0.129090i
\(982\) 0 0
\(983\) 13.3444i 0.425619i −0.977094 0.212809i \(-0.931739\pi\)
0.977094 0.212809i \(-0.0682613\pi\)
\(984\) 0 0
\(985\) 6.30738 36.6821i 0.200970 1.16879i
\(986\) 0 0
\(987\) 22.0273 0.701137
\(988\) 0 0
\(989\) −26.7455 19.4317i −0.850457 0.617893i
\(990\) 0 0
\(991\) 13.0779 4.24928i 0.415434 0.134983i −0.0938397 0.995587i \(-0.529914\pi\)
0.509274 + 0.860605i \(0.329914\pi\)
\(992\) 0 0
\(993\) 6.02842i 0.191306i
\(994\) 0 0
\(995\) −5.89564 11.9586i −0.186904 0.379112i
\(996\) 0 0
\(997\) 14.6047 44.9486i 0.462535 1.42354i −0.399521 0.916724i \(-0.630824\pi\)
0.862056 0.506812i \(-0.169176\pi\)
\(998\) 0 0
\(999\) −12.2539 + 16.8661i −0.387697 + 0.533619i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.15 yes 80
5.4 even 2 inner 820.2.bi.a.189.6 80
41.23 even 10 inner 820.2.bi.a.269.6 yes 80
205.64 even 10 inner 820.2.bi.a.269.15 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.6 80 5.4 even 2 inner
820.2.bi.a.189.15 yes 80 1.1 even 1 trivial
820.2.bi.a.269.6 yes 80 41.23 even 10 inner
820.2.bi.a.269.15 yes 80 205.64 even 10 inner