Properties

Label 820.2.bi.a.189.13
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.13
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.660390 q^{3} +(0.00764381 - 2.23605i) q^{5} +(-0.328706 - 1.01165i) q^{7} -2.56389 q^{9} +(-1.85813 - 2.55750i) q^{11} +(0.103580 - 0.318787i) q^{13} +(0.00504790 - 1.47667i) q^{15} +(-4.74676 + 3.44872i) q^{17} +(5.69881 - 1.85166i) q^{19} +(-0.217074 - 0.668085i) q^{21} +(-7.08290 - 2.30138i) q^{23} +(-4.99988 - 0.0341840i) q^{25} -3.67433 q^{27} +(2.91444 - 4.01139i) q^{29} +(-7.53890 + 5.47733i) q^{31} +(-1.22709 - 1.68895i) q^{33} +(-2.26462 + 0.727271i) q^{35} +(3.51520 - 4.83826i) q^{37} +(0.0684032 - 0.210523i) q^{39} +(6.18424 - 1.65986i) q^{41} +(7.57529 + 2.46136i) q^{43} +(-0.0195979 + 5.73299i) q^{45} +(-2.46228 + 7.57812i) q^{47} +(4.74773 - 3.44943i) q^{49} +(-3.13471 + 2.27750i) q^{51} +(-8.99438 - 6.53480i) q^{53} +(-5.73292 + 4.13534i) q^{55} +(3.76343 - 1.22281i) q^{57} +(3.16987 - 9.75587i) q^{59} +(-2.19027 - 6.74094i) q^{61} +(0.842764 + 2.59376i) q^{63} +(-0.712032 - 0.234047i) q^{65} +(0.514472 + 0.373785i) q^{67} +(-4.67748 - 1.51980i) q^{69} +(3.09514 + 4.26010i) q^{71} -4.81973i q^{73} +(-3.30187 - 0.0225747i) q^{75} +(-1.97652 + 2.72045i) q^{77} -11.1861i q^{79} +5.26517 q^{81} +8.67639i q^{83} +(7.67525 + 10.6404i) q^{85} +(1.92467 - 2.64908i) q^{87} +(-1.49719 + 0.486466i) q^{89} -0.356548 q^{91} +(-4.97861 + 3.61717i) q^{93} +(-4.09684 - 12.7570i) q^{95} +(-9.61413 - 6.98507i) q^{97} +(4.76404 + 6.55714i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.660390 0.381276 0.190638 0.981660i \(-0.438944\pi\)
0.190638 + 0.981660i \(0.438944\pi\)
\(4\) 0 0
\(5\) 0.00764381 2.23605i 0.00341842 0.999994i
\(6\) 0 0
\(7\) −0.328706 1.01165i −0.124239 0.382369i 0.869523 0.493893i \(-0.164427\pi\)
−0.993762 + 0.111525i \(0.964427\pi\)
\(8\) 0 0
\(9\) −2.56389 −0.854629
\(10\) 0 0
\(11\) −1.85813 2.55750i −0.560248 0.771116i 0.431110 0.902300i \(-0.358122\pi\)
−0.991358 + 0.131184i \(0.958122\pi\)
\(12\) 0 0
\(13\) 0.103580 0.318787i 0.0287279 0.0884155i −0.935665 0.352891i \(-0.885199\pi\)
0.964392 + 0.264475i \(0.0851987\pi\)
\(14\) 0 0
\(15\) 0.00504790 1.47667i 0.00130336 0.381274i
\(16\) 0 0
\(17\) −4.74676 + 3.44872i −1.15126 + 0.836438i −0.988648 0.150252i \(-0.951992\pi\)
−0.162611 + 0.986690i \(0.551992\pi\)
\(18\) 0 0
\(19\) 5.69881 1.85166i 1.30740 0.424799i 0.429248 0.903187i \(-0.358779\pi\)
0.878149 + 0.478388i \(0.158779\pi\)
\(20\) 0 0
\(21\) −0.217074 0.668085i −0.0473694 0.145788i
\(22\) 0 0
\(23\) −7.08290 2.30138i −1.47689 0.479870i −0.543706 0.839276i \(-0.682979\pi\)
−0.933181 + 0.359406i \(0.882979\pi\)
\(24\) 0 0
\(25\) −4.99988 0.0341840i −0.999977 0.00683679i
\(26\) 0 0
\(27\) −3.67433 −0.707126
\(28\) 0 0
\(29\) 2.91444 4.01139i 0.541198 0.744896i −0.447587 0.894241i \(-0.647716\pi\)
0.988785 + 0.149345i \(0.0477164\pi\)
\(30\) 0 0
\(31\) −7.53890 + 5.47733i −1.35403 + 0.983757i −0.355226 + 0.934781i \(0.615596\pi\)
−0.998800 + 0.0489767i \(0.984404\pi\)
\(32\) 0 0
\(33\) −1.22709 1.68895i −0.213609 0.294008i
\(34\) 0 0
\(35\) −2.26462 + 0.727271i −0.382791 + 0.122931i
\(36\) 0 0
\(37\) 3.51520 4.83826i 0.577895 0.795404i −0.415567 0.909562i \(-0.636417\pi\)
0.993463 + 0.114158i \(0.0364170\pi\)
\(38\) 0 0
\(39\) 0.0684032 0.210523i 0.0109533 0.0337107i
\(40\) 0 0
\(41\) 6.18424 1.65986i 0.965817 0.259226i
\(42\) 0 0
\(43\) 7.57529 + 2.46136i 1.15522 + 0.375354i 0.823108 0.567885i \(-0.192238\pi\)
0.332113 + 0.943239i \(0.392238\pi\)
\(44\) 0 0
\(45\) −0.0195979 + 5.73299i −0.00292148 + 0.854624i
\(46\) 0 0
\(47\) −2.46228 + 7.57812i −0.359161 + 1.10538i 0.594397 + 0.804172i \(0.297391\pi\)
−0.953558 + 0.301211i \(0.902609\pi\)
\(48\) 0 0
\(49\) 4.74773 3.44943i 0.678247 0.492775i
\(50\) 0 0
\(51\) −3.13471 + 2.27750i −0.438947 + 0.318914i
\(52\) 0 0
\(53\) −8.99438 6.53480i −1.23547 0.897624i −0.238186 0.971220i \(-0.576553\pi\)
−0.997288 + 0.0735954i \(0.976553\pi\)
\(54\) 0 0
\(55\) −5.73292 + 4.13534i −0.773027 + 0.557609i
\(56\) 0 0
\(57\) 3.76343 1.22281i 0.498479 0.161966i
\(58\) 0 0
\(59\) 3.16987 9.75587i 0.412682 1.27011i −0.501625 0.865085i \(-0.667264\pi\)
0.914307 0.405021i \(-0.132736\pi\)
\(60\) 0 0
\(61\) −2.19027 6.74094i −0.280435 0.863089i −0.987730 0.156171i \(-0.950085\pi\)
0.707295 0.706918i \(-0.249915\pi\)
\(62\) 0 0
\(63\) 0.842764 + 2.59376i 0.106178 + 0.326783i
\(64\) 0 0
\(65\) −0.712032 0.234047i −0.0883168 0.0290300i
\(66\) 0 0
\(67\) 0.514472 + 0.373785i 0.0628527 + 0.0456652i 0.618768 0.785574i \(-0.287632\pi\)
−0.555915 + 0.831239i \(0.687632\pi\)
\(68\) 0 0
\(69\) −4.67748 1.51980i −0.563102 0.182963i
\(70\) 0 0
\(71\) 3.09514 + 4.26010i 0.367326 + 0.505581i 0.952172 0.305564i \(-0.0988449\pi\)
−0.584846 + 0.811145i \(0.698845\pi\)
\(72\) 0 0
\(73\) 4.81973i 0.564107i −0.959399 0.282053i \(-0.908984\pi\)
0.959399 0.282053i \(-0.0910155\pi\)
\(74\) 0 0
\(75\) −3.30187 0.0225747i −0.381267 0.00260671i
\(76\) 0 0
\(77\) −1.97652 + 2.72045i −0.225246 + 0.310024i
\(78\) 0 0
\(79\) 11.1861i 1.25854i −0.777189 0.629268i \(-0.783355\pi\)
0.777189 0.629268i \(-0.216645\pi\)
\(80\) 0 0
\(81\) 5.26517 0.585018
\(82\) 0 0
\(83\) 8.67639i 0.952358i 0.879348 + 0.476179i \(0.157979\pi\)
−0.879348 + 0.476179i \(0.842021\pi\)
\(84\) 0 0
\(85\) 7.67525 + 10.6404i 0.832498 + 1.15411i
\(86\) 0 0
\(87\) 1.92467 2.64908i 0.206346 0.284011i
\(88\) 0 0
\(89\) −1.49719 + 0.486466i −0.158702 + 0.0515653i −0.387290 0.921958i \(-0.626589\pi\)
0.228589 + 0.973523i \(0.426589\pi\)
\(90\) 0 0
\(91\) −0.356548 −0.0373764
\(92\) 0 0
\(93\) −4.97861 + 3.61717i −0.516258 + 0.375083i
\(94\) 0 0
\(95\) −4.09684 12.7570i −0.420327 1.30884i
\(96\) 0 0
\(97\) −9.61413 6.98507i −0.976167 0.709227i −0.0193183 0.999813i \(-0.506150\pi\)
−0.956849 + 0.290586i \(0.906150\pi\)
\(98\) 0 0
\(99\) 4.76404 + 6.55714i 0.478804 + 0.659018i
\(100\) 0 0
\(101\) 3.72916 1.21168i 0.371065 0.120566i −0.117547 0.993067i \(-0.537503\pi\)
0.488613 + 0.872501i \(0.337503\pi\)
\(102\) 0 0
\(103\) 16.2366 5.27558i 1.59984 0.519819i 0.632770 0.774340i \(-0.281918\pi\)
0.967067 + 0.254521i \(0.0819179\pi\)
\(104\) 0 0
\(105\) −1.49553 + 0.480282i −0.145949 + 0.0468708i
\(106\) 0 0
\(107\) 9.51588 3.09190i 0.919934 0.298905i 0.189495 0.981882i \(-0.439315\pi\)
0.730440 + 0.682977i \(0.239315\pi\)
\(108\) 0 0
\(109\) 9.17559i 0.878863i −0.898276 0.439431i \(-0.855180\pi\)
0.898276 0.439431i \(-0.144820\pi\)
\(110\) 0 0
\(111\) 2.32140 3.19513i 0.220338 0.303269i
\(112\) 0 0
\(113\) 2.97609 + 4.09624i 0.279967 + 0.385342i 0.925723 0.378202i \(-0.123458\pi\)
−0.645756 + 0.763544i \(0.723458\pi\)
\(114\) 0 0
\(115\) −5.20014 + 15.8202i −0.484916 + 1.47524i
\(116\) 0 0
\(117\) −0.265567 + 0.817332i −0.0245517 + 0.0755624i
\(118\) 0 0
\(119\) 5.04920 + 3.66846i 0.462859 + 0.336287i
\(120\) 0 0
\(121\) 0.311032 0.957258i 0.0282756 0.0870235i
\(122\) 0 0
\(123\) 4.08401 1.09615i 0.368243 0.0988368i
\(124\) 0 0
\(125\) −0.114655 + 11.1798i −0.0102551 + 0.999947i
\(126\) 0 0
\(127\) 1.28835 1.77326i 0.114323 0.157352i −0.748021 0.663675i \(-0.768996\pi\)
0.862344 + 0.506323i \(0.168996\pi\)
\(128\) 0 0
\(129\) 5.00264 + 1.62546i 0.440458 + 0.143114i
\(130\) 0 0
\(131\) −14.6455 + 10.6406i −1.27958 + 0.929670i −0.999540 0.0303183i \(-0.990348\pi\)
−0.280041 + 0.959988i \(0.590348\pi\)
\(132\) 0 0
\(133\) −3.74646 5.15656i −0.324860 0.447131i
\(134\) 0 0
\(135\) −0.0280859 + 8.21601i −0.00241725 + 0.707121i
\(136\) 0 0
\(137\) −20.0857 −1.71604 −0.858018 0.513620i \(-0.828304\pi\)
−0.858018 + 0.513620i \(0.828304\pi\)
\(138\) 0 0
\(139\) 2.89359 + 8.90555i 0.245431 + 0.755359i 0.995565 + 0.0940735i \(0.0299889\pi\)
−0.750134 + 0.661286i \(0.770011\pi\)
\(140\) 0 0
\(141\) −1.62606 + 5.00451i −0.136939 + 0.421456i
\(142\) 0 0
\(143\) −1.00776 + 0.327442i −0.0842734 + 0.0273821i
\(144\) 0 0
\(145\) −8.94740 6.54752i −0.743041 0.543742i
\(146\) 0 0
\(147\) 3.13535 2.27796i 0.258599 0.187883i
\(148\) 0 0
\(149\) 11.8683 16.3354i 0.972292 1.33824i 0.0314107 0.999507i \(-0.490000\pi\)
0.940881 0.338738i \(-0.110000\pi\)
\(150\) 0 0
\(151\) 4.11680 + 1.33763i 0.335021 + 0.108855i 0.471696 0.881761i \(-0.343642\pi\)
−0.136676 + 0.990616i \(0.543642\pi\)
\(152\) 0 0
\(153\) 12.1702 8.84213i 0.983899 0.714844i
\(154\) 0 0
\(155\) 12.1900 + 16.8993i 0.979123 + 1.35738i
\(156\) 0 0
\(157\) 6.52474 + 20.0811i 0.520731 + 1.60264i 0.772607 + 0.634885i \(0.218952\pi\)
−0.251876 + 0.967759i \(0.581048\pi\)
\(158\) 0 0
\(159\) −5.93980 4.31552i −0.471057 0.342243i
\(160\) 0 0
\(161\) 7.92191i 0.624334i
\(162\) 0 0
\(163\) 16.0461i 1.25683i 0.777880 + 0.628413i \(0.216295\pi\)
−0.777880 + 0.628413i \(0.783705\pi\)
\(164\) 0 0
\(165\) −3.78596 + 2.73094i −0.294737 + 0.212603i
\(166\) 0 0
\(167\) 11.7231 0.907163 0.453582 0.891215i \(-0.350146\pi\)
0.453582 + 0.891215i \(0.350146\pi\)
\(168\) 0 0
\(169\) 10.4263 + 7.57517i 0.802025 + 0.582705i
\(170\) 0 0
\(171\) −14.6111 + 4.74743i −1.11734 + 0.363045i
\(172\) 0 0
\(173\) 11.3943i 0.866293i −0.901324 0.433146i \(-0.857403\pi\)
0.901324 0.433146i \(-0.142597\pi\)
\(174\) 0 0
\(175\) 1.60891 + 5.06938i 0.121622 + 0.383209i
\(176\) 0 0
\(177\) 2.09335 6.44267i 0.157346 0.484261i
\(178\) 0 0
\(179\) 2.68993 3.70237i 0.201055 0.276728i −0.696570 0.717489i \(-0.745291\pi\)
0.897624 + 0.440761i \(0.145291\pi\)
\(180\) 0 0
\(181\) −5.34204 7.35268i −0.397071 0.546521i 0.562935 0.826501i \(-0.309672\pi\)
−0.960006 + 0.279980i \(0.909672\pi\)
\(182\) 0 0
\(183\) −1.44643 4.45165i −0.106923 0.329075i
\(184\) 0 0
\(185\) −10.7917 7.89716i −0.793424 0.580611i
\(186\) 0 0
\(187\) 17.6402 + 5.73166i 1.28998 + 0.419141i
\(188\) 0 0
\(189\) 1.20777 + 3.71715i 0.0878526 + 0.270383i
\(190\) 0 0
\(191\) 18.2622i 1.32141i 0.750647 + 0.660704i \(0.229742\pi\)
−0.750647 + 0.660704i \(0.770258\pi\)
\(192\) 0 0
\(193\) 14.6747 + 10.6618i 1.05631 + 0.767451i 0.973401 0.229107i \(-0.0735806\pi\)
0.0829039 + 0.996558i \(0.473581\pi\)
\(194\) 0 0
\(195\) −0.470219 0.154562i −0.0336731 0.0110684i
\(196\) 0 0
\(197\) −15.1221 20.8138i −1.07741 1.48292i −0.862346 0.506320i \(-0.831006\pi\)
−0.215059 0.976601i \(-0.568994\pi\)
\(198\) 0 0
\(199\) 2.15374 + 0.699791i 0.152674 + 0.0496069i 0.384357 0.923184i \(-0.374423\pi\)
−0.231683 + 0.972791i \(0.574423\pi\)
\(200\) 0 0
\(201\) 0.339752 + 0.246844i 0.0239642 + 0.0174110i
\(202\) 0 0
\(203\) −5.01612 1.62984i −0.352063 0.114392i
\(204\) 0 0
\(205\) −3.66426 13.8410i −0.255923 0.966697i
\(206\) 0 0
\(207\) 18.1598 + 5.90046i 1.26219 + 0.410111i
\(208\) 0 0
\(209\) −15.3248 11.1341i −1.06004 0.770161i
\(210\) 0 0
\(211\) −4.55685 1.48061i −0.313707 0.101930i 0.147932 0.988998i \(-0.452738\pi\)
−0.461639 + 0.887068i \(0.652738\pi\)
\(212\) 0 0
\(213\) 2.04400 + 2.81333i 0.140053 + 0.192766i
\(214\) 0 0
\(215\) 5.56164 16.9200i 0.379301 1.15393i
\(216\) 0 0
\(217\) 8.01923 + 5.82631i 0.544381 + 0.395516i
\(218\) 0 0
\(219\) 3.18290i 0.215080i
\(220\) 0 0
\(221\) 0.607737 + 1.87042i 0.0408808 + 0.125818i
\(222\) 0 0
\(223\) −19.6670 6.39020i −1.31700 0.427920i −0.435537 0.900171i \(-0.643441\pi\)
−0.881464 + 0.472251i \(0.843441\pi\)
\(224\) 0 0
\(225\) 12.8191 + 0.0876438i 0.854609 + 0.00584292i
\(226\) 0 0
\(227\) 0.629511 + 1.93743i 0.0417821 + 0.128592i 0.969772 0.244014i \(-0.0784643\pi\)
−0.927990 + 0.372606i \(0.878464\pi\)
\(228\) 0 0
\(229\) 14.1206 + 19.4353i 0.933113 + 1.28432i 0.958633 + 0.284646i \(0.0918760\pi\)
−0.0255195 + 0.999674i \(0.508124\pi\)
\(230\) 0 0
\(231\) −1.30528 + 1.79656i −0.0858808 + 0.118205i
\(232\) 0 0
\(233\) −3.46641 + 10.6685i −0.227092 + 0.698918i 0.770980 + 0.636859i \(0.219767\pi\)
−0.998072 + 0.0620589i \(0.980233\pi\)
\(234\) 0 0
\(235\) 16.9263 + 5.56372i 1.10415 + 0.362937i
\(236\) 0 0
\(237\) 7.38719i 0.479850i
\(238\) 0 0
\(239\) 13.2472 4.30427i 0.856889 0.278420i 0.152561 0.988294i \(-0.451248\pi\)
0.704329 + 0.709874i \(0.251248\pi\)
\(240\) 0 0
\(241\) 20.1436 + 14.6352i 1.29756 + 0.942734i 0.999929 0.0119467i \(-0.00380285\pi\)
0.297633 + 0.954680i \(0.403803\pi\)
\(242\) 0 0
\(243\) 14.5001 0.930179
\(244\) 0 0
\(245\) −7.67681 10.6425i −0.490454 0.679927i
\(246\) 0 0
\(247\) 2.00850i 0.127798i
\(248\) 0 0
\(249\) 5.72980i 0.363111i
\(250\) 0 0
\(251\) −13.0061 9.44947i −0.820936 0.596445i 0.0960444 0.995377i \(-0.469381\pi\)
−0.916980 + 0.398932i \(0.869381\pi\)
\(252\) 0 0
\(253\) 7.27521 + 22.3908i 0.457389 + 1.40770i
\(254\) 0 0
\(255\) 5.06866 + 7.02680i 0.317412 + 0.440035i
\(256\) 0 0
\(257\) 8.99268 6.53357i 0.560948 0.407553i −0.270858 0.962619i \(-0.587307\pi\)
0.831806 + 0.555067i \(0.187307\pi\)
\(258\) 0 0
\(259\) −6.05010 1.96580i −0.375935 0.122149i
\(260\) 0 0
\(261\) −7.47230 + 10.2847i −0.462524 + 0.636609i
\(262\) 0 0
\(263\) −5.52230 + 4.01218i −0.340519 + 0.247402i −0.744881 0.667197i \(-0.767494\pi\)
0.404362 + 0.914599i \(0.367494\pi\)
\(264\) 0 0
\(265\) −14.6809 + 20.0620i −0.901842 + 1.23240i
\(266\) 0 0
\(267\) −0.988728 + 0.321257i −0.0605092 + 0.0196606i
\(268\) 0 0
\(269\) 6.89711 21.2271i 0.420524 1.29424i −0.486691 0.873574i \(-0.661796\pi\)
0.907215 0.420667i \(-0.138204\pi\)
\(270\) 0 0
\(271\) 7.58522 + 23.3449i 0.460769 + 1.41810i 0.864226 + 0.503104i \(0.167809\pi\)
−0.403456 + 0.914999i \(0.632191\pi\)
\(272\) 0 0
\(273\) −0.235461 −0.0142507
\(274\) 0 0
\(275\) 9.20303 + 12.8507i 0.554963 + 0.774928i
\(276\) 0 0
\(277\) 6.37482 + 8.77418i 0.383026 + 0.527189i 0.956383 0.292116i \(-0.0943593\pi\)
−0.573357 + 0.819305i \(0.694359\pi\)
\(278\) 0 0
\(279\) 19.3289 14.0432i 1.15719 0.840747i
\(280\) 0 0
\(281\) −14.4808 4.70509i −0.863851 0.280682i −0.156615 0.987660i \(-0.550058\pi\)
−0.707236 + 0.706978i \(0.750058\pi\)
\(282\) 0 0
\(283\) 0.896420 1.23382i 0.0532866 0.0733427i −0.781542 0.623852i \(-0.785567\pi\)
0.834829 + 0.550510i \(0.185567\pi\)
\(284\) 0 0
\(285\) −2.70551 8.42459i −0.160261 0.499030i
\(286\) 0 0
\(287\) −3.71200 5.71070i −0.219112 0.337092i
\(288\) 0 0
\(289\) 5.38476 16.5726i 0.316750 0.974858i
\(290\) 0 0
\(291\) −6.34907 4.61287i −0.372189 0.270411i
\(292\) 0 0
\(293\) 9.55648 29.4118i 0.558296 1.71826i −0.128782 0.991673i \(-0.541107\pi\)
0.687077 0.726584i \(-0.258893\pi\)
\(294\) 0 0
\(295\) −21.7904 7.16258i −1.26869 0.417022i
\(296\) 0 0
\(297\) 6.82740 + 9.39711i 0.396166 + 0.545276i
\(298\) 0 0
\(299\) −1.46729 + 2.01956i −0.0848559 + 0.116794i
\(300\) 0 0
\(301\) 8.47262i 0.488354i
\(302\) 0 0
\(303\) 2.46270 0.800179i 0.141478 0.0459691i
\(304\) 0 0
\(305\) −15.0899 + 4.84603i −0.864043 + 0.277483i
\(306\) 0 0
\(307\) −22.8885 + 7.43693i −1.30632 + 0.424448i −0.877774 0.479074i \(-0.840973\pi\)
−0.428542 + 0.903522i \(0.640973\pi\)
\(308\) 0 0
\(309\) 10.7225 3.48394i 0.609980 0.198194i
\(310\) 0 0
\(311\) −17.3351 23.8598i −0.982986 1.35296i −0.935205 0.354106i \(-0.884785\pi\)
−0.0477809 0.998858i \(-0.515215\pi\)
\(312\) 0 0
\(313\) −18.4353 13.3940i −1.04203 0.757076i −0.0713463 0.997452i \(-0.522730\pi\)
−0.970680 + 0.240375i \(0.922730\pi\)
\(314\) 0 0
\(315\) 5.80623 1.86464i 0.327144 0.105061i
\(316\) 0 0
\(317\) −6.81817 + 4.95369i −0.382947 + 0.278227i −0.762559 0.646919i \(-0.776057\pi\)
0.379612 + 0.925146i \(0.376057\pi\)
\(318\) 0 0
\(319\) −15.6746 −0.877607
\(320\) 0 0
\(321\) 6.28419 2.04186i 0.350749 0.113965i
\(322\) 0 0
\(323\) −20.6650 + 28.4430i −1.14983 + 1.58261i
\(324\) 0 0
\(325\) −0.528785 + 1.59035i −0.0293317 + 0.0882170i
\(326\) 0 0
\(327\) 6.05947i 0.335089i
\(328\) 0 0
\(329\) 8.47579 0.467285
\(330\) 0 0
\(331\) 4.22204i 0.232064i −0.993245 0.116032i \(-0.962982\pi\)
0.993245 0.116032i \(-0.0370175\pi\)
\(332\) 0 0
\(333\) −9.01257 + 12.4047i −0.493886 + 0.679775i
\(334\) 0 0
\(335\) 0.839737 1.14753i 0.0458797 0.0626962i
\(336\) 0 0
\(337\) 17.2136i 0.937683i −0.883282 0.468842i \(-0.844671\pi\)
0.883282 0.468842i \(-0.155329\pi\)
\(338\) 0 0
\(339\) 1.96538 + 2.70512i 0.106745 + 0.146922i
\(340\) 0 0
\(341\) 28.0166 + 9.10313i 1.51718 + 0.492962i
\(342\) 0 0
\(343\) −11.0742 8.04585i −0.597949 0.434435i
\(344\) 0 0
\(345\) −3.43412 + 10.4475i −0.184887 + 0.562473i
\(346\) 0 0
\(347\) 9.45217 + 29.0908i 0.507419 + 1.56168i 0.796665 + 0.604421i \(0.206595\pi\)
−0.289246 + 0.957255i \(0.593405\pi\)
\(348\) 0 0
\(349\) −3.26408 10.0458i −0.174722 0.537740i 0.824898 0.565281i \(-0.191232\pi\)
−0.999621 + 0.0275411i \(0.991232\pi\)
\(350\) 0 0
\(351\) −0.380587 + 1.17133i −0.0203143 + 0.0625208i
\(352\) 0 0
\(353\) −19.1523 + 6.22297i −1.01938 + 0.331215i −0.770582 0.637341i \(-0.780034\pi\)
−0.248794 + 0.968556i \(0.580034\pi\)
\(354\) 0 0
\(355\) 9.54948 6.88835i 0.506834 0.365596i
\(356\) 0 0
\(357\) 3.33444 + 2.42261i 0.176477 + 0.128218i
\(358\) 0 0
\(359\) 3.87063 2.81218i 0.204284 0.148421i −0.480940 0.876754i \(-0.659704\pi\)
0.685224 + 0.728333i \(0.259704\pi\)
\(360\) 0 0
\(361\) 13.6765 9.93655i 0.719815 0.522976i
\(362\) 0 0
\(363\) 0.205402 0.632164i 0.0107808 0.0331800i
\(364\) 0 0
\(365\) −10.7772 0.0368411i −0.564104 0.00192835i
\(366\) 0 0
\(367\) −27.2466 8.85297i −1.42226 0.462121i −0.505942 0.862567i \(-0.668855\pi\)
−0.916320 + 0.400446i \(0.868855\pi\)
\(368\) 0 0
\(369\) −15.8557 + 4.25569i −0.825414 + 0.221542i
\(370\) 0 0
\(371\) −3.65444 + 11.2472i −0.189729 + 0.583926i
\(372\) 0 0
\(373\) 7.66205 10.5459i 0.396726 0.546046i −0.563193 0.826326i \(-0.690427\pi\)
0.959919 + 0.280279i \(0.0904271\pi\)
\(374\) 0 0
\(375\) −0.0757172 + 7.38299i −0.00391002 + 0.381256i
\(376\) 0 0
\(377\) −0.976898 1.34458i −0.0503128 0.0692496i
\(378\) 0 0
\(379\) −1.23886 + 0.900083i −0.0636359 + 0.0462342i −0.619148 0.785274i \(-0.712522\pi\)
0.555513 + 0.831508i \(0.312522\pi\)
\(380\) 0 0
\(381\) 0.850813 1.17104i 0.0435885 0.0599944i
\(382\) 0 0
\(383\) 19.5767 1.00032 0.500161 0.865933i \(-0.333274\pi\)
0.500161 + 0.865933i \(0.333274\pi\)
\(384\) 0 0
\(385\) 6.06797 + 4.44041i 0.309252 + 0.226304i
\(386\) 0 0
\(387\) −19.4222 6.31065i −0.987285 0.320788i
\(388\) 0 0
\(389\) −7.00663 21.5642i −0.355250 1.09335i −0.955864 0.293808i \(-0.905077\pi\)
0.600614 0.799539i \(-0.294923\pi\)
\(390\) 0 0
\(391\) 41.5577 13.5029i 2.10166 0.682871i
\(392\) 0 0
\(393\) −9.67172 + 7.02691i −0.487874 + 0.354461i
\(394\) 0 0
\(395\) −25.0128 0.0855045i −1.25853 0.00430220i
\(396\) 0 0
\(397\) 2.74461 8.44703i 0.137748 0.423944i −0.858259 0.513216i \(-0.828454\pi\)
0.996007 + 0.0892717i \(0.0284539\pi\)
\(398\) 0 0
\(399\) −2.47413 3.40534i −0.123861 0.170480i
\(400\) 0 0
\(401\) 2.64667 0.132168 0.0660842 0.997814i \(-0.478949\pi\)
0.0660842 + 0.997814i \(0.478949\pi\)
\(402\) 0 0
\(403\) 0.965220 + 2.97064i 0.0480810 + 0.147978i
\(404\) 0 0
\(405\) 0.0402459 11.7732i 0.00199984 0.585015i
\(406\) 0 0
\(407\) −18.9056 −0.937114
\(408\) 0 0
\(409\) −32.3548 −1.59984 −0.799921 0.600105i \(-0.795125\pi\)
−0.799921 + 0.600105i \(0.795125\pi\)
\(410\) 0 0
\(411\) −13.2644 −0.654284
\(412\) 0 0
\(413\) −10.9115 −0.536920
\(414\) 0 0
\(415\) 19.4009 + 0.0663207i 0.952352 + 0.00325556i
\(416\) 0 0
\(417\) 1.91090 + 5.88114i 0.0935770 + 0.288000i
\(418\) 0 0
\(419\) −5.25518 −0.256732 −0.128366 0.991727i \(-0.540973\pi\)
−0.128366 + 0.991727i \(0.540973\pi\)
\(420\) 0 0
\(421\) −13.6424 18.7772i −0.664890 0.915143i 0.334741 0.942310i \(-0.391351\pi\)
−0.999631 + 0.0271674i \(0.991351\pi\)
\(422\) 0 0
\(423\) 6.31301 19.4294i 0.306949 0.944691i
\(424\) 0 0
\(425\) 23.8511 17.0810i 1.15695 0.828548i
\(426\) 0 0
\(427\) −6.09954 + 4.43157i −0.295177 + 0.214459i
\(428\) 0 0
\(429\) −0.665516 + 0.216239i −0.0321314 + 0.0104401i
\(430\) 0 0
\(431\) −4.08733 12.5795i −0.196880 0.605934i −0.999950 0.0100487i \(-0.996801\pi\)
0.803070 0.595885i \(-0.203199\pi\)
\(432\) 0 0
\(433\) 25.0827 + 8.14986i 1.20540 + 0.391657i 0.841744 0.539877i \(-0.181529\pi\)
0.363653 + 0.931534i \(0.381529\pi\)
\(434\) 0 0
\(435\) −5.90877 4.32391i −0.283304 0.207316i
\(436\) 0 0
\(437\) −44.6255 −2.13473
\(438\) 0 0
\(439\) −11.6245 + 15.9997i −0.554807 + 0.763626i −0.990655 0.136395i \(-0.956449\pi\)
0.435848 + 0.900020i \(0.356449\pi\)
\(440\) 0 0
\(441\) −12.1726 + 8.84393i −0.579649 + 0.421140i
\(442\) 0 0
\(443\) −11.6748 16.0689i −0.554685 0.763458i 0.435954 0.899969i \(-0.356411\pi\)
−0.990639 + 0.136511i \(0.956411\pi\)
\(444\) 0 0
\(445\) 1.07632 + 3.35151i 0.0510225 + 0.158877i
\(446\) 0 0
\(447\) 7.83772 10.7877i 0.370712 0.510241i
\(448\) 0 0
\(449\) 3.30193 10.1623i 0.155828 0.479589i −0.842416 0.538828i \(-0.818867\pi\)
0.998244 + 0.0592389i \(0.0188674\pi\)
\(450\) 0 0
\(451\) −15.7362 12.7320i −0.740991 0.599525i
\(452\) 0 0
\(453\) 2.71870 + 0.883358i 0.127735 + 0.0415038i
\(454\) 0 0
\(455\) −0.00272539 + 0.797262i −0.000127768 + 0.0373762i
\(456\) 0 0
\(457\) 0.501380 1.54309i 0.0234536 0.0721827i −0.938645 0.344886i \(-0.887918\pi\)
0.962098 + 0.272703i \(0.0879177\pi\)
\(458\) 0 0
\(459\) 17.4412 12.6718i 0.814085 0.591467i
\(460\) 0 0
\(461\) 5.81401 4.22412i 0.270785 0.196737i −0.444103 0.895976i \(-0.646478\pi\)
0.714888 + 0.699239i \(0.246478\pi\)
\(462\) 0 0
\(463\) −14.7455 10.7133i −0.685283 0.497887i 0.189823 0.981818i \(-0.439209\pi\)
−0.875106 + 0.483931i \(0.839209\pi\)
\(464\) 0 0
\(465\) 8.05014 + 11.1601i 0.373316 + 0.517537i
\(466\) 0 0
\(467\) 10.1947 3.31247i 0.471756 0.153283i −0.0634839 0.997983i \(-0.520221\pi\)
0.535240 + 0.844700i \(0.320221\pi\)
\(468\) 0 0
\(469\) 0.209031 0.643332i 0.00965216 0.0297063i
\(470\) 0 0
\(471\) 4.30887 + 13.2613i 0.198542 + 0.611050i
\(472\) 0 0
\(473\) −7.78097 23.9474i −0.357769 1.10110i
\(474\) 0 0
\(475\) −28.5567 + 9.06325i −1.31027 + 0.415851i
\(476\) 0 0
\(477\) 23.0606 + 16.7545i 1.05587 + 0.767135i
\(478\) 0 0
\(479\) 16.4705 + 5.35157i 0.752554 + 0.244520i 0.660080 0.751195i \(-0.270522\pi\)
0.0924743 + 0.995715i \(0.470522\pi\)
\(480\) 0 0
\(481\) −1.17827 1.62174i −0.0537243 0.0739452i
\(482\) 0 0
\(483\) 5.23155i 0.238044i
\(484\) 0 0
\(485\) −15.6925 + 21.4443i −0.712560 + 0.973737i
\(486\) 0 0
\(487\) −6.32367 + 8.70379i −0.286553 + 0.394406i −0.927891 0.372852i \(-0.878380\pi\)
0.641338 + 0.767259i \(0.278380\pi\)
\(488\) 0 0
\(489\) 10.5967i 0.479198i
\(490\) 0 0
\(491\) −19.2401 −0.868295 −0.434148 0.900842i \(-0.642950\pi\)
−0.434148 + 0.900842i \(0.642950\pi\)
\(492\) 0 0
\(493\) 29.0922i 1.31025i
\(494\) 0 0
\(495\) 14.6985 10.6025i 0.660651 0.476549i
\(496\) 0 0
\(497\) 3.29235 4.53153i 0.147682 0.203267i
\(498\) 0 0
\(499\) 10.9742 3.56575i 0.491274 0.159625i −0.0528950 0.998600i \(-0.516845\pi\)
0.544169 + 0.838975i \(0.316845\pi\)
\(500\) 0 0
\(501\) 7.74184 0.345880
\(502\) 0 0
\(503\) 3.65664 2.65671i 0.163042 0.118457i −0.503273 0.864128i \(-0.667871\pi\)
0.666314 + 0.745671i \(0.267871\pi\)
\(504\) 0 0
\(505\) −2.68087 8.34787i −0.119297 0.371475i
\(506\) 0 0
\(507\) 6.88544 + 5.00256i 0.305793 + 0.222172i
\(508\) 0 0
\(509\) 12.5008 + 17.2059i 0.554090 + 0.762639i 0.990560 0.137080i \(-0.0437716\pi\)
−0.436470 + 0.899719i \(0.643772\pi\)
\(510\) 0 0
\(511\) −4.87589 + 1.58427i −0.215697 + 0.0700841i
\(512\) 0 0
\(513\) −20.9393 + 6.80360i −0.924494 + 0.300386i
\(514\) 0 0
\(515\) −11.6724 36.3462i −0.514347 1.60160i
\(516\) 0 0
\(517\) 23.9563 7.78388i 1.05360 0.342335i
\(518\) 0 0
\(519\) 7.52468i 0.330297i
\(520\) 0 0
\(521\) 17.0563 23.4760i 0.747250 1.02850i −0.250919 0.968008i \(-0.580733\pi\)
0.998169 0.0604927i \(-0.0192672\pi\)
\(522\) 0 0
\(523\) 3.18174 + 4.37928i 0.139128 + 0.191493i 0.872895 0.487908i \(-0.162240\pi\)
−0.733767 + 0.679401i \(0.762240\pi\)
\(524\) 0 0
\(525\) 1.06251 + 3.34777i 0.0463716 + 0.146108i
\(526\) 0 0
\(527\) 16.8955 51.9991i 0.735982 2.26512i
\(528\) 0 0
\(529\) 26.2638 + 19.0818i 1.14191 + 0.829643i
\(530\) 0 0
\(531\) −8.12719 + 25.0129i −0.352690 + 1.08547i
\(532\) 0 0
\(533\) 0.111423 2.14338i 0.00482629 0.0928402i
\(534\) 0 0
\(535\) −6.84091 21.3017i −0.295758 0.920951i
\(536\) 0 0
\(537\) 1.77640 2.44501i 0.0766573 0.105510i
\(538\) 0 0
\(539\) −17.6438 5.73283i −0.759973 0.246930i
\(540\) 0 0
\(541\) −12.3217 + 8.95227i −0.529753 + 0.384888i −0.820265 0.571983i \(-0.806174\pi\)
0.290512 + 0.956871i \(0.406174\pi\)
\(542\) 0 0
\(543\) −3.52783 4.85564i −0.151394 0.208375i
\(544\) 0 0
\(545\) −20.5171 0.0701365i −0.878857 0.00300432i
\(546\) 0 0
\(547\) 20.6548 0.883135 0.441568 0.897228i \(-0.354423\pi\)
0.441568 + 0.897228i \(0.354423\pi\)
\(548\) 0 0
\(549\) 5.61559 + 17.2830i 0.239668 + 0.737621i
\(550\) 0 0
\(551\) 9.18115 28.2567i 0.391130 1.20377i
\(552\) 0 0
\(553\) −11.3165 + 3.67694i −0.481224 + 0.156359i
\(554\) 0 0
\(555\) −7.12675 5.21520i −0.302514 0.221373i
\(556\) 0 0
\(557\) −32.5963 + 23.6826i −1.38115 + 1.00346i −0.384377 + 0.923176i \(0.625584\pi\)
−0.996772 + 0.0802870i \(0.974416\pi\)
\(558\) 0 0
\(559\) 1.56930 2.15995i 0.0663742 0.0913563i
\(560\) 0 0
\(561\) 11.6494 + 3.78513i 0.491839 + 0.159808i
\(562\) 0 0
\(563\) 11.5129 8.36462i 0.485211 0.352527i −0.318129 0.948048i \(-0.603054\pi\)
0.803340 + 0.595521i \(0.203054\pi\)
\(564\) 0 0
\(565\) 9.18217 6.62340i 0.386297 0.278649i
\(566\) 0 0
\(567\) −1.73069 5.32652i −0.0726821 0.223693i
\(568\) 0 0
\(569\) −28.0793 20.4008i −1.17714 0.855245i −0.185298 0.982682i \(-0.559325\pi\)
−0.991847 + 0.127437i \(0.959325\pi\)
\(570\) 0 0
\(571\) 13.0777i 0.547285i −0.961832 0.273642i \(-0.911772\pi\)
0.961832 0.273642i \(-0.0882284\pi\)
\(572\) 0 0
\(573\) 12.0602i 0.503821i
\(574\) 0 0
\(575\) 35.3350 + 11.7487i 1.47357 + 0.489956i
\(576\) 0 0
\(577\) 19.9728 0.831477 0.415738 0.909484i \(-0.363523\pi\)
0.415738 + 0.909484i \(0.363523\pi\)
\(578\) 0 0
\(579\) 9.69099 + 7.04092i 0.402744 + 0.292611i
\(580\) 0 0
\(581\) 8.77749 2.85198i 0.364152 0.118320i
\(582\) 0 0
\(583\) 35.1457i 1.45559i
\(584\) 0 0
\(585\) 1.82557 + 0.600071i 0.0754780 + 0.0248099i
\(586\) 0 0
\(587\) −0.0725942 + 0.223422i −0.00299628 + 0.00922161i −0.952543 0.304403i \(-0.901543\pi\)
0.949547 + 0.313624i \(0.101543\pi\)
\(588\) 0 0
\(589\) −32.8206 + 45.1737i −1.35235 + 1.86135i
\(590\) 0 0
\(591\) −9.98648 13.7452i −0.410789 0.565402i
\(592\) 0 0
\(593\) 7.28724 + 22.4278i 0.299251 + 0.921000i 0.981760 + 0.190123i \(0.0608886\pi\)
−0.682509 + 0.730877i \(0.739111\pi\)
\(594\) 0 0
\(595\) 8.24146 11.2622i 0.337867 0.461707i
\(596\) 0 0
\(597\) 1.42231 + 0.462135i 0.0582111 + 0.0189139i
\(598\) 0 0
\(599\) −4.29555 13.2203i −0.175511 0.540168i 0.824145 0.566379i \(-0.191656\pi\)
−0.999656 + 0.0262105i \(0.991656\pi\)
\(600\) 0 0
\(601\) 5.81938i 0.237377i 0.992932 + 0.118689i \(0.0378690\pi\)
−0.992932 + 0.118689i \(0.962131\pi\)
\(602\) 0 0
\(603\) −1.31905 0.958343i −0.0537157 0.0390267i
\(604\) 0 0
\(605\) −2.13811 0.702802i −0.0869263 0.0285730i
\(606\) 0 0
\(607\) −16.0074 22.0323i −0.649722 0.894265i 0.349366 0.936987i \(-0.386397\pi\)
−0.999087 + 0.0427216i \(0.986397\pi\)
\(608\) 0 0
\(609\) −3.31260 1.07633i −0.134233 0.0436150i
\(610\) 0 0
\(611\) 2.16076 + 1.56988i 0.0874150 + 0.0635107i
\(612\) 0 0
\(613\) 4.31509 + 1.40206i 0.174285 + 0.0566286i 0.394860 0.918741i \(-0.370793\pi\)
−0.220575 + 0.975370i \(0.570793\pi\)
\(614\) 0 0
\(615\) −2.41984 9.14045i −0.0975775 0.368579i
\(616\) 0 0
\(617\) −9.87253 3.20778i −0.397453 0.129140i 0.103469 0.994633i \(-0.467006\pi\)
−0.500922 + 0.865492i \(0.667006\pi\)
\(618\) 0 0
\(619\) 9.90738 + 7.19813i 0.398211 + 0.289317i 0.768812 0.639475i \(-0.220848\pi\)
−0.370601 + 0.928792i \(0.620848\pi\)
\(620\) 0 0
\(621\) 26.0249 + 8.45602i 1.04435 + 0.339328i
\(622\) 0 0
\(623\) 0.984269 + 1.35473i 0.0394339 + 0.0542761i
\(624\) 0 0
\(625\) 24.9977 + 0.341832i 0.999907 + 0.0136733i
\(626\) 0 0
\(627\) −10.1203 7.35284i −0.404167 0.293644i
\(628\) 0 0
\(629\) 35.0890i 1.39909i
\(630\) 0 0
\(631\) −5.16557 15.8980i −0.205638 0.632889i −0.999687 0.0250343i \(-0.992030\pi\)
0.794049 0.607854i \(-0.207970\pi\)
\(632\) 0 0
\(633\) −3.00930 0.977781i −0.119609 0.0388633i
\(634\) 0 0
\(635\) −3.95526 2.89438i −0.156960 0.114860i
\(636\) 0 0
\(637\) −0.607861 1.87080i −0.0240843 0.0741239i
\(638\) 0 0
\(639\) −7.93559 10.9224i −0.313927 0.432084i
\(640\) 0 0
\(641\) 4.49182 6.18246i 0.177416 0.244193i −0.711042 0.703149i \(-0.751777\pi\)
0.888459 + 0.458956i \(0.151777\pi\)
\(642\) 0 0
\(643\) 13.3593 41.1157i 0.526839 1.62144i −0.233812 0.972282i \(-0.575120\pi\)
0.760651 0.649162i \(-0.224880\pi\)
\(644\) 0 0
\(645\) 3.67285 11.1738i 0.144618 0.439966i
\(646\) 0 0
\(647\) 41.3690i 1.62638i 0.581996 + 0.813192i \(0.302272\pi\)
−0.581996 + 0.813192i \(0.697728\pi\)
\(648\) 0 0
\(649\) −30.8407 + 10.0208i −1.21060 + 0.393349i
\(650\) 0 0
\(651\) 5.29582 + 3.84764i 0.207559 + 0.150801i
\(652\) 0 0
\(653\) 4.42966 0.173346 0.0866731 0.996237i \(-0.472376\pi\)
0.0866731 + 0.996237i \(0.472376\pi\)
\(654\) 0 0
\(655\) 23.6809 + 32.8294i 0.925290 + 1.28275i
\(656\) 0 0
\(657\) 12.3572i 0.482102i
\(658\) 0 0
\(659\) 42.8788i 1.67032i 0.550007 + 0.835160i \(0.314625\pi\)
−0.550007 + 0.835160i \(0.685375\pi\)
\(660\) 0 0
\(661\) 21.1233 + 15.3469i 0.821599 + 0.596927i 0.917170 0.398496i \(-0.130468\pi\)
−0.0955709 + 0.995423i \(0.530468\pi\)
\(662\) 0 0
\(663\) 0.401343 + 1.23521i 0.0155869 + 0.0479715i
\(664\) 0 0
\(665\) −11.5590 + 8.33788i −0.448239 + 0.323329i
\(666\) 0 0
\(667\) −29.8744 + 21.7050i −1.15674 + 0.840423i
\(668\) 0 0
\(669\) −12.9879 4.22002i −0.502141 0.163155i
\(670\) 0 0
\(671\) −13.1702 + 18.1272i −0.508429 + 0.699792i
\(672\) 0 0
\(673\) 1.73504 1.26058i 0.0668809 0.0485918i −0.553842 0.832621i \(-0.686839\pi\)
0.620723 + 0.784030i \(0.286839\pi\)
\(674\) 0 0
\(675\) 18.3712 + 0.125603i 0.707109 + 0.00483447i
\(676\) 0 0
\(677\) 7.14351 2.32107i 0.274547 0.0892059i −0.168507 0.985700i \(-0.553895\pi\)
0.443055 + 0.896495i \(0.353895\pi\)
\(678\) 0 0
\(679\) −3.90625 + 12.0222i −0.149908 + 0.461369i
\(680\) 0 0
\(681\) 0.415722 + 1.27946i 0.0159305 + 0.0490291i
\(682\) 0 0
\(683\) −2.00945 −0.0768896 −0.0384448 0.999261i \(-0.512240\pi\)
−0.0384448 + 0.999261i \(0.512240\pi\)
\(684\) 0 0
\(685\) −0.153531 + 44.9127i −0.00586613 + 1.71603i
\(686\) 0 0
\(687\) 9.32508 + 12.8349i 0.355774 + 0.489681i
\(688\) 0 0
\(689\) −3.01485 + 2.19041i −0.114856 + 0.0834481i
\(690\) 0 0
\(691\) 23.2165 + 7.54351i 0.883198 + 0.286968i 0.715285 0.698833i \(-0.246297\pi\)
0.167914 + 0.985802i \(0.446297\pi\)
\(692\) 0 0
\(693\) 5.06758 6.97492i 0.192501 0.264955i
\(694\) 0 0
\(695\) 19.9354 6.40215i 0.756194 0.242848i
\(696\) 0 0
\(697\) −23.6307 + 29.2067i −0.895078 + 1.10628i
\(698\) 0 0
\(699\) −2.28918 + 7.04538i −0.0865848 + 0.266481i
\(700\) 0 0
\(701\) 17.4256 + 12.6604i 0.658155 + 0.478178i 0.866039 0.499976i \(-0.166658\pi\)
−0.207884 + 0.978153i \(0.566658\pi\)
\(702\) 0 0
\(703\) 11.0737 34.0812i 0.417651 1.28540i
\(704\) 0 0
\(705\) 11.1779 + 3.67422i 0.420985 + 0.138379i
\(706\) 0 0
\(707\) −2.45159 3.37433i −0.0922016 0.126905i
\(708\) 0 0
\(709\) −10.8949 + 14.9955i −0.409166 + 0.563169i −0.963015 0.269449i \(-0.913159\pi\)
0.553849 + 0.832617i \(0.313159\pi\)
\(710\) 0 0
\(711\) 28.6799i 1.07558i
\(712\) 0 0
\(713\) 66.0027 21.4456i 2.47182 0.803143i
\(714\) 0 0
\(715\) 0.724475 + 2.25592i 0.0270938 + 0.0843665i
\(716\) 0 0
\(717\) 8.74831 2.84250i 0.326711 0.106155i
\(718\) 0 0
\(719\) 0.711334 0.231126i 0.0265283 0.00861956i −0.295723 0.955274i \(-0.595560\pi\)
0.322251 + 0.946654i \(0.395560\pi\)
\(720\) 0 0
\(721\) −10.6741 14.6917i −0.397525 0.547146i
\(722\) 0 0
\(723\) 13.3026 + 9.66491i 0.494729 + 0.359442i
\(724\) 0 0
\(725\) −14.7090 + 19.9568i −0.546279 + 0.741178i
\(726\) 0 0
\(727\) 24.2760 17.6376i 0.900348 0.654141i −0.0382076 0.999270i \(-0.512165\pi\)
0.938555 + 0.345129i \(0.112165\pi\)
\(728\) 0 0
\(729\) −6.21981 −0.230363
\(730\) 0 0
\(731\) −44.4467 + 14.4416i −1.64392 + 0.534142i
\(732\) 0 0
\(733\) 25.6344 35.2828i 0.946829 1.30320i −0.00609265 0.999981i \(-0.501939\pi\)
0.952922 0.303217i \(-0.0980606\pi\)
\(734\) 0 0
\(735\) −5.06969 7.02823i −0.186998 0.259240i
\(736\) 0 0
\(737\) 2.01031i 0.0740506i
\(738\) 0 0
\(739\) −14.2424 −0.523914 −0.261957 0.965080i \(-0.584368\pi\)
−0.261957 + 0.965080i \(0.584368\pi\)
\(740\) 0 0
\(741\) 1.32639i 0.0487262i
\(742\) 0 0
\(743\) 3.42570 4.71507i 0.125677 0.172979i −0.741542 0.670906i \(-0.765905\pi\)
0.867219 + 0.497927i \(0.165905\pi\)
\(744\) 0 0
\(745\) −36.4360 26.6631i −1.33491 0.976860i
\(746\) 0 0
\(747\) 22.2453i 0.813912i
\(748\) 0 0
\(749\) −6.25585 8.61043i −0.228584 0.314618i
\(750\) 0 0
\(751\) 6.94331 + 2.25602i 0.253365 + 0.0823232i 0.432946 0.901420i \(-0.357474\pi\)
−0.179581 + 0.983743i \(0.557474\pi\)
\(752\) 0 0
\(753\) −8.58908 6.24033i −0.313003 0.227410i
\(754\) 0 0
\(755\) 3.02248 9.19518i 0.109999 0.334647i
\(756\) 0 0
\(757\) 4.06255 + 12.5033i 0.147656 + 0.454439i 0.997343 0.0728489i \(-0.0232091\pi\)
−0.849687 + 0.527288i \(0.823209\pi\)
\(758\) 0 0
\(759\) 4.80448 + 14.7867i 0.174391 + 0.536722i
\(760\) 0 0
\(761\) −2.32548 + 7.15709i −0.0842986 + 0.259444i −0.984317 0.176407i \(-0.943553\pi\)
0.900019 + 0.435851i \(0.143553\pi\)
\(762\) 0 0
\(763\) −9.28251 + 3.01607i −0.336049 + 0.109189i
\(764\) 0 0
\(765\) −19.6785 27.2807i −0.711477 0.986336i
\(766\) 0 0
\(767\) −2.78170 2.02103i −0.100442 0.0729750i
\(768\) 0 0
\(769\) 3.09767 2.25059i 0.111705 0.0811582i −0.530530 0.847666i \(-0.678007\pi\)
0.642235 + 0.766508i \(0.278007\pi\)
\(770\) 0 0
\(771\) 5.93868 4.31470i 0.213876 0.155390i
\(772\) 0 0
\(773\) 3.60376 11.0912i 0.129618 0.398924i −0.865096 0.501607i \(-0.832743\pi\)
0.994714 + 0.102682i \(0.0327425\pi\)
\(774\) 0 0
\(775\) 37.8808 27.1283i 1.36072 0.974477i
\(776\) 0 0
\(777\) −3.99542 1.29819i −0.143335 0.0465724i
\(778\) 0 0
\(779\) 32.1693 20.9103i 1.15259 0.749190i
\(780\) 0 0
\(781\) 5.14402 15.8317i 0.184068 0.566502i
\(782\) 0 0
\(783\) −10.7086 + 14.7392i −0.382695 + 0.526735i
\(784\) 0 0
\(785\) 44.9523 14.4362i 1.60441 0.515249i
\(786\) 0 0
\(787\) 11.5799 + 15.9384i 0.412780 + 0.568143i 0.963894 0.266287i \(-0.0857970\pi\)
−0.551114 + 0.834430i \(0.685797\pi\)
\(788\) 0 0
\(789\) −3.64687 + 2.64960i −0.129832 + 0.0943284i
\(790\) 0 0
\(791\) 3.16571 4.35723i 0.112560 0.154925i
\(792\) 0 0
\(793\) −2.37579 −0.0843668
\(794\) 0 0
\(795\) −9.69513 + 13.2487i −0.343851 + 0.469884i
\(796\) 0 0
\(797\) 3.78166 + 1.22874i 0.133953 + 0.0435241i 0.375226 0.926933i \(-0.377565\pi\)
−0.241273 + 0.970457i \(0.577565\pi\)
\(798\) 0 0
\(799\) −14.4470 44.4633i −0.511098 1.57300i
\(800\) 0 0
\(801\) 3.83862 1.24724i 0.135631 0.0440692i
\(802\) 0 0
\(803\) −12.3265 + 8.95571i −0.434992 + 0.316040i
\(804\) 0 0
\(805\) 17.7138 + 0.0605536i 0.624330 + 0.00213423i
\(806\) 0 0
\(807\) 4.55478 14.0182i 0.160336 0.493463i
\(808\) 0 0
\(809\) 25.8469 + 35.5752i 0.908727 + 1.25076i 0.967599 + 0.252491i \(0.0812497\pi\)
−0.0588719 + 0.998266i \(0.518750\pi\)
\(810\) 0 0
\(811\) −26.1811 −0.919341 −0.459671 0.888089i \(-0.652033\pi\)
−0.459671 + 0.888089i \(0.652033\pi\)
\(812\) 0 0
\(813\) 5.00920 + 15.4167i 0.175680 + 0.540689i
\(814\) 0 0
\(815\) 35.8799 + 0.122653i 1.25682 + 0.00429636i
\(816\) 0 0
\(817\) 47.7277 1.66978
\(818\) 0 0
\(819\) 0.914149 0.0319430
\(820\) 0 0
\(821\) −29.1646 −1.01785 −0.508925 0.860811i \(-0.669957\pi\)
−0.508925 + 0.860811i \(0.669957\pi\)
\(822\) 0 0
\(823\) 31.5017 1.09808 0.549040 0.835796i \(-0.314993\pi\)
0.549040 + 0.835796i \(0.314993\pi\)
\(824\) 0 0
\(825\) 6.07758 + 8.48649i 0.211594 + 0.295462i
\(826\) 0 0
\(827\) 8.03286 + 24.7226i 0.279330 + 0.859689i 0.988041 + 0.154190i \(0.0492768\pi\)
−0.708711 + 0.705498i \(0.750723\pi\)
\(828\) 0 0
\(829\) −24.7547 −0.859766 −0.429883 0.902884i \(-0.641445\pi\)
−0.429883 + 0.902884i \(0.641445\pi\)
\(830\) 0 0
\(831\) 4.20986 + 5.79438i 0.146039 + 0.201005i
\(832\) 0 0
\(833\) −10.6402 + 32.7472i −0.368661 + 1.13462i
\(834\) 0 0
\(835\) 0.0896094 26.2136i 0.00310106 0.907158i
\(836\) 0 0
\(837\) 27.7004 20.1255i 0.957466 0.695640i
\(838\) 0 0
\(839\) −35.1913 + 11.4343i −1.21494 + 0.394758i −0.845236 0.534393i \(-0.820540\pi\)
−0.369703 + 0.929150i \(0.620540\pi\)
\(840\) 0 0
\(841\) 1.36425 + 4.19872i 0.0470430 + 0.144784i
\(842\) 0 0
\(843\) −9.56295 3.10719i −0.329366 0.107017i
\(844\) 0 0
\(845\) 17.0182 23.2559i 0.585444 0.800028i
\(846\) 0 0
\(847\) −1.07065 −0.0367880
\(848\) 0 0
\(849\) 0.591986 0.814799i 0.0203169 0.0279638i
\(850\) 0 0
\(851\) −36.0325 + 26.1791i −1.23518 + 0.897409i
\(852\) 0 0
\(853\) 2.04171 + 2.81017i 0.0699068 + 0.0962185i 0.842539 0.538636i \(-0.181060\pi\)
−0.772632 + 0.634854i \(0.781060\pi\)
\(854\) 0 0
\(855\) 10.5038 + 32.7075i 0.359224 + 1.11857i
\(856\) 0 0
\(857\) 21.8788 30.1136i 0.747367 1.02866i −0.250794 0.968040i \(-0.580692\pi\)
0.998161 0.0606215i \(-0.0193083\pi\)
\(858\) 0 0
\(859\) −8.79316 + 27.0626i −0.300019 + 0.923363i 0.681470 + 0.731846i \(0.261341\pi\)
−0.981489 + 0.191517i \(0.938659\pi\)
\(860\) 0 0
\(861\) −2.45136 3.77129i −0.0835423 0.128525i
\(862\) 0 0
\(863\) −1.31947 0.428723i −0.0449154 0.0145939i 0.286473 0.958088i \(-0.407517\pi\)
−0.331389 + 0.943494i \(0.607517\pi\)
\(864\) 0 0
\(865\) −25.4783 0.0870959i −0.866288 0.00296135i
\(866\) 0 0
\(867\) 3.55604 10.9444i 0.120769 0.371690i
\(868\) 0 0
\(869\) −28.6085 + 20.7853i −0.970477 + 0.705093i
\(870\) 0 0
\(871\) 0.172447 0.125290i 0.00584313 0.00424529i
\(872\) 0 0
\(873\) 24.6495 + 17.9089i 0.834260 + 0.606126i
\(874\) 0 0
\(875\) 11.3477 3.55886i 0.383623 0.120311i
\(876\) 0 0
\(877\) −19.2245 + 6.24642i −0.649165 + 0.210927i −0.615046 0.788491i \(-0.710863\pi\)
−0.0341192 + 0.999418i \(0.510863\pi\)
\(878\) 0 0
\(879\) 6.31100 19.4233i 0.212865 0.655130i
\(880\) 0 0
\(881\) 2.70122 + 8.31350i 0.0910064 + 0.280089i 0.986192 0.165604i \(-0.0529573\pi\)
−0.895186 + 0.445693i \(0.852957\pi\)
\(882\) 0 0
\(883\) −8.29249 25.5217i −0.279065 0.858872i −0.988115 0.153715i \(-0.950876\pi\)
0.709051 0.705158i \(-0.249124\pi\)
\(884\) 0 0
\(885\) −14.3902 4.73010i −0.483720 0.159000i
\(886\) 0 0
\(887\) 14.4004 + 10.4625i 0.483519 + 0.351297i 0.802687 0.596401i \(-0.203403\pi\)
−0.319167 + 0.947698i \(0.603403\pi\)
\(888\) 0 0
\(889\) −2.21741 0.720481i −0.0743696 0.0241642i
\(890\) 0 0
\(891\) −9.78338 13.4657i −0.327756 0.451117i
\(892\) 0 0
\(893\) 47.7456i 1.59774i
\(894\) 0 0
\(895\) −8.25814 6.04313i −0.276039 0.201999i
\(896\) 0 0
\(897\) −0.968986 + 1.33370i −0.0323535 + 0.0445308i
\(898\) 0 0
\(899\) 46.2048i 1.54102i
\(900\) 0 0
\(901\) 65.2309 2.17316
\(902\) 0 0
\(903\) 5.59523i 0.186198i
\(904\) 0 0
\(905\) −16.4818 + 11.8889i −0.547875 + 0.395200i
\(906\) 0 0
\(907\) 20.4739 28.1799i 0.679826 0.935700i −0.320106 0.947382i \(-0.603719\pi\)
0.999932 + 0.0116819i \(0.00371856\pi\)
\(908\) 0 0
\(909\) −9.56114 + 3.10660i −0.317123 + 0.103040i
\(910\) 0 0
\(911\) 7.64944 0.253437 0.126719 0.991939i \(-0.459555\pi\)
0.126719 + 0.991939i \(0.459555\pi\)
\(912\) 0 0
\(913\) 22.1899 16.1219i 0.734378 0.533557i
\(914\) 0 0
\(915\) −9.96519 + 3.20027i −0.329439 + 0.105798i
\(916\) 0 0
\(917\) 15.5786 + 11.3185i 0.514451 + 0.373770i
\(918\) 0 0
\(919\) 2.68553 + 3.69632i 0.0885876 + 0.121930i 0.851010 0.525149i \(-0.175990\pi\)
−0.762423 + 0.647079i \(0.775990\pi\)
\(920\) 0 0
\(921\) −15.1153 + 4.91127i −0.498067 + 0.161832i
\(922\) 0 0
\(923\) 1.67866 0.545429i 0.0552537 0.0179530i
\(924\) 0 0
\(925\) −17.7410 + 24.0706i −0.583320 + 0.791435i
\(926\) 0 0
\(927\) −41.6287 + 13.5260i −1.36727 + 0.444252i
\(928\) 0 0
\(929\) 23.2050i 0.761330i 0.924713 + 0.380665i \(0.124305\pi\)
−0.924713 + 0.380665i \(0.875695\pi\)
\(930\) 0 0
\(931\) 20.6692 28.4488i 0.677407 0.932371i
\(932\) 0 0
\(933\) −11.4480 15.7568i −0.374789 0.515853i
\(934\) 0 0
\(935\) 12.9511 39.4007i 0.423548 1.28854i
\(936\) 0 0
\(937\) −8.30676 + 25.5656i −0.271370 + 0.835191i 0.718787 + 0.695230i \(0.244698\pi\)
−0.990157 + 0.139961i \(0.955302\pi\)
\(938\) 0 0
\(939\) −12.1745 8.84529i −0.397300 0.288655i
\(940\) 0 0
\(941\) 13.2076 40.6490i 0.430557 1.32512i −0.467015 0.884250i \(-0.654670\pi\)
0.897572 0.440869i \(-0.145330\pi\)
\(942\) 0 0
\(943\) −47.6224 2.47564i −1.55080 0.0806180i
\(944\) 0 0
\(945\) 8.32098 2.67224i 0.270681 0.0869278i
\(946\) 0 0
\(947\) −6.59295 + 9.07441i −0.214242 + 0.294879i −0.902589 0.430502i \(-0.858336\pi\)
0.688348 + 0.725381i \(0.258336\pi\)
\(948\) 0 0
\(949\) −1.53647 0.499228i −0.0498758 0.0162056i
\(950\) 0 0
\(951\) −4.50265 + 3.27137i −0.146008 + 0.106081i
\(952\) 0 0
\(953\) −0.947106 1.30358i −0.0306798 0.0422271i 0.793402 0.608699i \(-0.208308\pi\)
−0.824081 + 0.566472i \(0.808308\pi\)
\(954\) 0 0
\(955\) 40.8353 + 0.139593i 1.32140 + 0.00451712i
\(956\) 0 0
\(957\) −10.3513 −0.334610
\(958\) 0 0
\(959\) 6.60228 + 20.3197i 0.213199 + 0.656158i
\(960\) 0 0
\(961\) 17.2543 53.1033i 0.556590 1.71301i
\(962\) 0 0
\(963\) −24.3976 + 7.92727i −0.786202 + 0.255453i
\(964\) 0 0
\(965\) 23.9525 32.7318i 0.771057 1.05368i
\(966\) 0 0
\(967\) 28.6428 20.8102i 0.921090 0.669211i −0.0227051 0.999742i \(-0.507228\pi\)
0.943795 + 0.330531i \(0.107228\pi\)
\(968\) 0 0
\(969\) −13.6470 + 18.7835i −0.438404 + 0.603412i
\(970\) 0 0
\(971\) 3.99310 + 1.29744i 0.128145 + 0.0416368i 0.372387 0.928077i \(-0.378539\pi\)
−0.244243 + 0.969714i \(0.578539\pi\)
\(972\) 0 0
\(973\) 8.05818 5.85461i 0.258333 0.187690i
\(974\) 0 0
\(975\) −0.349204 + 1.05025i −0.0111835 + 0.0336350i
\(976\) 0 0
\(977\) 11.0894 + 34.1297i 0.354781 + 1.09190i 0.956136 + 0.292922i \(0.0946278\pi\)
−0.601355 + 0.798982i \(0.705372\pi\)
\(978\) 0 0
\(979\) 4.02612 + 2.92514i 0.128675 + 0.0934880i
\(980\) 0 0
\(981\) 23.5252i 0.751101i
\(982\) 0 0
\(983\) 30.3353i 0.967547i −0.875193 0.483773i \(-0.839266\pi\)
0.875193 0.483773i \(-0.160734\pi\)
\(984\) 0 0
\(985\) −46.6564 + 33.6547i −1.48660 + 1.07233i
\(986\) 0 0
\(987\) 5.59732 0.178165
\(988\) 0 0
\(989\) −47.9905 34.8672i −1.52601 1.10871i
\(990\) 0 0
\(991\) 0.911277 0.296092i 0.0289477 0.00940567i −0.294507 0.955649i \(-0.595156\pi\)
0.323455 + 0.946244i \(0.395156\pi\)
\(992\) 0 0
\(993\) 2.78819i 0.0884805i
\(994\) 0 0
\(995\) 1.58123 4.81052i 0.0501285 0.152504i
\(996\) 0 0
\(997\) 9.30869 28.6492i 0.294809 0.907329i −0.688476 0.725259i \(-0.741720\pi\)
0.983285 0.182070i \(-0.0582799\pi\)
\(998\) 0 0
\(999\) −12.9160 + 17.7774i −0.408644 + 0.562451i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.13 yes 80
5.4 even 2 inner 820.2.bi.a.189.8 80
41.23 even 10 inner 820.2.bi.a.269.8 yes 80
205.64 even 10 inner 820.2.bi.a.269.13 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.8 80 5.4 even 2 inner
820.2.bi.a.189.13 yes 80 1.1 even 1 trivial
820.2.bi.a.269.8 yes 80 41.23 even 10 inner
820.2.bi.a.269.13 yes 80 205.64 even 10 inner