Properties

Label 820.2.bi.a.189.12
Level $820$
Weight $2$
Character 820.189
Analytic conductor $6.548$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(189,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.bi (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 189.12
Character \(\chi\) \(=\) 820.189
Dual form 820.2.bi.a.269.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.389760 q^{3} +(-0.0716037 + 2.23492i) q^{5} +(-0.300283 - 0.924177i) q^{7} -2.84809 q^{9} +(-2.79647 - 3.84902i) q^{11} +(-1.31080 + 4.03424i) q^{13} +(-0.0279083 + 0.871083i) q^{15} +(-4.26120 + 3.09594i) q^{17} +(-1.78645 + 0.580454i) q^{19} +(-0.117038 - 0.360207i) q^{21} +(2.71321 + 0.881575i) q^{23} +(-4.98975 - 0.320057i) q^{25} -2.27935 q^{27} +(-0.636492 + 0.876056i) q^{29} +(2.33511 - 1.69655i) q^{31} +(-1.08995 - 1.50019i) q^{33} +(2.08696 - 0.604935i) q^{35} +(0.656105 - 0.903051i) q^{37} +(-0.510899 + 1.57238i) q^{39} +(-5.24987 - 3.66591i) q^{41} +(-6.41395 - 2.08402i) q^{43} +(0.203934 - 6.36525i) q^{45} +(-1.49531 + 4.60210i) q^{47} +(4.89919 - 3.55947i) q^{49} +(-1.66085 + 1.20668i) q^{51} +(-3.20899 - 2.33147i) q^{53} +(8.80249 - 5.97430i) q^{55} +(-0.696288 + 0.226238i) q^{57} +(-2.35663 + 7.25296i) q^{59} +(0.967041 + 2.97625i) q^{61} +(0.855233 + 2.63214i) q^{63} +(-8.92235 - 3.21841i) q^{65} +(3.19413 + 2.32067i) q^{67} +(1.05750 + 0.343603i) q^{69} +(-6.73066 - 9.26396i) q^{71} +16.0715i q^{73} +(-1.94480 - 0.124746i) q^{75} +(-2.71744 + 3.74023i) q^{77} +14.2526i q^{79} +7.65586 q^{81} +7.69398i q^{83} +(-6.61407 - 9.74513i) q^{85} +(-0.248079 + 0.341451i) q^{87} +(9.28990 - 3.01847i) q^{89} +4.12196 q^{91} +(0.910131 - 0.661249i) q^{93} +(-1.16935 - 4.03415i) q^{95} +(-2.69462 - 1.95776i) q^{97} +(7.96460 + 10.9623i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 68 q^{9} + 10 q^{15} - 26 q^{21} + 10 q^{25} - 20 q^{29} + 4 q^{31} + 15 q^{35} - 8 q^{39} + 4 q^{41} - 4 q^{45} + 18 q^{49} + 52 q^{51} - 36 q^{59} - 42 q^{61} - 15 q^{65} + 30 q^{69} - 20 q^{75}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.389760 0.225028 0.112514 0.993650i \(-0.464110\pi\)
0.112514 + 0.993650i \(0.464110\pi\)
\(4\) 0 0
\(5\) −0.0716037 + 2.23492i −0.0320221 + 0.999487i
\(6\) 0 0
\(7\) −0.300283 0.924177i −0.113496 0.349306i 0.878134 0.478415i \(-0.158788\pi\)
−0.991630 + 0.129109i \(0.958788\pi\)
\(8\) 0 0
\(9\) −2.84809 −0.949362
\(10\) 0 0
\(11\) −2.79647 3.84902i −0.843169 1.16052i −0.985327 0.170678i \(-0.945404\pi\)
0.142158 0.989844i \(-0.454596\pi\)
\(12\) 0 0
\(13\) −1.31080 + 4.03424i −0.363551 + 1.11890i 0.587332 + 0.809346i \(0.300178\pi\)
−0.950883 + 0.309550i \(0.899822\pi\)
\(14\) 0 0
\(15\) −0.0279083 + 0.871083i −0.00720588 + 0.224913i
\(16\) 0 0
\(17\) −4.26120 + 3.09594i −1.03349 + 0.750877i −0.969005 0.247042i \(-0.920542\pi\)
−0.0644884 + 0.997918i \(0.520542\pi\)
\(18\) 0 0
\(19\) −1.78645 + 0.580454i −0.409841 + 0.133165i −0.506679 0.862135i \(-0.669127\pi\)
0.0968383 + 0.995300i \(0.469127\pi\)
\(20\) 0 0
\(21\) −0.117038 0.360207i −0.0255399 0.0786037i
\(22\) 0 0
\(23\) 2.71321 + 0.881575i 0.565743 + 0.183821i 0.577904 0.816105i \(-0.303871\pi\)
−0.0121604 + 0.999926i \(0.503871\pi\)
\(24\) 0 0
\(25\) −4.98975 0.320057i −0.997949 0.0640114i
\(26\) 0 0
\(27\) −2.27935 −0.438661
\(28\) 0 0
\(29\) −0.636492 + 0.876056i −0.118194 + 0.162679i −0.864014 0.503467i \(-0.832057\pi\)
0.745821 + 0.666147i \(0.232057\pi\)
\(30\) 0 0
\(31\) 2.33511 1.69655i 0.419397 0.304710i −0.357998 0.933722i \(-0.616541\pi\)
0.777395 + 0.629012i \(0.216541\pi\)
\(32\) 0 0
\(33\) −1.08995 1.50019i −0.189737 0.261150i
\(34\) 0 0
\(35\) 2.08696 0.604935i 0.352761 0.102253i
\(36\) 0 0
\(37\) 0.656105 0.903051i 0.107863 0.148461i −0.751673 0.659536i \(-0.770753\pi\)
0.859536 + 0.511075i \(0.170753\pi\)
\(38\) 0 0
\(39\) −0.510899 + 1.57238i −0.0818093 + 0.251783i
\(40\) 0 0
\(41\) −5.24987 3.66591i −0.819892 0.572519i
\(42\) 0 0
\(43\) −6.41395 2.08402i −0.978119 0.317810i −0.224030 0.974582i \(-0.571921\pi\)
−0.754089 + 0.656772i \(0.771921\pi\)
\(44\) 0 0
\(45\) 0.203934 6.36525i 0.0304006 0.948875i
\(46\) 0 0
\(47\) −1.49531 + 4.60210i −0.218114 + 0.671285i 0.780804 + 0.624776i \(0.214810\pi\)
−0.998918 + 0.0465092i \(0.985190\pi\)
\(48\) 0 0
\(49\) 4.89919 3.55947i 0.699884 0.508495i
\(50\) 0 0
\(51\) −1.66085 + 1.20668i −0.232565 + 0.168968i
\(52\) 0 0
\(53\) −3.20899 2.33147i −0.440788 0.320251i 0.345160 0.938544i \(-0.387825\pi\)
−0.785948 + 0.618293i \(0.787825\pi\)
\(54\) 0 0
\(55\) 8.80249 5.97430i 1.18693 0.805574i
\(56\) 0 0
\(57\) −0.696288 + 0.226238i −0.0922256 + 0.0299659i
\(58\) 0 0
\(59\) −2.35663 + 7.25296i −0.306807 + 0.944255i 0.672190 + 0.740379i \(0.265354\pi\)
−0.978997 + 0.203876i \(0.934646\pi\)
\(60\) 0 0
\(61\) 0.967041 + 2.97625i 0.123817 + 0.381069i 0.993684 0.112217i \(-0.0357953\pi\)
−0.869867 + 0.493287i \(0.835795\pi\)
\(62\) 0 0
\(63\) 0.855233 + 2.63214i 0.107749 + 0.331618i
\(64\) 0 0
\(65\) −8.92235 3.21841i −1.10668 0.399194i
\(66\) 0 0
\(67\) 3.19413 + 2.32067i 0.390225 + 0.283515i 0.765548 0.643379i \(-0.222468\pi\)
−0.375323 + 0.926894i \(0.622468\pi\)
\(68\) 0 0
\(69\) 1.05750 + 0.343603i 0.127308 + 0.0413649i
\(70\) 0 0
\(71\) −6.73066 9.26396i −0.798783 1.09943i −0.992958 0.118463i \(-0.962203\pi\)
0.194176 0.980967i \(-0.437797\pi\)
\(72\) 0 0
\(73\) 16.0715i 1.88103i 0.339757 + 0.940513i \(0.389655\pi\)
−0.339757 + 0.940513i \(0.610345\pi\)
\(74\) 0 0
\(75\) −1.94480 0.124746i −0.224567 0.0144044i
\(76\) 0 0
\(77\) −2.71744 + 3.74023i −0.309681 + 0.426239i
\(78\) 0 0
\(79\) 14.2526i 1.60355i 0.597627 + 0.801774i \(0.296110\pi\)
−0.597627 + 0.801774i \(0.703890\pi\)
\(80\) 0 0
\(81\) 7.65586 0.850651
\(82\) 0 0
\(83\) 7.69398i 0.844524i 0.906474 + 0.422262i \(0.138764\pi\)
−0.906474 + 0.422262i \(0.861236\pi\)
\(84\) 0 0
\(85\) −6.61407 9.74513i −0.717397 1.05701i
\(86\) 0 0
\(87\) −0.248079 + 0.341451i −0.0265969 + 0.0366074i
\(88\) 0 0
\(89\) 9.28990 3.01847i 0.984727 0.319957i 0.227981 0.973666i \(-0.426788\pi\)
0.756747 + 0.653708i \(0.226788\pi\)
\(90\) 0 0
\(91\) 4.12196 0.432099
\(92\) 0 0
\(93\) 0.910131 0.661249i 0.0943762 0.0685683i
\(94\) 0 0
\(95\) −1.16935 4.03415i −0.119973 0.413895i
\(96\) 0 0
\(97\) −2.69462 1.95776i −0.273597 0.198780i 0.442523 0.896757i \(-0.354084\pi\)
−0.716120 + 0.697977i \(0.754084\pi\)
\(98\) 0 0
\(99\) 7.96460 + 10.9623i 0.800473 + 1.10176i
\(100\) 0 0
\(101\) −4.75671 + 1.54555i −0.473310 + 0.153788i −0.535952 0.844248i \(-0.680047\pi\)
0.0626422 + 0.998036i \(0.480047\pi\)
\(102\) 0 0
\(103\) 3.80678 1.23690i 0.375094 0.121875i −0.115402 0.993319i \(-0.536816\pi\)
0.490496 + 0.871444i \(0.336816\pi\)
\(104\) 0 0
\(105\) 0.813415 0.235779i 0.0793812 0.0230097i
\(106\) 0 0
\(107\) 3.08665 1.00291i 0.298398 0.0969553i −0.155992 0.987758i \(-0.549857\pi\)
0.454390 + 0.890803i \(0.349857\pi\)
\(108\) 0 0
\(109\) 3.35053i 0.320923i 0.987042 + 0.160461i \(0.0512982\pi\)
−0.987042 + 0.160461i \(0.948702\pi\)
\(110\) 0 0
\(111\) 0.255724 0.351973i 0.0242722 0.0334078i
\(112\) 0 0
\(113\) −9.75897 13.4321i −0.918047 1.26358i −0.964343 0.264656i \(-0.914742\pi\)
0.0462959 0.998928i \(-0.485258\pi\)
\(114\) 0 0
\(115\) −2.16453 + 6.00069i −0.201843 + 0.559567i
\(116\) 0 0
\(117\) 3.73328 11.4899i 0.345142 1.06224i
\(118\) 0 0
\(119\) 4.14077 + 3.00844i 0.379584 + 0.275784i
\(120\) 0 0
\(121\) −3.59547 + 11.0657i −0.326861 + 1.00598i
\(122\) 0 0
\(123\) −2.04619 1.42883i −0.184499 0.128833i
\(124\) 0 0
\(125\) 1.07259 11.1288i 0.0959351 0.995388i
\(126\) 0 0
\(127\) 11.8222 16.2718i 1.04905 1.44389i 0.159418 0.987211i \(-0.449038\pi\)
0.889631 0.456681i \(-0.150962\pi\)
\(128\) 0 0
\(129\) −2.49990 0.812268i −0.220104 0.0715162i
\(130\) 0 0
\(131\) 5.06127 3.67723i 0.442205 0.321281i −0.344305 0.938858i \(-0.611886\pi\)
0.786511 + 0.617577i \(0.211886\pi\)
\(132\) 0 0
\(133\) 1.07288 + 1.47670i 0.0930309 + 0.128046i
\(134\) 0 0
\(135\) 0.163210 5.09417i 0.0140469 0.438436i
\(136\) 0 0
\(137\) 8.81952 0.753503 0.376751 0.926314i \(-0.377041\pi\)
0.376751 + 0.926314i \(0.377041\pi\)
\(138\) 0 0
\(139\) 2.78275 + 8.56441i 0.236029 + 0.726424i 0.996983 + 0.0776177i \(0.0247314\pi\)
−0.760954 + 0.648806i \(0.775269\pi\)
\(140\) 0 0
\(141\) −0.582813 + 1.79371i −0.0490817 + 0.151058i
\(142\) 0 0
\(143\) 19.1935 6.23634i 1.60504 0.521509i
\(144\) 0 0
\(145\) −1.91234 1.48524i −0.158811 0.123342i
\(146\) 0 0
\(147\) 1.90951 1.38734i 0.157493 0.114426i
\(148\) 0 0
\(149\) −7.36992 + 10.1438i −0.603767 + 0.831014i −0.996047 0.0888317i \(-0.971687\pi\)
0.392279 + 0.919846i \(0.371687\pi\)
\(150\) 0 0
\(151\) 3.27570 + 1.06434i 0.266572 + 0.0866146i 0.439253 0.898363i \(-0.355243\pi\)
−0.172681 + 0.984978i \(0.555243\pi\)
\(152\) 0 0
\(153\) 12.1363 8.81752i 0.981160 0.712854i
\(154\) 0 0
\(155\) 3.62446 + 5.34026i 0.291124 + 0.428940i
\(156\) 0 0
\(157\) 2.57810 + 7.93458i 0.205755 + 0.633249i 0.999682 + 0.0252351i \(0.00803342\pi\)
−0.793927 + 0.608014i \(0.791967\pi\)
\(158\) 0 0
\(159\) −1.25073 0.908712i −0.0991897 0.0720655i
\(160\) 0 0
\(161\) 2.77221i 0.218481i
\(162\) 0 0
\(163\) 19.6377i 1.53814i −0.639163 0.769071i \(-0.720719\pi\)
0.639163 0.769071i \(-0.279281\pi\)
\(164\) 0 0
\(165\) 3.43086 2.32854i 0.267092 0.181277i
\(166\) 0 0
\(167\) −16.0937 −1.24537 −0.622685 0.782473i \(-0.713958\pi\)
−0.622685 + 0.782473i \(0.713958\pi\)
\(168\) 0 0
\(169\) −4.03965 2.93498i −0.310742 0.225767i
\(170\) 0 0
\(171\) 5.08798 1.65318i 0.389087 0.126422i
\(172\) 0 0
\(173\) 3.37511i 0.256605i 0.991735 + 0.128303i \(0.0409529\pi\)
−0.991735 + 0.128303i \(0.959047\pi\)
\(174\) 0 0
\(175\) 1.20255 + 4.70751i 0.0909041 + 0.355855i
\(176\) 0 0
\(177\) −0.918520 + 2.82691i −0.0690402 + 0.212484i
\(178\) 0 0
\(179\) −13.2324 + 18.2128i −0.989035 + 1.36129i −0.0572177 + 0.998362i \(0.518223\pi\)
−0.931817 + 0.362928i \(0.881777\pi\)
\(180\) 0 0
\(181\) −5.17108 7.11738i −0.384363 0.529030i 0.572371 0.819995i \(-0.306024\pi\)
−0.956734 + 0.290965i \(0.906024\pi\)
\(182\) 0 0
\(183\) 0.376914 + 1.16002i 0.0278623 + 0.0857513i
\(184\) 0 0
\(185\) 1.97127 + 1.53100i 0.144931 + 0.112562i
\(186\) 0 0
\(187\) 23.8327 + 7.74371i 1.74282 + 0.566276i
\(188\) 0 0
\(189\) 0.684451 + 2.10652i 0.0497865 + 0.153227i
\(190\) 0 0
\(191\) 2.63743i 0.190838i −0.995437 0.0954190i \(-0.969581\pi\)
0.995437 0.0954190i \(-0.0304191\pi\)
\(192\) 0 0
\(193\) −1.59264 1.15712i −0.114641 0.0832913i 0.528988 0.848629i \(-0.322572\pi\)
−0.643628 + 0.765338i \(0.722572\pi\)
\(194\) 0 0
\(195\) −3.47757 1.25441i −0.249034 0.0898299i
\(196\) 0 0
\(197\) −12.7202 17.5079i −0.906278 1.24738i −0.968422 0.249318i \(-0.919794\pi\)
0.0621437 0.998067i \(-0.480206\pi\)
\(198\) 0 0
\(199\) 6.13470 + 1.99329i 0.434877 + 0.141300i 0.518271 0.855216i \(-0.326576\pi\)
−0.0833936 + 0.996517i \(0.526576\pi\)
\(200\) 0 0
\(201\) 1.24494 + 0.904505i 0.0878116 + 0.0637988i
\(202\) 0 0
\(203\) 1.00076 + 0.325166i 0.0702394 + 0.0228222i
\(204\) 0 0
\(205\) 8.56893 11.4705i 0.598480 0.801138i
\(206\) 0 0
\(207\) −7.72746 2.51080i −0.537095 0.174513i
\(208\) 0 0
\(209\) 7.22995 + 5.25287i 0.500106 + 0.363348i
\(210\) 0 0
\(211\) 19.1949 + 6.23681i 1.32143 + 0.429360i 0.882987 0.469397i \(-0.155529\pi\)
0.438447 + 0.898757i \(0.355529\pi\)
\(212\) 0 0
\(213\) −2.62334 3.61072i −0.179749 0.247403i
\(214\) 0 0
\(215\) 5.11688 14.1855i 0.348968 0.967440i
\(216\) 0 0
\(217\) −2.26911 1.64860i −0.154037 0.111915i
\(218\) 0 0
\(219\) 6.26403i 0.423284i
\(220\) 0 0
\(221\) −6.90418 21.2489i −0.464425 1.42935i
\(222\) 0 0
\(223\) 8.60718 + 2.79664i 0.576379 + 0.187277i 0.582678 0.812703i \(-0.302005\pi\)
−0.00629869 + 0.999980i \(0.502005\pi\)
\(224\) 0 0
\(225\) 14.2112 + 0.911551i 0.947415 + 0.0607700i
\(226\) 0 0
\(227\) 6.37101 + 19.6080i 0.422859 + 1.30143i 0.905030 + 0.425349i \(0.139849\pi\)
−0.482171 + 0.876077i \(0.660151\pi\)
\(228\) 0 0
\(229\) 9.92865 + 13.6656i 0.656103 + 0.903049i 0.999345 0.0361983i \(-0.0115248\pi\)
−0.343241 + 0.939247i \(0.611525\pi\)
\(230\) 0 0
\(231\) −1.05915 + 1.45779i −0.0696869 + 0.0959157i
\(232\) 0 0
\(233\) −1.92125 + 5.91301i −0.125866 + 0.387374i −0.994058 0.108854i \(-0.965282\pi\)
0.868192 + 0.496228i \(0.165282\pi\)
\(234\) 0 0
\(235\) −10.1783 3.67143i −0.663956 0.239498i
\(236\) 0 0
\(237\) 5.55511i 0.360843i
\(238\) 0 0
\(239\) 11.0326 3.58472i 0.713643 0.231877i 0.0703779 0.997520i \(-0.477579\pi\)
0.643265 + 0.765644i \(0.277579\pi\)
\(240\) 0 0
\(241\) 5.95649 + 4.32764i 0.383691 + 0.278768i 0.762865 0.646557i \(-0.223792\pi\)
−0.379174 + 0.925325i \(0.623792\pi\)
\(242\) 0 0
\(243\) 9.82200 0.630082
\(244\) 0 0
\(245\) 7.60433 + 11.2042i 0.485823 + 0.715808i
\(246\) 0 0
\(247\) 7.96784i 0.506982i
\(248\) 0 0
\(249\) 2.99881i 0.190042i
\(250\) 0 0
\(251\) −5.18927 3.77023i −0.327544 0.237975i 0.411844 0.911254i \(-0.364885\pi\)
−0.739388 + 0.673280i \(0.764885\pi\)
\(252\) 0 0
\(253\) −4.19422 12.9085i −0.263689 0.811550i
\(254\) 0 0
\(255\) −2.57790 3.79826i −0.161434 0.237856i
\(256\) 0 0
\(257\) −0.601300 + 0.436870i −0.0375081 + 0.0272512i −0.606381 0.795174i \(-0.707379\pi\)
0.568873 + 0.822425i \(0.307379\pi\)
\(258\) 0 0
\(259\) −1.03160 0.335186i −0.0641003 0.0208274i
\(260\) 0 0
\(261\) 1.81278 2.49508i 0.112208 0.154442i
\(262\) 0 0
\(263\) −13.2394 + 9.61902i −0.816379 + 0.593134i −0.915673 0.401924i \(-0.868342\pi\)
0.0992938 + 0.995058i \(0.468342\pi\)
\(264\) 0 0
\(265\) 5.44042 7.00489i 0.334202 0.430307i
\(266\) 0 0
\(267\) 3.62083 1.17648i 0.221591 0.0719994i
\(268\) 0 0
\(269\) −3.92228 + 12.0715i −0.239146 + 0.736015i 0.757399 + 0.652953i \(0.226470\pi\)
−0.996544 + 0.0830620i \(0.973530\pi\)
\(270\) 0 0
\(271\) −0.650126 2.00088i −0.0394923 0.121545i 0.929367 0.369158i \(-0.120354\pi\)
−0.968859 + 0.247613i \(0.920354\pi\)
\(272\) 0 0
\(273\) 1.60658 0.0972344
\(274\) 0 0
\(275\) 12.7218 + 20.1006i 0.767153 + 1.21211i
\(276\) 0 0
\(277\) −4.36389 6.00638i −0.262201 0.360889i 0.657537 0.753423i \(-0.271599\pi\)
−0.919737 + 0.392534i \(0.871599\pi\)
\(278\) 0 0
\(279\) −6.65059 + 4.83193i −0.398160 + 0.289280i
\(280\) 0 0
\(281\) −9.14590 2.97168i −0.545599 0.177276i 0.0232325 0.999730i \(-0.492604\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(282\) 0 0
\(283\) 4.83158 6.65010i 0.287208 0.395307i −0.640897 0.767627i \(-0.721437\pi\)
0.928105 + 0.372320i \(0.121437\pi\)
\(284\) 0 0
\(285\) −0.455767 1.57235i −0.0269973 0.0931379i
\(286\) 0 0
\(287\) −1.81150 + 5.95262i −0.106930 + 0.351372i
\(288\) 0 0
\(289\) 3.31968 10.2169i 0.195275 0.600996i
\(290\) 0 0
\(291\) −1.05026 0.763056i −0.0615671 0.0447311i
\(292\) 0 0
\(293\) −9.45667 + 29.1046i −0.552465 + 1.70031i 0.150082 + 0.988674i \(0.452046\pi\)
−0.702547 + 0.711637i \(0.747954\pi\)
\(294\) 0 0
\(295\) −16.0410 5.78622i −0.933946 0.336887i
\(296\) 0 0
\(297\) 6.37415 + 8.77326i 0.369865 + 0.509076i
\(298\) 0 0
\(299\) −7.11297 + 9.79016i −0.411354 + 0.566180i
\(300\) 0 0
\(301\) 6.55342i 0.377733i
\(302\) 0 0
\(303\) −1.85397 + 0.602393i −0.106508 + 0.0346066i
\(304\) 0 0
\(305\) −6.72092 + 1.94815i −0.384839 + 0.111551i
\(306\) 0 0
\(307\) 13.6636 4.43957i 0.779823 0.253380i 0.108058 0.994145i \(-0.465537\pi\)
0.671765 + 0.740765i \(0.265537\pi\)
\(308\) 0 0
\(309\) 1.48373 0.482094i 0.0844066 0.0274254i
\(310\) 0 0
\(311\) 0.251579 + 0.346269i 0.0142658 + 0.0196351i 0.816090 0.577924i \(-0.196137\pi\)
−0.801825 + 0.597560i \(0.796137\pi\)
\(312\) 0 0
\(313\) −1.04694 0.760647i −0.0591766 0.0429943i 0.557804 0.829973i \(-0.311644\pi\)
−0.616980 + 0.786979i \(0.711644\pi\)
\(314\) 0 0
\(315\) −5.94385 + 1.72291i −0.334898 + 0.0970748i
\(316\) 0 0
\(317\) −23.2160 + 16.8674i −1.30394 + 0.947368i −0.999986 0.00531860i \(-0.998307\pi\)
−0.303954 + 0.952687i \(0.598307\pi\)
\(318\) 0 0
\(319\) 5.15188 0.288450
\(320\) 0 0
\(321\) 1.20305 0.390895i 0.0671478 0.0218177i
\(322\) 0 0
\(323\) 5.81539 8.00419i 0.323577 0.445365i
\(324\) 0 0
\(325\) 7.83176 19.7103i 0.434428 1.09333i
\(326\) 0 0
\(327\) 1.30590i 0.0722166i
\(328\) 0 0
\(329\) 4.70217 0.259239
\(330\) 0 0
\(331\) 30.0510i 1.65175i −0.563853 0.825875i \(-0.690682\pi\)
0.563853 0.825875i \(-0.309318\pi\)
\(332\) 0 0
\(333\) −1.86864 + 2.57197i −0.102401 + 0.140943i
\(334\) 0 0
\(335\) −5.41523 + 6.97246i −0.295865 + 0.380946i
\(336\) 0 0
\(337\) 27.5327i 1.49980i −0.661549 0.749902i \(-0.730101\pi\)
0.661549 0.749902i \(-0.269899\pi\)
\(338\) 0 0
\(339\) −3.80366 5.23529i −0.206586 0.284342i
\(340\) 0 0
\(341\) −13.0601 4.24349i −0.707245 0.229798i
\(342\) 0 0
\(343\) −10.2638 7.45707i −0.554192 0.402644i
\(344\) 0 0
\(345\) −0.843646 + 2.33883i −0.0454204 + 0.125918i
\(346\) 0 0
\(347\) 1.22321 + 3.76467i 0.0656656 + 0.202098i 0.978506 0.206219i \(-0.0661159\pi\)
−0.912840 + 0.408317i \(0.866116\pi\)
\(348\) 0 0
\(349\) 7.15943 + 22.0345i 0.383235 + 1.17948i 0.937752 + 0.347305i \(0.112903\pi\)
−0.554517 + 0.832172i \(0.687097\pi\)
\(350\) 0 0
\(351\) 2.98778 9.19544i 0.159476 0.490816i
\(352\) 0 0
\(353\) −27.9251 + 9.07342i −1.48630 + 0.482929i −0.935989 0.352028i \(-0.885492\pi\)
−0.550314 + 0.834958i \(0.685492\pi\)
\(354\) 0 0
\(355\) 21.1862 14.3792i 1.12445 0.763167i
\(356\) 0 0
\(357\) 1.61391 + 1.17257i 0.0854169 + 0.0620590i
\(358\) 0 0
\(359\) 29.2180 21.2282i 1.54207 1.12038i 0.593048 0.805167i \(-0.297924\pi\)
0.949021 0.315212i \(-0.102076\pi\)
\(360\) 0 0
\(361\) −12.5168 + 9.09401i −0.658781 + 0.478632i
\(362\) 0 0
\(363\) −1.40137 + 4.31298i −0.0735529 + 0.226373i
\(364\) 0 0
\(365\) −35.9185 1.15078i −1.88006 0.0602345i
\(366\) 0 0
\(367\) −26.9290 8.74978i −1.40568 0.456735i −0.494660 0.869087i \(-0.664707\pi\)
−0.911025 + 0.412352i \(0.864707\pi\)
\(368\) 0 0
\(369\) 14.9521 + 10.4408i 0.778374 + 0.543528i
\(370\) 0 0
\(371\) −1.19108 + 3.66577i −0.0618379 + 0.190317i
\(372\) 0 0
\(373\) 12.8898 17.7413i 0.667409 0.918610i −0.332289 0.943178i \(-0.607821\pi\)
0.999698 + 0.0245678i \(0.00782095\pi\)
\(374\) 0 0
\(375\) 0.418051 4.33755i 0.0215881 0.223990i
\(376\) 0 0
\(377\) −2.69990 3.71610i −0.139052 0.191389i
\(378\) 0 0
\(379\) −29.2993 + 21.2872i −1.50500 + 1.09345i −0.536670 + 0.843792i \(0.680318\pi\)
−0.968334 + 0.249658i \(0.919682\pi\)
\(380\) 0 0
\(381\) 4.60781 6.34211i 0.236065 0.324916i
\(382\) 0 0
\(383\) −21.0841 −1.07735 −0.538673 0.842515i \(-0.681074\pi\)
−0.538673 + 0.842515i \(0.681074\pi\)
\(384\) 0 0
\(385\) −8.16454 6.34107i −0.416104 0.323171i
\(386\) 0 0
\(387\) 18.2675 + 5.93547i 0.928589 + 0.301717i
\(388\) 0 0
\(389\) −8.01697 24.6737i −0.406476 1.25101i −0.919656 0.392725i \(-0.871533\pi\)
0.513180 0.858281i \(-0.328467\pi\)
\(390\) 0 0
\(391\) −14.2908 + 4.64338i −0.722719 + 0.234826i
\(392\) 0 0
\(393\) 1.97268 1.43324i 0.0995086 0.0722972i
\(394\) 0 0
\(395\) −31.8535 1.02054i −1.60273 0.0513490i
\(396\) 0 0
\(397\) 1.80434 5.55317i 0.0905570 0.278706i −0.895513 0.445035i \(-0.853191\pi\)
0.986070 + 0.166329i \(0.0531913\pi\)
\(398\) 0 0
\(399\) 0.418167 + 0.575558i 0.0209346 + 0.0288139i
\(400\) 0 0
\(401\) −10.1056 −0.504647 −0.252324 0.967643i \(-0.581195\pi\)
−0.252324 + 0.967643i \(0.581195\pi\)
\(402\) 0 0
\(403\) 3.78344 + 11.6442i 0.188466 + 0.580040i
\(404\) 0 0
\(405\) −0.548188 + 17.1102i −0.0272397 + 0.850215i
\(406\) 0 0
\(407\) −5.31064 −0.263239
\(408\) 0 0
\(409\) −30.8312 −1.52451 −0.762253 0.647279i \(-0.775907\pi\)
−0.762253 + 0.647279i \(0.775907\pi\)
\(410\) 0 0
\(411\) 3.43750 0.169559
\(412\) 0 0
\(413\) 7.41067 0.364655
\(414\) 0 0
\(415\) −17.1954 0.550918i −0.844091 0.0270435i
\(416\) 0 0
\(417\) 1.08460 + 3.33806i 0.0531132 + 0.163466i
\(418\) 0 0
\(419\) −7.89927 −0.385905 −0.192952 0.981208i \(-0.561806\pi\)
−0.192952 + 0.981208i \(0.561806\pi\)
\(420\) 0 0
\(421\) 15.8068 + 21.7561i 0.770375 + 1.06033i 0.996280 + 0.0861804i \(0.0274661\pi\)
−0.225905 + 0.974149i \(0.572534\pi\)
\(422\) 0 0
\(423\) 4.25878 13.1072i 0.207069 0.637293i
\(424\) 0 0
\(425\) 22.2532 14.0841i 1.07944 0.683181i
\(426\) 0 0
\(427\) 2.46019 1.78743i 0.119057 0.0865000i
\(428\) 0 0
\(429\) 7.48085 2.43068i 0.361179 0.117354i
\(430\) 0 0
\(431\) −4.70028 14.4660i −0.226404 0.696801i −0.998146 0.0608649i \(-0.980614\pi\)
0.771742 0.635936i \(-0.219386\pi\)
\(432\) 0 0
\(433\) −4.25062 1.38111i −0.204272 0.0663719i 0.205094 0.978742i \(-0.434250\pi\)
−0.409366 + 0.912370i \(0.634250\pi\)
\(434\) 0 0
\(435\) −0.745354 0.578886i −0.0357370 0.0277555i
\(436\) 0 0
\(437\) −5.35874 −0.256343
\(438\) 0 0
\(439\) 17.7298 24.4029i 0.846196 1.16469i −0.138493 0.990363i \(-0.544226\pi\)
0.984688 0.174325i \(-0.0557743\pi\)
\(440\) 0 0
\(441\) −13.9533 + 10.1377i −0.664443 + 0.482746i
\(442\) 0 0
\(443\) 21.5689 + 29.6871i 1.02477 + 1.41048i 0.908804 + 0.417222i \(0.136996\pi\)
0.115966 + 0.993253i \(0.463004\pi\)
\(444\) 0 0
\(445\) 6.08085 + 20.9783i 0.288260 + 0.994468i
\(446\) 0 0
\(447\) −2.87250 + 3.95366i −0.135865 + 0.187002i
\(448\) 0 0
\(449\) −2.19564 + 6.75748i −0.103619 + 0.318905i −0.989404 0.145190i \(-0.953621\pi\)
0.885785 + 0.464095i \(0.153621\pi\)
\(450\) 0 0
\(451\) 0.570973 + 30.4584i 0.0268861 + 1.43423i
\(452\) 0 0
\(453\) 1.27674 + 0.414836i 0.0599862 + 0.0194907i
\(454\) 0 0
\(455\) −0.295148 + 9.21226i −0.0138367 + 0.431877i
\(456\) 0 0
\(457\) −13.1538 + 40.4833i −0.615310 + 1.89373i −0.218459 + 0.975846i \(0.570103\pi\)
−0.396851 + 0.917883i \(0.629897\pi\)
\(458\) 0 0
\(459\) 9.71277 7.05674i 0.453353 0.329381i
\(460\) 0 0
\(461\) −9.84494 + 7.15277i −0.458525 + 0.333138i −0.792952 0.609284i \(-0.791457\pi\)
0.334428 + 0.942421i \(0.391457\pi\)
\(462\) 0 0
\(463\) −25.1585 18.2787i −1.16921 0.849484i −0.178300 0.983976i \(-0.557060\pi\)
−0.990915 + 0.134492i \(0.957060\pi\)
\(464\) 0 0
\(465\) 1.41267 + 2.08142i 0.0655110 + 0.0965235i
\(466\) 0 0
\(467\) −10.3498 + 3.36284i −0.478929 + 0.155614i −0.538526 0.842609i \(-0.681019\pi\)
0.0595965 + 0.998223i \(0.481019\pi\)
\(468\) 0 0
\(469\) 1.18557 3.64880i 0.0547444 0.168486i
\(470\) 0 0
\(471\) 1.00484 + 3.09258i 0.0463006 + 0.142499i
\(472\) 0 0
\(473\) 9.91503 + 30.5153i 0.455893 + 1.40310i
\(474\) 0 0
\(475\) 9.09973 2.32455i 0.417524 0.106658i
\(476\) 0 0
\(477\) 9.13947 + 6.64022i 0.418468 + 0.304035i
\(478\) 0 0
\(479\) −23.5229 7.64306i −1.07479 0.349220i −0.282438 0.959285i \(-0.591143\pi\)
−0.792351 + 0.610065i \(0.791143\pi\)
\(480\) 0 0
\(481\) 2.78310 + 3.83061i 0.126898 + 0.174661i
\(482\) 0 0
\(483\) 1.08050i 0.0491643i
\(484\) 0 0
\(485\) 4.56838 5.88209i 0.207439 0.267092i
\(486\) 0 0
\(487\) −13.4217 + 18.4733i −0.608193 + 0.837106i −0.996427 0.0844548i \(-0.973085\pi\)
0.388234 + 0.921561i \(0.373085\pi\)
\(488\) 0 0
\(489\) 7.65398i 0.346125i
\(490\) 0 0
\(491\) 27.2190 1.22838 0.614189 0.789159i \(-0.289483\pi\)
0.614189 + 0.789159i \(0.289483\pi\)
\(492\) 0 0
\(493\) 5.70359i 0.256877i
\(494\) 0 0
\(495\) −25.0702 + 17.0153i −1.12682 + 0.764781i
\(496\) 0 0
\(497\) −6.54043 + 9.00214i −0.293379 + 0.403801i
\(498\) 0 0
\(499\) 4.46305 1.45013i 0.199794 0.0649169i −0.207411 0.978254i \(-0.566504\pi\)
0.407204 + 0.913337i \(0.366504\pi\)
\(500\) 0 0
\(501\) −6.27269 −0.280243
\(502\) 0 0
\(503\) −20.2787 + 14.7333i −0.904181 + 0.656926i −0.939536 0.342449i \(-0.888744\pi\)
0.0353558 + 0.999375i \(0.488744\pi\)
\(504\) 0 0
\(505\) −3.11358 10.7415i −0.138552 0.477992i
\(506\) 0 0
\(507\) −1.57449 1.14394i −0.0699257 0.0508040i
\(508\) 0 0
\(509\) −4.05689 5.58383i −0.179819 0.247499i 0.709587 0.704618i \(-0.248881\pi\)
−0.889406 + 0.457119i \(0.848881\pi\)
\(510\) 0 0
\(511\) 14.8529 4.82600i 0.657054 0.213490i
\(512\) 0 0
\(513\) 4.07195 1.32306i 0.179781 0.0584145i
\(514\) 0 0
\(515\) 2.49179 + 8.59643i 0.109801 + 0.378804i
\(516\) 0 0
\(517\) 21.8952 7.11417i 0.962948 0.312881i
\(518\) 0 0
\(519\) 1.31548i 0.0577434i
\(520\) 0 0
\(521\) 15.1983 20.9186i 0.665848 0.916461i −0.333809 0.942641i \(-0.608334\pi\)
0.999657 + 0.0261795i \(0.00833416\pi\)
\(522\) 0 0
\(523\) 6.99067 + 9.62184i 0.305681 + 0.420734i 0.934028 0.357199i \(-0.116268\pi\)
−0.628347 + 0.777933i \(0.716268\pi\)
\(524\) 0 0
\(525\) 0.468705 + 1.83480i 0.0204560 + 0.0800773i
\(526\) 0 0
\(527\) −4.69792 + 14.4587i −0.204645 + 0.629832i
\(528\) 0 0
\(529\) −12.0231 8.73526i −0.522742 0.379794i
\(530\) 0 0
\(531\) 6.71188 20.6571i 0.291271 0.896440i
\(532\) 0 0
\(533\) 21.6707 16.3739i 0.938662 0.709233i
\(534\) 0 0
\(535\) 2.02042 + 6.97023i 0.0873502 + 0.301349i
\(536\) 0 0
\(537\) −5.15745 + 7.09863i −0.222561 + 0.306328i
\(538\) 0 0
\(539\) −27.4009 8.90309i −1.18024 0.383483i
\(540\) 0 0
\(541\) −23.6856 + 17.2086i −1.01832 + 0.739855i −0.965939 0.258772i \(-0.916682\pi\)
−0.0523850 + 0.998627i \(0.516682\pi\)
\(542\) 0 0
\(543\) −2.01548 2.77407i −0.0864925 0.119047i
\(544\) 0 0
\(545\) −7.48818 0.239910i −0.320758 0.0102766i
\(546\) 0 0
\(547\) −42.6269 −1.82260 −0.911298 0.411748i \(-0.864918\pi\)
−0.911298 + 0.411748i \(0.864918\pi\)
\(548\) 0 0
\(549\) −2.75422 8.47661i −0.117547 0.361773i
\(550\) 0 0
\(551\) 0.628553 1.93449i 0.0267773 0.0824119i
\(552\) 0 0
\(553\) 13.1720 4.27983i 0.560129 0.181997i
\(554\) 0 0
\(555\) 0.768322 + 0.596725i 0.0326134 + 0.0253295i
\(556\) 0 0
\(557\) 30.5453 22.1925i 1.29425 0.940326i 0.294366 0.955693i \(-0.404892\pi\)
0.999882 + 0.0153670i \(0.00489165\pi\)
\(558\) 0 0
\(559\) 16.8149 23.1437i 0.711193 0.978873i
\(560\) 0 0
\(561\) 9.28903 + 3.01819i 0.392183 + 0.127428i
\(562\) 0 0
\(563\) −11.2676 + 8.18637i −0.474871 + 0.345014i −0.799337 0.600883i \(-0.794816\pi\)
0.324465 + 0.945898i \(0.394816\pi\)
\(564\) 0 0
\(565\) 30.7184 20.8488i 1.29233 0.877114i
\(566\) 0 0
\(567\) −2.29893 7.07537i −0.0965459 0.297138i
\(568\) 0 0
\(569\) −16.5837 12.0488i −0.695227 0.505112i 0.183147 0.983085i \(-0.441371\pi\)
−0.878374 + 0.477974i \(0.841371\pi\)
\(570\) 0 0
\(571\) 6.00182i 0.251168i −0.992083 0.125584i \(-0.959920\pi\)
0.992083 0.125584i \(-0.0400805\pi\)
\(572\) 0 0
\(573\) 1.02797i 0.0429439i
\(574\) 0 0
\(575\) −13.2561 5.26722i −0.552816 0.219658i
\(576\) 0 0
\(577\) −7.28277 −0.303186 −0.151593 0.988443i \(-0.548440\pi\)
−0.151593 + 0.988443i \(0.548440\pi\)
\(578\) 0 0
\(579\) −0.620747 0.450999i −0.0257974 0.0187429i
\(580\) 0 0
\(581\) 7.11060 2.31037i 0.294997 0.0958505i
\(582\) 0 0
\(583\) 18.8713i 0.781570i
\(584\) 0 0
\(585\) 25.4116 + 9.16631i 1.05064 + 0.378980i
\(586\) 0 0
\(587\) 6.50323 20.0149i 0.268417 0.826102i −0.722470 0.691403i \(-0.756993\pi\)
0.990886 0.134700i \(-0.0430069\pi\)
\(588\) 0 0
\(589\) −3.18679 + 4.38624i −0.131309 + 0.180732i
\(590\) 0 0
\(591\) −4.95783 6.82387i −0.203938 0.280697i
\(592\) 0 0
\(593\) −14.8763 45.7844i −0.610895 1.88014i −0.449589 0.893236i \(-0.648429\pi\)
−0.161306 0.986904i \(-0.551571\pi\)
\(594\) 0 0
\(595\) −7.02013 + 9.03887i −0.287797 + 0.370558i
\(596\) 0 0
\(597\) 2.39106 + 0.776903i 0.0978596 + 0.0317965i
\(598\) 0 0
\(599\) −6.46949 19.9110i −0.264336 0.813543i −0.991846 0.127446i \(-0.959322\pi\)
0.727509 0.686098i \(-0.240678\pi\)
\(600\) 0 0
\(601\) 43.3096i 1.76664i 0.468775 + 0.883318i \(0.344696\pi\)
−0.468775 + 0.883318i \(0.655304\pi\)
\(602\) 0 0
\(603\) −9.09716 6.60947i −0.370465 0.269158i
\(604\) 0 0
\(605\) −24.4736 8.82794i −0.994992 0.358907i
\(606\) 0 0
\(607\) 5.17468 + 7.12233i 0.210034 + 0.289087i 0.901017 0.433784i \(-0.142822\pi\)
−0.690983 + 0.722871i \(0.742822\pi\)
\(608\) 0 0
\(609\) 0.390056 + 0.126737i 0.0158058 + 0.00513563i
\(610\) 0 0
\(611\) −16.6059 12.0649i −0.671803 0.488093i
\(612\) 0 0
\(613\) 37.8669 + 12.3037i 1.52943 + 0.496941i 0.948436 0.316968i \(-0.102665\pi\)
0.580992 + 0.813910i \(0.302665\pi\)
\(614\) 0 0
\(615\) 3.33983 4.47076i 0.134675 0.180278i
\(616\) 0 0
\(617\) 38.9389 + 12.6520i 1.56762 + 0.509351i 0.958830 0.283981i \(-0.0916551\pi\)
0.608790 + 0.793331i \(0.291655\pi\)
\(618\) 0 0
\(619\) −30.7407 22.3344i −1.23557 0.897697i −0.238279 0.971197i \(-0.576583\pi\)
−0.997295 + 0.0734995i \(0.976583\pi\)
\(620\) 0 0
\(621\) −6.18436 2.00942i −0.248170 0.0806352i
\(622\) 0 0
\(623\) −5.57920 7.67911i −0.223526 0.307657i
\(624\) 0 0
\(625\) 24.7951 + 3.19401i 0.991805 + 0.127760i
\(626\) 0 0
\(627\) 2.81795 + 2.04736i 0.112538 + 0.0817636i
\(628\) 0 0
\(629\) 5.87935i 0.234425i
\(630\) 0 0
\(631\) −5.85750 18.0275i −0.233184 0.717665i −0.997357 0.0726545i \(-0.976853\pi\)
0.764174 0.645011i \(-0.223147\pi\)
\(632\) 0 0
\(633\) 7.48142 + 2.43086i 0.297360 + 0.0966180i
\(634\) 0 0
\(635\) 35.5198 + 27.5868i 1.40956 + 1.09475i
\(636\) 0 0
\(637\) 7.93787 + 24.4302i 0.314510 + 0.967961i
\(638\) 0 0
\(639\) 19.1695 + 26.3846i 0.758334 + 1.04376i
\(640\) 0 0
\(641\) −10.2689 + 14.1339i −0.405596 + 0.558255i −0.962137 0.272565i \(-0.912128\pi\)
0.556541 + 0.830820i \(0.312128\pi\)
\(642\) 0 0
\(643\) −9.86531 + 30.3623i −0.389050 + 1.19737i 0.544449 + 0.838794i \(0.316739\pi\)
−0.933499 + 0.358579i \(0.883261\pi\)
\(644\) 0 0
\(645\) 1.99436 5.52892i 0.0785277 0.217701i
\(646\) 0 0
\(647\) 43.9043i 1.72606i −0.505155 0.863029i \(-0.668565\pi\)
0.505155 0.863029i \(-0.331435\pi\)
\(648\) 0 0
\(649\) 34.5070 11.2120i 1.35452 0.440110i
\(650\) 0 0
\(651\) −0.884408 0.642560i −0.0346627 0.0251839i
\(652\) 0 0
\(653\) −38.2042 −1.49505 −0.747523 0.664236i \(-0.768757\pi\)
−0.747523 + 0.664236i \(0.768757\pi\)
\(654\) 0 0
\(655\) 7.85591 + 11.5748i 0.306956 + 0.452267i
\(656\) 0 0
\(657\) 45.7730i 1.78578i
\(658\) 0 0
\(659\) 24.4962i 0.954235i 0.878839 + 0.477118i \(0.158318\pi\)
−0.878839 + 0.477118i \(0.841682\pi\)
\(660\) 0 0
\(661\) 27.1938 + 19.7574i 1.05771 + 0.768475i 0.973664 0.227987i \(-0.0732143\pi\)
0.0840505 + 0.996461i \(0.473214\pi\)
\(662\) 0 0
\(663\) −2.69097 8.28196i −0.104509 0.321645i
\(664\) 0 0
\(665\) −3.37713 + 2.29207i −0.130959 + 0.0888828i
\(666\) 0 0
\(667\) −2.49924 + 1.81581i −0.0967711 + 0.0703083i
\(668\) 0 0
\(669\) 3.35473 + 1.09002i 0.129701 + 0.0421426i
\(670\) 0 0
\(671\) 8.75132 12.0452i 0.337841 0.464998i
\(672\) 0 0
\(673\) 0.678170 0.492720i 0.0261416 0.0189929i −0.574638 0.818408i \(-0.694857\pi\)
0.600779 + 0.799415i \(0.294857\pi\)
\(674\) 0 0
\(675\) 11.3734 + 0.729523i 0.437762 + 0.0280793i
\(676\) 0 0
\(677\) 17.2073 5.59099i 0.661330 0.214879i 0.0409267 0.999162i \(-0.486969\pi\)
0.620403 + 0.784283i \(0.286969\pi\)
\(678\) 0 0
\(679\) −1.00016 + 3.07819i −0.0383828 + 0.118130i
\(680\) 0 0
\(681\) 2.48317 + 7.64240i 0.0951551 + 0.292857i
\(682\) 0 0
\(683\) −1.59157 −0.0608999 −0.0304500 0.999536i \(-0.509694\pi\)
−0.0304500 + 0.999536i \(0.509694\pi\)
\(684\) 0 0
\(685\) −0.631510 + 19.7109i −0.0241288 + 0.753116i
\(686\) 0 0
\(687\) 3.86979 + 5.32631i 0.147642 + 0.203211i
\(688\) 0 0
\(689\) 13.6120 9.88972i 0.518577 0.376768i
\(690\) 0 0
\(691\) −24.8018 8.05859i −0.943505 0.306563i −0.203431 0.979089i \(-0.565209\pi\)
−0.740074 + 0.672526i \(0.765209\pi\)
\(692\) 0 0
\(693\) 7.73950 10.6525i 0.293999 0.404655i
\(694\) 0 0
\(695\) −19.3400 + 5.60597i −0.733609 + 0.212647i
\(696\) 0 0
\(697\) 33.7202 0.632117i 1.27724 0.0239431i
\(698\) 0 0
\(699\) −0.748828 + 2.30466i −0.0283233 + 0.0871701i
\(700\) 0 0
\(701\) 31.0019 + 22.5242i 1.17093 + 0.850727i 0.991119 0.132975i \(-0.0424530\pi\)
0.179806 + 0.983702i \(0.442453\pi\)
\(702\) 0 0
\(703\) −0.647922 + 1.99410i −0.0244368 + 0.0752088i
\(704\) 0 0
\(705\) −3.96708 1.43098i −0.149409 0.0538937i
\(706\) 0 0
\(707\) 2.85672 + 3.93194i 0.107438 + 0.147876i
\(708\) 0 0
\(709\) 9.66733 13.3059i 0.363064 0.499715i −0.587935 0.808908i \(-0.700059\pi\)
0.950999 + 0.309193i \(0.100059\pi\)
\(710\) 0 0
\(711\) 40.5928i 1.52235i
\(712\) 0 0
\(713\) 7.83127 2.54453i 0.293283 0.0952936i
\(714\) 0 0
\(715\) 12.5634 + 43.3424i 0.469845 + 1.62092i
\(716\) 0 0
\(717\) 4.30008 1.39718i 0.160590 0.0521787i
\(718\) 0 0
\(719\) −21.9118 + 7.11957i −0.817172 + 0.265515i −0.687632 0.726059i \(-0.741350\pi\)
−0.129539 + 0.991574i \(0.541350\pi\)
\(720\) 0 0
\(721\) −2.28623 3.14672i −0.0851435 0.117190i
\(722\) 0 0
\(723\) 2.32160 + 1.68674i 0.0863413 + 0.0627306i
\(724\) 0 0
\(725\) 3.45632 4.16758i 0.128364 0.154780i
\(726\) 0 0
\(727\) −2.49280 + 1.81112i −0.0924527 + 0.0671708i −0.633051 0.774110i \(-0.718198\pi\)
0.540599 + 0.841281i \(0.318198\pi\)
\(728\) 0 0
\(729\) −19.1394 −0.708865
\(730\) 0 0
\(731\) 33.7832 10.9768i 1.24952 0.405992i
\(732\) 0 0
\(733\) 15.0933 20.7741i 0.557483 0.767309i −0.433521 0.901143i \(-0.642729\pi\)
0.991004 + 0.133834i \(0.0427290\pi\)
\(734\) 0 0
\(735\) 2.96386 + 4.36694i 0.109324 + 0.161077i
\(736\) 0 0
\(737\) 18.7839i 0.691916i
\(738\) 0 0
\(739\) 28.2783 1.04024 0.520118 0.854094i \(-0.325888\pi\)
0.520118 + 0.854094i \(0.325888\pi\)
\(740\) 0 0
\(741\) 3.10555i 0.114085i
\(742\) 0 0
\(743\) −1.49902 + 2.06322i −0.0549935 + 0.0756921i −0.835628 0.549296i \(-0.814896\pi\)
0.780635 + 0.624988i \(0.214896\pi\)
\(744\) 0 0
\(745\) −22.1429 17.1975i −0.811254 0.630069i
\(746\) 0 0
\(747\) 21.9131i 0.801760i
\(748\) 0 0
\(749\) −1.85374 2.55145i −0.0677341 0.0932280i
\(750\) 0 0
\(751\) 15.3884 + 4.99999i 0.561530 + 0.182452i 0.576009 0.817443i \(-0.304609\pi\)
−0.0144796 + 0.999895i \(0.504609\pi\)
\(752\) 0 0
\(753\) −2.02257 1.46948i −0.0737066 0.0535510i
\(754\) 0 0
\(755\) −2.61326 + 7.24471i −0.0951064 + 0.263662i
\(756\) 0 0
\(757\) −9.99570 30.7636i −0.363300 1.11812i −0.951039 0.309071i \(-0.899982\pi\)
0.587739 0.809051i \(-0.300018\pi\)
\(758\) 0 0
\(759\) −1.63474 5.03121i −0.0593373 0.182622i
\(760\) 0 0
\(761\) −1.99266 + 6.13279i −0.0722340 + 0.222313i −0.980655 0.195742i \(-0.937288\pi\)
0.908421 + 0.418056i \(0.137288\pi\)
\(762\) 0 0
\(763\) 3.09648 1.00611i 0.112100 0.0364236i
\(764\) 0 0
\(765\) 18.8375 + 27.7550i 0.681070 + 1.00348i
\(766\) 0 0
\(767\) −26.1711 19.0144i −0.944983 0.686570i
\(768\) 0 0
\(769\) 31.3637 22.7871i 1.13101 0.821724i 0.145165 0.989408i \(-0.453629\pi\)
0.985841 + 0.167684i \(0.0536288\pi\)
\(770\) 0 0
\(771\) −0.234363 + 0.170274i −0.00844037 + 0.00613228i
\(772\) 0 0
\(773\) −9.11103 + 28.0409i −0.327701 + 1.00856i 0.642505 + 0.766281i \(0.277895\pi\)
−0.970207 + 0.242279i \(0.922105\pi\)
\(774\) 0 0
\(775\) −12.1946 + 7.71800i −0.438042 + 0.277239i
\(776\) 0 0
\(777\) −0.402075 0.130642i −0.0144244 0.00468676i
\(778\) 0 0
\(779\) 11.5065 + 3.50167i 0.412265 + 0.125460i
\(780\) 0 0
\(781\) −16.8350 + 51.8129i −0.602404 + 1.85401i
\(782\) 0 0
\(783\) 1.45079 1.99684i 0.0518469 0.0713612i
\(784\) 0 0
\(785\) −17.9178 + 5.19371i −0.639513 + 0.185371i
\(786\) 0 0
\(787\) −4.22615 5.81680i −0.150646 0.207346i 0.727024 0.686612i \(-0.240903\pi\)
−0.877670 + 0.479266i \(0.840903\pi\)
\(788\) 0 0
\(789\) −5.16021 + 3.74911i −0.183708 + 0.133472i
\(790\) 0 0
\(791\) −9.48316 + 13.0524i −0.337182 + 0.464091i
\(792\) 0 0
\(793\) −13.2745 −0.471391
\(794\) 0 0
\(795\) 2.12046 2.73023i 0.0752049 0.0968312i
\(796\) 0 0
\(797\) 0.255219 + 0.0829258i 0.00904033 + 0.00293738i 0.313534 0.949577i \(-0.398487\pi\)
−0.304493 + 0.952514i \(0.598487\pi\)
\(798\) 0 0
\(799\) −7.87601 24.2399i −0.278633 0.857545i
\(800\) 0 0
\(801\) −26.4584 + 8.59687i −0.934863 + 0.303755i
\(802\) 0 0
\(803\) 61.8595 44.9435i 2.18297 1.58602i
\(804\) 0 0
\(805\) 6.19567 + 0.198500i 0.218369 + 0.00699622i
\(806\) 0 0
\(807\) −1.52875 + 4.70500i −0.0538145 + 0.165624i
\(808\) 0 0
\(809\) −6.94984 9.56563i −0.244343 0.336310i 0.669177 0.743103i \(-0.266647\pi\)
−0.913520 + 0.406793i \(0.866647\pi\)
\(810\) 0 0
\(811\) 14.1480 0.496802 0.248401 0.968657i \(-0.420095\pi\)
0.248401 + 0.968657i \(0.420095\pi\)
\(812\) 0 0
\(813\) −0.253393 0.779864i −0.00888688 0.0273510i
\(814\) 0 0
\(815\) 43.8887 + 1.40613i 1.53735 + 0.0492546i
\(816\) 0 0
\(817\) 12.6679 0.443194
\(818\) 0 0
\(819\) −11.7397 −0.410218
\(820\) 0 0
\(821\) −15.3090 −0.534287 −0.267143 0.963657i \(-0.586080\pi\)
−0.267143 + 0.963657i \(0.586080\pi\)
\(822\) 0 0
\(823\) −16.6648 −0.580897 −0.290448 0.956891i \(-0.593804\pi\)
−0.290448 + 0.956891i \(0.593804\pi\)
\(824\) 0 0
\(825\) 4.95845 + 7.83443i 0.172631 + 0.272760i
\(826\) 0 0
\(827\) 13.6833 + 42.1130i 0.475817 + 1.46441i 0.844853 + 0.534998i \(0.179688\pi\)
−0.369037 + 0.929415i \(0.620312\pi\)
\(828\) 0 0
\(829\) 5.96168 0.207058 0.103529 0.994626i \(-0.466987\pi\)
0.103529 + 0.994626i \(0.466987\pi\)
\(830\) 0 0
\(831\) −1.70087 2.34105i −0.0590026 0.0812101i
\(832\) 0 0
\(833\) −9.85651 + 30.3352i −0.341508 + 1.05105i
\(834\) 0 0
\(835\) 1.15237 35.9682i 0.0398794 1.24473i
\(836\) 0 0
\(837\) −5.32253 + 3.86704i −0.183973 + 0.133664i
\(838\) 0 0
\(839\) 35.6402 11.5802i 1.23044 0.399793i 0.379564 0.925165i \(-0.376074\pi\)
0.850873 + 0.525372i \(0.176074\pi\)
\(840\) 0 0
\(841\) 8.59914 + 26.4654i 0.296522 + 0.912601i
\(842\) 0 0
\(843\) −3.56471 1.15824i −0.122775 0.0398920i
\(844\) 0 0
\(845\) 6.84869 8.81814i 0.235602 0.303353i
\(846\) 0 0
\(847\) 11.3063 0.388491
\(848\) 0 0
\(849\) 1.88316 2.59194i 0.0646298 0.0889552i
\(850\) 0 0
\(851\) 2.57626 1.87176i 0.0883130 0.0641632i
\(852\) 0 0
\(853\) 15.3223 + 21.0893i 0.524625 + 0.722084i 0.986299 0.164965i \(-0.0527512\pi\)
−0.461674 + 0.887049i \(0.652751\pi\)
\(854\) 0 0
\(855\) 3.33042 + 11.4896i 0.113898 + 0.392936i
\(856\) 0 0
\(857\) −24.2395 + 33.3627i −0.828004 + 1.13965i 0.160287 + 0.987070i \(0.448758\pi\)
−0.988291 + 0.152579i \(0.951242\pi\)
\(858\) 0 0
\(859\) −0.340560 + 1.04814i −0.0116197 + 0.0357619i −0.956698 0.291081i \(-0.905985\pi\)
0.945079 + 0.326843i \(0.105985\pi\)
\(860\) 0 0
\(861\) −0.706051 + 2.32009i −0.0240621 + 0.0790685i
\(862\) 0 0
\(863\) 1.58726 + 0.515731i 0.0540309 + 0.0175557i 0.335908 0.941895i \(-0.390957\pi\)
−0.281877 + 0.959451i \(0.590957\pi\)
\(864\) 0 0
\(865\) −7.54311 0.241671i −0.256474 0.00821705i
\(866\) 0 0
\(867\) 1.29388 3.98215i 0.0439424 0.135241i
\(868\) 0 0
\(869\) 54.8587 39.8572i 1.86095 1.35206i
\(870\) 0 0
\(871\) −13.5490 + 9.84393i −0.459091 + 0.333549i
\(872\) 0 0
\(873\) 7.67452 + 5.57587i 0.259743 + 0.188714i
\(874\) 0 0
\(875\) −10.6070 + 2.35052i −0.358583 + 0.0794622i
\(876\) 0 0
\(877\) −16.3883 + 5.32489i −0.553395 + 0.179809i −0.572347 0.820012i \(-0.693967\pi\)
0.0189523 + 0.999820i \(0.493967\pi\)
\(878\) 0 0
\(879\) −3.68583 + 11.3438i −0.124320 + 0.382618i
\(880\) 0 0
\(881\) 9.63739 + 29.6608i 0.324692 + 0.999299i 0.971579 + 0.236714i \(0.0760703\pi\)
−0.646888 + 0.762585i \(0.723930\pi\)
\(882\) 0 0
\(883\) 6.08543 + 18.7290i 0.204791 + 0.630282i 0.999722 + 0.0235821i \(0.00750710\pi\)
−0.794931 + 0.606700i \(0.792493\pi\)
\(884\) 0 0
\(885\) −6.25216 2.25524i −0.210164 0.0758090i
\(886\) 0 0
\(887\) 7.85023 + 5.70353i 0.263585 + 0.191506i 0.711726 0.702457i \(-0.247914\pi\)
−0.448141 + 0.893963i \(0.647914\pi\)
\(888\) 0 0
\(889\) −18.5881 6.03962i −0.623423 0.202563i
\(890\) 0 0
\(891\) −21.4094 29.4675i −0.717242 0.987200i
\(892\) 0 0
\(893\) 9.08940i 0.304165i
\(894\) 0 0
\(895\) −39.7567 30.8774i −1.32892 1.03212i
\(896\) 0 0
\(897\) −2.77235 + 3.81581i −0.0925661 + 0.127406i
\(898\) 0 0
\(899\) 3.12553i 0.104242i
\(900\) 0 0
\(901\) 20.8922 0.696021
\(902\) 0 0
\(903\) 2.55426i 0.0850005i
\(904\) 0 0
\(905\) 16.2770 11.0473i 0.541067 0.367225i
\(906\) 0 0
\(907\) −3.44869 + 4.74672i −0.114512 + 0.157612i −0.862426 0.506184i \(-0.831056\pi\)
0.747914 + 0.663796i \(0.231056\pi\)
\(908\) 0 0
\(909\) 13.5475 4.40185i 0.449343 0.146000i
\(910\) 0 0
\(911\) 40.9448 1.35656 0.678280 0.734803i \(-0.262726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(912\) 0 0
\(913\) 29.6143 21.5160i 0.980089 0.712076i
\(914\) 0 0
\(915\) −2.61955 + 0.759311i −0.0865995 + 0.0251021i
\(916\) 0 0
\(917\) −4.91822 3.57330i −0.162414 0.118001i
\(918\) 0 0
\(919\) 17.6087 + 24.2363i 0.580857 + 0.799480i 0.993789 0.111281i \(-0.0354954\pi\)
−0.412932 + 0.910762i \(0.635495\pi\)
\(920\) 0 0
\(921\) 5.32553 1.73037i 0.175482 0.0570176i
\(922\) 0 0
\(923\) 46.1956 15.0099i 1.52055 0.494056i
\(924\) 0 0
\(925\) −3.56283 + 4.29600i −0.117145 + 0.141252i
\(926\) 0 0
\(927\) −10.8421 + 3.52280i −0.356100 + 0.115704i
\(928\) 0 0
\(929\) 3.85979i 0.126635i −0.997993 0.0633177i \(-0.979832\pi\)
0.997993 0.0633177i \(-0.0201682\pi\)
\(930\) 0 0
\(931\) −6.68606 + 9.20258i −0.219127 + 0.301602i
\(932\) 0 0
\(933\) 0.0980556 + 0.134962i 0.00321019 + 0.00441845i
\(934\) 0 0
\(935\) −19.0131 + 52.7097i −0.621794 + 1.72379i
\(936\) 0 0
\(937\) 6.13305 18.8756i 0.200358 0.616638i −0.799514 0.600647i \(-0.794910\pi\)
0.999872 0.0159912i \(-0.00509036\pi\)
\(938\) 0 0
\(939\) −0.408055 0.296470i −0.0133164 0.00967492i
\(940\) 0 0
\(941\) −13.3099 + 40.9635i −0.433889 + 1.33537i 0.460332 + 0.887747i \(0.347730\pi\)
−0.894221 + 0.447626i \(0.852270\pi\)
\(942\) 0 0
\(943\) −11.0122 14.5745i −0.358607 0.474612i
\(944\) 0 0
\(945\) −4.75692 + 1.37886i −0.154743 + 0.0448543i
\(946\) 0 0
\(947\) 3.82391 5.26317i 0.124261 0.171030i −0.742354 0.670007i \(-0.766291\pi\)
0.866615 + 0.498977i \(0.166291\pi\)
\(948\) 0 0
\(949\) −64.8362 21.0666i −2.10467 0.683850i
\(950\) 0 0
\(951\) −9.04867 + 6.57424i −0.293423 + 0.213184i
\(952\) 0 0
\(953\) 8.16763 + 11.2418i 0.264576 + 0.364157i 0.920549 0.390627i \(-0.127742\pi\)
−0.655974 + 0.754784i \(0.727742\pi\)
\(954\) 0 0
\(955\) 5.89446 + 0.188850i 0.190740 + 0.00611104i
\(956\) 0 0
\(957\) 2.00800 0.0649094
\(958\) 0 0
\(959\) −2.64835 8.15080i −0.0855198 0.263203i
\(960\) 0 0
\(961\) −7.00510 + 21.5595i −0.225971 + 0.695467i
\(962\) 0 0
\(963\) −8.79104 + 2.85638i −0.283287 + 0.0920457i
\(964\) 0 0
\(965\) 2.70011 3.47657i 0.0869197 0.111915i
\(966\) 0 0
\(967\) 22.0295 16.0054i 0.708421 0.514698i −0.174243 0.984703i \(-0.555748\pi\)
0.882664 + 0.470005i \(0.155748\pi\)
\(968\) 0 0
\(969\) 2.26661 3.11971i 0.0728139 0.100220i
\(970\) 0 0
\(971\) 11.9317 + 3.87684i 0.382906 + 0.124414i 0.494144 0.869380i \(-0.335481\pi\)
−0.111238 + 0.993794i \(0.535481\pi\)
\(972\) 0 0
\(973\) 7.07942 5.14350i 0.226956 0.164893i
\(974\) 0 0
\(975\) 3.05251 7.68228i 0.0977585 0.246030i
\(976\) 0 0
\(977\) −12.4484 38.3122i −0.398259 1.22572i −0.926394 0.376555i \(-0.877109\pi\)
0.528135 0.849160i \(-0.322891\pi\)
\(978\) 0 0
\(979\) −37.5971 27.3159i −1.20161 0.873020i
\(980\) 0 0
\(981\) 9.54261i 0.304672i
\(982\) 0 0
\(983\) 54.1831i 1.72817i −0.503343 0.864087i \(-0.667897\pi\)
0.503343 0.864087i \(-0.332103\pi\)
\(984\) 0 0
\(985\) 40.0395 27.1751i 1.27577 0.865869i
\(986\) 0 0
\(987\) 1.83272 0.0583361
\(988\) 0 0
\(989\) −15.5652 11.3088i −0.494944 0.359598i
\(990\) 0 0
\(991\) 2.97531 0.966736i 0.0945138 0.0307094i −0.261378 0.965236i \(-0.584177\pi\)
0.355892 + 0.934527i \(0.384177\pi\)
\(992\) 0 0
\(993\) 11.7127i 0.371690i
\(994\) 0 0
\(995\) −4.89410 + 13.5678i −0.155153 + 0.430130i
\(996\) 0 0
\(997\) −13.4056 + 41.2583i −0.424560 + 1.30666i 0.478854 + 0.877895i \(0.341052\pi\)
−0.903415 + 0.428768i \(0.858948\pi\)
\(998\) 0 0
\(999\) −1.49549 + 2.05837i −0.0473153 + 0.0651240i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.bi.a.189.12 yes 80
5.4 even 2 inner 820.2.bi.a.189.9 80
41.23 even 10 inner 820.2.bi.a.269.9 yes 80
205.64 even 10 inner 820.2.bi.a.269.12 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.bi.a.189.9 80 5.4 even 2 inner
820.2.bi.a.189.12 yes 80 1.1 even 1 trivial
820.2.bi.a.269.9 yes 80 41.23 even 10 inner
820.2.bi.a.269.12 yes 80 205.64 even 10 inner