Newspace parameters
Level: | \( N \) | \(=\) | \( 82 = 2 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 82.d (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(13.1514732247\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | 3.23607 | − | 2.35114i | −23.2142 | 4.94427 | − | 15.2169i | 2.84879 | − | 8.76768i | −75.1228 | + | 54.5799i | −116.783 | − | 84.8479i | −19.7771 | − | 60.8676i | 295.901 | −11.3952 | − | 35.0707i | ||||
37.2 | 3.23607 | − | 2.35114i | −20.9317 | 4.94427 | − | 15.2169i | −11.1577 | + | 34.3400i | −67.7364 | + | 49.2134i | 105.237 | + | 76.4591i | −19.7771 | − | 60.8676i | 195.136 | 44.6310 | + | 137.360i | ||||
37.3 | 3.23607 | − | 2.35114i | −20.7864 | 4.94427 | − | 15.2169i | 24.6325 | − | 75.8110i | −67.2663 | + | 48.8718i | 84.4966 | + | 61.3903i | −19.7771 | − | 60.8676i | 189.076 | −98.5300 | − | 303.244i | ||||
37.4 | 3.23607 | − | 2.35114i | 1.86821 | 4.94427 | − | 15.2169i | 28.8355 | − | 88.7465i | 6.04567 | − | 4.39244i | −47.2379 | − | 34.3203i | −19.7771 | − | 60.8676i | −239.510 | −115.342 | − | 354.986i | ||||
37.5 | 3.23607 | − | 2.35114i | 2.21783 | 4.94427 | − | 15.2169i | −23.5211 | + | 72.3905i | 7.17706 | − | 5.21444i | 48.4929 | + | 35.2321i | −19.7771 | − | 60.8676i | −238.081 | 94.0843 | + | 289.562i | ||||
37.6 | 3.23607 | − | 2.35114i | 2.27324 | 4.94427 | − | 15.2169i | −9.23113 | + | 28.4105i | 7.35635 | − | 5.34470i | −115.841 | − | 84.1637i | −19.7771 | − | 60.8676i | −237.832 | 36.9245 | + | 113.642i | ||||
37.7 | 3.23607 | − | 2.35114i | 19.5004 | 4.94427 | − | 15.2169i | 10.8275 | − | 33.3236i | 63.1046 | − | 45.8482i | 164.744 | + | 119.693i | −19.7771 | − | 60.8676i | 137.266 | −43.3100 | − | 133.294i | ||||
37.8 | 3.23607 | − | 2.35114i | 24.2649 | 4.94427 | − | 15.2169i | 13.8621 | − | 42.6631i | 78.5227 | − | 57.0501i | −139.296 | − | 101.205i | −19.7771 | − | 60.8676i | 345.784 | −55.4484 | − | 170.653i | ||||
37.9 | 3.23607 | − | 2.35114i | 27.6062 | 4.94427 | − | 15.2169i | −30.5964 | + | 94.1661i | 89.3355 | − | 64.9061i | −19.4012 | − | 14.0958i | −19.7771 | − | 60.8676i | 519.102 | 122.386 | + | 376.664i | ||||
51.1 | 3.23607 | + | 2.35114i | −23.2142 | 4.94427 | + | 15.2169i | 2.84879 | + | 8.76768i | −75.1228 | − | 54.5799i | −116.783 | + | 84.8479i | −19.7771 | + | 60.8676i | 295.901 | −11.3952 | + | 35.0707i | ||||
51.2 | 3.23607 | + | 2.35114i | −20.9317 | 4.94427 | + | 15.2169i | −11.1577 | − | 34.3400i | −67.7364 | − | 49.2134i | 105.237 | − | 76.4591i | −19.7771 | + | 60.8676i | 195.136 | 44.6310 | − | 137.360i | ||||
51.3 | 3.23607 | + | 2.35114i | −20.7864 | 4.94427 | + | 15.2169i | 24.6325 | + | 75.8110i | −67.2663 | − | 48.8718i | 84.4966 | − | 61.3903i | −19.7771 | + | 60.8676i | 189.076 | −98.5300 | + | 303.244i | ||||
51.4 | 3.23607 | + | 2.35114i | 1.86821 | 4.94427 | + | 15.2169i | 28.8355 | + | 88.7465i | 6.04567 | + | 4.39244i | −47.2379 | + | 34.3203i | −19.7771 | + | 60.8676i | −239.510 | −115.342 | + | 354.986i | ||||
51.5 | 3.23607 | + | 2.35114i | 2.21783 | 4.94427 | + | 15.2169i | −23.5211 | − | 72.3905i | 7.17706 | + | 5.21444i | 48.4929 | − | 35.2321i | −19.7771 | + | 60.8676i | −238.081 | 94.0843 | − | 289.562i | ||||
51.6 | 3.23607 | + | 2.35114i | 2.27324 | 4.94427 | + | 15.2169i | −9.23113 | − | 28.4105i | 7.35635 | + | 5.34470i | −115.841 | + | 84.1637i | −19.7771 | + | 60.8676i | −237.832 | 36.9245 | − | 113.642i | ||||
51.7 | 3.23607 | + | 2.35114i | 19.5004 | 4.94427 | + | 15.2169i | 10.8275 | + | 33.3236i | 63.1046 | + | 45.8482i | 164.744 | − | 119.693i | −19.7771 | + | 60.8676i | 137.266 | −43.3100 | + | 133.294i | ||||
51.8 | 3.23607 | + | 2.35114i | 24.2649 | 4.94427 | + | 15.2169i | 13.8621 | + | 42.6631i | 78.5227 | + | 57.0501i | −139.296 | + | 101.205i | −19.7771 | + | 60.8676i | 345.784 | −55.4484 | + | 170.653i | ||||
51.9 | 3.23607 | + | 2.35114i | 27.6062 | 4.94427 | + | 15.2169i | −30.5964 | − | 94.1661i | 89.3355 | + | 64.9061i | −19.4012 | + | 14.0958i | −19.7771 | + | 60.8676i | 519.102 | 122.386 | − | 376.664i | ||||
57.1 | −1.23607 | + | 3.80423i | −29.2964 | −12.9443 | − | 9.40456i | 72.0590 | + | 52.3539i | 36.2123 | − | 111.450i | −58.7271 | − | 180.743i | 51.7771 | − | 37.6183i | 615.279 | −288.236 | + | 209.416i | ||||
57.2 | −1.23607 | + | 3.80423i | −20.2284 | −12.9443 | − | 9.40456i | −77.2940 | − | 56.1574i | 25.0037 | − | 76.9535i | −23.9851 | − | 73.8187i | 51.7771 | − | 37.6183i | 166.189 | 309.176 | − | 224.630i | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 82.6.d.b | ✓ | 36 |
41.d | even | 5 | 1 | inner | 82.6.d.b | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
82.6.d.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
82.6.d.b | ✓ | 36 | 41.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{18} - T_{3}^{17} - 3188 T_{3}^{16} + 1555 T_{3}^{15} + 4186687 T_{3}^{14} - 392118 T_{3}^{13} + \cdots + 76\!\cdots\!80 \)
acting on \(S_{6}^{\mathrm{new}}(82, [\chi])\).