Properties

Label 2-82-41.16-c5-0-2
Degree $2$
Conductor $82$
Sign $0.296 - 0.955i$
Analytic cond. $13.1514$
Root an. cond. $3.62649$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.23 + 3.80i)2-s − 20.2·3-s + (−12.9 − 9.40i)4-s + (−77.2 − 56.1i)5-s + (25.0 − 76.9i)6-s + (−23.9 − 73.8i)7-s + (51.7 − 37.6i)8-s + 166.·9-s + (309. − 224. i)10-s + (−303. + 220. i)11-s + (261. + 190. i)12-s + (63.8 − 196. i)13-s + 310.·14-s + (1.56e3 + 1.13e3i)15-s + (79.1 + 243. i)16-s + (−1.34e3 + 974. i)17-s + ⋯
L(s)  = 1  + (−0.218 + 0.672i)2-s − 1.29·3-s + (−0.404 − 0.293i)4-s + (−1.38 − 1.00i)5-s + (0.283 − 0.872i)6-s + (−0.185 − 0.569i)7-s + (0.286 − 0.207i)8-s + 0.683·9-s + (0.977 − 0.710i)10-s + (−0.755 + 0.549i)11-s + (0.524 + 0.381i)12-s + (0.104 − 0.322i)13-s + 0.423·14-s + (1.79 + 1.30i)15-s + (0.0772 + 0.237i)16-s + (−1.12 + 0.818i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.296 - 0.955i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.296 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(82\)    =    \(2 \cdot 41\)
Sign: $0.296 - 0.955i$
Analytic conductor: \(13.1514\)
Root analytic conductor: \(3.62649\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{82} (57, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 82,\ (\ :5/2),\ 0.296 - 0.955i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.183875 + 0.135469i\)
\(L(\frac12)\) \(\approx\) \(0.183875 + 0.135469i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.23 - 3.80i)T \)
41 \( 1 + (-9.35e3 - 5.31e3i)T \)
good3 \( 1 + 20.2T + 243T^{2} \)
5 \( 1 + (77.2 + 56.1i)T + (965. + 2.97e3i)T^{2} \)
7 \( 1 + (23.9 + 73.8i)T + (-1.35e4 + 9.87e3i)T^{2} \)
11 \( 1 + (303. - 220. i)T + (4.97e4 - 1.53e5i)T^{2} \)
13 \( 1 + (-63.8 + 196. i)T + (-3.00e5 - 2.18e5i)T^{2} \)
17 \( 1 + (1.34e3 - 974. i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (562. + 1.73e3i)T + (-2.00e6 + 1.45e6i)T^{2} \)
23 \( 1 + (34.4 - 106. i)T + (-5.20e6 - 3.78e6i)T^{2} \)
29 \( 1 + (-1.09e3 - 795. i)T + (6.33e6 + 1.95e7i)T^{2} \)
31 \( 1 + (-1.33e3 + 968. i)T + (8.84e6 - 2.72e7i)T^{2} \)
37 \( 1 + (2.08e3 + 1.51e3i)T + (2.14e7 + 6.59e7i)T^{2} \)
43 \( 1 + (3.46e3 - 1.06e4i)T + (-1.18e8 - 8.64e7i)T^{2} \)
47 \( 1 + (-7.16e3 + 2.20e4i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (5.20e3 + 3.77e3i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (6.39e3 - 1.96e4i)T + (-5.78e8 - 4.20e8i)T^{2} \)
61 \( 1 + (1.00e4 + 3.09e4i)T + (-6.83e8 + 4.96e8i)T^{2} \)
67 \( 1 + (3.76e4 + 2.73e4i)T + (4.17e8 + 1.28e9i)T^{2} \)
71 \( 1 + (-2.12e4 + 1.54e4i)T + (5.57e8 - 1.71e9i)T^{2} \)
73 \( 1 - 4.80e4T + 2.07e9T^{2} \)
79 \( 1 + 1.03e5T + 3.07e9T^{2} \)
83 \( 1 + 7.23e4T + 3.93e9T^{2} \)
89 \( 1 + (-4.37e4 - 1.34e5i)T + (-4.51e9 + 3.28e9i)T^{2} \)
97 \( 1 + (-9.02e4 - 6.55e4i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23991283230838442932686543334, −12.52035904425700383922014645517, −11.35586885122955787140786225338, −10.49182421280199092261315351381, −8.812145288674324976911061443438, −7.72364084170319204140912325908, −6.59216521992971342680691844042, −5.08580004839465871188356594747, −4.27967166206187461932890194333, −0.61591740383979648813092161546, 0.23567752400195752672631818770, 2.83950336040576945614656152341, 4.37431098561085197005310315244, 5.97964281446657437171058904175, 7.28437855514492982883860335659, 8.610585948982355872132999327664, 10.38820239816964987506821604532, 11.12172251292983985481702367225, 11.74271769709764186097076657431, 12.57143633475963816981135889672

Graph of the $Z$-function along the critical line