Properties

Label 82.2.f.b
Level $82$
Weight $2$
Character orbit 82.f
Analytic conductor $0.655$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [82,2,Mod(23,82)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(82, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("82.23"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 82.f (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.654773296574\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: 8.0.346890625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} + 9x^{4} + 31x^{3} - 50x^{2} - 11x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + \beta_{3} - \beta_{2} + 1) q^{2} + (\beta_{7} - \beta_{4} - \beta_{3}) q^{3} - \beta_{2} q^{4} + (\beta_{6} + \beta_{5} + \beta_{4} + \cdots + 1) q^{5} + ( - \beta_{3} + \beta_{2} + \beta_1) q^{6}+ \cdots + (5 \beta_{7} + \beta_{6} + \cdots - 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} + 5 q^{6} + 2 q^{8} - 12 q^{9} - 10 q^{11} - 5 q^{12} + 5 q^{13} + 15 q^{15} - 2 q^{16} - 15 q^{17} - 3 q^{18} + 10 q^{19} + 5 q^{20} - 13 q^{21} - 15 q^{22} - 5 q^{23} - 5 q^{24}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + x^{5} + 9x^{4} + 31x^{3} - 50x^{2} - 11x + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 9219 \nu^{7} - 23849 \nu^{6} + 41305 \nu^{5} - 46232 \nu^{4} + 166021 \nu^{3} + 73918 \nu^{2} + \cdots + 901395 ) / 182171 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 10275 \nu^{7} - 24091 \nu^{6} + 33528 \nu^{5} - 54966 \nu^{4} + 176383 \nu^{3} + 91870 \nu^{2} + \cdots + 548537 ) / 182171 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16922 \nu^{7} - 37690 \nu^{6} + 65483 \nu^{5} - 73025 \nu^{4} + 263343 \nu^{3} + 138625 \nu^{2} + \cdots + 1248071 ) / 182171 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17662 \nu^{7} - 61321 \nu^{6} + 89705 \nu^{5} - 121928 \nu^{4} + 349269 \nu^{3} - 97210 \nu^{2} + \cdots + 1860595 ) / 182171 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -1814\nu^{7} + 5246\nu^{6} - 9067\nu^{5} + 10173\nu^{4} - 36431\nu^{3} + 2284\nu^{2} + 115922\nu - 197758 ) / 16561 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1888\nu^{7} - 5953\nu^{6} + 8177\nu^{5} - 10095\nu^{4} + 35087\nu^{3} - 1026\nu^{2} - 130383\nu + 169581 ) / 16561 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{4} + 4\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - 3\beta_{6} - 3\beta_{5} - 4\beta_{4} + 3\beta_{3} + \beta_{2} + 2\beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7\beta_{7} - 2\beta_{6} - 7\beta_{5} - 6\beta_{3} + 2\beta _1 - 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -6\beta_{7} + 4\beta_{5} + 4\beta_{4} - 13\beta_{3} + 13\beta_{2} - 4\beta _1 - 32 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -17\beta_{7} - 17\beta_{6} + 10\beta_{4} + 10\beta_{3} - 28\beta_{2} - 19\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -8\beta_{6} + \beta_{5} + 88\beta_{4} - 161\beta_{2} + 88 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/82\mathbb{Z}\right)^\times\).

\(n\) \(47\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
23.1
−1.54317 0.0243247i
1.23415 0.926732i
1.23415 + 0.926732i
−1.54317 + 0.0243247i
1.63297 1.39694i
−0.823953 + 1.98473i
−0.823953 1.98473i
1.63297 + 1.39694i
−0.309017 0.951057i 0.0787164i −0.809017 + 0.587785i 2.80592 2.03862i 0.0748638 0.0243247i −2.80592 0.911698i 0.809017 + 0.587785i 2.99380 −2.80592 2.03862i
23.2 −0.309017 0.951057i 2.99897i −0.809017 + 0.587785i −1.68788 + 1.22632i 2.85219 0.926732i 1.68788 + 0.548427i 0.809017 + 0.587785i −5.99380 1.68788 + 1.22632i
25.1 −0.309017 + 0.951057i 2.99897i −0.809017 0.587785i −1.68788 1.22632i 2.85219 + 0.926732i 1.68788 0.548427i 0.809017 0.587785i −5.99380 1.68788 1.22632i
25.2 −0.309017 + 0.951057i 0.0787164i −0.809017 0.587785i 2.80592 + 2.03862i 0.0748638 + 0.0243247i −2.80592 + 0.911698i 0.809017 0.587785i 2.99380 −2.80592 + 2.03862i
31.1 0.809017 + 0.587785i 1.72671i 0.309017 + 0.951057i 0.200214 + 0.616196i 1.01494 1.39694i −0.200214 0.275571i −0.309017 + 0.951057i 0.0184624 −0.200214 + 0.616196i
31.2 0.809017 + 0.587785i 2.45326i 0.309017 + 0.951057i −1.31825 4.05715i −1.44199 + 1.98473i 1.31825 + 1.81441i −0.309017 + 0.951057i −3.01846 1.31825 4.05715i
45.1 0.809017 0.587785i 2.45326i 0.309017 0.951057i −1.31825 + 4.05715i −1.44199 1.98473i 1.31825 1.81441i −0.309017 0.951057i −3.01846 1.31825 + 4.05715i
45.2 0.809017 0.587785i 1.72671i 0.309017 0.951057i 0.200214 0.616196i 1.01494 + 1.39694i −0.200214 + 0.275571i −0.309017 0.951057i 0.0184624 −0.200214 0.616196i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
41.f even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 82.2.f.b 8
3.b odd 2 1 738.2.n.c 8
4.b odd 2 1 656.2.be.b 8
41.f even 10 1 inner 82.2.f.b 8
41.g even 20 2 3362.2.a.y 8
123.l odd 10 1 738.2.n.c 8
164.l odd 10 1 656.2.be.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
82.2.f.b 8 1.a even 1 1 trivial
82.2.f.b 8 41.f even 10 1 inner
656.2.be.b 8 4.b odd 2 1
656.2.be.b 8 164.l odd 10 1
738.2.n.c 8 3.b odd 2 1
738.2.n.c 8 123.l odd 10 1
3362.2.a.y 8 41.g even 20 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 18T_{3}^{6} + 99T_{3}^{4} + 162T_{3}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(82, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} + 18 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} + 10 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$7$ \( T^{8} - 8 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( T^{8} + 10 T^{7} + \cdots + 22801 \) Copy content Toggle raw display
$13$ \( T^{8} - 5 T^{7} + \cdots + 32400 \) Copy content Toggle raw display
$17$ \( T^{8} + 15 T^{7} + \cdots + 30976 \) Copy content Toggle raw display
$19$ \( T^{8} - 10 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{8} + 5 T^{7} + \cdots + 400 \) Copy content Toggle raw display
$29$ \( T^{8} + 5 T^{7} + \cdots + 1296 \) Copy content Toggle raw display
$31$ \( T^{8} + 6 T^{7} + \cdots + 913936 \) Copy content Toggle raw display
$37$ \( T^{8} - 19 T^{7} + \cdots + 929296 \) Copy content Toggle raw display
$41$ \( T^{8} + 24 T^{7} + \cdots + 2825761 \) Copy content Toggle raw display
$43$ \( T^{8} + 7 T^{7} + \cdots + 10784656 \) Copy content Toggle raw display
$47$ \( (T^{4} - 20 T^{3} + \cdots + 1280)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 5 T^{7} + \cdots + 1296 \) Copy content Toggle raw display
$59$ \( T^{8} - 4 T^{7} + \cdots + 25563136 \) Copy content Toggle raw display
$61$ \( T^{8} - 21 T^{7} + \cdots + 4822416 \) Copy content Toggle raw display
$67$ \( T^{8} + 15 T^{7} + \cdots + 126736 \) Copy content Toggle raw display
$71$ \( T^{8} - 15 T^{7} + \cdots + 48400 \) Copy content Toggle raw display
$73$ \( (T^{4} + 21 T^{3} + \cdots - 324)^{2} \) Copy content Toggle raw display
$79$ \( T^{8} + 232 T^{6} + \cdots + 65536 \) Copy content Toggle raw display
$83$ \( (T^{4} + 12 T^{3} + \cdots + 891)^{2} \) Copy content Toggle raw display
$89$ \( T^{8} - 25 T^{7} + \cdots + 942841 \) Copy content Toggle raw display
$97$ \( T^{8} - 15 T^{7} + \cdots + 239909121 \) Copy content Toggle raw display
show more
show less