Properties

Label 82.2
Level 82
Weight 2
Dimension 69
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 840
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 82 = 2 \cdot 41 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 14 \)
Sturm bound: \(840\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(82))\).

Total New Old
Modular forms 250 69 181
Cusp forms 171 69 102
Eisenstein series 79 0 79

Trace form

\( 69 q - q^{2} - 4 q^{3} - q^{4} - 6 q^{5} - 4 q^{6} - 8 q^{7} - q^{8} - 13 q^{9} - 6 q^{10} - 12 q^{11} - 4 q^{12} - 14 q^{13} - 8 q^{14} - 24 q^{15} - q^{16} - 18 q^{17} - 13 q^{18} - 20 q^{19} - 6 q^{20}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(82))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
82.2.a \(\chi_{82}(1, \cdot)\) 82.2.a.a 1 1
82.2.a.b 2
82.2.b \(\chi_{82}(81, \cdot)\) 82.2.b.a 2 1
82.2.b.b 2
82.2.c \(\chi_{82}(9, \cdot)\) 82.2.c.a 2 2
82.2.c.b 2
82.2.c.c 2
82.2.d \(\chi_{82}(37, \cdot)\) 82.2.d.a 4 4
82.2.d.b 4
82.2.d.c 8
82.2.f \(\chi_{82}(23, \cdot)\) 82.2.f.a 8 4
82.2.f.b 8
82.2.g \(\chi_{82}(5, \cdot)\) 82.2.g.a 8 8
82.2.g.b 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(82))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(82)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(41))\)\(^{\oplus 2}\)