Properties

Label 819.2.j.i.352.3
Level $819$
Weight $2$
Character 819.352
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(235,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 8x^{10} + 47x^{8} + 122x^{6} + 233x^{4} + 119x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.3
Root \(0.367252 + 0.636099i\) of defining polynomial
Character \(\chi\) \(=\) 819.352
Dual form 819.2.j.i.235.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.367252 + 0.636099i) q^{2} +(0.730252 + 1.26483i) q^{4} +(1.27088 - 2.20122i) q^{5} +(-2.25729 + 1.38008i) q^{7} -2.54175 q^{8} +(0.933463 + 1.61680i) q^{10} +(1.85612 + 3.21490i) q^{11} -1.00000 q^{13} +(-0.0488718 - 1.94270i) q^{14} +(-0.527042 + 0.912864i) q^{16} +(-1.05288 - 1.82365i) q^{17} +(-2.96050 + 5.12774i) q^{19} +3.71224 q^{20} -2.72665 q^{22} +(-3.12700 + 5.41612i) q^{23} +(-0.730252 - 1.26483i) q^{25} +(0.367252 - 0.636099i) q^{26} +(-3.39397 - 1.84730i) q^{28} +8.83547 q^{29} +(2.85087 + 4.93786i) q^{31} +(-2.92887 - 5.07295i) q^{32} +1.54669 q^{34} +(0.169121 + 6.72272i) q^{35} +(-3.28434 + 5.68864i) q^{37} +(-2.17450 - 3.76635i) q^{38} +(-3.23025 + 5.59496i) q^{40} +10.3045 q^{41} -10.6477 q^{43} +(-2.71087 + 4.69537i) q^{44} +(-2.29679 - 3.97816i) q^{46} +(0.734503 - 1.27220i) q^{47} +(3.19076 - 6.23049i) q^{49} +1.07275 q^{50} +(-0.730252 - 1.26483i) q^{52} +(3.22738 + 5.58999i) q^{53} +9.43560 q^{55} +(5.73748 - 3.50782i) q^{56} +(-3.24484 + 5.62023i) q^{58} +(-5.71762 - 9.90321i) q^{59} +(4.55768 - 7.89414i) q^{61} -4.18795 q^{62} +2.19436 q^{64} +(-1.27088 + 2.20122i) q^{65} +(7.02704 + 12.1712i) q^{67} +(1.53774 - 2.66345i) q^{68} +(-4.33842 - 2.36135i) q^{70} -14.4527 q^{71} +(3.07014 + 5.31763i) q^{73} +(-2.41236 - 4.17832i) q^{74} -8.64766 q^{76} +(-8.62663 - 4.69537i) q^{77} +(3.98395 - 6.90040i) q^{79} +(1.33961 + 2.32027i) q^{80} +(-3.78434 + 6.55466i) q^{82} -12.1515 q^{83} -5.35234 q^{85} +(3.91037 - 6.77296i) q^{86} +(-4.71780 - 8.17147i) q^{88} +(-5.90660 + 10.2305i) q^{89} +(2.25729 - 1.38008i) q^{91} -9.13399 q^{92} +(0.539495 + 0.934433i) q^{94} +(7.52487 + 13.0335i) q^{95} +7.10097 q^{97} +(2.79140 + 4.31780i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} + 4 q^{7} + 4 q^{10} - 12 q^{13} + 12 q^{16} - 10 q^{19} - 36 q^{22} + 4 q^{25} - 8 q^{28} - 8 q^{31} + 12 q^{34} + 10 q^{37} - 26 q^{40} - 80 q^{43} - 22 q^{46} + 4 q^{52} + 36 q^{58} + 2 q^{61}+ \cdots + 44 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.367252 + 0.636099i −0.259686 + 0.449790i −0.966158 0.257952i \(-0.916952\pi\)
0.706472 + 0.707741i \(0.250286\pi\)
\(3\) 0 0
\(4\) 0.730252 + 1.26483i 0.365126 + 0.632417i
\(5\) 1.27088 2.20122i 0.568353 0.984416i −0.428376 0.903601i \(-0.640914\pi\)
0.996729 0.0808158i \(-0.0257526\pi\)
\(6\) 0 0
\(7\) −2.25729 + 1.38008i −0.853177 + 0.521621i
\(8\) −2.54175 −0.898645
\(9\) 0 0
\(10\) 0.933463 + 1.61680i 0.295187 + 0.511279i
\(11\) 1.85612 + 3.21490i 0.559641 + 0.969327i 0.997526 + 0.0702963i \(0.0223945\pi\)
−0.437885 + 0.899031i \(0.644272\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) −0.0488718 1.94270i −0.0130615 0.519208i
\(15\) 0 0
\(16\) −0.527042 + 0.912864i −0.131761 + 0.228216i
\(17\) −1.05288 1.82365i −0.255362 0.442299i 0.709632 0.704572i \(-0.248861\pi\)
−0.964994 + 0.262273i \(0.915528\pi\)
\(18\) 0 0
\(19\) −2.96050 + 5.12774i −0.679186 + 1.17639i 0.296040 + 0.955176i \(0.404334\pi\)
−0.975226 + 0.221210i \(0.928999\pi\)
\(20\) 3.71224 0.830082
\(21\) 0 0
\(22\) −2.72665 −0.581325
\(23\) −3.12700 + 5.41612i −0.652024 + 1.12934i 0.330607 + 0.943768i \(0.392747\pi\)
−0.982631 + 0.185570i \(0.940587\pi\)
\(24\) 0 0
\(25\) −0.730252 1.26483i −0.146050 0.252967i
\(26\) 0.367252 0.636099i 0.0720240 0.124749i
\(27\) 0 0
\(28\) −3.39397 1.84730i −0.641400 0.349106i
\(29\) 8.83547 1.64071 0.820353 0.571858i \(-0.193777\pi\)
0.820353 + 0.571858i \(0.193777\pi\)
\(30\) 0 0
\(31\) 2.85087 + 4.93786i 0.512032 + 0.886866i 0.999903 + 0.0139496i \(0.00444044\pi\)
−0.487871 + 0.872916i \(0.662226\pi\)
\(32\) −2.92887 5.07295i −0.517755 0.896779i
\(33\) 0 0
\(34\) 1.54669 0.265256
\(35\) 0.169121 + 6.72272i 0.0285867 + 1.13635i
\(36\) 0 0
\(37\) −3.28434 + 5.68864i −0.539942 + 0.935206i 0.458965 + 0.888454i \(0.348220\pi\)
−0.998907 + 0.0467519i \(0.985113\pi\)
\(38\) −2.17450 3.76635i −0.352751 0.610982i
\(39\) 0 0
\(40\) −3.23025 + 5.59496i −0.510748 + 0.884641i
\(41\) 10.3045 1.60929 0.804645 0.593757i \(-0.202356\pi\)
0.804645 + 0.593757i \(0.202356\pi\)
\(42\) 0 0
\(43\) −10.6477 −1.62375 −0.811877 0.583829i \(-0.801554\pi\)
−0.811877 + 0.583829i \(0.801554\pi\)
\(44\) −2.71087 + 4.69537i −0.408680 + 0.707854i
\(45\) 0 0
\(46\) −2.29679 3.97816i −0.338643 0.586547i
\(47\) 0.734503 1.27220i 0.107138 0.185569i −0.807472 0.589907i \(-0.799165\pi\)
0.914610 + 0.404338i \(0.132498\pi\)
\(48\) 0 0
\(49\) 3.19076 6.23049i 0.455822 0.890071i
\(50\) 1.07275 0.151709
\(51\) 0 0
\(52\) −0.730252 1.26483i −0.101268 0.175401i
\(53\) 3.22738 + 5.58999i 0.443315 + 0.767845i 0.997933 0.0642606i \(-0.0204689\pi\)
−0.554618 + 0.832105i \(0.687136\pi\)
\(54\) 0 0
\(55\) 9.43560 1.27230
\(56\) 5.73748 3.50782i 0.766704 0.468752i
\(57\) 0 0
\(58\) −3.24484 + 5.62023i −0.426069 + 0.737972i
\(59\) −5.71762 9.90321i −0.744371 1.28929i −0.950488 0.310761i \(-0.899416\pi\)
0.206117 0.978527i \(-0.433917\pi\)
\(60\) 0 0
\(61\) 4.55768 7.89414i 0.583551 1.01074i −0.411503 0.911408i \(-0.634996\pi\)
0.995054 0.0993323i \(-0.0316707\pi\)
\(62\) −4.18795 −0.531871
\(63\) 0 0
\(64\) 2.19436 0.274294
\(65\) −1.27088 + 2.20122i −0.157633 + 0.273028i
\(66\) 0 0
\(67\) 7.02704 + 12.1712i 0.858490 + 1.48695i 0.873369 + 0.487059i \(0.161930\pi\)
−0.0148794 + 0.999889i \(0.504736\pi\)
\(68\) 1.53774 2.66345i 0.186478 0.322990i
\(69\) 0 0
\(70\) −4.33842 2.36135i −0.518540 0.282235i
\(71\) −14.4527 −1.71522 −0.857610 0.514300i \(-0.828052\pi\)
−0.857610 + 0.514300i \(0.828052\pi\)
\(72\) 0 0
\(73\) 3.07014 + 5.31763i 0.359332 + 0.622382i 0.987849 0.155414i \(-0.0496712\pi\)
−0.628517 + 0.777796i \(0.716338\pi\)
\(74\) −2.41236 4.17832i −0.280431 0.485720i
\(75\) 0 0
\(76\) −8.64766 −0.991955
\(77\) −8.62663 4.69537i −0.983095 0.535087i
\(78\) 0 0
\(79\) 3.98395 6.90040i 0.448229 0.776356i −0.550042 0.835137i \(-0.685388\pi\)
0.998271 + 0.0587814i \(0.0187215\pi\)
\(80\) 1.33961 + 2.32027i 0.149773 + 0.259414i
\(81\) 0 0
\(82\) −3.78434 + 6.55466i −0.417910 + 0.723841i
\(83\) −12.1515 −1.33380 −0.666898 0.745149i \(-0.732378\pi\)
−0.666898 + 0.745149i \(0.732378\pi\)
\(84\) 0 0
\(85\) −5.35234 −0.580542
\(86\) 3.91037 6.77296i 0.421666 0.730347i
\(87\) 0 0
\(88\) −4.71780 8.17147i −0.502919 0.871081i
\(89\) −5.90660 + 10.2305i −0.626099 + 1.08444i 0.362228 + 0.932089i \(0.382016\pi\)
−0.988327 + 0.152346i \(0.951317\pi\)
\(90\) 0 0
\(91\) 2.25729 1.38008i 0.236629 0.144672i
\(92\) −9.13399 −0.952284
\(93\) 0 0
\(94\) 0.539495 + 0.934433i 0.0556447 + 0.0963794i
\(95\) 7.52487 + 13.0335i 0.772035 + 1.33720i
\(96\) 0 0
\(97\) 7.10097 0.720994 0.360497 0.932760i \(-0.382607\pi\)
0.360497 + 0.932760i \(0.382607\pi\)
\(98\) 2.79140 + 4.31780i 0.281974 + 0.436163i
\(99\) 0 0
\(100\) 1.06654 1.84730i 0.106654 0.184730i
\(101\) −4.24861 7.35882i −0.422753 0.732230i 0.573455 0.819237i \(-0.305603\pi\)
−0.996208 + 0.0870077i \(0.972270\pi\)
\(102\) 0 0
\(103\) −1.09358 + 1.89413i −0.107754 + 0.186635i −0.914860 0.403771i \(-0.867699\pi\)
0.807106 + 0.590406i \(0.201032\pi\)
\(104\) 2.54175 0.249239
\(105\) 0 0
\(106\) −4.74105 −0.460491
\(107\) 3.76376 6.51902i 0.363856 0.630217i −0.624736 0.780836i \(-0.714793\pi\)
0.988592 + 0.150619i \(0.0481267\pi\)
\(108\) 0 0
\(109\) −0.0270421 0.0468383i −0.00259016 0.00448630i 0.864727 0.502241i \(-0.167491\pi\)
−0.867318 + 0.497755i \(0.834158\pi\)
\(110\) −3.46524 + 6.00197i −0.330398 + 0.572265i
\(111\) 0 0
\(112\) −0.0701359 2.78796i −0.00662722 0.263438i
\(113\) −6.25399 −0.588326 −0.294163 0.955755i \(-0.595041\pi\)
−0.294163 + 0.955755i \(0.595041\pi\)
\(114\) 0 0
\(115\) 7.94805 + 13.7664i 0.741160 + 1.28373i
\(116\) 6.45212 + 11.1754i 0.599065 + 1.03761i
\(117\) 0 0
\(118\) 8.39922 0.773211
\(119\) 4.89345 + 2.66345i 0.448582 + 0.244158i
\(120\) 0 0
\(121\) −1.39037 + 2.40819i −0.126397 + 0.218926i
\(122\) 3.34763 + 5.79827i 0.303080 + 0.524951i
\(123\) 0 0
\(124\) −4.16372 + 7.21177i −0.373913 + 0.647636i
\(125\) 8.99652 0.804673
\(126\) 0 0
\(127\) −2.49261 −0.221183 −0.110592 0.993866i \(-0.535275\pi\)
−0.110592 + 0.993866i \(0.535275\pi\)
\(128\) 5.05185 8.75006i 0.446525 0.773404i
\(129\) 0 0
\(130\) −0.933463 1.61680i −0.0818701 0.141803i
\(131\) 4.42688 7.66759i 0.386779 0.669920i −0.605236 0.796046i \(-0.706921\pi\)
0.992014 + 0.126126i \(0.0402545\pi\)
\(132\) 0 0
\(133\) −0.393968 15.6606i −0.0341613 1.35794i
\(134\) −10.3228 −0.891752
\(135\) 0 0
\(136\) 2.67617 + 4.63526i 0.229480 + 0.397470i
\(137\) −1.35947 2.35468i −0.116148 0.201174i 0.802090 0.597203i \(-0.203721\pi\)
−0.918238 + 0.396029i \(0.870388\pi\)
\(138\) 0 0
\(139\) 13.1694 1.11702 0.558509 0.829498i \(-0.311374\pi\)
0.558509 + 0.829498i \(0.311374\pi\)
\(140\) −8.37962 + 5.12319i −0.708207 + 0.432989i
\(141\) 0 0
\(142\) 5.30778 9.19334i 0.445419 0.771488i
\(143\) −1.85612 3.21490i −0.155217 0.268843i
\(144\) 0 0
\(145\) 11.2288 19.4488i 0.932500 1.61514i
\(146\) −4.51005 −0.373254
\(147\) 0 0
\(148\) −9.59358 −0.788587
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) 3.64766 + 6.31794i 0.296843 + 0.514147i 0.975412 0.220390i \(-0.0707330\pi\)
−0.678569 + 0.734536i \(0.737400\pi\)
\(152\) 7.52487 13.0335i 0.610348 1.05715i
\(153\) 0 0
\(154\) 6.15486 3.76300i 0.495973 0.303231i
\(155\) 14.4924 1.16406
\(156\) 0 0
\(157\) 2.83628 + 4.91259i 0.226360 + 0.392067i 0.956727 0.290988i \(-0.0939840\pi\)
−0.730366 + 0.683055i \(0.760651\pi\)
\(158\) 2.92622 + 5.06837i 0.232798 + 0.403218i
\(159\) 0 0
\(160\) −14.8889 −1.17707
\(161\) −0.416123 16.5413i −0.0327951 1.30364i
\(162\) 0 0
\(163\) 10.3581 17.9407i 0.811307 1.40522i −0.100643 0.994923i \(-0.532090\pi\)
0.911950 0.410302i \(-0.134577\pi\)
\(164\) 7.52487 + 13.0335i 0.587594 + 1.01774i
\(165\) 0 0
\(166\) 4.46264 7.72952i 0.346368 0.599927i
\(167\) 14.3152 1.10775 0.553873 0.832601i \(-0.313149\pi\)
0.553873 + 0.832601i \(0.313149\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 1.96565 3.40461i 0.150759 0.261122i
\(171\) 0 0
\(172\) −7.77548 13.4675i −0.592875 1.02689i
\(173\) 11.2081 19.4130i 0.852136 1.47594i −0.0271403 0.999632i \(-0.508640\pi\)
0.879277 0.476312i \(-0.158027\pi\)
\(174\) 0 0
\(175\) 3.39397 + 1.84730i 0.256560 + 0.139643i
\(176\) −3.91302 −0.294955
\(177\) 0 0
\(178\) −4.33842 7.51437i −0.325178 0.563225i
\(179\) −4.13101 7.15512i −0.308766 0.534799i 0.669327 0.742968i \(-0.266583\pi\)
−0.978093 + 0.208170i \(0.933249\pi\)
\(180\) 0 0
\(181\) −0.787935 −0.0585668 −0.0292834 0.999571i \(-0.509323\pi\)
−0.0292834 + 0.999571i \(0.509323\pi\)
\(182\) 0.0488718 + 1.94270i 0.00362262 + 0.144002i
\(183\) 0 0
\(184\) 7.94805 13.7664i 0.585938 1.01487i
\(185\) 8.34797 + 14.4591i 0.613755 + 1.06305i
\(186\) 0 0
\(187\) 3.90856 6.76982i 0.285822 0.495058i
\(188\) 2.14549 0.156476
\(189\) 0 0
\(190\) −11.0541 −0.801948
\(191\) −0.198130 + 0.343172i −0.0143362 + 0.0248311i −0.873105 0.487533i \(-0.837897\pi\)
0.858768 + 0.512364i \(0.171230\pi\)
\(192\) 0 0
\(193\) −1.89397 3.28045i −0.136331 0.236132i 0.789774 0.613398i \(-0.210198\pi\)
−0.926105 + 0.377266i \(0.876864\pi\)
\(194\) −2.60784 + 4.51692i −0.187232 + 0.324296i
\(195\) 0 0
\(196\) 10.2106 0.514055i 0.729329 0.0367182i
\(197\) 12.0484 0.858415 0.429207 0.903206i \(-0.358793\pi\)
0.429207 + 0.903206i \(0.358793\pi\)
\(198\) 0 0
\(199\) 2.58113 + 4.47064i 0.182971 + 0.316915i 0.942891 0.333101i \(-0.108095\pi\)
−0.759920 + 0.650017i \(0.774762\pi\)
\(200\) 1.85612 + 3.21490i 0.131248 + 0.227327i
\(201\) 0 0
\(202\) 6.24124 0.439132
\(203\) −19.9443 + 12.1937i −1.39981 + 0.855827i
\(204\) 0 0
\(205\) 13.0957 22.6824i 0.914644 1.58421i
\(206\) −0.803238 1.39125i −0.0559642 0.0969329i
\(207\) 0 0
\(208\) 0.527042 0.912864i 0.0365438 0.0632957i
\(209\) −21.9802 −1.52040
\(210\) 0 0
\(211\) 17.9794 1.23775 0.618875 0.785489i \(-0.287589\pi\)
0.618875 + 0.785489i \(0.287589\pi\)
\(212\) −4.71361 + 8.16421i −0.323732 + 0.560720i
\(213\) 0 0
\(214\) 2.76449 + 4.78824i 0.188977 + 0.327317i
\(215\) −13.5319 + 23.4379i −0.922865 + 1.59845i
\(216\) 0 0
\(217\) −13.2499 7.21177i −0.899462 0.489567i
\(218\) 0.0397250 0.00269052
\(219\) 0 0
\(220\) 6.89037 + 11.9345i 0.464549 + 0.804622i
\(221\) 1.05288 + 1.82365i 0.0708246 + 0.122672i
\(222\) 0 0
\(223\) 1.96790 0.131780 0.0658901 0.997827i \(-0.479011\pi\)
0.0658901 + 0.997827i \(0.479011\pi\)
\(224\) 13.6124 + 7.40906i 0.909516 + 0.495039i
\(225\) 0 0
\(226\) 2.29679 3.97816i 0.152780 0.264623i
\(227\) 6.21427 + 10.7634i 0.412456 + 0.714394i 0.995158 0.0982919i \(-0.0313379\pi\)
−0.582702 + 0.812686i \(0.698005\pi\)
\(228\) 0 0
\(229\) −10.5292 + 18.2371i −0.695788 + 1.20514i 0.274127 + 0.961694i \(0.411611\pi\)
−0.969914 + 0.243446i \(0.921722\pi\)
\(230\) −11.6757 −0.769876
\(231\) 0 0
\(232\) −22.4576 −1.47441
\(233\) 3.63436 6.29490i 0.238095 0.412392i −0.722073 0.691817i \(-0.756810\pi\)
0.960168 + 0.279425i \(0.0901437\pi\)
\(234\) 0 0
\(235\) −1.86693 3.23361i −0.121785 0.210937i
\(236\) 8.35061 14.4637i 0.543579 0.941506i
\(237\) 0 0
\(238\) −3.49134 + 2.13456i −0.226310 + 0.138363i
\(239\) 12.8698 0.832479 0.416239 0.909255i \(-0.363348\pi\)
0.416239 + 0.909255i \(0.363348\pi\)
\(240\) 0 0
\(241\) −6.59931 11.4303i −0.425099 0.736293i 0.571331 0.820720i \(-0.306427\pi\)
−0.996430 + 0.0844267i \(0.973094\pi\)
\(242\) −1.02123 1.76882i −0.0656472 0.113704i
\(243\) 0 0
\(244\) 13.3130 0.852280
\(245\) −9.65965 14.9418i −0.617132 0.954594i
\(246\) 0 0
\(247\) 2.96050 5.12774i 0.188372 0.326271i
\(248\) −7.24622 12.5508i −0.460135 0.796977i
\(249\) 0 0
\(250\) −3.30399 + 5.72267i −0.208962 + 0.361934i
\(251\) 10.1617 0.641402 0.320701 0.947180i \(-0.396081\pi\)
0.320701 + 0.947180i \(0.396081\pi\)
\(252\) 0 0
\(253\) −23.2163 −1.45960
\(254\) 0.915414 1.58554i 0.0574382 0.0994859i
\(255\) 0 0
\(256\) 5.90496 + 10.2277i 0.369060 + 0.639230i
\(257\) −0.120249 + 0.208278i −0.00750095 + 0.0129920i −0.869752 0.493490i \(-0.835721\pi\)
0.862251 + 0.506482i \(0.169054\pi\)
\(258\) 0 0
\(259\) −0.437061 17.3736i −0.0271577 1.07954i
\(260\) −3.71224 −0.230223
\(261\) 0 0
\(262\) 3.25156 + 5.63187i 0.200882 + 0.347938i
\(263\) −8.37962 14.5139i −0.516710 0.894967i −0.999812 0.0194034i \(-0.993823\pi\)
0.483102 0.875564i \(-0.339510\pi\)
\(264\) 0 0
\(265\) 16.4064 1.00784
\(266\) 10.1063 + 5.50077i 0.619660 + 0.337274i
\(267\) 0 0
\(268\) −10.2630 + 17.7761i −0.626914 + 1.08585i
\(269\) 7.41534 + 12.8437i 0.452121 + 0.783097i 0.998518 0.0544300i \(-0.0173342\pi\)
−0.546397 + 0.837527i \(0.684001\pi\)
\(270\) 0 0
\(271\) −13.6352 + 23.6169i −0.828280 + 1.43462i 0.0711064 + 0.997469i \(0.477347\pi\)
−0.899386 + 0.437154i \(0.855986\pi\)
\(272\) 2.21966 0.134586
\(273\) 0 0
\(274\) 1.99707 0.120648
\(275\) 2.71087 4.69537i 0.163472 0.283142i
\(276\) 0 0
\(277\) 13.8456 + 23.9813i 0.831903 + 1.44090i 0.896528 + 0.442988i \(0.146082\pi\)
−0.0646250 + 0.997910i \(0.520585\pi\)
\(278\) −4.83650 + 8.37707i −0.290074 + 0.502423i
\(279\) 0 0
\(280\) −0.429864 17.0875i −0.0256893 1.02117i
\(281\) −16.6959 −0.995996 −0.497998 0.867178i \(-0.665931\pi\)
−0.497998 + 0.867178i \(0.665931\pi\)
\(282\) 0 0
\(283\) 0.160117 + 0.277330i 0.00951794 + 0.0164856i 0.870745 0.491735i \(-0.163637\pi\)
−0.861227 + 0.508220i \(0.830304\pi\)
\(284\) −10.5541 18.2803i −0.626272 1.08473i
\(285\) 0 0
\(286\) 2.72665 0.161230
\(287\) −23.2602 + 14.2210i −1.37301 + 0.839439i
\(288\) 0 0
\(289\) 6.28287 10.8823i 0.369581 0.640133i
\(290\) 8.24758 + 14.2852i 0.484315 + 0.838858i
\(291\) 0 0
\(292\) −4.48395 + 7.76643i −0.262403 + 0.454496i
\(293\) 8.07954 0.472012 0.236006 0.971752i \(-0.424162\pi\)
0.236006 + 0.971752i \(0.424162\pi\)
\(294\) 0 0
\(295\) −29.0656 −1.69226
\(296\) 8.34797 14.4591i 0.485216 0.840419i
\(297\) 0 0
\(298\) 0 0
\(299\) 3.12700 5.41612i 0.180839 0.313222i
\(300\) 0 0
\(301\) 24.0349 14.6946i 1.38535 0.846984i
\(302\) −5.35844 −0.308344
\(303\) 0 0
\(304\) −3.12062 5.40507i −0.178980 0.310002i
\(305\) −11.5845 20.0649i −0.663327 1.14892i
\(306\) 0 0
\(307\) −4.94299 −0.282111 −0.141056 0.990002i \(-0.545050\pi\)
−0.141056 + 0.990002i \(0.545050\pi\)
\(308\) −0.360748 14.3401i −0.0205555 0.817101i
\(309\) 0 0
\(310\) −5.32237 + 9.21861i −0.302290 + 0.523582i
\(311\) 2.02524 + 3.50782i 0.114841 + 0.198910i 0.917716 0.397237i \(-0.130031\pi\)
−0.802875 + 0.596147i \(0.796697\pi\)
\(312\) 0 0
\(313\) 5.18356 8.97819i 0.292992 0.507477i −0.681524 0.731796i \(-0.738682\pi\)
0.974516 + 0.224319i \(0.0720157\pi\)
\(314\) −4.16652 −0.235130
\(315\) 0 0
\(316\) 11.6372 0.654641
\(317\) −6.03864 + 10.4592i −0.339164 + 0.587449i −0.984276 0.176639i \(-0.943478\pi\)
0.645112 + 0.764088i \(0.276811\pi\)
\(318\) 0 0
\(319\) 16.3997 + 28.4051i 0.918207 + 1.59038i
\(320\) 2.78875 4.83026i 0.155896 0.270020i
\(321\) 0 0
\(322\) 10.6747 + 5.81012i 0.594878 + 0.323785i
\(323\) 12.4683 0.693753
\(324\) 0 0
\(325\) 0.730252 + 1.26483i 0.0405071 + 0.0701604i
\(326\) 7.60804 + 13.1775i 0.421370 + 0.729835i
\(327\) 0 0
\(328\) −26.1914 −1.44618
\(329\) 0.0977436 + 3.88540i 0.00538878 + 0.214209i
\(330\) 0 0
\(331\) 11.0883 19.2055i 0.609469 1.05563i −0.381859 0.924221i \(-0.624716\pi\)
0.991328 0.131411i \(-0.0419508\pi\)
\(332\) −8.87363 15.3696i −0.487004 0.843515i
\(333\) 0 0
\(334\) −5.25729 + 9.10590i −0.287666 + 0.498253i
\(335\) 35.7220 1.95170
\(336\) 0 0
\(337\) −5.95311 −0.324287 −0.162143 0.986767i \(-0.551841\pi\)
−0.162143 + 0.986767i \(0.551841\pi\)
\(338\) −0.367252 + 0.636099i −0.0199759 + 0.0345992i
\(339\) 0 0
\(340\) −3.90856 6.76982i −0.211971 0.367145i
\(341\) −10.5831 + 18.3305i −0.573109 + 0.992654i
\(342\) 0 0
\(343\) 1.39610 + 18.4676i 0.0753825 + 0.997155i
\(344\) 27.0637 1.45918
\(345\) 0 0
\(346\) 8.23239 + 14.2589i 0.442576 + 0.766564i
\(347\) 9.52110 + 16.4910i 0.511120 + 0.885285i 0.999917 + 0.0128877i \(0.00410241\pi\)
−0.488797 + 0.872397i \(0.662564\pi\)
\(348\) 0 0
\(349\) −3.61556 −0.193537 −0.0967683 0.995307i \(-0.530851\pi\)
−0.0967683 + 0.995307i \(0.530851\pi\)
\(350\) −2.42150 + 1.48048i −0.129435 + 0.0791347i
\(351\) 0 0
\(352\) 10.8727 18.8320i 0.579515 1.00375i
\(353\) −2.98845 5.17615i −0.159059 0.275499i 0.775470 0.631384i \(-0.217513\pi\)
−0.934530 + 0.355885i \(0.884179\pi\)
\(354\) 0 0
\(355\) −18.3676 + 31.8136i −0.974851 + 1.68849i
\(356\) −17.2533 −0.914420
\(357\) 0 0
\(358\) 6.06848 0.320729
\(359\) 7.57639 13.1227i 0.399866 0.692589i −0.593843 0.804581i \(-0.702390\pi\)
0.993709 + 0.111992i \(0.0357232\pi\)
\(360\) 0 0
\(361\) −8.02918 13.9069i −0.422588 0.731944i
\(362\) 0.289371 0.501204i 0.0152090 0.0263427i
\(363\) 0 0
\(364\) 3.39397 + 1.84730i 0.177892 + 0.0968247i
\(365\) 15.6070 0.816910
\(366\) 0 0
\(367\) 3.37578 + 5.84702i 0.176214 + 0.305212i 0.940581 0.339570i \(-0.110282\pi\)
−0.764367 + 0.644782i \(0.776948\pi\)
\(368\) −3.29612 5.70904i −0.171822 0.297604i
\(369\) 0 0
\(370\) −12.2632 −0.637535
\(371\) −14.9998 8.16421i −0.778751 0.423865i
\(372\) 0 0
\(373\) −3.15486 + 5.46438i −0.163352 + 0.282935i −0.936069 0.351816i \(-0.885564\pi\)
0.772716 + 0.634751i \(0.218897\pi\)
\(374\) 2.87085 + 4.97245i 0.148448 + 0.257119i
\(375\) 0 0
\(376\) −1.86693 + 3.23361i −0.0962793 + 0.166761i
\(377\) −8.83547 −0.455050
\(378\) 0 0
\(379\) 0.0861875 0.00442715 0.00221358 0.999998i \(-0.499295\pi\)
0.00221358 + 0.999998i \(0.499295\pi\)
\(380\) −10.9901 + 19.0354i −0.563781 + 0.976497i
\(381\) 0 0
\(382\) −0.145527 0.252061i −0.00744583 0.0128966i
\(383\) 10.6889 18.5138i 0.546180 0.946011i −0.452352 0.891840i \(-0.649415\pi\)
0.998532 0.0541716i \(-0.0172518\pi\)
\(384\) 0 0
\(385\) −21.2989 + 13.0219i −1.08549 + 0.663657i
\(386\) 2.78225 0.141613
\(387\) 0 0
\(388\) 5.18550 + 8.98155i 0.263254 + 0.455969i
\(389\) 16.0420 + 27.7855i 0.813360 + 1.40878i 0.910500 + 0.413510i \(0.135697\pi\)
−0.0971400 + 0.995271i \(0.530969\pi\)
\(390\) 0 0
\(391\) 13.1694 0.666008
\(392\) −8.11011 + 15.8364i −0.409623 + 0.799858i
\(393\) 0 0
\(394\) −4.42480 + 7.66398i −0.222918 + 0.386106i
\(395\) −10.1262 17.5391i −0.509505 0.882488i
\(396\) 0 0
\(397\) −6.05982 + 10.4959i −0.304134 + 0.526775i −0.977068 0.212927i \(-0.931700\pi\)
0.672934 + 0.739702i \(0.265034\pi\)
\(398\) −3.79169 −0.190060
\(399\) 0 0
\(400\) 1.53950 0.0769748
\(401\) −13.3139 + 23.0603i −0.664863 + 1.15158i 0.314460 + 0.949271i \(0.398177\pi\)
−0.979322 + 0.202305i \(0.935157\pi\)
\(402\) 0 0
\(403\) −2.85087 4.93786i −0.142012 0.245972i
\(404\) 6.20512 10.7476i 0.308716 0.534712i
\(405\) 0 0
\(406\) −0.431806 17.1647i −0.0214302 0.851868i
\(407\) −24.3845 −1.20869
\(408\) 0 0
\(409\) 3.24484 + 5.62023i 0.160447 + 0.277903i 0.935029 0.354571i \(-0.115373\pi\)
−0.774582 + 0.632473i \(0.782040\pi\)
\(410\) 9.61885 + 16.6603i 0.475041 + 0.822795i
\(411\) 0 0
\(412\) −3.19436 −0.157375
\(413\) 26.5736 + 14.4637i 1.30760 + 0.711712i
\(414\) 0 0
\(415\) −15.4430 + 26.7480i −0.758067 + 1.31301i
\(416\) 2.92887 + 5.07295i 0.143599 + 0.248722i
\(417\) 0 0
\(418\) 8.07227 13.9816i 0.394828 0.683862i
\(419\) −31.3097 −1.52958 −0.764789 0.644280i \(-0.777157\pi\)
−0.764789 + 0.644280i \(0.777157\pi\)
\(420\) 0 0
\(421\) −24.3097 −1.18478 −0.592392 0.805650i \(-0.701816\pi\)
−0.592392 + 0.805650i \(0.701816\pi\)
\(422\) −6.60295 + 11.4366i −0.321427 + 0.556727i
\(423\) 0 0
\(424\) −8.20321 14.2084i −0.398383 0.690020i
\(425\) −1.53774 + 2.66345i −0.0745914 + 0.129196i
\(426\) 0 0
\(427\) 0.606511 + 24.1094i 0.0293511 + 1.16673i
\(428\) 10.9940 0.531414
\(429\) 0 0
\(430\) −9.93920 17.2152i −0.479311 0.830190i
\(431\) −9.89750 17.1430i −0.476746 0.825748i 0.522899 0.852395i \(-0.324850\pi\)
−0.999645 + 0.0266466i \(0.991517\pi\)
\(432\) 0 0
\(433\) −31.8932 −1.53269 −0.766344 0.642430i \(-0.777926\pi\)
−0.766344 + 0.642430i \(0.777926\pi\)
\(434\) 9.45344 5.77971i 0.453780 0.277435i
\(435\) 0 0
\(436\) 0.0394951 0.0684076i 0.00189147 0.00327613i
\(437\) −18.5150 32.0689i −0.885692 1.53406i
\(438\) 0 0
\(439\) 14.4231 24.9816i 0.688379 1.19231i −0.283983 0.958829i \(-0.591656\pi\)
0.972362 0.233478i \(-0.0750108\pi\)
\(440\) −23.9830 −1.14334
\(441\) 0 0
\(442\) −1.54669 −0.0735687
\(443\) −1.62898 + 2.82148i −0.0773952 + 0.134052i −0.902125 0.431474i \(-0.857994\pi\)
0.824730 + 0.565526i \(0.191327\pi\)
\(444\) 0 0
\(445\) 15.0131 + 26.0035i 0.711690 + 1.23268i
\(446\) −0.722713 + 1.25178i −0.0342215 + 0.0592733i
\(447\) 0 0
\(448\) −4.95331 + 3.02839i −0.234022 + 0.143078i
\(449\) 1.03302 0.0487513 0.0243756 0.999703i \(-0.492240\pi\)
0.0243756 + 0.999703i \(0.492240\pi\)
\(450\) 0 0
\(451\) 19.1264 + 33.1278i 0.900625 + 1.55993i
\(452\) −4.56699 7.91027i −0.214813 0.372068i
\(453\) 0 0
\(454\) −9.12880 −0.428436
\(455\) −0.169121 6.72272i −0.00792852 0.315166i
\(456\) 0 0
\(457\) 8.73239 15.1249i 0.408484 0.707515i −0.586236 0.810140i \(-0.699391\pi\)
0.994720 + 0.102625i \(0.0327243\pi\)
\(458\) −7.73372 13.3952i −0.361373 0.625916i
\(459\) 0 0
\(460\) −11.6082 + 20.1059i −0.541234 + 0.937444i
\(461\) −32.4060 −1.50930 −0.754649 0.656128i \(-0.772193\pi\)
−0.754649 + 0.656128i \(0.772193\pi\)
\(462\) 0 0
\(463\) −34.8788 −1.62095 −0.810477 0.585770i \(-0.800792\pi\)
−0.810477 + 0.585770i \(0.800792\pi\)
\(464\) −4.65667 + 8.06558i −0.216180 + 0.374435i
\(465\) 0 0
\(466\) 2.66945 + 4.62362i 0.123660 + 0.214185i
\(467\) 16.2626 28.1676i 0.752543 1.30344i −0.194043 0.980993i \(-0.562160\pi\)
0.946586 0.322450i \(-0.104506\pi\)
\(468\) 0 0
\(469\) −32.6593 17.7761i −1.50807 0.820823i
\(470\) 2.74253 0.126503
\(471\) 0 0
\(472\) 14.5328 + 25.1715i 0.668925 + 1.15861i
\(473\) −19.7634 34.2311i −0.908720 1.57395i
\(474\) 0 0
\(475\) 8.64766 0.396782
\(476\) 0.204634 + 8.13439i 0.00937939 + 0.372839i
\(477\) 0 0
\(478\) −4.72646 + 8.18647i −0.216183 + 0.374440i
\(479\) 2.52189 + 4.36804i 0.115228 + 0.199581i 0.917871 0.396879i \(-0.129907\pi\)
−0.802643 + 0.596460i \(0.796573\pi\)
\(480\) 0 0
\(481\) 3.28434 5.68864i 0.149753 0.259380i
\(482\) 9.69444 0.441569
\(483\) 0 0
\(484\) −4.06128 −0.184604
\(485\) 9.02446 15.6308i 0.409779 0.709759i
\(486\) 0 0
\(487\) 5.60097 + 9.70117i 0.253804 + 0.439602i 0.964570 0.263827i \(-0.0849848\pi\)
−0.710766 + 0.703429i \(0.751651\pi\)
\(488\) −11.5845 + 20.0649i −0.524406 + 0.908297i
\(489\) 0 0
\(490\) 13.0519 0.657103i 0.589627 0.0296849i
\(491\) −21.6420 −0.976689 −0.488344 0.872651i \(-0.662399\pi\)
−0.488344 + 0.872651i \(0.662399\pi\)
\(492\) 0 0
\(493\) −9.30272 16.1128i −0.418973 0.725683i
\(494\) 2.17450 + 3.76635i 0.0978354 + 0.169456i
\(495\) 0 0
\(496\) −6.01012 −0.269862
\(497\) 32.6240 19.9459i 1.46339 0.894696i
\(498\) 0 0
\(499\) 6.40642 11.0962i 0.286791 0.496736i −0.686251 0.727365i \(-0.740745\pi\)
0.973042 + 0.230629i \(0.0740782\pi\)
\(500\) 6.56973 + 11.3791i 0.293807 + 0.508889i
\(501\) 0 0
\(502\) −3.73191 + 6.46386i −0.166563 + 0.288496i
\(503\) 24.9763 1.11364 0.556818 0.830635i \(-0.312022\pi\)
0.556818 + 0.830635i \(0.312022\pi\)
\(504\) 0 0
\(505\) −21.5979 −0.961092
\(506\) 8.52624 14.7679i 0.379038 0.656512i
\(507\) 0 0
\(508\) −1.82023 3.15274i −0.0807598 0.139880i
\(509\) −17.8003 + 30.8311i −0.788986 + 1.36656i 0.137602 + 0.990488i \(0.456060\pi\)
−0.926589 + 0.376077i \(0.877273\pi\)
\(510\) 0 0
\(511\) −14.2690 7.76643i −0.631222 0.343566i
\(512\) 11.5330 0.509691
\(513\) 0 0
\(514\) −0.0883236 0.152981i −0.00389578 0.00674770i
\(515\) 2.77961 + 4.81442i 0.122484 + 0.212149i
\(516\) 0 0
\(517\) 5.45331 0.239836
\(518\) 11.2118 + 6.10246i 0.492619 + 0.268127i
\(519\) 0 0
\(520\) 3.23025 5.59496i 0.141656 0.245355i
\(521\) 18.4039 + 31.8765i 0.806288 + 1.39653i 0.915418 + 0.402505i \(0.131860\pi\)
−0.109129 + 0.994028i \(0.534806\pi\)
\(522\) 0 0
\(523\) 7.75876 13.4386i 0.339267 0.587627i −0.645028 0.764159i \(-0.723154\pi\)
0.984295 + 0.176531i \(0.0564877\pi\)
\(524\) 12.9310 0.564892
\(525\) 0 0
\(526\) 12.3097 0.536729
\(527\) 6.00327 10.3980i 0.261507 0.452943i
\(528\) 0 0
\(529\) −8.05622 13.9538i −0.350270 0.606686i
\(530\) −6.02529 + 10.4361i −0.261722 + 0.453315i
\(531\) 0 0
\(532\) 19.5203 11.9345i 0.846313 0.517425i
\(533\) −10.3045 −0.446336
\(534\) 0 0
\(535\) −9.56654 16.5697i −0.413597 0.716372i
\(536\) −17.8610 30.9362i −0.771478 1.33624i
\(537\) 0 0
\(538\) −10.8932 −0.469638
\(539\) 25.9528 1.30660i 1.11787 0.0562792i
\(540\) 0 0
\(541\) −11.2630 + 19.5081i −0.484235 + 0.838720i −0.999836 0.0181087i \(-0.994236\pi\)
0.515601 + 0.856829i \(0.327569\pi\)
\(542\) −10.0151 17.3467i −0.430186 0.745103i
\(543\) 0 0
\(544\) −6.16751 + 10.6824i −0.264430 + 0.458006i
\(545\) −0.137469 −0.00588851
\(546\) 0 0
\(547\) 1.73812 0.0743168 0.0371584 0.999309i \(-0.488169\pi\)
0.0371584 + 0.999309i \(0.488169\pi\)
\(548\) 1.98552 3.43902i 0.0848171 0.146907i
\(549\) 0 0
\(550\) 1.99115 + 3.44877i 0.0849027 + 0.147056i
\(551\) −26.1575 + 45.3060i −1.11435 + 1.93010i
\(552\) 0 0
\(553\) 0.530162 + 21.0744i 0.0225448 + 0.896175i
\(554\) −20.3393 −0.864134
\(555\) 0 0
\(556\) 9.61702 + 16.6572i 0.407853 + 0.706421i
\(557\) 13.1528 + 22.7814i 0.557303 + 0.965277i 0.997720 + 0.0674838i \(0.0214971\pi\)
−0.440417 + 0.897793i \(0.645170\pi\)
\(558\) 0 0
\(559\) 10.6477 0.450348
\(560\) −6.22606 3.38877i −0.263099 0.143202i
\(561\) 0 0
\(562\) 6.13161 10.6203i 0.258646 0.447989i
\(563\) −6.86825 11.8962i −0.289462 0.501363i 0.684219 0.729276i \(-0.260143\pi\)
−0.973681 + 0.227913i \(0.926810\pi\)
\(564\) 0 0
\(565\) −7.94805 + 13.7664i −0.334377 + 0.579158i
\(566\) −0.235212 −0.00988671
\(567\) 0 0
\(568\) 36.7352 1.54137
\(569\) −9.82612 + 17.0193i −0.411933 + 0.713488i −0.995101 0.0988631i \(-0.968479\pi\)
0.583169 + 0.812351i \(0.301813\pi\)
\(570\) 0 0
\(571\) 8.37578 + 14.5073i 0.350515 + 0.607111i 0.986340 0.164723i \(-0.0526731\pi\)
−0.635824 + 0.771834i \(0.719340\pi\)
\(572\) 2.71087 4.69537i 0.113347 0.196323i
\(573\) 0 0
\(574\) −0.503599 20.0185i −0.0210198 0.835556i
\(575\) 9.13399 0.380914
\(576\) 0 0
\(577\) 11.6965 + 20.2589i 0.486931 + 0.843390i 0.999887 0.0150252i \(-0.00478286\pi\)
−0.512956 + 0.858415i \(0.671450\pi\)
\(578\) 4.61479 + 7.99305i 0.191950 + 0.332467i
\(579\) 0 0
\(580\) 32.7994 1.36192
\(581\) 27.4294 16.7700i 1.13796 0.695736i
\(582\) 0 0
\(583\) −11.9808 + 20.7514i −0.496195 + 0.859435i
\(584\) −7.80352 13.5161i −0.322912 0.559300i
\(585\) 0 0
\(586\) −2.96722 + 5.13938i −0.122575 + 0.212306i
\(587\) 6.05322 0.249843 0.124922 0.992167i \(-0.460132\pi\)
0.124922 + 0.992167i \(0.460132\pi\)
\(588\) 0 0
\(589\) −33.7601 −1.39106
\(590\) 10.6744 18.4886i 0.439457 0.761162i
\(591\) 0 0
\(592\) −3.46197 5.99630i −0.142286 0.246447i
\(593\) −3.27361 + 5.67006i −0.134431 + 0.232842i −0.925380 0.379041i \(-0.876254\pi\)
0.790949 + 0.611882i \(0.209587\pi\)
\(594\) 0 0
\(595\) 12.0818 7.38665i 0.495306 0.302823i
\(596\) 0 0
\(597\) 0 0
\(598\) 2.29679 + 3.97816i 0.0939227 + 0.162679i
\(599\) 1.18121 + 2.04591i 0.0482627 + 0.0835935i 0.889148 0.457621i \(-0.151298\pi\)
−0.840885 + 0.541214i \(0.817965\pi\)
\(600\) 0 0
\(601\) 40.5408 1.65370 0.826848 0.562426i \(-0.190132\pi\)
0.826848 + 0.562426i \(0.190132\pi\)
\(602\) 0.520371 + 20.6852i 0.0212087 + 0.843066i
\(603\) 0 0
\(604\) −5.32743 + 9.22738i −0.216770 + 0.375457i
\(605\) 3.53397 + 6.12102i 0.143676 + 0.248855i
\(606\) 0 0
\(607\) 5.72306 9.91262i 0.232292 0.402341i −0.726190 0.687494i \(-0.758711\pi\)
0.958482 + 0.285153i \(0.0920443\pi\)
\(608\) 34.6837 1.40661
\(609\) 0 0
\(610\) 17.0177 0.689027
\(611\) −0.734503 + 1.27220i −0.0297148 + 0.0514676i
\(612\) 0 0
\(613\) −6.35301 11.0037i −0.256596 0.444437i 0.708732 0.705478i \(-0.249268\pi\)
−0.965328 + 0.261041i \(0.915934\pi\)
\(614\) 1.81532 3.14423i 0.0732604 0.126891i
\(615\) 0 0
\(616\) 21.9267 + 11.9345i 0.883454 + 0.480853i
\(617\) 30.9500 1.24600 0.623000 0.782221i \(-0.285913\pi\)
0.623000 + 0.782221i \(0.285913\pi\)
\(618\) 0 0
\(619\) −2.28220 3.95289i −0.0917294 0.158880i 0.816510 0.577332i \(-0.195906\pi\)
−0.908239 + 0.418452i \(0.862573\pi\)
\(620\) 10.5831 + 18.3305i 0.425029 + 0.736172i
\(621\) 0 0
\(622\) −2.97509 −0.119290
\(623\) −0.786018 31.2449i −0.0314912 1.25180i
\(624\) 0 0
\(625\) 15.0847 26.1275i 0.603389 1.04510i
\(626\) 3.80734 + 6.59451i 0.152172 + 0.263570i
\(627\) 0 0
\(628\) −4.14241 + 7.17486i −0.165300 + 0.286308i
\(629\) 13.8321 0.551522
\(630\) 0 0
\(631\) 15.0803 0.600339 0.300169 0.953886i \(-0.402957\pi\)
0.300169 + 0.953886i \(0.402957\pi\)
\(632\) −10.1262 + 17.5391i −0.402799 + 0.697668i
\(633\) 0 0
\(634\) −4.43540 7.68235i −0.176152 0.305105i
\(635\) −3.16780 + 5.48678i −0.125710 + 0.217736i
\(636\) 0 0
\(637\) −3.19076 + 6.23049i −0.126422 + 0.246861i
\(638\) −24.0913 −0.953783
\(639\) 0 0
\(640\) −12.8406 22.2405i −0.507568 0.879133i
\(641\) 3.02118 + 5.23284i 0.119329 + 0.206685i 0.919502 0.393085i \(-0.128592\pi\)
−0.800173 + 0.599770i \(0.795259\pi\)
\(642\) 0 0
\(643\) −16.2881 −0.642341 −0.321171 0.947021i \(-0.604076\pi\)
−0.321171 + 0.947021i \(0.604076\pi\)
\(644\) 20.6181 12.6056i 0.812467 0.496732i
\(645\) 0 0
\(646\) −4.57899 + 7.93104i −0.180158 + 0.312043i
\(647\) 3.58020 + 6.20109i 0.140752 + 0.243790i 0.927780 0.373127i \(-0.121715\pi\)
−0.787028 + 0.616917i \(0.788381\pi\)
\(648\) 0 0
\(649\) 21.2252 36.7631i 0.833162 1.44308i
\(650\) −1.07275 −0.0420765
\(651\) 0 0
\(652\) 30.2560 1.18492
\(653\) −11.7628 + 20.3737i −0.460313 + 0.797285i −0.998976 0.0452359i \(-0.985596\pi\)
0.538664 + 0.842521i \(0.318929\pi\)
\(654\) 0 0
\(655\) −11.2520 19.4891i −0.439654 0.761502i
\(656\) −5.43089 + 9.40658i −0.212041 + 0.367265i
\(657\) 0 0
\(658\) −2.50739 1.36474i −0.0977483 0.0532033i
\(659\) −8.73459 −0.340251 −0.170126 0.985422i \(-0.554417\pi\)
−0.170126 + 0.985422i \(0.554417\pi\)
\(660\) 0 0
\(661\) −5.60078 9.70083i −0.217845 0.377319i 0.736304 0.676651i \(-0.236569\pi\)
−0.954149 + 0.299332i \(0.903236\pi\)
\(662\) 8.14441 + 14.1065i 0.316542 + 0.548266i
\(663\) 0 0
\(664\) 30.8860 1.19861
\(665\) −34.9731 19.0354i −1.35620 0.738162i
\(666\) 0 0
\(667\) −27.6285 + 47.8540i −1.06978 + 1.85291i
\(668\) 10.4537 + 18.1064i 0.404467 + 0.700558i
\(669\) 0 0
\(670\) −13.1190 + 22.7227i −0.506830 + 0.877855i
\(671\) 33.8384 1.30632
\(672\) 0 0
\(673\) −11.0728 −0.426823 −0.213412 0.976962i \(-0.568458\pi\)
−0.213412 + 0.976962i \(0.568458\pi\)
\(674\) 2.18629 3.78677i 0.0842128 0.145861i
\(675\) 0 0
\(676\) 0.730252 + 1.26483i 0.0280866 + 0.0486475i
\(677\) 18.0419 31.2495i 0.693407 1.20102i −0.277308 0.960781i \(-0.589442\pi\)
0.970715 0.240235i \(-0.0772245\pi\)
\(678\) 0 0
\(679\) −16.0290 + 9.79991i −0.615136 + 0.376086i
\(680\) 13.6043 0.521702
\(681\) 0 0
\(682\) −7.77335 13.4638i −0.297657 0.515557i
\(683\) −24.4624 42.3701i −0.936027 1.62125i −0.772792 0.634659i \(-0.781140\pi\)
−0.163235 0.986587i \(-0.552193\pi\)
\(684\) 0 0
\(685\) −6.91089 −0.264051
\(686\) −12.2599 5.89418i −0.468086 0.225041i
\(687\) 0 0
\(688\) 5.61177 9.71987i 0.213947 0.370566i
\(689\) −3.22738 5.58999i −0.122954 0.212962i
\(690\) 0 0
\(691\) 18.8353 32.6237i 0.716529 1.24106i −0.245838 0.969311i \(-0.579063\pi\)
0.962367 0.271753i \(-0.0876034\pi\)
\(692\) 32.7390 1.24455
\(693\) 0 0
\(694\) −13.9866 −0.530923
\(695\) 16.7367 28.9889i 0.634861 1.09961i
\(696\) 0 0
\(697\) −10.8494 18.7917i −0.410951 0.711788i
\(698\) 1.32782 2.29985i 0.0502587 0.0870507i
\(699\) 0 0
\(700\) 0.141929 + 5.64180i 0.00536441 + 0.213240i
\(701\) −19.9325 −0.752839 −0.376420 0.926449i \(-0.622845\pi\)
−0.376420 + 0.926449i \(0.622845\pi\)
\(702\) 0 0
\(703\) −19.4466 33.6825i −0.733442 1.27036i
\(704\) 4.07299 + 7.05463i 0.153507 + 0.265881i
\(705\) 0 0
\(706\) 4.39006 0.165222
\(707\) 19.7461 + 10.7476i 0.742630 + 0.404205i
\(708\) 0 0
\(709\) 2.03803 3.52998i 0.0765399 0.132571i −0.825215 0.564819i \(-0.808946\pi\)
0.901755 + 0.432248i \(0.142279\pi\)
\(710\) −13.4911 23.3672i −0.506311 0.876956i
\(711\) 0 0
\(712\) 15.0131 26.0035i 0.562641 0.974522i
\(713\) −35.6587 −1.33543
\(714\) 0 0
\(715\) −9.43560 −0.352871
\(716\) 6.03336 10.4501i 0.225477 0.390538i
\(717\) 0 0
\(718\) 5.56488 + 9.63865i 0.207679 + 0.359711i
\(719\) 2.06232 3.57205i 0.0769117 0.133215i −0.825004 0.565126i \(-0.808827\pi\)
0.901916 + 0.431911i \(0.142161\pi\)
\(720\) 0 0
\(721\) −0.145527 5.78485i −0.00541973 0.215439i
\(722\) 11.7949 0.438961
\(723\) 0 0
\(724\) −0.575392 0.996608i −0.0213843 0.0370386i
\(725\) −6.45212 11.1754i −0.239626 0.415044i
\(726\) 0 0
\(727\) −7.39203 −0.274155 −0.137078 0.990560i \(-0.543771\pi\)
−0.137078 + 0.990560i \(0.543771\pi\)
\(728\) −5.73748 + 3.50782i −0.212645 + 0.130009i
\(729\) 0 0
\(730\) −5.73171 + 9.92762i −0.212140 + 0.367438i
\(731\) 11.2107 + 19.4176i 0.414644 + 0.718185i
\(732\) 0 0
\(733\) 3.52918 6.11272i 0.130353 0.225778i −0.793460 0.608623i \(-0.791722\pi\)
0.923813 + 0.382845i \(0.125056\pi\)
\(734\) −4.95904 −0.183042
\(735\) 0 0
\(736\) 36.6342 1.35036
\(737\) −26.0861 + 45.1824i −0.960893 + 1.66432i
\(738\) 0 0
\(739\) 16.9517 + 29.3611i 0.623577 + 1.08007i 0.988814 + 0.149152i \(0.0476544\pi\)
−0.365238 + 0.930914i \(0.619012\pi\)
\(740\) −12.1923 + 21.1176i −0.448196 + 0.776298i
\(741\) 0 0
\(742\) 10.7019 6.54303i 0.392881 0.240202i
\(743\) −16.3211 −0.598763 −0.299382 0.954133i \(-0.596780\pi\)
−0.299382 + 0.954133i \(0.596780\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.31726 4.01360i −0.0848408 0.146949i
\(747\) 0 0
\(748\) 11.4169 0.417444
\(749\) 0.500860 + 19.9096i 0.0183010 + 0.727482i
\(750\) 0 0
\(751\) 11.7733 20.3920i 0.429616 0.744116i −0.567224 0.823564i \(-0.691982\pi\)
0.996839 + 0.0794480i \(0.0253158\pi\)
\(752\) 0.774228 + 1.34100i 0.0282332 + 0.0489013i
\(753\) 0 0
\(754\) 3.24484 5.62023i 0.118170 0.204677i
\(755\) 18.5429 0.674846
\(756\) 0 0
\(757\) 35.1019 1.27580 0.637901 0.770119i \(-0.279803\pi\)
0.637901 + 0.770119i \(0.279803\pi\)
\(758\) −0.0316525 + 0.0548237i −0.00114967 + 0.00199129i
\(759\) 0 0
\(760\) −19.1264 33.1278i −0.693786 1.20167i
\(761\) 22.7346 39.3775i 0.824128 1.42743i −0.0784558 0.996918i \(-0.524999\pi\)
0.902584 0.430514i \(-0.141668\pi\)
\(762\) 0 0
\(763\) 0.125683 + 0.0684076i 0.00455002 + 0.00247652i
\(764\) −0.578741 −0.0209381
\(765\) 0 0
\(766\) 7.85107 + 13.5984i 0.283671 + 0.491332i
\(767\) 5.71762 + 9.90321i 0.206451 + 0.357584i
\(768\) 0 0
\(769\) −42.4543 −1.53094 −0.765470 0.643472i \(-0.777493\pi\)
−0.765470 + 0.643472i \(0.777493\pi\)
\(770\) −0.461135 18.3305i −0.0166181 0.660586i
\(771\) 0 0
\(772\) 2.76615 4.79111i 0.0995559 0.172436i
\(773\) 23.3010 + 40.3586i 0.838080 + 1.45160i 0.891498 + 0.453025i \(0.149655\pi\)
−0.0534175 + 0.998572i \(0.517011\pi\)
\(774\) 0 0
\(775\) 4.16372 7.21177i 0.149565 0.259054i
\(776\) −18.0489 −0.647918
\(777\) 0 0
\(778\) −23.5657 −0.844873
\(779\) −30.5065 + 52.8387i −1.09301 + 1.89314i
\(780\) 0 0
\(781\) −26.8260 46.4639i −0.959909 1.66261i
\(782\) −4.83650 + 8.37707i −0.172953 + 0.299563i
\(783\) 0 0
\(784\) 4.00593 + 6.19646i 0.143069 + 0.221302i
\(785\) 14.4183 0.514610
\(786\) 0 0
\(787\) −13.1908 22.8471i −0.470200 0.814410i 0.529220 0.848485i \(-0.322485\pi\)
−0.999419 + 0.0340751i \(0.989151\pi\)
\(788\) 8.79839 + 15.2393i 0.313430 + 0.542876i
\(789\) 0 0
\(790\) 14.8755 0.529245
\(791\) 14.1171 8.63101i 0.501947 0.306884i
\(792\) 0 0
\(793\) −4.55768 + 7.89414i −0.161848 + 0.280329i
\(794\) −4.45096 7.70928i −0.157959 0.273592i
\(795\) 0 0
\(796\) −3.76975 + 6.52939i −0.133615 + 0.231428i
\(797\) −17.6474 −0.625102 −0.312551 0.949901i \(-0.601183\pi\)
−0.312551 + 0.949901i \(0.601183\pi\)
\(798\) 0 0
\(799\) −3.09338 −0.109436
\(800\) −4.27762 + 7.40906i −0.151237 + 0.261950i
\(801\) 0 0
\(802\) −9.77908 16.9379i −0.345311 0.598097i
\(803\) −11.3971 + 19.7403i −0.402194 + 0.696621i
\(804\) 0 0
\(805\) −36.9399 20.1059i −1.30196 0.708641i
\(806\) 4.18795 0.147514
\(807\) 0 0
\(808\) 10.7989 + 18.7043i 0.379905 + 0.658015i
\(809\) −8.98580 15.5639i −0.315924 0.547197i 0.663709 0.747990i \(-0.268981\pi\)
−0.979633 + 0.200794i \(0.935648\pi\)
\(810\) 0 0
\(811\) 43.5159 1.52805 0.764026 0.645186i \(-0.223220\pi\)
0.764026 + 0.645186i \(0.223220\pi\)
\(812\) −29.9873 16.3217i −1.05235 0.572781i
\(813\) 0 0
\(814\) 8.95525 15.5109i 0.313881 0.543658i
\(815\) −26.3277 45.6008i −0.922217 1.59733i
\(816\) 0 0
\(817\) 31.5225 54.5985i 1.10283 1.91016i
\(818\) −4.76669 −0.166664
\(819\) 0 0
\(820\) 38.2527 1.33584
\(821\) 18.3642 31.8076i 0.640913 1.11009i −0.344316 0.938854i \(-0.611889\pi\)
0.985229 0.171241i \(-0.0547775\pi\)
\(822\) 0 0
\(823\) 20.6118 + 35.7006i 0.718481 + 1.24445i 0.961601 + 0.274450i \(0.0884956\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(824\) 2.77961 4.81442i 0.0968322 0.167718i
\(825\) 0 0
\(826\) −18.9595 + 11.5916i −0.659686 + 0.403323i
\(827\) 10.0060 0.347941 0.173971 0.984751i \(-0.444340\pi\)
0.173971 + 0.984751i \(0.444340\pi\)
\(828\) 0 0
\(829\) −7.48035 12.9563i −0.259803 0.449992i 0.706386 0.707827i \(-0.250324\pi\)
−0.966189 + 0.257835i \(0.916991\pi\)
\(830\) −11.3429 19.6465i −0.393719 0.681941i
\(831\) 0 0
\(832\) −2.19436 −0.0760756
\(833\) −14.7217 + 0.741168i −0.510077 + 0.0256799i
\(834\) 0 0
\(835\) 18.1929 31.5110i 0.629591 1.09048i
\(836\) −16.0511 27.8013i −0.555139 0.961529i
\(837\) 0 0
\(838\) 11.4985 19.9161i 0.397210 0.687989i
\(839\) 27.0026 0.932232 0.466116 0.884724i \(-0.345653\pi\)
0.466116 + 0.884724i \(0.345653\pi\)
\(840\) 0 0
\(841\) 49.0656 1.69192
\(842\) 8.92779 15.4634i 0.307672 0.532903i
\(843\) 0 0
\(844\) 13.1295 + 22.7409i 0.451935 + 0.782775i
\(845\) 1.27088 2.20122i 0.0437195 0.0757243i
\(846\) 0 0
\(847\) −0.185023 7.35481i −0.00635745 0.252714i
\(848\) −6.80387 −0.233646
\(849\) 0 0
\(850\) −1.12948 1.95631i −0.0387407 0.0671009i
\(851\) −20.5402 35.5767i −0.704110 1.21955i
\(852\) 0 0
\(853\) −10.5438 −0.361012 −0.180506 0.983574i \(-0.557773\pi\)
−0.180506 + 0.983574i \(0.557773\pi\)
\(854\) −15.5587 8.46840i −0.532407 0.289783i
\(855\) 0 0
\(856\) −9.56654 + 16.5697i −0.326978 + 0.566342i
\(857\) −3.74018 6.47818i −0.127762 0.221290i 0.795047 0.606548i \(-0.207446\pi\)
−0.922809 + 0.385257i \(0.874113\pi\)
\(858\) 0 0
\(859\) −21.6862 + 37.5616i −0.739923 + 1.28158i 0.212607 + 0.977138i \(0.431805\pi\)
−0.952530 + 0.304446i \(0.901529\pi\)
\(860\) −39.5267 −1.34785
\(861\) 0 0
\(862\) 14.5395 0.495217
\(863\) −16.0114 + 27.7325i −0.545034 + 0.944026i 0.453571 + 0.891220i \(0.350150\pi\)
−0.998605 + 0.0528061i \(0.983183\pi\)
\(864\) 0 0
\(865\) −28.4882 49.3430i −0.968629 1.67771i
\(866\) 11.7128 20.2872i 0.398018 0.689387i
\(867\) 0 0
\(868\) −0.554084 22.0253i −0.0188068 0.747589i
\(869\) 29.5788 1.00339
\(870\) 0 0
\(871\) −7.02704 12.1712i −0.238102 0.412405i
\(872\) 0.0687343 + 0.119051i 0.00232764 + 0.00403159i
\(873\) 0 0
\(874\) 27.1986 0.920007
\(875\) −20.3078 + 12.4159i −0.686529 + 0.419735i
\(876\) 0 0
\(877\) −16.3078 + 28.2459i −0.550675 + 0.953796i 0.447551 + 0.894258i \(0.352296\pi\)
−0.998226 + 0.0595382i \(0.981037\pi\)
\(878\) 10.5938 + 18.3491i 0.357525 + 0.619252i
\(879\) 0 0
\(880\) −4.97296 + 8.61342i −0.167638 + 0.290358i
\(881\) −34.6890 −1.16870 −0.584351 0.811501i \(-0.698651\pi\)
−0.584351 + 0.811501i \(0.698651\pi\)
\(882\) 0 0
\(883\) 7.36381 0.247812 0.123906 0.992294i \(-0.460458\pi\)
0.123906 + 0.992294i \(0.460458\pi\)
\(884\) −1.53774 + 2.66345i −0.0517198 + 0.0895814i
\(885\) 0 0
\(886\) −1.19649 2.07238i −0.0401969 0.0696231i
\(887\) −15.6258 + 27.0647i −0.524664 + 0.908745i 0.474923 + 0.880027i \(0.342476\pi\)
−0.999588 + 0.0287180i \(0.990858\pi\)
\(888\) 0 0
\(889\) 5.62655 3.44000i 0.188708 0.115374i
\(890\) −22.0544 −0.739265
\(891\) 0 0
\(892\) 1.43706 + 2.48906i 0.0481164 + 0.0833400i
\(893\) 4.34900 + 7.53269i 0.145534 + 0.252072i
\(894\) 0 0
\(895\) −21.0000 −0.701953
\(896\) 0.672273 + 26.7234i 0.0224591 + 0.892767i
\(897\) 0 0
\(898\) −0.379379 + 0.657103i −0.0126600 + 0.0219278i
\(899\) 25.1888 + 43.6283i 0.840094 + 1.45509i
\(900\) 0 0
\(901\) 6.79612 11.7712i 0.226411 0.392156i
\(902\) −28.0967 −0.935519
\(903\) 0 0
\(904\) 15.8961 0.528697
\(905\) −1.00137 + 1.73442i −0.0332866 + 0.0576541i
\(906\) 0 0
\(907\) 28.3602 + 49.1213i 0.941685 + 1.63105i 0.762256 + 0.647276i \(0.224092\pi\)
0.179429 + 0.983771i \(0.442575\pi\)
\(908\) −9.07597 + 15.7200i −0.301197 + 0.521688i
\(909\) 0 0
\(910\) 4.33842 + 2.36135i 0.143817 + 0.0782780i
\(911\) −22.4742 −0.744604 −0.372302 0.928112i \(-0.621431\pi\)
−0.372302 + 0.928112i \(0.621431\pi\)
\(912\) 0 0
\(913\) −22.5546 39.0656i −0.746447 1.29288i
\(914\) 6.41397 + 11.1093i 0.212155 + 0.367464i
\(915\) 0 0
\(916\) −30.7558 −1.01620
\(917\) 0.589105 + 23.4175i 0.0194540 + 0.773312i
\(918\) 0 0
\(919\) −1.24271 + 2.15243i −0.0409931 + 0.0710021i −0.885794 0.464079i \(-0.846385\pi\)
0.844801 + 0.535081i \(0.179719\pi\)
\(920\) −20.2020 34.9909i −0.666040 1.15361i
\(921\) 0 0
\(922\) 11.9012 20.6134i 0.391944 0.678867i
\(923\) 14.4527 0.475717
\(924\) 0 0
\(925\) 9.59358 0.315435
\(926\) 12.8093 22.1863i 0.420939 0.729088i
\(927\) 0 0
\(928\) −25.8779 44.8219i −0.849484 1.47135i
\(929\) −17.5996 + 30.4833i −0.577423 + 1.00013i 0.418351 + 0.908286i \(0.362608\pi\)
−0.995774 + 0.0918404i \(0.970725\pi\)
\(930\) 0 0
\(931\) 22.5021 + 34.8068i 0.737478 + 1.14075i
\(932\) 10.6160 0.347739
\(933\) 0 0
\(934\) 11.9449 + 20.6892i 0.390850 + 0.676972i
\(935\) −9.93458 17.2072i −0.324896 0.562736i
\(936\) 0 0
\(937\) 40.0613 1.30875 0.654373 0.756172i \(-0.272933\pi\)
0.654373 + 0.756172i \(0.272933\pi\)
\(938\) 23.3015 14.2463i 0.760822 0.465157i
\(939\) 0 0
\(940\) 2.72665 4.72270i 0.0889336 0.154038i
\(941\) 16.0038 + 27.7194i 0.521709 + 0.903627i 0.999681 + 0.0252517i \(0.00803871\pi\)
−0.477972 + 0.878375i \(0.658628\pi\)
\(942\) 0 0
\(943\) −32.2221 + 55.8103i −1.04930 + 1.81743i
\(944\) 12.0537 0.392315
\(945\) 0 0
\(946\) 29.0325 0.943928
\(947\) 11.3692 19.6919i 0.369448 0.639902i −0.620032 0.784577i \(-0.712880\pi\)
0.989479 + 0.144675i \(0.0462135\pi\)
\(948\) 0 0
\(949\) −3.07014 5.31763i −0.0996608 0.172618i
\(950\) −3.17587 + 5.50077i −0.103039 + 0.178468i
\(951\) 0 0
\(952\) −12.4379 6.76982i −0.403116 0.219411i
\(953\) 16.7884 0.543830 0.271915 0.962321i \(-0.412343\pi\)
0.271915 + 0.962321i \(0.412343\pi\)
\(954\) 0 0
\(955\) 0.503599 + 0.872258i 0.0162961 + 0.0282256i
\(956\) 9.39821 + 16.2782i 0.303960 + 0.526474i
\(957\) 0 0
\(958\) −3.70467 −0.119693
\(959\) 6.31837 + 3.43902i 0.204031 + 0.111052i
\(960\) 0 0
\(961\) −0.754964 + 1.30764i −0.0243537 + 0.0421818i
\(962\) 2.41236 + 4.17832i 0.0777775 + 0.134715i
\(963\) 0 0
\(964\) 9.63833 16.6941i 0.310430 0.537680i
\(965\) −9.62799 −0.309936
\(966\) 0 0
\(967\) 44.3533 1.42631 0.713153 0.701009i \(-0.247267\pi\)
0.713153 + 0.701009i \(0.247267\pi\)
\(968\) 3.53397 6.12102i 0.113586 0.196737i
\(969\) 0 0
\(970\) 6.62849 + 11.4809i 0.212828 + 0.368629i
\(971\) 2.03968 3.53282i 0.0654563 0.113374i −0.831440 0.555615i \(-0.812483\pi\)
0.896896 + 0.442241i \(0.145816\pi\)
\(972\) 0 0
\(973\) −29.7273 + 18.1749i −0.953014 + 0.582660i
\(974\) −8.22786 −0.263638
\(975\) 0 0
\(976\) 4.80418 + 8.32109i 0.153778 + 0.266351i
\(977\) −4.88009 8.45256i −0.156128 0.270421i 0.777341 0.629079i \(-0.216568\pi\)
−0.933469 + 0.358658i \(0.883235\pi\)
\(978\) 0 0
\(979\) −43.8535 −1.40156
\(980\) 11.8449 23.1291i 0.378370 0.738832i
\(981\) 0 0
\(982\) 7.94805 13.7664i 0.253633 0.439304i
\(983\) 25.6582 + 44.4412i 0.818368 + 1.41746i 0.906884 + 0.421381i \(0.138454\pi\)
−0.0885154 + 0.996075i \(0.528212\pi\)
\(984\) 0 0
\(985\) 15.3121 26.5213i 0.487883 0.845037i
\(986\) 13.6658 0.435206
\(987\) 0 0
\(988\) 8.64766 0.275119
\(989\) 33.2952 57.6690i 1.05873 1.83377i
\(990\) 0 0
\(991\) 0.352336 + 0.610265i 0.0111923 + 0.0193857i 0.871567 0.490276i \(-0.163104\pi\)
−0.860375 + 0.509662i \(0.829771\pi\)
\(992\) 16.6997 28.9247i 0.530215 0.918359i
\(993\) 0 0
\(994\) 0.706330 + 28.0772i 0.0224034 + 0.890556i
\(995\) 13.1212 0.415969
\(996\) 0 0
\(997\) −17.0129 29.4673i −0.538805 0.933238i −0.998969 0.0454035i \(-0.985543\pi\)
0.460164 0.887834i \(-0.347791\pi\)
\(998\) 4.70554 + 8.15023i 0.148951 + 0.257991i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.j.i.352.3 yes 12
3.2 odd 2 inner 819.2.j.i.352.4 yes 12
7.2 even 3 5733.2.a.bs.1.4 6
7.4 even 3 inner 819.2.j.i.235.3 12
7.5 odd 6 5733.2.a.bt.1.4 6
21.2 odd 6 5733.2.a.bs.1.3 6
21.5 even 6 5733.2.a.bt.1.3 6
21.11 odd 6 inner 819.2.j.i.235.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
819.2.j.i.235.3 12 7.4 even 3 inner
819.2.j.i.235.4 yes 12 21.11 odd 6 inner
819.2.j.i.352.3 yes 12 1.1 even 1 trivial
819.2.j.i.352.4 yes 12 3.2 odd 2 inner
5733.2.a.bs.1.3 6 21.2 odd 6
5733.2.a.bs.1.4 6 7.2 even 3
5733.2.a.bt.1.3 6 21.5 even 6
5733.2.a.bt.1.4 6 7.5 odd 6