Properties

Label 819.2.db.a
Level $819$
Weight $2$
Character orbit 819.db
Analytic conductor $6.540$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(209,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.db (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(96\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 192 q + 96 q^{4} + 8 q^{9} + 18 q^{14} + 12 q^{15} - 96 q^{16} + 20 q^{18} + 22 q^{21} - 36 q^{23} - 96 q^{25} - 72 q^{29} - 52 q^{30} + 60 q^{32} - 12 q^{36} - 78 q^{42} + 48 q^{46} - 12 q^{49} + 96 q^{50}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
209.1 −2.39694 1.38387i −0.718814 + 1.57585i 2.83020 + 4.90206i −1.26074 2.18367i 3.90373 2.78247i 0.0515663 2.64525i 10.1311i −1.96661 2.26549i 6.97881i
209.2 −2.39694 1.38387i 0.718814 1.57585i 2.83020 + 4.90206i 1.26074 + 2.18367i −3.90373 + 2.78247i 2.26507 1.36728i 10.1311i −1.96661 2.26549i 6.97881i
209.3 −2.31896 1.33885i −0.391650 1.68719i 2.58505 + 4.47744i −1.03457 1.79192i −1.35068 + 4.43689i −1.25442 + 2.32947i 8.48860i −2.69322 + 1.32158i 5.54054i
209.4 −2.31896 1.33885i 0.391650 + 1.68719i 2.58505 + 4.47744i 1.03457 + 1.79192i 1.35068 4.43689i −1.39017 + 2.25109i 8.48860i −2.69322 + 1.32158i 5.54054i
209.5 −2.30587 1.33130i −1.66942 0.461561i 2.54470 + 4.40755i −1.10336 1.91107i 3.23500 + 3.28679i 2.54699 + 0.716144i 8.22582i 2.57392 + 1.54108i 5.87558i
209.6 −2.30587 1.33130i 1.66942 + 0.461561i 2.54470 + 4.40755i 1.10336 + 1.91107i −3.23500 3.28679i −1.89369 1.84768i 8.22582i 2.57392 + 1.54108i 5.87558i
209.7 −2.13196 1.23089i −1.56926 + 0.733092i 2.03018 + 3.51637i 1.18705 + 2.05603i 4.24796 + 0.368659i −2.55819 0.675034i 5.07213i 1.92515 2.30082i 5.84449i
209.8 −2.13196 1.23089i 1.56926 0.733092i 2.03018 + 3.51637i −1.18705 2.05603i −4.24796 0.368659i 1.86369 + 1.87794i 5.07213i 1.92515 2.30082i 5.84449i
209.9 −2.13031 1.22994i −1.27406 1.17336i 2.02549 + 3.50825i 2.06091 + 3.56960i 1.27098 + 4.06664i −0.637652 + 2.56776i 5.04515i 0.246444 + 2.98986i 10.1392i
209.10 −2.13031 1.22994i 1.27406 + 1.17336i 2.02549 + 3.50825i −2.06091 3.56960i −1.27098 4.06664i −1.90492 + 1.83610i 5.04515i 0.246444 + 2.98986i 10.1392i
209.11 −1.99802 1.15356i −1.73164 + 0.0375373i 1.66138 + 2.87760i 0.966287 + 1.67366i 3.50316 + 1.92255i 2.15723 1.53178i 3.05176i 2.99718 0.130002i 4.45867i
209.12 −1.99802 1.15356i 1.73164 0.0375373i 1.66138 + 2.87760i −0.966287 1.67366i −3.50316 1.92255i 0.247942 2.63411i 3.05176i 2.99718 0.130002i 4.45867i
209.13 −1.86466 1.07656i −1.44952 + 0.948095i 1.31797 + 2.28279i −1.11192 1.92591i 3.72355 0.207373i 0.486211 + 2.60069i 1.36926i 1.20223 2.74857i 4.78822i
209.14 −1.86466 1.07656i 1.44952 0.948095i 1.31797 + 2.28279i 1.11192 + 1.92591i −3.72355 + 0.207373i −2.49537 + 0.879275i 1.36926i 1.20223 2.74857i 4.78822i
209.15 −1.80988 1.04493i −0.741472 1.56532i 1.18377 + 2.05035i −0.00831568 0.0144032i −0.293679 + 3.60782i 1.62471 2.08814i 0.768117i −1.90044 + 2.32128i 0.0347573i
209.16 −1.80988 1.04493i 0.741472 + 1.56532i 1.18377 + 2.05035i 0.00831568 + 0.0144032i 0.293679 3.60782i 0.996024 2.45111i 0.768117i −1.90044 + 2.32128i 0.0347573i
209.17 −1.69552 0.978910i −1.61632 0.622498i 0.916531 + 1.58748i −1.77173 3.06872i 2.13114 + 2.63769i −1.83923 1.90190i 0.326835i 2.22499 + 2.01231i 6.93745i
209.18 −1.69552 0.978910i 1.61632 + 0.622498i 0.916531 + 1.58748i 1.77173 + 3.06872i −2.13114 2.63769i 2.56671 + 0.641874i 0.326835i 2.22499 + 2.01231i 6.93745i
209.19 −1.51519 0.874794i −0.721994 1.57440i 0.530529 + 0.918903i 0.00733371 + 0.0127024i −0.283317 + 3.01710i 1.80568 + 1.93378i 1.64276i −1.95745 + 2.27341i 0.0256619i
209.20 −1.51519 0.874794i 0.721994 + 1.57440i 0.530529 + 0.918903i −0.00733371 0.0127024i 0.283317 3.01710i −2.57754 0.596879i 1.64276i −1.95745 + 2.27341i 0.0256619i
See next 80 embeddings (of 192 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 209.96
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
9.d odd 6 1 inner
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.db.a 192
7.b odd 2 1 inner 819.2.db.a 192
9.d odd 6 1 inner 819.2.db.a 192
63.o even 6 1 inner 819.2.db.a 192
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.2.db.a 192 1.a even 1 1 trivial
819.2.db.a 192 7.b odd 2 1 inner
819.2.db.a 192 9.d odd 6 1 inner
819.2.db.a 192 63.o even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(819, [\chi])\).