Properties

Label 8112.2.a.cj
Level $8112$
Weight $2$
Character orbit 8112.a
Self dual yes
Analytic conductor $64.775$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1014)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta_{2} - 3 \beta_1 + 1) q^{5} + (2 \beta_{2} - \beta_1 + 4) q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + (\beta_{2} - 3 \beta_1 + 1) q^{5} + (2 \beta_{2} - \beta_1 + 4) q^{7} + q^{9} + ( - 3 \beta_{2} + 2 \beta_1) q^{11} + (\beta_{2} - 3 \beta_1 + 1) q^{15} + ( - 2 \beta_1 - 2) q^{17} + 4 \beta_{2} q^{19} + (2 \beta_{2} - \beta_1 + 4) q^{21} + (2 \beta_{2} + 2 \beta_1) q^{23} + (4 \beta_{2} - 5 \beta_1 + 9) q^{25} + q^{27} + ( - \beta_{2} - 2 \beta_1 + 4) q^{29} - 5 \beta_{2} q^{31} + ( - 3 \beta_{2} + 2 \beta_1) q^{33} + ( - 11 \beta_1 + 5) q^{35} + (2 \beta_{2} + 4 \beta_1 + 2) q^{37} + ( - 6 \beta_{2} + 4 \beta_1 - 4) q^{41} + (2 \beta_{2} + 2 \beta_1 - 4) q^{43} + (\beta_{2} - 3 \beta_1 + 1) q^{45} - 4 \beta_{2} q^{47} + (9 \beta_{2} - 4 \beta_1 + 11) q^{49} + ( - 2 \beta_1 - 2) q^{51} + ( - 5 \beta_{2} + 3 \beta_1 - 1) q^{53} + (5 \beta_{2} - \beta_1 - 4) q^{55} + 4 \beta_{2} q^{57} + (2 \beta_{2} + 3 \beta_1 - 2) q^{59} + ( - 2 \beta_1 + 8) q^{61} + (2 \beta_{2} - \beta_1 + 4) q^{63} + ( - 2 \beta_{2} + 4 \beta_1) q^{67} + (2 \beta_{2} + 2 \beta_1) q^{69} + (2 \beta_{2} + 2 \beta_1 - 6) q^{71} + ( - 7 \beta_{2} + 3 \beta_1 + 1) q^{73} + (4 \beta_{2} - 5 \beta_1 + 9) q^{75} + ( - \beta_{2} + 2 \beta_1 - 3) q^{77} + (2 \beta_{2} - 5 \beta_1 - 8) q^{79} + q^{81} + (10 \beta_{2} - 7 \beta_1 + 10) q^{83} + (2 \beta_{2} + 4 \beta_1 + 8) q^{85} + ( - \beta_{2} - 2 \beta_1 + 4) q^{87} + (6 \beta_{2} + 2 \beta_1 + 6) q^{89} - 5 \beta_{2} q^{93} + ( - 12 \beta_{2} + 4 \beta_1 - 8) q^{95} + (3 \beta_{2} - 7 \beta_1 + 11) q^{97} + ( - 3 \beta_{2} + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - q^{5} + 9 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{3} - q^{5} + 9 q^{7} + 3 q^{9} + 5 q^{11} - q^{15} - 8 q^{17} - 4 q^{19} + 9 q^{21} + 18 q^{25} + 3 q^{27} + 11 q^{29} + 5 q^{31} + 5 q^{33} + 4 q^{35} + 8 q^{37} - 2 q^{41} - 12 q^{43} - q^{45} + 4 q^{47} + 20 q^{49} - 8 q^{51} + 5 q^{53} - 18 q^{55} - 4 q^{57} - 5 q^{59} + 22 q^{61} + 9 q^{63} + 6 q^{67} - 18 q^{71} + 13 q^{73} + 18 q^{75} - 6 q^{77} - 31 q^{79} + 3 q^{81} + 13 q^{83} + 26 q^{85} + 11 q^{87} + 14 q^{89} + 5 q^{93} - 8 q^{95} + 23 q^{97} + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
0.445042
−1.24698
0 1.00000 0 −3.15883 0 4.69202 0 1.00000 0
1.2 0 1.00000 0 −2.13706 0 −0.0489173 0 1.00000 0
1.3 0 1.00000 0 4.29590 0 4.35690 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.cj 3
4.b odd 2 1 1014.2.a.l 3
12.b even 2 1 3042.2.a.bh 3
13.b even 2 1 8112.2.a.cm 3
52.b odd 2 1 1014.2.a.n yes 3
52.f even 4 2 1014.2.b.f 6
52.i odd 6 2 1014.2.e.l 6
52.j odd 6 2 1014.2.e.n 6
52.l even 12 4 1014.2.i.h 12
156.h even 2 1 3042.2.a.ba 3
156.l odd 4 2 3042.2.b.o 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.a.l 3 4.b odd 2 1
1014.2.a.n yes 3 52.b odd 2 1
1014.2.b.f 6 52.f even 4 2
1014.2.e.l 6 52.i odd 6 2
1014.2.e.n 6 52.j odd 6 2
1014.2.i.h 12 52.l even 12 4
3042.2.a.ba 3 156.h even 2 1
3042.2.a.bh 3 12.b even 2 1
3042.2.b.o 6 156.l odd 4 2
8112.2.a.cj 3 1.a even 1 1 trivial
8112.2.a.cm 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8112))\):

\( T_{5}^{3} + T_{5}^{2} - 16T_{5} - 29 \) Copy content Toggle raw display
\( T_{7}^{3} - 9T_{7}^{2} + 20T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} - 5T_{11}^{2} - 8T_{11} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 16 T - 29 \) Copy content Toggle raw display
$7$ \( T^{3} - 9 T^{2} + 20 T + 1 \) Copy content Toggle raw display
$11$ \( T^{3} - 5 T^{2} - 8 T - 1 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 8 T^{2} + 12 T - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} - 32 T - 64 \) Copy content Toggle raw display
$23$ \( T^{3} - 28T - 56 \) Copy content Toggle raw display
$29$ \( T^{3} - 11 T^{2} + 24 T + 29 \) Copy content Toggle raw display
$31$ \( T^{3} - 5 T^{2} - 50 T + 125 \) Copy content Toggle raw display
$37$ \( T^{3} - 8 T^{2} - 44 T + 8 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} - 64 T - 232 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + 20 T - 104 \) Copy content Toggle raw display
$47$ \( T^{3} - 4 T^{2} - 32 T + 64 \) Copy content Toggle raw display
$53$ \( T^{3} - 5 T^{2} - 36 T - 43 \) Copy content Toggle raw display
$59$ \( T^{3} + 5 T^{2} - 36 T - 167 \) Copy content Toggle raw display
$61$ \( T^{3} - 22 T^{2} + 152 T - 328 \) Copy content Toggle raw display
$67$ \( T^{3} - 6 T^{2} - 16 T + 104 \) Copy content Toggle raw display
$71$ \( T^{3} + 18 T^{2} + 80 T - 8 \) Copy content Toggle raw display
$73$ \( T^{3} - 13 T^{2} - 30 T + 13 \) Copy content Toggle raw display
$79$ \( T^{3} + 31 T^{2} + 276 T + 533 \) Copy content Toggle raw display
$83$ \( T^{3} - 13 T^{2} - 128 T + 1567 \) Copy content Toggle raw display
$89$ \( T^{3} - 14 T^{2} - 56 T + 56 \) Copy content Toggle raw display
$97$ \( T^{3} - 23 T^{2} + 90 T - 97 \) Copy content Toggle raw display
show more
show less